
REVIEW

Biomechanical signal communication in vascular smooth muscle cells

Jingbo Chen1
& Yan Zhou1

& Shuying Liu1
& Chaohong Li1

Received: 13 February 2020 /Accepted: 4 August 2020
# The International CCN Society 2020

Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle
cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation
of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades,
which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification,
proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics
modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is
altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous
atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular
smooth muscle cells are reviewed.
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Rho-GDIα Rho GDP dissociation inhibitor α
ROCK Rho/Rho-kinase
STAT-3 Signal transducer and activator of transcrip-

tion-3
SM-α-actin Smooth muscle alpha-actin
SS Stretch stress
TAZ Transcriptional co-activator with PDZ-binding

motif
TGF-β1 Transforming growth factor-β1
TRPV Transient receptor potential vanilloid
TLR Toll-like receptor
VSMC Vascular smooth muscle cell
YAP Yes-associated protein

Background

Biomechanical stresses produced by blood flow dynamics
play pivotal roles in maintaining normal development, struc-
ture, and function of the cardiovascular system. Early in the
embryo, blood vessels consist of a single layer of endothelial
cells (ECs) called endothelial tubes, not arteries or veins. At
the beginning of the first heartbeat, cardiac ejection causes
blood to flow into the endothelial tubes. The force of outward
expansion from blood flow continuously stimulates the mes-
enchymal cells outside the ECs to differentiate into vascular
smooth muscle cells (VSMCs), closely surrounding the ECs,
resulting in the development of the endothelial tube into an
artery. However, due to the lower pressure in the endothelial
tubes connected to the cardiac blood backflow, only a small
number of mesenchymal cells outside the ECs differentiate
into VSMCs and become veins, acting as conduits for blood
reflux. As such, it is the blood pressure that causes the mes-
enchymal cells to differentiate into VSMCs, resulting in the
structural differences between arteries and veins. Similarly,
normal blood pressure in adulthood is essential for the main-
tenance of the structure and function of VSMCs. Shear stress
and stretch stress (SS) are two main mechanical forces that
occur when blood flows through the blood vessels. Shear
stress acts on the ECs, while SS acts on all the cells (ECs,
VSMCs, fibroblasts, and undifferentiated mesenchymal stem
cells) in the blood vessel wall. Mechanical force can induce
ECs to secrete both endothelin-derived vasodilation factor and
endothelium-derived vasoconstriction factor. The former in-
cludes NO, prostacyclin, and prostaglandin E2. These sub-
stances can cause vascular smooth muscle relaxation. The
latter mainly includes prostaglandin H2, oxygen free radicals,
and endothelin, which cause the VSMCs to contract.
Therefore, under normal physiological conditions, mechanical
stimulation induces ECs to release and balance the effects of
vasodilators and vasoconstrictors, thereby maintaining normal
vascular tension. However, under pathophysiological

conditions, abnormally increased mechanical stress induced
by hypertension will lead to altered vascular structure and
function.

Hypertension, hyperlipidemia, and hyperglycemia can
cause vascular diseases, such as atherosclerosis, alone or in
combination. Theoretically, the blood lipid and blood glucose
levels in the arteries and veins of the same individuals are
essentially the same, or higher in the veins than in the arteries.
However, atherosclerotic lesions only occur in the arteries,
and not in the veins. Despite this, once a vein is transplanted
into an artery, arterialization (normal blood lipid and blood
glucose) or atherosclerosis of the transplanted vein (hyperlip-
idemia and hyperglycemia) occurs rapidly under arterial pres-
sure. These data all indicate that arterial pressure plays a crit-
ical role. The question remains as to how the signal of me-
chanical stimulation is sensed by the vascular cells and trans-
ferred into the cells to cause the pathophysiological changes of
the cells. Do vascular cells have specific mechanical recep-
tors? What changes occur to the transmembrane proteins on
the cell membrane under mechanical stress stimulation? How
are important intercellular signaling molecules in the activa-
tion or regulation of VSMCs? What pathophysiological
changes and clinically important diseases are caused as a
result?

In vivo VSMCs are constantly stimulated by biochemical
and biomechanical factors. In recent years, several new mech-
anisms of mechanical transduction have been discovered.
Mechanical stimulation elicits a cell response with many im-
portant characteristics. For example, biomechanical stress can
induce the nonspecific activation of all cell transmembrane
proteins, leading to the communication of multiple signaling
pathways and the involvement of various signaling molecules
within the cells. Similarly, mechanical stress induces simulta-
neous changes to differentiation, phenotype, inflammation,
migration, proliferation, and/or apoptosis in VSMCs, which
are closely related to the development of many major clinical
cardiovascular diseases. Most importantly, different pheno-
types of VSMCs can lead to different responses to mechanical
stimuli. Likewise, mechanical stimulation can alter the cell
phenotype and accelerating the changes in their vascular struc-
ture and function. This review will focus on these issues and
the latest developments.

Mechanoreceptors in VSMCs

In VSMCs, multiple molecules have been identified as direct
mechanoreceptors. Some trans-membrane proteins, including
GPCRs, RTKs, LOX-1, RAGE, integrins and ion channels
(TRPV2, Piezos, etc.) are capable of sensing and transducing
mechanical signals. Mechanical stress stimulates mechanore-
ceptors and subsequently activates various downstream sig-
naling cascades, which cause different pathophysiological
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effects. In this review, we will introduce some of the main
mechanoreceptors and their downstream signaling cascades,
and also, the related pathophysiological effects.

GPCRs

G protein-coupled receptors (GPCRs) play important roles as
mechanoreceptors, such as angiotensin II-receptor (AT1R)
and adrenergic receptor (AR). They are closely associated
with the development of cardiovascular diseases like hyper-
tension and atherosclerosis (Forrester et al. 2018). GPCRs are
a group of 7-transmembrane-receptors that are combined with
G proteins. G proteins combined with GDP are inactive, and
those with GTP are activated, such that they can activate
downstream molecules, including adenylate cyclase (AC)
and PLC. The activation of AC and PLC produces secondary
messengers. AC cleaves ATP into cyclic AMP (cAMP),
which continues to activate protein kinase A (PKA). PLC
hydrolyzes PIP2 into DAG and IP3. DAG remains on the
plasma membrane, and soluble free IP3 promotes the quick
release of Ca2+ stored in the cells. The released Ca2+ combine
with protein kinase C (PKC) and they cluster near the plasma
membrane. DAG, Ca2+ and phosphatidylserine together affect
the regulatory domain of PKC, altering the structure of PKC to
expose the active domain. Activated PKA and PKC can then
phosphorylate some residues of effector proteins. The excess
Ca2+ will combine with calmodulin to form Ca2+/ calmodulin
complexes, which activate calmodulin -dependent protein ki-
nases (Wootten et al. 2018).

As the first GPCR that was identified as a mechanorecep-
tor, AT1R is a Gq/11 protein coupled receptor. Besides AT1R,
our previous study showed that both mechanical strain stress
and norepinephrine could activate AR and the downstream
signaling pathway, such as extracellular receptor kinases
(ERKs), and increase the proliferation of VSMCs, thus lead-
ing to atherosclerosis. When combined, the effect would be
even stronger (Liu et al. 2013).

RTKs

Receptor tyrosine kinases (RTKs) are a group of single-
subunit transmembrane receptors that contain an extracellular
N-terminal domain and an intracellular C-terminal domain.
Ligands combine the extracellular N-terminal domain which
activates RTKs, and makes them polymerize into dimers or
multimers. Mechanical stress can also activate RTKs non-spe-
cifically. The intracellular C-terminal kinase domains of acti-
vated RTKs would phosphorylate the tyrosine residues of
themselves, producing binding sites for Src homology 2
(SH2) and phosphotyrosine binding (PTB) domains.
Proteins that contain SH2 or PTB domains bind to RTKs, so
that they are activated and transfer signals to downstream
molecules.

The platelet derived growth factor receptors (PDGFRs) is
one of the first reported mechanoreceptors (Hu et al. 1998;
Ma et al. 1999b). PDGFR is composed of alpha and beta
subunits, which can be combined into heterodimers and
dimers, among other conformations. The monomer is inac-
tive and can be combined with specific ligand of PDGFs to
form dimers. Serine, tyrosine, and threonine in the peptide
chain can be phosphorylated automatically, giving rise to
the initiation of a series of downstream protein phosphory-
lation cascades.

