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Abstract
The small leucine rich proteoglycans (SLRPs), structurally consisting of protein cores and various glycosaminoglycan side
chains, are grouped into five classes based on common structural and functional properties. Besides being an important structural
component of extracellular matrix (ECM), SLRPs have been implicated in the complex network of signal transduction and host
immune responses. The focus of this review is on SLRPs in host immunity. Because host immunity plays an important part in the
pathogenesis of renal diseases, the role of SLRPs in this set of diseases will also be discussed.
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Abbreviations
SLRP Small leucine rich proteoglycans
ECM Extracellular matrix
LRR Leucine rich repeat
PAMP Pathogen associated molecular pattern
DAMP Danger associated molecular pattern
HIF-2 α Hypoxia-inducible factor 2α
SLE Systemic lupus erythematosus
RANTES Regulated upon activation, normal T cell

expressed and secreted
MyD88 Myeloid differentiation factor 88
TRIF β TIR-domain-containing adaptor-inducing inter-

feron β
TLR Toll-like receptor
TNF α Tumor necrosis factor α
MIP Macrophage inflammatory protein
NLRP3 NLR family, pyrin domain containing 3
NOX NADPH oxidases
ROS Reactive oxygen species
TGF Transforming growth factor

miR Micro-RNA
PDCD Programmed cell death protein
MCP-1 Monocyte chemoattractant protein-1

Introduction

The small leucine rich proteoglycans (SLRPs), named after
their relatively small size and the leucine rich repeats (LRR)
in their structures, consist of two main structural components:
protein cores and various glycosaminoglycan (GAG) side
chains, which form decorin, biglycan, and lumican etc
(Dellett et al. 2012; Schaefer and Iozzo 2008). The SLRP
family currently has 17 members that are grouped into five
distinct classes based on their conservation and homology at
the protein and genomic levels, the number of the LRRs, the
spacing of the N-terminal cysteine residues in the protein
cores, and their chromosomal organization (Fig. 1) (Dellett
et al. 2012; Schaefer and Iozzo 2008). The unique structural
characteristics of GAG types provide some of the structural
basis for the multitude of the biological functions of SLRPs
(Theocharis et al. 2010). So far, biglycan and decorin from
class I are among the best studied SLRPs in a variety of bio-
logical and pathological processes (Dellett et al. 2012; De
Felice et al. 2003; Gubbiotti et al. 2015). Besides being an
important component of ECM, SLRPs have been implicated
in cell proliferation and migration (Dellett et al. 2012;
Schaefer and Iozzo 2008; Kalamajski and Oldberg 2009;
Keene et al. 2000; Kresse et al. 1997). Recent studies also
demonstrate that SLRP family members are involved in dif-
ferent signaling pathways including TGF-β/Nodal/Smad2
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pathway, BMP/Smad1 pathway, EGF pathway, MAPK/FGF
pathway, TLR pathway, purinergic pathway and mTOR sig-
naling pathway, indicating an essential role of this family in
coordinating other important cellular processes such as fibro-
sis, autophagy and host immune responses etc (Dellett et al.
2012; Gubbiotti et al. 2015; Babelova et al. 2009; Schaefer
et al. 2007; Goldoni et al. 2009; Kou et al. 2010; Tomoeda
et al. 2008; Albig et al. 2007; Chen et al. 2011; Nikitovic et al.
2011; Rehn et al. 2006, 2008; Ohta et al. 2011, 2006;
Kuriyama et al. 2006; Morris et al. 2007; Iozzo 2015;
Schaefer et al. 2017). With more and more studies focused
on this family in recent years, the category of the physiological
functions and pathological roles of SLPRs are involving rap-
idly. Current review will specifically focus on the role of
SLRPs in host immune responses. Because host immune re-
sponses play an important part in the pathogenesis of renal
diseases, the role of SLRPs in this set of diseases will also
be discussed.