Mechanical stretching not only increases the expression
level of insulin-like growth factor-1 receptor (IGF-1R), but
also stimulates and sustains the tyrosine phosphorylation of
IGF-1R and insulin receptor substrate-1 (IRS-1). The tyrosine
phosphorylation of IGF-1R and IRS-1, and the activation of
IRS-1–associated phosphoinositide 3-kinase (PI3K) both re-
sult in an increased proliferation of VSMCs (Cheng and Du
2007).

LOX-1

Lectin-like oxidized low-density lipoprotein receptor-1
(LOX-1) is the main receptor for oxidized low density lipo-
protein (ox-LDL) in ECs and VSMCs. The uptake of ox-LDL
by ECs and VSMCs is an important process in the develop-
ment of atherosclerosis. The expression level of LOX-1, as
well as autophagy, can be changed by shear stress of different
forms and strengths. Low shear stress and inflammatory stim-
ulus lipopolysaccharide could increase autophagy and LOX-1
expression. Furthermore, cells from LOX-1 knockout mice
and LOX-1 inhibition exhibited lower levels of autophagy,
whereas LOX-1 overexpression enhanced autophagy in ECs.
This indicates that LOX-1 may be able to sense mechanical
force and induce the autophagy of ECs (Ding et al. 2015; Mao
et al. 2015; Zhang et al. 2013b).

Rage

The receptor for advanced glycation end products (RAGE) is
a transmembrane receptor of the immunoglobulin super fam-
ily, which plays an important role in inflammation of diabetes
and is upregulated in atherosclerotic plaques. When shear
stress is exerted on human aortic ECs, the expression of
RAGE visibly changes. High shear stress downregulates
RAGE by four-fold, whereas oscillatory SS upregulates
RAGE by three-fold. According to our recent research results,
RAGE mediates combined signals initiated by diabetes-
related advanced glycation end products (AGEs) and
hypertension-induced mechanical stress as a common molec-
ular sensor in VSMCs (DeVerse et al. 2012; Li et al. 2012;
Ping et al. 2015; Ping et al. 2017).
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Integrin

Integrin is a kind of trans-membrane heterodimeric protein
which links extracellular matrix and cytoskeleton. Integrin
can reduce isolated resistance arterioles dilat ion
consencutively when exposed to step-increase pressure. SS
also enhances integrin αvβ3 expression (Balasubramanian
et al. 2007; Martinez-Lemus et al. 2005; Sun et al. 2008).
Taken together, receptors in the smooth muscular cell
(SMC) membrane can be activated by both their ligands spe-
cifically and mechanical SS non-specifically, which results in
a synergistic increase of the ligand stimulation signal. Thus, it
has been demonstrated that receptors play an important role as
mechanosensors.

TRPV2

The TRP family includes a wide variety of cation channels,
some of them are mechanoreceptors. A transient receptor po-
tential vanilloid (TRPV) homologue, TRPV2 is expressed in
VSMCs and is an important stretch sensor in vascular smooth
muscles. In hypotonic solutions, isolated cells from the mouse
aorta swell because of osmotic pressure. The cell membrane is
stretched thus activates TRPV2 inducing a non-selective cat-
ion channel current (NSCC) and elevated intracellular Ca2+

([Ca2+]i). When the external Ca2+ is cleared, cell swelling
can’t cause NSCC or elevated [Ca2+]i any more. Treating
the mouse aorta with TRPV2 antisense oligonucleotides re-
sults in the inhibition of TRPV2 protein expression. At the
same time, the NSCC and elevation of [Ca2+]i induced by
hypotonic stimulation is suppressed (McGahon et al. 2016;
Muraki et al. 2003).

Piezos

Piezos are evolutionary conversed pore-forming ion channels.
They were f i r s t ly exper imenta l ly proven to be
mechanosensitive in mouse neuroblastoma N2a cells (Coste
et al. 2010; Coste et al. 2012). Piezos also exist in ECs and
SMCs, now accumulated evidences indicate their pivotal role
in cardiovascular system (Douguet et al. 2019; Rode et al.
2017). During the embryonic period, Piezo1 expressed in
ECs can sense shear stress and guarantee the proper alignment
and morphology of ECs. Embryos deficient of Piezo1 die
midges ta t ion with vascular remodel ing defects .
Haploinsufficiency of Piezo1 is not lethal, but it results in
ECs with a cobblestone-like appearance, compared to normal
cells with a linear appearance in the direction of flow (Li et al.
2014; Ranade et al. 2014). Piezo1 of SMCs mediates arterial
remodeling under hypertension SMC-specific homozygote
knock out of Piezo1 decreases the diameter and thickness of
the vascular wall dramatically in chronic hypertension mice.
In normotension mice, the deficiency of Piezo1 makes no

significant difference in the vascular structure. Increased
opening of Piezo1 in SMCs caused by selectively removing
smooth muscle filamin A can also increase arterial wall thick-
ness independent of hypertension. Opening of Piezo1 in-
creases intracellular Ca 2+ levels, which may cause calcium-
dependent transglutaminases activation within SMCs. This
might be the mechanism of how Piezo1 of SMCs mediates
vascular remodeling (Douguet et al. 2019; Retailleau et al.
2015; Wu et al. 2017).

The study of ion channels focuses on the observation of the
intracellular ion current and requires the observation of living
cells. Therefore, it is difficult to simulate the effect of blood
pressure on cells in vitro. Until now, the most commonly used
method is the patch clamp technique, in which hypoosmosis
causes cell swelling and increases intracellular pressure, lead-
ing to changes in intracellular ion levels. At the same time,
with the help of a specific ion channel inhibitor or agonist,
changes in the intracellular ion flow levels can be observed.
However, the pressure caused by cell swelling is quite differ-
ent from the effect of mechanical stretching induced by blood
pressure in living cells in the blood vessels. Further experi-
ments are required to confirm whether these results truly re-
flect the pathophysiological phenomena of vascular cells in
hypertension. The development of better instruments that
can directly measure the real-time changes of ions in living
cells when they are stimulated by mechanical forces is also
necessary.

As reviewed above, although abundant work has been done
to recognize and identify mechanoreceptors on the VSMCs
membrane, there are still many questions waiting to be re-
solved. Some membrane receptors of VSMCs play pivotal
roles in pathophysiological changes induced by hypertension
and diabetes, such as thromboxane receptors, endothelin re-
ceptors and mineralocorticoid receptors. But whether they are
mechanosensitive hasn’t been identified. Further studies are
needed to be conducted to explore the separate and joint effect
of mechanical stress and their ligands respectively. Moreover,
many new techniques as proteomics, epigenetics and big data
can also be applied in this area to make more progress.

Pathophysiological effects and related
signaling transduction of VSMCs induced
by mechanical stimulation

VSMC phenotype transformation

The phenotype transformation in VSMCs is considered to be a
key pathophysiological change in various cardiovascular dis-
eases, including aortic dissection, atherosclerosis, and hyper-
tension. A variety of signaling molecules in VSMCs mediate
the mechanical stress-induced VSMC phenotype transforma-
tion. One type of mechanical stress is SS. SS initiates a signal
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via MEF2B that enhances Nox1-mediated ROS production
through the MEF2B-Nox1-ROS pathway, promoting
VSMCs from a contractile to a synthetic phenotype. Thus
theNox1 inhibitor could be used as a potential therapeutic
treatment for vascular dysfunction in hypertension
(Rodriguez et al. 2015). Another type of mechanical stress is
laminar shear stress. The exposure of human coronary artery
ECs to the shear stress of 5 dyn/cm2 resulted in the dysfunc-
tion of Cx40/Cx43 heterotypic myoendothelial gap junctions
(Cx43 upregulation and Cx40 downregulation). The junctions
were replaced by homotypic Cx43/Cx43 channels, thereby
inducing the transition of human coronary artery SMCs into
the synthetic phenotype, related to the activation of PDGF
receptor signaling (Zhang et al. 2016). The mechanical acti-
vation of the effectors of the Hippo pathway, Yes-associated
protein (YAP) and transcriptional co-activator with PDZ-
binding motif (TAZ), is involved in the stretch-induced phe-
notypic switch of human umbilical arterial VSMCs from a
contractile to a synthetic state (Wang et al. 2018b). The
ERKs pathway may also mediate the shear-stress-stimulated
switch from the contractile to synthetic phenotype (Asada
et al. 2005; Shi et al. 2010). In sporadic non-syndromic tho-
racic aortic aneurysms, due to mechanical stress and aortic
SMCs loss caused by the increased cystathionine γ-lyase,
synthetic aortic SMCs intensify Jagged1/NOTCH1 pathway
to counterbalance the weakened aortic wall (Chiarini et al.
2018).

VSMC proliferation

FAK, as a biomechanical sensor and a signaling “switch”
stimulated by stretch in vitro (Romer et al. 2006; Schlaepfer
et al. 2004; Torsoni et al. 2003), is auto-phosphorylated at
Tyr397, activating an attachment site for c-Src that then acti-
vates other auto-phosphorylation sites. The FAK/c-Src com-
plex can stimulate MAPKs, such as ERK 1, 2 and p38MAPK
(Schlaepfer and Hunter 1997). ERKs promote the prolifera-
tion of VSMCs exposed to both pulsatile and sustained SS,
while p38MAPK increases apoptosis (Goldman et al. 2003).
Moreover, combined SS with or without oxLDL can additive-
ly promote the activation of ERKs, leading to the accelerated
proliferation of VSMCs via the LOX-1 signaling pathway
(Zhang et al. 2013b). In addition, the Rho family members
of small GTPases, RhoA, Rac, and Cdc42, contribute to co-
ordinated cell behavior by modulating transcription and the
actin cytoskeleton (Hall 2005). Mechanical stretch stimulates
RhoA which mediates different downstream effectors, includ-
ing the MAPKs, thereby initiating signaling pathways that
potentiate VSMC proliferation and contractility (Numaguchi
et al. 1999). The activation of the ERKs and Akt signaling
pathways is involved in inducing VSMC proliferation under
mechanical stretch (Fukumoto et al. 2008), where ERK acti-
vation is partly mediated by c-Src (Morita et al. 2004). As

mentioned above, the Rho/Rho-kinase (ROCK) pathway to-
gether with the ERKs and PI3K/Akt pathways are imperative
for stretch-induced venous SMC proliferation (Kozai et al.
2005). Rho GDP dissociation inhibitor α (Rho-GDIα) is a
dominating sensor of cyclic strain (CS). Pathological CS en-
hances VSMC proliferation by down-regulating the expres-
sion of Rho-GDIα, which is phospho-Rac1-dependent via
the p38MAPK pathway, while physiological CS acts the con-
trary (Qi et al. 2010). Moreover, the tyrosine phosphorylation
of signal transducer and activator of transcription-3 (STAT-3)
is associated with the positive regulation of cell growth
(Horiuchi et al. 2003; Madamanchi et al. 2001; Marrero
et al. 1997; Seki et al. 2000; Yu et al. 2003), as well as the
inhibition of STAT-3 tyrosine phosphorylation by PP1, which
completely blocked the proliferation of SMCs exposed to CS
(Kakisis et al. 2005). Mechanical SS stimulated VSMC pro-
liferation in vein graft by increasing the transcription of se-
rum-, glucocorticoid-regulated kinase-1, an injury-responsive
kinase and downstream signal of PI3K (Cheng et al. 2010).
Besides, mechanical stretch directly regulates Ang II-induced
proliferation in VSMCs of spontaneously hypertensive rats
via the Ang II type 1/ epidermal growth factor receptor
/ERK-dependent signaling pathway (Liu et al. 2010). The
strain determinants for SMC proliferation and alignment were
the activation of the AC/cAMP/PKA and the PKC pathways
in SMC, where the singular inhibition of PKA or PKC failed
to inhibit strain-induced SMC proliferation and alignment,
indicating either their lack of involvement or the multifactorial
feature of these responses (Mills et al. 1997). CS induces the
expression of protease-activated receptor-1, leading to an in-
crease in VSMC proliferation in response to thrombin, which
may be mediated via the ROS and PKC signaling pathways
(Nguyen et al. 2001). In aortic aneurysms and dissections,
elevated stress can induce SMC proliferation (e.g., via
PDGF), matrix component synthesis (e.g., via TGF-β), and
cell signaling increase through AT1Rs (Humphrey et al.
2014). In addition, strain-induced SMC proliferation is regu-
lated by the epidermal growth factor receptor, basic fibroblast
growth factor, and PDGF receptor-MAPK-AP-1 signaling
pathways (Hu et al. 1999), PI-3 kinase/Akt pathway, NF-κB
pathway, mTOR-S6 kinase-eEF2 pathway (Li et al. 2003b),
p27Kip1 (Kurpinski et al. 2006), the and repression of emerin
and lamin A/C (Qi et al. 2016). At the same time, the phos-
phorylation of AMP-activated protein kinase (AMPK) exerts
an inhibitory effect on Ang II-induced proliferation signaling
in VSMCs (Nagata et al. 2004), which is regulated by flow
stress-mediated iNOS expression (Kim et al. 2017). As elab-
orated in our previous review, mechanical stress induces
MAPK phosphatase-1 (MKP-1) expression, which is regulat-
ed by two signaling pathways, involving growth factor
receptor-Ras-ERK and Rac-JNK/SAPK or p38MAPK, where
MKP-1 prevents VSMC proliferation via MAPK inactivation
(Li et al. 1999). The microRNA-33 (miR-33) - bone
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morphogenetic protein 3-Smad signaling pathway provides
protection against venous SMC proliferation in response to
arterial stretching (Huang et al. 2017). Biomechanical strain
induces the immediate early response gene iex-1 in VSMCs,
putting antiproliferative effects on SMCs (Schulze et al.
2003).

VSMC migration

Mechanical stress in VSMCs may contribute to their migra-
tion in the development of vascular diseases, such as athero-
sclerosis and restenosis. Our earlier research showed that two
main signaling pathways link mechanical stress to cell migra-
tion: The first is the PDGF receptor–MAPK–matrix metallo-
proteinase (MMP) pathway, which is responsible for cell de-
tachment from matrix proteins; The second pathway is the
PKC δ paxillin–cytoskeleton pathway, which is essential for
cell movement PKC δ mediates the actin fiber rearrangement
to influence VSMC migration (Li et al. 2003a). Shear stress
stimulates ECs to secrete PDGF-BB and interleukin-1α, and
both of these mediators stimulate the VSMC ERKs pathway
to inducemigration (Dardik et al. 2005). Injury-induced ERKs
activation is related to the initiation of rat VSMC migration
(Moses et al. 2001). Moreover, CS enhances the expression of
PDGF-Rβ in human aortic VSMCs (Ma et al. 1999a; Yung
et al. 2009). The up-regulation of PDGF signaling- tyrosine
kinase pathway (activated by ligand binding to PDGF-R) is
likely to be involved in the human aortic VSMC migration
under CS (Yung et al. 2009). Apoptosis signal-regulating ki-
nase 1, as a MAPK kinase, activates SMC migration, in-
creases neovascularization, enhances SMC and EC apoptosis
and sequentially accelerates mechanical injury-induced vascu-
lar remodeling (Tasaki et al. 2013). The up-regulation of
MMP-1 plays a critical role in interstitial flow-enhanced
VSMCmotility, which was further confirmed by the silencing
of MMP-1 gene expression (Shi et al. 2009). In addition to the
PDGF receptor–MAPK–MMP pathway, pathological CS en-
hances VSMC migration via down-regulating the expression
of Rho-GDIα, the effect of which is dependent on phospho-
Rac1 and possibly via the p38MAPK pathway, while physi-
ological CS has the opposite effect (Qi et al. 2010). Low shear
stress-induced VSMC migration is mediated by the PI-3 K/
Akt pathway, which down-regulates Rho-GDIα, thereby af-
fecting VSMC migration (Qi et al. 2008). Higher cyclic me-
chanical strain activated-Akt/protein kinase B included path-
way is required for VSMC migration and is likely to function
via its effects on actin rearrangement (Zhang et al. 2011). The
Rho/ROCK pathway regulates mechanical stress-induced
VSMC migration (Peyton and Putnam 2005). In addition,
CS-induced Nox1 activation decreases actin fiber density
and increased matrix metalloproteinase 9 activity, VSMC mi-
gration, and vectorial alignment (Rodriguez et al. 2015). DNA
microarray, ChiP analysis, and the analysis of isolated mouse

femoral arteries exposed to hypertension verified that nuclear
factor of activated T-cells 5 translocation to the nucleus in-
duced an increase in tenascin-C abundance in the vessel wall,
which in turn stimulates migration of VSMCs (Scherer et al.
2014). As for the inhibition of VSMCmigration, the release of
vasoactive substances like NO and prostacyclin under laminar
shear stress, can decrease the permeability to plasma lipopro-
teins and the adhesion of leukocytes, and as well as inhibit
VSMC proliferation and migration (Pan 2009). Fluid shear
stress suppresses SMC migration via the inhibition of the
phosphorylation of the ERKs-myosin light chain kinase sig-
naling pathway (Goldman et al. 2007).