SLRPs and innate immunity

SLRPs and TLR 2/4 signaling pathway

The leucine-rich repeat motifs in the core protein of SLRPs
and the structural similarity between SLRPs and the pathogen
associated molecular patterns (PAMPs) suggest that SLRPs
play a role in host immunity (Shao et al. 2012; Schaefer
et al. 2002, 2005; Wu et al. 2007). Indeed, certain SLRPs such
as biglycan were described as Banalogous to PAMPs^ in some
studies due to their ability to induce innate immune response
by their own without the need of PAMPs (Schaefer et al. 2005;
Al Haj Zen et al. 2003).

The best studied signaling pathway in innate immune
responses activated by SLRPs is mediated by TLR4/2. As

endogenous ligands for TLR 4 and TLR 2, decorin and
biglycan stimulate macrophages to produce TNF α, IL-
12, and MIP 2 (Schaefer et al. 2005; Moreth et al. 2012).
In addition, biglycan itself can activate macrophages and
activated macrophages will synthesize and secrete
biglycan (Schaefer and Iozzo 2008; Schaefer et al. 2005),
indicating a self-amplifying loop involving biglycan exists
in the pathway leading to macrophage activation. Biglycan
was also reported involved in the activation of NLRP3
inflammasome via the cooperativity of TLR2/TLR4 and
P2X receptors leading to the secretion of mature IL-1 β
both in a model of non-infectious inflammatory renal inju-
ry and in LPS induced sepsis (Babelova et al. 2009), indi-
cating that biglycan may act as a danger associated molec-
ular pattern (DAMP) that is proteolytically released from
the ECM upon tissue stress or injury and then turn on host
innate and adaptive immune responses (Kalamajski and
Oldberg 2009; Schaefer et al. 2005; Nastase et al. 2012;
Moreth et al. 2010; Popovic et al. 2011; Schaefer and Iozzo
2012). Recent studies further indicate that through TLR 2/
4-NADPH oxidases (NOX) 1/4 -ROS and TLR 4-TRIF/
MyD88-NOX 2 axes, biglycan fine-tunes IL-1 β produc-
tion and maintains immune homeostasis (Schaefer et al.
2017). Interestingly, also through TLR2, biglycan induced
the expression of hypoxia-inducible factor 2α (HIF-2α)
resulting in increased erythropoietin production in the liver
and kidney of a liver-specific, biglycan transgenic mouse
model and subsequent enhanced production of erythro-
cytes (Frey et al. 2017), which potentially is related to
inflammation and tumor progression. Signaling pathways
through TLR2/4 by biglycan and decorin are summarized
in Fig. 2.

Also through TLR4 pathway, another SLRP family
member—lumican was found protective against Gram nega-
tive bacterial infection, as indicated that Lum-/- peritoneal

Fig. 1 Phylogenetic tree of the
human small leucine-rich re-
peat proteoglycan (SLRP)
family. The phylogenetic tree of
the growing human SLRP protein
family is generated by multiple
sequence alignment using
ClustalW2 from the European
Bioinformatics Institute.
Horizontal distances of the bars
are proportional to the predicted
evolutionary distance of the
available human SLRP sequences
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macrophages lost the capacity to phagocytoze non-opsonized
Gram negative E. coli and P. aeruginosa in vitro (Shao et al.
2012; Wu et al. 2007). Interestingly, Chakravarti’s group
showed some different results when they challenged the
Lum-/- mice with LPS. They found that the Lum-/- mice were
hyporesponsive to LPS-induced septic shock with poor induc-
tion of pro-inflammatory cytokines in the serum and a survival
benefit was observed in the scenario of LPS challenge (Al Haj
Zen et al. 2003). In the same study the authors also reported
that challenging Lum-/- mice with live S. typhimurium didn’t
lead to any difference in the production of TNFα in the serum
of these animals compared withWTanimals (Wu et al. 2007).
These findings indicate that activation of innate immune re-
sponses in vivo is a complicated process and interaction be-
tween host and the whole bacterial versus LPS alone may be
different. Notably, lumican deficiency didn’t affect the re-
sponse of macrophages to other PAMPs suggesting the role
of lumican in TLR-4 signaling pathway is specific (Al Haj
Zen et al. 2003). However, not all inflammatory responses will
cause tissue damage, and some recent data show that DAMPs
that ligate TLR 2/4 drive renal regeneration (Anders and
Schaefer 2014).

SLRPs and cytokine/chemokine production

SLRP-induced activation of innate immune responses leads to
the production of cytokines and chemokines. In macrophages
and dendritic cells soluble biglycan induces the expression of
CXCL 13, a major chemoattractant for B cells, especially B1
cells, and an important biomarker for the disease activity of
systemic lupus erythematosus (SLE), suggesting a role of
biglycan in the pathogenesis of autoimmune diseases involv-
ing T cell independent and dependent autoantibody produc-
tion (Nastase et al. 2012; Moreth et al. 2010). Consistent with
this finding, biglycan deficient mice were found hypo-
responsive to both LPS and zymosan-induced sepsis due to
a mitigated inflammatory response that resulted in less end-
organ damage.

Lumican also can induce the secretion of pro-inflammtory
cytokines that recruit macrophages and neutrophils to the sites
of injury (Albig et al. 2007; Vij et al. 2005; Carlson et al.
2007), and lumican deficiency leads to a marked reduction
of neutrophil infiltration that impairs wound healing and res-
olution of inflammatory diseases (Frey et al. 2013; Hayashi
et al. 2010; Lohr et al. 2012). When Lum-/- mice were
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Fig. 2 Decorin and biglycan participate in multiple signaling
pathways of innate and adaptive immune responses. As endogenous
ligands for TLR 4 and TLR 2, decorin and biglycan stimulate
macrophages to produce TNF α, IL-12, and MIP 2. In addition,
biglycan itself can activate macrophages and activated macrophages
will synthesize and secrete biglycan. Via the cooperativity of TLR2/
TLR4 and P2X receptor biglycan is involved in the activation of
NLRP3 inflammasome leading to the secretion of mature IL-1 β. IL-1
β production is also fine-tuned by biglycan through TLR 2/4-NOX 1/4 -
ROS and TLR 4-TRIF/MyD88-NOX 2 axes. Also through TLR2
biglycan induces HIF-2α expression resulting in increased erythropoietin
production and subsequent enhanced production of erythrocytes. Recent

studies indicated that TGF-β-miR 21- PDCD 4-IL 10 signaling pathway
participated in the post-transcriptional inhibition of IL-10 expression by
biglycan. By inducing the secretion of RANTES, MCP-1, and MIP-1 α
biglycan chemoattracted T cells to the sites of inflammation through TLR
2/4 signaling. TLR, toll-like receptor; TNF α, tumor necrosis factor α;
MIP, macrophage inflammatory protein; NLRP3, NLR family, pyrin do-
main containing 3; NOX, NADPH oxidases; ROS, reactive oxygen spe-
cies; TRIF: TIR-domain-containing adaptor-inducing interferon; MyD:
myeloid differentiation factor; RANTES: regulated upon activation, nor-
mal T cell expressed and secreted; HIF-2 α: hypoxia-inducible factor 2α;
TGF, transforming growth factor; miR, micro-RNA; PDCD: pro-
grammed cell death protein; MCP-1, monocyte chemoattractant protein-1
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challenged with P. aeruginosa, these mice failed to clear the
bacterium from lungs and other tissues, and showed a dramat-
ic increase in mortality.

As lumican and biglycan, decorin facilitates the transcrip-
tion and translation of pro- inflammatory and most anti-
inflammatory cytokines in the absence and presence of LPS.
However, IL-10 is an exception: in the absence of LPS both
transcription and translation of IL-10 is increased while in the
presence of LPS IL-10 mRNA transcription is upregulated but
protein translation is suppressed by decorin (Moreth et al.
2012; Merline et al. 2011), indicating the underlying mecha-
nism of this process is far more complicated than just TLR 2/4
signaling. Indeed, recent studies indicated that TGF-β-miR
21-programmed cell death 4 (PDCD 4)-IL 10 signaling path-
way also participated in the post-transcriptional inhibition of
IL 10 expression (Fig. 2) (Nastase et al. 2018). In human
gingival fibroblasts, decorin was found regulating the produc-
tion of metalloproteinase (MMP)-1, -2, and -3, tissue inhibi-
tors of metalloproteinase (TIMP) -2, and certain cytokines like
TGF-β, IL-1β, IL-4 and TNF-α, suggesting decorin was also
a part of tissue remodeling process (Al Haj Zen et al. 2003).