VSMC differentiation

VSMC differentiation is considered as a vital event during the
progression of VSMC-related diseases, including atheroscle-
rosis, restenosis, and asthma. Twomain types of hemodynam-
ic force, shear stress and CS, contribute to the differentiation
process in the microenvironment of vascular cells. Under
moderate damage, laminar shear stress directly activates
growth factor receptors on stem/progenitor cells, thus initiates
signaling pathways and leads toward EC differentiation to
maintain the vessel integrity. When encountering severe dam-
age or atherosclerotic lesion, the disturbed flow is locally
formed; CS stimulates stem cell differentiation to SMC line-
ages (Potter et al. 2014). Mechanical stress induces MKP-1
expression regulated by growth factor receptor-Ras-ERK and
Rac-JNK/SAPK or p38MAPK pathways, which leads to
VSMC growth and differentiation (Li et al. 1999). CS acti-
vates PDGF-Rβ in a ligand-independent manner, which plays
a critical role in the differentiation of VSMCs (Zhang et al.
2013a). Mechanical stimuli play a dominating role in initial
ERK pathway, whose activity may play a direct role in SMC
differentiation (Dharmarajan et al. 2018). After exposure to
CS in both 2D and 3D models, the increased secretion of
transforming growth factor-β1 (TGF-β1) into the supernatant
of VSMCs, as well as the expression of contractile phenotype
markers, including alpha-actin (SMA), calponin, c-fos, phos-
phorylated Smad2 and Smad5, SIRT6, and smooth muscle
protein 22 alpha in VSMCs indicated that CS can guide mes-
enchymal stem cells (MSCs) to VSMC differentiation via the
TGF-β1-Smad-SIRT6 pathway (Dan et al. 2015; Yao et al.
2014). Furthermore, CS of a low magnitude (0.26 Hz, 3%)
mediates the differentiation of MSCs into osteogenic cells,
whereas greater CS (0.26 Hz, 10%) favors their differentiation
into SMCs (Jang et al. 2011). In addition to this, the stretch-
induced activation of the AMPK pathway (whose mediators
include MO25α, AMPK, AICAR, and ACC) in vascular
smooth muscles is in part regulated by reduced levels of
miR-144/451, an effect that may play a role in promoting
the contractile differentiation of VSMCs (Turczynska et al.
2013). Mechanical CS up-regulates Rac and down-regulate
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its negative regulator Rho-GDIα in a nonlinear frequency-
dependent manner, leading to the activation of the p38 path-
way, followed by an increased in the expression of h1-
calponin, which is a marker for VSMC differentiation (Qu
et al. 2008). Moreover, stretch-induced Rho-ROCK signaling
can preserve VSMC differentiation in vascular hypertrophy
by influencing the actin dynamics (Albinsson et al. 2004).
Mechanical strain can induce a frequency-dependent re-differ-
entiation of synthetic VSMCs in vitro at least partly via the
activation of the p38 pathway (Qu et al. 2007). Similarly,
laminar shear stress induces synthetic-to-contractile pheno-
typic switch in VSMCs via the activation of peroxisome
proliferator-activated receptor-α/δ mediated by the EC-
released prostacyclin (Tsai et al. 2009). However, during hy-
pertension, pathological stretching may induce ER stress in
VSMCs, affecting the alternative splicing and activity of large
conductance calcium and voltage-activated potassium (BK)
channels as a result, subsequently inducing the de-
differentiation of VSMCs (Wan et al. 2015). On the other
hand, the laminar shear stress suppresses VSMC marker ex-
pression by downregulating histone deacetylases 7/8 and the
TGF-β signaling pathway, leading to endothelial differentia-
tion (Zhang et al. 2013a).

VSMC inflammation

Proinflammatory stimuli, including cytokines, toll-like recep-
tor (TLR) ligands, oxLDL, and certain matrix proteins etc., all
induce inflammatory gene expression through a set of signal-
ing pathways, such as the stress-activated protein kinases p38,
JNK, the transcription factors NF-κB, NFAT, and STAT1/3
(O'Neill 2006). Experimental analysis of the smooth muscle
response to stretch suggests that too much or little stretch both
lead to VSMC proliferation and the induction of inflammatory
genes (Birukov et al. 1998; Lehoux et al. 2006). Exposing
VSMCs to pulsatile stretch stimulates NF-κB activation
through an oxidative stress-dependent pathway (Hishikawa
et al. 1997). A key contributor to early atherogenic inflamma-
tion, αvβ3, is a primary integrin heterodimer to mediate shear
stress-induced proinflammatory signaling (NF-κB, p21-
activated kinase), as well as gene expression (ICAM1,
VCAM1) (Chen et al. 2015a). SS-induced VSMC-supported
thrombin generation is mediated by the integrin αvβ3 signal-
ing pathway (Mao et al. 2012). The stretch-induced produc-
tion of ROS stimulates monocyte chemoattractant protein-1
(MCP-1) expression in a p38- and ERK- dependent manner
(Guest et al. 2006), suggesting that stretch may stimulate in-
flammatory gene expression via multiple signaling pathways.
Biomechanical stress-induced interleukin-6 (IL-6) expression
occurs in part via Ras/Rac/p38MAPK/NF-κB/NF-IL6 signal-
ing pathway, which is downregulated by PKC-δ, contributing
to the pathogenesis of atherosclerosis (Zampetaki et al. 2005).
Escherichia coli lipopolysaccharide is a potent inducer of

NF-κB activity, ERKs phosphorylation, MCP-1 release, and
TLR 2 mRNA expression in wild-type mice but not in TLR4-
signaling deficient mouse aortic VSMC, which indicated that
TLR4 signaling promotes a pro-inflammatory phenotype in
VSMCs, such that VSMCs may potentially play an active role
in vascular inflammation via the release of chemokines, pro-
inflammatory cytokines, and increased TLR 2 expression
(Yang et al. 2005). In addition, SS-induced YAP/TAZ activa-
tion is followed by a strong pro-inflammatory response in
human umbilical arterial SMCs; YAP/TAZ silencing attenu-
ates the expression of cell adhesion molecules and inflamma-
tory cytokines, suggesting that YAP/TAZ activation may ex-
ert a pro-inflammatory effect on atherosclerotic lesions (Wang
et al. 2018b). Aldosterone promotes early atherosclerosis in
areas of turbulent blood flow and an inflammatory plaque
phenotype that is associated with rupture in humans, the
mechanism of which may involve the VSMC release of solu-
ble factors that recruit activated leukocytes to the vessel wall
via proinflammatory placental growth factor signaling
(McGraw et al. 2013). Under elevated CS, aortic VSMCs
can produce IL-6 and MCP-1, which initiates media macro-
phage accumulation as well as aortic dilation (Akerman et al.
2018). On the contrary, physiological shear stress is anti-in-
flammatory, specifically inhibiting MAPK signaling and
inhibiting TNFR-associated factor-2 interaction with TNF re-
ceptor (TNFR)-1 (Yamawaki et al. 2003).

VSMC apoptosis

Abundant evidence indicates the importance of the apoptosis
of VSMCs in the development of vascular lesions, such as
atherosclerosis and postangioplasty restenosis. The in vivo
SAPK/JNKmediation of apoptosis was involved in the devel-
opment of atherosclerosis, in which certain cells in the lesions
could express higher levels of SAPK/JNK activity, as well as
higher levels of p53 (i.e. SAPK/JNK-activated p53) (Shaw
and Xu 2003). Moreover, VSMC apoptosis induced by me-
chanical stress is p53-dependent, where p53 is activated by
mechanical stress in a Rac- and p38MAPK-dependent manner
(Mayr et al. 2002). Acute cell apoptosis after vascular injury is
highly regulated by the activation of the MAPK signaling
pathway. Mechanical stress-induced p38MAPK activation is
partly responsible for transducing the signals leading to the
apoptosis of venous bypass grafts (Xu 2000). Additionally,
mechanical stress-induced apoptosis of VSMCs is mediated
by the β1-integrin-rac-p38-p53 signaling pathway (Wernig
et al. 2003). p53-up-regulated modulator of apoptosis
(PUMA) is an important mediator of VSMC apoptosis,
wherein CSinduces PUMA expression in cultured human
VSMCs via IFN-γ, JNK, and interferon regulatory factor-1
pathways (Cheng et al. 2012). Apoptosis signal-regulating
kinase 1 (a MAPK kinase) accelerates mechanical stress-
activated VSMC migration via enhanced VSMC and EC
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apoptosis and/or increased neovascularization, thereby induc-
ing vascular remodeling (Tasaki et al. 2013). Low shear
stress-induced VSMC apoptosis is mediated by the sup-
pressed expression of Rho-GDIα (Qi et al. 2008). CS inhibits
VSMC growth and enhances VSMC apoptosis, in part, by
regulating the Notch receptor and via downstream target gene
expression (Morrow et al. 2005). Laminar shear stress stimu-
lates VSMC apoptosis via the Akt pathway (Fitzgerald et al.
2008). The CS-induced decrease in Hedgehog signaling in
VSMCs is related to a marked increase in VSMC apoptosis
in vitro and in vivo (Morrow et al. 2007). SS, shear stress and
AGEs can increase the level of cleaved caspase-3 in VSMCs,
inducing the apoptosis of VSMCs (Ekstrand et al. 2010;
Fitzgerald et al. 2008; Ping et al. 2017). However, whether
other caspases are involved in this process or not has not been
fully studied. As such, it may play a fundamental role in arte-
rial remodeling and atherogenesis in vivo. Mechanical stress-
induced endoplasmic reticulum stress also promotes VSMC
apoptosis and degeneration, providing insight into the forma-
tion and progression of thoracic aortic aneurysm/dissection
(Jia et al. 2015). CS can significantly induce VSMCs apopto-
sis and aortic dissection formation, which can be impeded by
YAP1 over-expression via Hippo-YAP signal pathway (Liu
et al. 2017b).

VSMC pyroptosis

Pyroptosis, a newly discovered form of programmed
cell death, is a pro-inflammatory form of regulated cell
death, like apoptosis and necrosis. Pyroptosis depends
on the enzymatic activity of inflammatory proteases that
belong to the family of cysteine-dependent aspartate-
specific proteases (caspases), for example, caspase-1.
Caspase-1 activation is required for the formation of
the protein platform known as the inflammasome (e.g.
Absent in melanoma 2 (AIM2)) (Chang et al. 2013).
Pyroptosis in VSMCs is mediated via the caspase-1
pathway, indicating that AIM2, a member of the HIN-
200 protein family, is an active participant in atheroscle-
rosis (Pan et al. 2018). As mentioned above, pyroptosis
may be involved in atherosclerosis, particularly in ad-
vanced atherosclerotic lesions, and play an important
role in atherosclerotic lesion instability. However, few
relevant studies currently exist on pyroptosis, so further
research about whether it occurs in atherosclerosis and
underlying mechanisms will be needed.

Vascular calcification

Vascular calcification is a pathophysiological cell-regulated
process, involving a series of regulatory pathways, factors
(e.g. mechanical stimuli) and affecting multiple aspects of
the vascular tree, particularly the intima and media of

arteries and cardiac valves. Human aortic ECs and SMCs
both produce osteoprotegerin under both physiological and
pathological conditions, noting a considerably more pro-
duction of osteoprotegerin by HASMCs under both condi-
tions tested. The treatment of HASMCs with the receptor
activator of nuclear factor-κB ligand, derived from nonvas-
cular cells, inhibits basal osteoprotegerin production and
completely blocks the strain-mediated upregulation of oste-
oprotegerin, thereby promoting vascular calcification
(Davenport et al. 2018). Mechanical stimulation regulates
calcification by calcifying vascular cells. However, the in-
hibition of the p38 and JNK pathways exerts a direct effect
on the osteogenic conversion of the calcifying vascular
cells. The inhibition of the ERKs pathway is associated with
an increase in alkaline phosphatase expression and a de-
crease in mineralization, which suggests delayed osteogenic
differentiation of the cells, not involved in transduction of
the mechanical stimulus (Simmons et al. 2004). High rates
of acceleration of calcification is observed in a common
model of atherogenesis–apolipoprotein E-deficient
[ApoE(−/−)] mice (Wang et al. 2014). Additionally, bone
morphogenic protein-2 induced osteogesis in MSCs is con-
trolled by cytoskeletal tension and cell shape via the Rho/
ROCK signaling pathway (Wang et al. 2012a). However,
this requires further investigation in the context of medial
calcification. On the other hand, physiological mechanical
strain may protect the arteries from vascular calcification
mediated via the calcium-sensing receptor (Molostvov
et al. 2015). CS can down-regulate the expression of bone-
associated genes (osteopontin, matrix gla protein, alkaline
phosphatase, and the transcription factor CBFA-1) in
VSMCs, where long-term strain plays a protective role
against calcification (Nikolovski et al. 2003). Overall, it
has become increasingly clear in recent years that arterial
calcification is an active reprogramming of VSMCs by local
environmental cues into a dynamic range of phenotypes
rather than a passive process.

VSMC cellular component changes

As far as we know, cerebral aneurysm growth is characterized
by continuous structural weakness of local VSMCs, the mech-
anism by which is unclear. After CS, cell proteomics analysis
showed that down-expression of 118 proteins and up-
expression of 32 proteins in VSMCs, together with decreased
expression of collagen type IV/VI and increased expression of
MMP-1/MMP-3 (Liu et al. 2018). Decreased expression of
fibulin-4 can sensitize SMCs to stimuli and lead to increased
expression of early growth response 1 and thrombospondin-1.
Thrombospondin-1 is induced by SS and Ang II in SMCs,
resulting in elastic fiber organizing disruption and actin cyto-
skeletal remodeling dysregulation, contributing to the

Chen J. et al.364



development of ascending aortic aneurysms in vivo
(Yamashiro et al. 2018).

In summary, mechanical stress-induced pathophysiological
effects of VSMCs in vascular diseases are likely to be depen-
dent on several interacting pathways (Fig. 1), whereby the
singular inhibition of one single pathway is ineffective.
Currently clarified mechanical stress-induced signaling path-
ways can provide potential targets for therapeutic intervention
in vascular diseases, like atherosclerosis.

Mechanical stress-induced epigenetic
modifications and pathophysiological effects
in VSMCs

Epigenetics refers to the study about heritable changes
in gene expression with the invariable DNA sequence.
Epigenetic modifications are divided into three main
categories: DNA methylation, histone modification/
chromatin remodeling and RNA-based mechanisms.

Fig. 1 Mechanical stretch-induced signaling pathway in VSMCs.
Mechanical stretch activates transmembrane proteins including LOX-1,
RAGE, integrin, RTKs, GPCRs, TRPV, Piezo and other unknown recep-
tors non-specifically. Then multiple signaling pathways would be activat-
ed simultaneously, and subsequently lead to various cellular effects. The
kinase system, oxidative stress, ER stress and epidemic changes are in-
volved in these processes. These effects would result in cardiovascular
remodeling, such as atherosclerosis, hypertension and grafted venous AS,
which are leading cause of the clinical death. FAK: focal adhesion kinase;
Grb2: growth factor receptor-bound protein 2; SRC: sarcoma; SOS: Son
of Sevenless; G: G protein; PLC: phospholipase C; PI-3 K:
phosphoinositide 3-kinases; Ras: a family of small GTPase; MAPKs:
mitogen-activated protein kinases; ERK: extracellular regulated protein

kinase; JNK: c-Jun N-terminal kinases; P38: P38 MAPK; PDI: protein
disulfide isomerase; PIP2: phosphatidylinositol 4,5-bisphosphate; AC:
adenylyl cyclase; YAP: Yes-associated protein 1; PIP3: phos-
phatidylinositol (3,4,5)-trisphosphate; RAF: RAF kinases; IP3: inositol
trisphosphate; DAG: diglyceride; cAMP: cyclic adenosine
monophosphate; NOX: NADPH oxidase; ROS: reactive oxygen species;
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells;
Akt: protein kinase B;MAPKK: mitogen-activated protein kinase kinase,
MMP: matrix metalloproteinase; PKC: protein kinase C; PKA: protein
kinase A; ER: endoplasmic reticulum; PERK: protein kinase R (PKR)-
like endoplasmic reticulum kinase; IRE1α: inositol-requiring enzyme 1
α; ATF6: activating transcription factor 6; AS: atherosclerosis.
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Hemodynamic forces activate molecular pathways lead-
ing to histone modifications, transcription complex acti-
vation, and vascular/cardiovascular marker expression in
undifferentiated mouse embryonic stem (ES) cells, lead-
ing to the onset of a vascular/cardiovascular differentia-
tion program (Illi et al. 2005). Here, we will discuss the
functions of methylation, histone modifications and
microRNAs (miRNAs) in stretch-induced phenotype
transformation, proliferation, migration, differentiation,
inflammation, apoptosis and calcification of VSMCs
(Table 1).