SLRPs as a bridge linking innate and adaptive
immunity

Besides their direct involvements in innate immunity, SLRPs
also act as a bridge linking innate and adaptive immune re-
sponses together. Through TLR 2/4 signaling biglycan regu-
lates T cell activities such as chemoattracting T cells to the
sites of inflammation by inducing the secretion of regulated
upon activation, normal T cell expressed and secreted
(RANTES), MCP-1, and MIP-1 α (Fig. 2). In addition by
signaling through both TLRs and their adaptor proteins mye-
loid differentiation factor 88 (MyD 88) and TRIF β (TIR-
domain-containing adaptor-inducing interferon β) biglycan
facilitates MHC-I and MHC-II restricted T cell cross-
priming (Moreth et al. 2012; Nastase et al. 2012; Moreth
et al. 2010; Popovic et al. 2011; Kikuchi et al. 2000; Kitaya
and Yasuo 2009; Sjoberg et al. 2009). Over-expression of
soluble biglycan has markedly enhanced the systemic and
renal outcome of SLE by TLR 2/4 dependent chemoattraction
of macrophages and T- and B-lymphocytes (Moreth et al.
2010; Frey et al. 2013).

Implications of SLRPs in renal diseases

Studies have indicated that some SLRPs including decorin,
biglycan, and lumican have distinct expression patterns in
normal and diseased human kidneys (Schaefer et al. 2000,
2002; Schaefer 2011; Stokes et al. 2001, 2000), suggesting
that SLRPs may take part in the pathogenesis of renal dis-
eases. In the normal kidney, decorin and lumican mainly ex-
press in peritubular mesenchymal cells in tubulointerstitium

with trace amount expression in the mesangial cells in glomer-
ulus, while biglycan mainly expresses in peritubular mesen-
chymal cells and distal tubules in tubulointerstitium and en-
dothelials in glomerulus with trace amount expression in
mesangial cells and epithelial cells in glomerulus (Schaefer
et al. 2000). In experimental renal injury, the expression of
decorin, biglycan and lumican has been localized to
glomerulosclerosis lesions and tubulointerstitial fibrosis
(Schaefer et al. 1998; Okuda et al. 1990; Diamond et al.
1997; Silverstein et al. 2003). In end stage glomerulosclerosis,
these SLRPs strongly accumulated in Bowman’s capsule and
in areas of fibrous organization of the urinary space, which
became progressively more pronounced with the extent of
fibrosis, indicating the involvement of these SLRPs in renal
diseases (Babelova et al. 2009; Kitaya and Yasuo 2009;
Schaefer et al. 2000; Stokes et al. 2001; Ebefors et al. 2011).
Besides, decorin and biglycan deposits in fibrotic lesions were
co-localized with collagen type I (Stokes et al. 2001), and they
have also been localized in glomerular deposits of amyloid A
(Moss et al. 1998). Various kidney diseases that different
SLRPs were involved in were summarized in Table 1.

Decorin

In an immunohistochemical study of several matrix proteins,
decorin was found to be the best predictor of the severity of
interstitial fibrosis and renal failure (Lohr et al. 2012; Merline
et al. 2011; Schaefer et al. 2000; Diamond et al. 1997;
Vleming et al. 1995; De Heer et al. 2000). Urinary excretion
of decorin was significantly increased in patients with mem-
branous nephropathy, minimal change disease and IgA ne-
phropathy, and urine decorin in these patients was negatively
correlated to creatinine clearance (Schaefer et al. 2000;
Kuroda et al. 2004).