VSMC phenotype transformation

In atherosclerotic vessels, miR-221/222 is upregulated in
initial atherogenic stages and then stimulates VSMCs to
switch from the “contractile” to the “synthetic” phenotype,
in connection with the induction of proliferation and motil-
ity (Chistiakov et al. 2015). Upregulation of miR-31 levels
induces downregulation of its target–a cellular repressor of
E1A-stimulated genes which is widely expressed in differ-
entiated cells, resulting in the modulation of the phenotype
of human VSMCs (Wang et al. 2013). MiR-181a/b is one of
the factors involved in the differentiation of VSMCs toward
a synthetic phenotype via targeting serum response factor,
upregulating synthetic marker genes, and downregulating
contractile marker genes (Wei et al. 2017). Mechanical SS
increases the expression of miR-29a-3p to reduce the ex-
p r e s s i o n o f T e n - e l e v e n t r a n s l o c a t i o n
methylcytosinedioxygenase 1, switching contractile
VSMCs to the synthetic phenotype (Jiang et al. 2019).
However, several others miRNAs have an inhibitory effect
on the modulation of VSMC phenotypic, including miR-
15b/16 (Xu et al. 2015), miR-132 (Choe et al. 2013), miR-
133 (Torella et al. 2011), miR-195 (Wang et al. 2012b),
miR-204 (Courboulin et al. 2011), miR-424/322 (Merlet
et al. 2013), and miR-663 (Li et al. 2013).

VSMC proliferation

As for proliferation, miR-31 has been associated with the de-
differentiated/proliferative state of VSMCs (Lee et al. 2013).
Similarly, miR-221/222 exerts a pro-proliferation effect in
VSMCs (Liu et al. 2012). Under conditions of SS, miR-153
and miR-223 are reduced in VSMCs, contributing to resultant
IGF-1R activation and VSMC proliferation. miR-21 overex-
pression can increase the proliferation of VSMCs via decreased
phosphatase and tensin and increased Akt activation during the
development of aortic aneurysms (Alajbegovic et al. 2017). SS
can increase the expression of primary miR-21 and pre-miR-21
in HASMCs, thus regulating VSMC proliferation (Song et al.
2012a). MiR-130a is a novel regulator of proliferation of
VSMCs via the inhibition of growth arrest-specific homeobox

expression (Wu et al. 2011). In addition, miR-142-5p has been
found to promote VSMC proliferation by down-regulating B
cell translocation gene 3, which inhibits the expression of cell
cycle regulatory genes and cell growth (Kee et al. 2013). MiR-
146a targets the Krüppel-like factor 4 3′-untranslated region
and forms a feedback loop by which they can regulate each
other’s expression, as well as VSMC proliferation (Sun et al.
2011). Likewise, the upregulation of miR-26a can stimulate
VSMC proliferation (Leeper et al. 2011). The overexpression
of miR-143 significantly inhibits the expression of versican, a
component of the extracellular matrix, which is produced by
synthetic VSMCs and facilitates VSMC proliferation (Wang
et al. 2010). MiR-155 is markedly upregulated in atherosclerot-
ic plaque, thereby accelerating VSMCproliferation by targeting
eNOS (Zhang et al. 2015). LncRNA TUG1/miR-145-5p/
FGF10 activates the Wnt/β-catenin pathway to promote the
proliferation of VSMCs in hypertensive state (Shi et al. 2018).
Under pathological conditions (e.g. 15% SS), miR-19b-3p ex-
pression is significantly down-regulated, thus VSMC prolifer-
ation is promoted causing vascular remodeling via miR-19b-
3p/the connective tissue growth factor pathway (Wang et al.
2019b). MiR-155, whose enhancement is related to hyperten-
sion, promotes VSMC proliferation by targeting suppressed
p27 expression (Xu et al. 2018). Meanwhile, let-7d
microRNA, as a vital regulator of cell proliferation, is signifi-
cantly down-regulated in VSMCs, while let-7d-transfected
VSMCs display reduced cell growth, resulting in more cells
in the G1 phase than in the G2/M phases of the cell cycle (Yu
et al. 2011). It is worth noting that miR-22 overexpression in
injured vessels notably reduces the expression of its target
genes, decreases VSMC proliferation and inhibits neointima
formation in wire-injured arteries. The opposite effect is ob-
served with the local usage of a miR-22 inhibitor to injured
arteries (Yang et al. 2018). Endothelial microparticles can de-
liver functional miR-126 into recipient VSMCs, thus reducing
VSMC proliferation and subsequent neointima formation
(Jansen et al. 2017). MiR-34a inhibits VSMC proliferation
and neointima formation by reducing the expression levels of
Notch1 (Chen et al. 2015b). MiR-362-3p represses the VSMC
proliferation by directly targeting a disintegrin and metallopro-
teinase with thrombospondin motifs 1 (ADAMTS1) in athero-
sclerosis (Li et al. 2017). MiR-133 expression, which is regu-
lated by extracellular signal-regulated kinase 1/2 activation and
regulates smooth muscle gene expression through transcription
factor Sp-1 repression, can reduce VSMC proliferation and
migration in vitro and in vivo (Torella et al. 2011).
Furthermore, locally enforced expression of miR-214 in injured
vessels was found to significantly reduce the expression levels
of NCK-associated protein 1, inhibit VSMC proliferation, and
prevent neointima VSMC hyperplasia after injury (Afzal et al.
2016). Extracellular vesicle-derived miR-223 inhibits VSMC
proliferation, resulting in a reduction of the atherosclerotic
plaque size (Shan et al. 2015).
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Table 1 Mechanical stress-induced epigenetic modifications and pathophysiological effects in VSMCs

Pathophysiological
effect

Epigenetic
molecules

Expression Type of mechanical factor Reference

Phenotypic changes miR-221/222 Increased SS (Chistiakov et al. 2015)

miR-31 Increased SS (Wang et al. 2013)

miR-29a-3p Increased CS (Jiang et al. 2019)

Anti-phenotypic changes miR-15b/16 Increased SS (Xu et al. 2015)

miR-132 Increased SS (Choe et al. 2013)

miR-133 Increased SS (Torella et al. 2011)

miR-195 Increased SS (Wang et al. 2012b)

miR-204 Increased SS (Courboulin et al. 2011)

miR-424/322 Increased SS (Merlet et al. 2013)

miR-663 Increased SS (Li et al. 2013)

Proliferation miR-31 Increased SS (Lee et al. 2013)

miR-221/222 Increased SS (Liu et al. 2012)

miR-153, miR-223, Decreased SS (Song et al. 2012b)

miR-21 Increased CS (Alajbegovic et al. 2017; Song et al. 2012a)

miR-130a Increased SHR (Wu et al. 2011)

miR-142-5p Increased SS (Kee et al. 2013)

miR-146a Increased SS (Sun et al. 2011)

miR-26a Increased SS (Leeper et al. 2011)

miR-143 Increased SS (Wang et al. 2010)

miR-155 Increased SS (Zhang et al. 2015)

miR-145-5p Increased SS (Shi et al. 2018)

miR-19b-3p Decreased CS (Wang et al. 2019b)

miR-155 Increased SS (Xu et al. 2018)

Anti-proliferation Let-7d Decreased SHR (Yu et al. 2011)

miR-22 Increased SS (Yang et al. 2018)

miR-126 Delivering SS (Jansen et al. 2017)

miR-34a Increased SS (Chen et al. 2015b)

miR-362-3p Increased SS (Li et al. 2017)

miR-133 Increased SS (Torella et al. 2011)

miR-214 Increased SS (Afzal et al. 2016)

miR-223 Increased extracellular
vesicle-derived

(Shan et al. 2015)

Migration HDAC7 Increased SS (Yan et al. 2009)

miR-221/222 Increased SS (Liu et al. 2012)

miR-26a Increased SS (Leeper et al. 2011)

miR-143 Increased SS (Wang et al. 2010)

miR-4463 Decreased SS (Wang et al. 2018a)

miR-155 Increased SS (Zhang et al. 2015)

miR-145-5p Increased SS (Shi et al. 2018)

Anti-migration miR-22 Increased SS (Yang et al. 2018)

miR-126-3p Delivering SS (Jansen et al. 2017)

miR-34a Increased SS (Chen et al. 2015b)

miR-362-3p Increased SS (Li et al. 2017)

miR-133 Increased SS (Torella et al. 2011)

miR-214 Increased SS (Afzal et al. 2016)
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VSMC migration

With regard to the migration of VSMCs, SS upregulates the
levels of acetylated histone H3 and HDAC7, while downreg-
ulating the levels of HDAC3/4 in VSMCs, thus inducing the
migration of cultured VSMCs (Yan et al. 2009). MiR-221/222
has a pro-migration effect on VSMCs (Liu et al. 2012). The
overexpression of miR-26a has also been found to stimulate
VSMC migration (Leeper et al. 2011). Likewise, the overex-
pression of miR-143 facilitates VSMC migration using the
same mechanism (Wang et al. 2010). MiR-4463 inhibited
the migration of human aortic VSMCs by targeting angio-
motin expression, while, in the plasma of patients with athero-
sclerosis, the expression of miR-4463 was lower than in the
control (Wang et al. 2018a). MiR-155 is significantly upreg-
ulated in the atherosclerotic plaque, accelerating the migration
of VSMCs by targeting eNOS (Zhang et al. 2015). In hyper-
tensive state, LncRNA TUG1/miR-145-5p/FGF10 activates
the Wnt/β-catenin pathway to promote VSMC migration
(Shi et al. 2018). On the other hand, the overexpression of
miR-22 in injured vessels significantly reduces the expression
of its target genes, decreases VSMC migration, and inhibits
neointima formation as well. In addition, the opposite effect
occurs after the local usage of a miR-22 inhibitor to injured
arteries (Yang et al. 2018). Endothelial microparticles deliver

functional miR-126 into recipient VSMCs to repress VSMC
migration and subsequent neointima formation (Jansen et al.
2017). MiR-34a inhibits VSMC migration and neointima for-
mation by reducing Notch1 expression levels (Chen et al.
2015b). MiR-362-3p inhibits VSMC migration by directly
targeting ADAMTS1 in atherosclerosis (Li et al. 2017). As
mentioned earlier, miR-133 can also reduce VSMCmigration
in vitro and in vivo, suggesting its potential therapeutic pros-
pect for vascular diseases (Torella et al. 2011). The overex-
pression of miR-214 in serum-starved VSMCs can signifi-
cantly decrease VSMC migration by reducing the expression
levels of NCK-associated protein 1 (Afzal et al. 2016).
Furthermore, extracellular vesicle-derived miR-223 inhibits
VSMC migration, resulting in a reduction of atherosclerotic
plaque sizes (Shan et al. 2015).

VSMC differentiation

As for VSMC differentiation, miR-143 and miR-145 are as-
sociated with promoting the contractile differentiation of
VSMCs by negatively regulating the target gene Kruppel-
like factor-5 (KLF5) and its downstream myocardin
(Alajbegovic et al. 2017; Turczynska et al. 2012). In addition,
miR-10a expression has been found to be steadily elevated
during the differentiation of mouse embryonic stem cells to

Table 1 (continued)

Pathophysiological
effect

Epigenetic
molecules

Expression Type of mechanical factor Reference

miR-223 Increased extracellular
vesicle-derived

(Shan et al. 2015)

Differentiation miR-143, miR-145 Increased SS (Alajbegovic et al. 2017; Turczynska et al. 2012)

miR-10a Increased SS (Huang et al. 2010)

Anti-differentiation miR-26a Increased SS (Leeper et al. 2011)

Cellular inflammation miR-155 Increased SS (Pedersen and David 2008; Urbich et al. 2008)

miR-205 Increased SS (Son et al. 2017)

Anti-inflammation SIRT1 Increased SS (Stein and Matter 2011)

miR133a Increased IL-19 (Gabunia et al. 2017)

Apoptosis miR-21 Increased CS (Song et al. 2012a)

miR-34 Increased SS (Wang et al. 2019a)

Anti-apoptosis miR-221/222 Increased SS (Liu et al. 2012)

miR-26a Increased SS (Leeper et al. 2011)

Pyroptosis – – – –

Calcification miR-221/222 Increased SS (Chistiakov et al. 2015)

miR-32 Increased SS (Liu et al. 2017a)

Anti-calcification miR-125b Increased SS (Goettsch et al. 2011; Mizuno et al. 2008; Wen et al. 2014)

CS: Cyclic stretch;

IL: Interleukin;

SHR: Spontaneously hypertensive rats;

SS: Stretch stress.
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VSMCs (Huang et al. 2010). MiR-26a, on the other hand, is
known to inhibit VSMC differentiation (Leeper et al. 2011).

VSMC inflammation

As regards the cycle of inflammation, class III HDAC SIRT1
are known to play a protective role in atherosclerosis in
VSMCs by suppressing p21, enhancing the replication of
senescence-resistant cells and inhibiting inflammatory events,
thereby preventing the formation of atherosclerotic plaques
(Stein and Matter 2011). As a key regulator of inflammatory
gene expression in leukocytes and lymphocytes (Pedersen and
David 2008; Urbich et al. 2008), miR-155 is induced by lipo-
polysaccharides, TNFα, and interferon-γ (IFN-γ) (O'Connell
et al. 2007; Tili et al. 2007) in leukocytes, and reduces the
expression of the TLR and cytokine signaling pathway com-
ponents, such as Fas-associated death domain protein, the re-
ceptor (TNFR superfamily)-interacting serine-threonine ki-
nase 1, and IκB kinase (Tili et al. 2007), as a negative feed-
back pathway. Evidence suggests that IL-32α, a cytokine with
anti-inflammatory and anti-atherogenic effects, can upregulate
the atheroprotective genes Reck and Timp3 by downregulat-
ing miR-205 via the Rprd2-Dgcr8/Ddx5-Dicer1 biogenesis
pathway (Son et al. 2017). Interleukin-19 (IL-19), a novel
anti-inflammatory cytokine, reduces lipid accumulation in
VSMCs, as well as low density lipoprotein receptor adaptor
protein 1 expression and oxLDL uptake, in a miR133a-
dependent manner to attenuate atherosclerosis via anti-
inflammatory effects on VSMCs (Gabunia et al. 2017).

VSMC apoptosis

With respect to VSMC apoptosis, stretch increases the expres-
sion of primary miR-21 and pre-miR-21 in HASMCs, which
is involved in the regulation of stretch-mediated apoptosis
(Song et al. 2012a). It is proved that miR-34a expression is
increased in the atherosclerotic plaques (Tana et al. 2017;
Toba et al. 2014). The overexpression of miR-34 family mem-
bers represses proliferation and promotes apoptosis of
VSMCs and umbilical vein ECs by inhibiting alpha-1
antitrypsin expression (Wang et al. 2019a). However, in
VSMCs, miR-221/222 has an anti-apoptosis effect (Liu et al.
2012). MiR-26a can also inhibit VSMC apoptosis (Leeper
et al. 2011).

Vascular calcification

In atherosclerotic vessels, miR-221 and miR-222 synergisti-
cally contribute to the atherogenic calcification of VSMCs
(Chistiakov et al. 2015). As a critical modulator, miR-32mod-
ulates vascular calcification through its targeting of phospha-
tase and tensin homolog Mrna/Akt/runt-related transcription
factor-2 axis in mice. Furthermore, higher miR-32 levels have

been found in the plasma of patients with coronary artery
calcification compared to non-coronary artery calcification
patients (P = 0.016) (Liu et al. 2017a). Another key miRNA,
miR-125b, inhibits the process of VSMC calcification
(London et al. 2003) by inhibiting osteoblastic proliferation
and differentiation (Goettsch et al. 2011; Mizuno et al. 2008;
Wen et al. 2014).

Although extensive studies have gone in-depth on the mo-
lecular mechanisms of mechanical stress regulating intracel-
lular signals therebymodulating downstream gene expression,
research investigating the role of mechanical stress-induced
epigenetic pathways has emerged only recently. Numerous
studies have uncovered that shear stress-induced epigenetic
modifications can affect EC functions, while the effects of
mechanical force-induced epigenetic modifications on
VSMCs remain unclear. Further research is needed with the
goal of shedding light on the mechanisms underlying how the
dynamic environment of blood vessels influences vascular
cells (especially VSMCs) during the development of vascular
diseases.