Decorin is found having anti-fibrotic activities. Decorin
interacts through its protein core with all three forms of
TGF-β with dissociation constants in the nanomolar range
and neutralizes TGF-β activities in several organs including
kidney by interfering with TGF-β signaling (Schaefer 2011;
Stokes et al. 2000; Border et al. 1992; Hildebrand et al. 1994;
Yamaguchi et al. 1990). Alternatively, binding of TGF-β to
decorin may serve as a reservoir by increasing the availability
of this cytokine without the need of de novo synthesis at sites
of fibrotic injury (Stokes et al. 2000, 2001). On the other hand,
chronic exposure to circulating TGF-β caused an up-
regulation of decorin in mouse kidney (Mozes et al. 1999).
In addition, decorin inhibits connective tissue growth factor
(CTGF) signaling in fibroblast, down-regulates microRNA
miR-21, and inhibits apoptosis of renal tubular epithelial cells
via the IGF type I receptor/Akt signaling pathway (Anders
and Schaefer 2014), which all result in the alleviation of in-
terstitial fibrosis (Anders and Schaefer 2014; Merline et al.
2011; Vial et al. 2011; Glowacki et al. 2013).
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In diabetic nephropathy (DN), decorin was upregulated in
the mesangial cells, and in response to high glucose stimula-
tion decorin was increased in the mesangial and tubular cells
cultured in vitro (Brunskill and Potter 2012; Mogyorosi and
Ziyadeh 1998). Decorin deficiency, however, resulted in a
much more severe DN with increased mesangial matrix ex-
pansion, elevated albuminuria, and increased TGF-β bioactiv-
ity in mice with streptozotocin induced diabetes, indicating
that decorin is protective against DN (Brunskill and Potter
2012). Interestingly, the importance of decorin in DN was
further corroborated by Cosmo and his colleagues’ finding
that decorin gene 179 allelic variant was associated with a
slower progression of renal disease in patients with type 1
diabetes (De Cosmo et al. 2002), indicating genetic mecha-
nisms may also be involved in DN pathogenesis.

In unilateral ureteral obstruction (UUO) model, a well
established model of renal inflammation and fibrosis, decorin
expression became evident 36 hours after ligation and
remained up-regulated throughout the whole experiment
(Schaefer et al. 2002). Via specific effects on apoptosis
through P27 signaling, TGF-β activity and collagen turnover,
decorin had profound effects on the course and final outcome
of ureteral kidney obstruction (Schaefer et al. 2002). Not so
surprisingly, decorin deficient mice showed marked aggrava-
tion of renal fibrosis in ureteral obstruction, further stressing
the importance of decorin in fibrotic renal disorders (Lohr
et al. 2012; Danielson et al. 1997).

Due to its protective effects against fibrosis, several at-
tempts have been made to explore the potential use of decorin
in the treatment of fibrotic renal disorders (Border et al. 1992;
Danielson et al. 1997; Costacurta et al. 2002; Huijun et al.
2005; Isaka et al. 1996): administration of exogenous decorin

or transfection of decorin cDNA into skeletal muscle has been
reported alleviating renal clinical and pathological manifesta-
tions including reduced proteinuria, ECM accumulation and
glomerular TGF-β levels in experimental animal models
(Border et al. 1992; Danielson et al. 1997; Isaka et al. 1996);
decorin gene transfection in human mesangial cells down-
regulates genes playing a role in fibrosis such as TGF-β1,
collagen IV and fibronectin in this cell type (Costacurta et al.
2002); and ex vivo transfer of decorin gene into rat glomerulus
via a mesangial cell vector suppressed extracellular matrix
accumulation in experimental glomerulonephritis
(Huijun et al. 2005). These findings experimentally val-
idate the use of decorin for gene therapy in treating
renal diseases. Indeed, decorin deficiency led to the in-
filtration of large number of biglycan-expressing macro-
phages in the kidney (Schaefer et al. 2002) in a non-
infectious animal model of renal inflammation.

Biglycan

Sequestered in ECM as a potential inflammatory trigger under
normal circumstances, biglycan is released from ECM or de
novo synthesized by macrophages and launches a sterile in-
flammatory response upon tissue damage or stress (Iozzo and
Schaefer 2015; Hsieh et al. 2017). Enhanced interstitial and to
a lesser degree glomerular expression and deposition of
biglycan has been described in certain fibrotic renal diseases
such as DN and mesangioproliferative glomerulonephritis
(Schaefer et al. 2000; Stokes et al. 2000, 2001; Okuda et al.
1990; Schaefer et al. 2001). Several studies in various exper-
imental models of sterile inflammatory kidney diseases such
as ischemia/reperfusion injury and chronic renal allograft

Table 1 SLRPs in kidney
diseases SLRPs Kidney diseases References

Decorin DN, OKD, GN, IgAN, CGN,
MPGN, PKD

(Iozzo 2015; Vij et al. 2005; Kitaya and Yasuo 2009;
Schaefer et al. 1998, 2000; Yamaguchi et al. 1990;
Mozes et al. 1999; Vial et al. 2011; Glowacki et al.
2013; Mogyorosi and Ziyadeh 1998; Huijun et al.
2005)

Biglycan DN, MPGN, OKD, IRI, CRAR,
LN, IgAN, IAKI, CGN, PKD

(Iozzo 2015; Schaefer et al. 1998, 2000, 2002; Nastase
et al. 2018; Kikuchi et al. 2000; Kitaya and Yasuo
2009; Sjoberg et al. 2009; Schaefer 2011; Stokes et al.
2001; Huijun et al. 2005; Isaka et al. 1996; Iozzo and
Schaefer 2015; Zeng-Brouwers et al. 2014; Bedke et al.
2007; Wang et al. 2010)

Podocan HIVAN, CRAR (Kiss et al. 2010; Hutter et al. 2013)

Lumican DN, OKD (Stokes et al. 2000; Huijun et al. 2005; Christensen et al.
2018)

Fibromodulin DN (Huijun et al. 2005)

DN Diabetic Nephropathy, OKD Obstructed Kidney Disease, GN Glomerulonephritis, MPGN
Mesangioproliferative GN, IRI Ischemia/Reperfusion Injury, LN Lupus Nephritis, CRAR Chronic Renal
Allograft Rejection, HIVAN HIV-Associated Nephropathy, IgAN IgA Nephropathy, IAKI Ischemic Acute
Kidney Injury, CGN Crescentic GN, PKD Polycystic Kidney Disease

Small leucine rich proteoglycans in host immunity and renal diseases 467



rejection also reveal a striking concurrence of biglycan expres-
sion and the extent of renal injury (Merline et al. 2009; Moreth
et al. 2014). In a transient transgenic mouse model where full
length and fully glycanated biglycan was de novo synthesized
by hepatocytes, Schaefer et al. found that renal parenchyma
was preferentially targeted by circulating soluble biglycan
with profound consequences including the sequential recruit-
ment of neutrophils, macrophages and Tcells, and the produc-
tion of CXCL1,CXCL2 , CCL2 and CCL5 in a TLR 2/4
dependent manner (Hsieh et al. 2017; Zeng-Brouwers et al.
2014). Besides TLR 2/4 signaling pathway, involvement of
biglycan in oxidative stress and complement activation also
plays an important role in renal injury (Babelova et al. 2009;
Moreth et al. 2010).

As decorin, biglycan interacts through its protein core with
all three isoforms of TGF-β (Schaefer 2011; Stokes et al.
2000; Border et al. 1992; Hildebrand et al. 1994; Yamaguchi
et al. 1990). Besides, TGF-β stimulates the expression of
biglycan in all renal cell types studied so far in vitro and
in vivo (Schaefer et al. 2001, 2002; Schaefer 2011).
However, the role of biglycan in fibrosis is not quite well
understood as decorin (Babelova et al. 2009; Schaefer 2011;
Bedke et al. 2007; Wang et al. 2010; Kiss et al. 2010).