Simultaneous increases in proliferation
and apoptosis of VSMCs induced
by mechanical stress

VSMC proliferation and apoptosis play important roles in the
pathophysiology of vascular remodeling initiated by mechan-
ical stress. We have been studying the effects of mechanical
stress on the proliferation and apoptosis of VSMCs and related
mechanisms. So far, most studies have focused only on the
unilateral effects of mechanical stress on VSMC proliferation
or apoptosis. In our experiments, we found that when mouse
venae cavae were transplanted to carotid arteries of non-
diabetic mice, the grafted veins underwent the action of arte-
rial pressure. Eight weeks later, the simultaneous increases of
cell proliferation and apoptosis were found in the grafted veins
wall, which triggered vein graft arterializations. On the other
hand, when mouse venae cavae were transplanted to carotid
arteries of diabetic mice, the transplanted veins suffered dual
roles from arterial pressure and hyperglycemia. After 8 weeks,
compared with those of the non-diabetic mice, the wall thick-
ness of the vein grafts and deposition of AGEs were more
visibly altered, andmore proliferating and apoptotic cells were
found, which caused vein graft atherosclerosis (Li et al. 2012;
Ping et al. 2015; Ping et al. 2017). In vitro experiments, we
found that mechanical SS could non-specially activate trans-
membrane proteins, including α1-ARs, LOX-1 and RAGE,
on cell membranes, leading to the activation of intracellular
signaling molecules ERKs and VSMC proliferation.
Noradrenaline, ox-LDL, and AGEs could amplify SS-
induced signaling respectively, where α1-ARs, LOX1, and
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RAGE acted as mechanosensors for the transfer of signals (Li
et al. 2012; Liu et al. 2013; Zhang et al. 2013b).

Further research found that both SS and AGEs alone were
able to induce different levels of MAPKs (including ERK, JNK
and P38MAPK) activation and simultaneous increases in the
proliferation and apoptosis of VSMCs (Ping et al. 2015; Wang
et al. 2017), while the combination of both had a synergistic
effect (Ping et al. 2015). The transformation of the VSMC
subtypes is closely related to the pathophysiology of vascular
disorders. In immunofluorescent staining with SM-α-actin an-
tibody, we found that all cultured VSMCs expressed different
levels of SM-α-actin, which suggested the cultured VSMCs
existed in different subtypes and with varying degrees of het-
erogeneity. We found JNK-, and P38MAPK-activated cells
with strong SM-α-actin expression were prone to apoptosis,
however, ERK-activated cells showed weak SM-α-actin ex-
pression which were easy to proliferate. On the contrary, the
inhibition of MAPKs signaling pathways resulted in significant
decreased proliferation and apoptosis in VSMCs, and treatment
with the small interfering RNA of RAGE also significantly
inhibited the proliferation and apoptosis of VSMCs. These find-
ings indicate that the same extracellular stimuli could result in
different fates in cultured VSMCs, which is mainly related to
the selective activation of MAPKs. SM-α-actin may play an
important role as a signal target for regulating VSMC prolifer-
ation and apoptosis. Consistent with in vitro experiments, more
ERK-, JNK-, and P38MAPK-activated cells were observed in
the vein grafts of diabetic mice compared to those of non-
diabetic mice (Ping et al. 2015).

PDI belongs to the thioredoxin superfamily oxidoreduc-
tase, which involves cell survival and death. In a recent study,
we found that PDI expression was upregulated in the vein
grafts of non-diabetic and diabetic mice, where PDI and
SM-α-actin were co-expressed. This strong co-expression of
PDI and SM-α-actin may result in VSMC apoptosis, as a
weaker co-expression of both contributed to the proliferation
of VSMCs. Besides, we found higher co-expression of PDI
and SM-α-actin and more proliferative and apoptotic cells in
the vein grafts of diabetic mice. In cultured VSMCs, both SS
and AGEs rapidly upregulated PDI and NOX1 expression,
and ROS production, leading to simultaneous increases of cell
proliferation and apoptosis, where combined treatment of both
had synergistic effects. Further, the VSMCs with a weak co-
expression of PDI and SM-α-actin were proliferating cells,
while strong co-expression of both indicated cell apoptosis
or death. These results are consistent with those of the
in vivo experiments, suggesting that arterial pressure or SS
alone can upregulate PDI expression and induce simultaneous
increases of VSMC proliferation and apoptosis resulting in
vein graft arterializations. Further, diabetic-related AGEs
could synergistically amplify arterial pressure/SS- initiated
signaling, resulting in higher PDI expression and more prolif-
erative and apoptotic cells, accelerating vein graft

arteriosclerosis. Furthermore, different levels of PDI expres-
sion indicate cell proliferation or apoptosis (Ping et al. 2017).

Taken together, our study proved that the simultaneous in-
creases of cell proliferation and apoptosis were closely related
to VSMC subtypes via PDI-NOX1-ROS signaling in vein graft
arterializations or atherosclerosis (Ping et al. 2017) (Fig. 1).
However, the mechanism by which PDI and SM-α-actin inter-
act to induce cell proliferation and apoptosis requires further
study. In addition, PDI is not only related to cell proliferation
and apoptosis, but also closely related to endoplasmic reticulum
stress and oxidative stress. The relationship between cell pro-
liferation, apoptosis, endoplasmic reticulum stress and oxida-
tive stress is the subject of our current research. Here, the inhi-
bition of PDI in vitro could simultaneously suppress the prolif-
eration and apoptosis of VSMCs, whether or not the inhibition
of PDI in vivo can simultaneously inhibit VSMC proliferation
and apoptosis leading to reduced vein graft atherosclerosis need
to be further proven. Overall, these results provide a new view
on the mechanism of vein graft atherosclerosis, and PDI may
role as a new drug target for the prevention and treatment of
vascular remodeling diseases.

Conclusions and perspectives

In vitro experiments, animal studies, and human studies have
shown that mechanical stresses are powerful determinants in
the regulation of arterial function, myocardial remodeling, and
the differentiation of progenitor cells in the vascular system.
Hypertension-induced mechanical stress non-specifically and
receptor ligands specifically co-activate transmembrane pro-
teins, including various receptors, caveolins, ion channels, and
pumps on the cell membrane. Activation of transmembrane
proteins results in the simultaneous activation of multiple sig-
nals of downstreammolecules (e.g. intracellular kinases, ions,
redox system, and caspases) initiating a profound network of a
variety of intracellular multiple signaling pathways, thereby
resulting in the multiple functional consequences of patho-
physiology, such as cell phenotypic changes, migration, dif-
ferentiation, inflammation, calcification, proliferation,
pyrotosis and apoptosis, etc. The changed pathophysiology
is closely associated with cardiovascular remodeling and dis-
eases, leading cause of the clinical death (Fig. 1). Further
study should focus on the following aspects: in terms of basic
research, studies can be carried out at different levels, such as
cell membrane level, cytoplasmic level and nucleus level.
There are many kinds of transmembrane proteins on the mem-
brane, and only a few transmembrane proteins such as recep-
tor and mechanical force activation have been reported.
Because mechanical force activation is nonspecific, all trans-
membrane proteins on the membrane may be activated. So,
are all of these transmembrane proteins promoting vascular
remodeling disease? Are there inhibitory transmembrane
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proteins activated? Due to the non-specific activation of me-
chanical forces, many intracellular signaling pathways are ac-
tivated at the same time, thus forming a complex intracellular
signaling network, and the signaling pathways can also regu-
late each other. So, what molecules in these networks act as
network nodes? Can these node-regulating molecules simul-
taneously block intracellular upstream multi-pathway signals
to block mechanical force non-specific multi-pathway activa-
tion signals? MiRNA and epigenetic studies have been a hot
topic in recent years, and the effects of mechanical stimulation
on miRNA and epigenetic regulation can be observed to elu-
cidate the mechanism of mechanical stimulation on vascular
remodeling and disease. In terms of drug development, once it
is found which membrane proteins mediate mechanical force
stimulation signals to promote or inhibit, people can develop
corresponding inhibitors or agonists. The regulation of key
node molecules can block the damage effect of mechanical
forces on blood vessels. VSMCs have very specific functions
and physiological characteristics, with different phenotypes.
However, the cells with different phenotypes have different
intracellular signals and biological behaviors in response to
the same mechanical stimulation, just as a group of cells can
proliferate and apoptosis under the same in vitro culture. Cell
growth and death can occur under the same culture conditions
in vitro and in the same internal environment in vivo.
However, excessive proliferation or apoptosis is harmful to
vascular lesions. Therefore, the clinical prevention and treat-
ment of vascular remodeling and disease (atherosclerosis)
need to change from the traditional strategy of inhibiting pro-
liferation and inducing apoptosis of VSMCs to simultaneous
inhibition of proliferation and apoptosis. The development of
drugs that have multiple functions for the same drug is even
more intriguing.
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