In UUO model, same as decorin, biglycan expression be-
came evident 36 hours after ligation and remained up-
regulated throughout the whole experiment, and biglycan
up-regulation was even more pronounced in decorin deficient
mice, suggesting compensation exists among different SLRPs
(Schaefer et al. 2002). Biglycan up-regulation seems protec-
tive in UUO model as indicated by the loss of elastic proper-
ties of renal tissue evidenced by cystic dilation of Bowman’s
capsule and proximal tubules as well as hemorrhaging into
renal pelvis in the absence of biglycan (Schaefer 2011;
Schaefer et al. 2004). However, increased renal biglycan con-
tent, which also occurs in all stages of DN (Nastase et al.
2014), has been thought contributing to renal lipid accumula-
tion and the development of DN (Thompson et al. 2011).

By linking innate and adaptive immune responses together
through interacting with TLR2/4, biglycan contributes to the
pathogenesis of lupus nephritis (LN), and genetic elimination
of biglycan in lupus-prone mice improved systemic and renal
outcomes by lowering levels of autoantibodies, reducing en-
largement of spleen and lymph nodes, and preventing renal
damage and albuminuria. In consistency, biglycan overex-
pression aggravated renal tissue damage and led to organ fail-
ure in these mice (Moreth et al. 2010; Schaefer 2011). In
human patients with LN, plasma levels of circulating biglycan
were elevated 5 fold compared with controls and higher levels
of circulating biglycan were associated with albuminuria, in-
creased plasma levels of CXCL13 and renal inflammation and
damage (Moreth et al. 2010). These findings clearly indicate
that biglycan participates in and aggravates the progression of
LN. As in LN, when rats with Thy-1 nephritis were treated

with biglycan delivered by a similar way as decorin was ap-
plied (Border et al. 1992), more severe glomerular lesions
associated with enhanced infiltration of mononuclear cells,
overexpression of glomerular α1 chains of collagen I and
IV, and elevated albuminuria were developed (Schaefer
2011). All these findings indicate that the role of biglycan in
fibrotic renal diseases is complicated and may vary among
different etiologies.

Conclusions and future directions

In this review, we summarized and discussed the current
knowledge regarding SLRPs in host immunity and renal dis-
eases. From being recognized as just a molecule maintaining
the integrity of ECM to currently being known participating in
various signaling pathways, SLRPs are found involved in var-
ious cellular and disease processes after two decades of
research. Armed with more knowledge about this fami-
ly, we should be able to explore the potential therapeu-
tic strategies in the treatment of the diseases in which
different SLRPs are involved.

For the sake of developing future therapeutics, certain
questions still remain to be addressed. For example, under
normal conditions, the levels of circulating decorin and
biglycan are undetectable while during inflammation or inju-
ry, their levels are up-regulated. So the questions are what
triggers their up-regulation when injury starts and what
dampens them when injury goes away. Could the change of
their levels in circulation or in urine or in other body fluids
serve as a biomarker for predicting the status of disease activ-
ity? Are SLRPs involved in other human disease processes not
discussed in this review? Indeed, podocan, a member of the
class V SLRP family, was reported up-regulated in the scle-
rotic glomerular lesion of experimental HIV-associated ne-
phropathy (Ross et al. 2003). Besides, it was also found in-
volved in the pathogenesis of coronary heart diseases (Hutter
et al. 2013). Other SLRPs including lumican, fibromodulin,
and osteoglycin were found participating in the pathogenesis
of heart diseases as well (Christensen et al. 2018). Considering
the important role of SLPRs in inflammation which is also
essential for tumor initiation and growth, it is not surprising
that SLRPs take part in tumorigenesis. Indeed, by regulating
MMP activities and/or increasing angiogenesis et al, decorin,
biglycan and lumican were reported influencing tumor growth
and progression (Schaefer et al. 2017; Pietraszek et al. 2014).
Influence of SLRP on exsome trafficking and autophagy is an
emerging area of research in recent years (Schaefer et al. 2017;
Karamanos 2017). Besides, future studies on the complex
interactions among SLRPs and the orchestration of their
downstream signaling events are needed. In addition, data
regarding the functions of the SLRPs other than decorin and
biglycan in different cellular and disease processes are sparse,
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and studies on them are warranted since functional compen-
sation or redundancy among different SLRPs do exist, and
double or even triple knockout models may need for these
studies. Obviously, answers to above questions will fasten
the discovery and development of new treatment methods.
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