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Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that play a central role in the regulation of immune responses.
Its release from epithelial and endothelial cells is mediated by pro-inflammatory cytokines, cell damage and by recognition of
pathogen-associated molecular patterns (PAMPs). The activity of IL-33 is mediated by binding to the IL-33 receptor complex
(IL-33R) and activation of NF-κB signaling via the classical MyD88/IRAK/TRAF6 module. IL-33 also induces the phosphor-
ylation and activation of ERK1/2, JNK, p38 and PI3K/AKT signaling modules resulting in the production and release of pro-
inflammatory cytokines. Aberrant signaling by IL-33 has been implicated in the pathogenesis of several acute and chronic
inflammatory diseases, including asthma, atopic dermatitis, rheumatoid arthritis and ulcerative colitis among others.
Considering the biomedical importance of IL-33, we developed a pathway resource of signaling events mediated by IL-33/IL-
33R in this study. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-33/IL-
33R consisting of 681 proteins and 765 reactions. These include information pertaining to 19 physical interaction events, 740
enzyme catalysis events, 6 protein translocation events, 4 activation/inhibition events, 9 transcriptional regulators and 2492 gene
regulation events. The pathway map is publicly available through NetPath (http://www.netpath.org/), a resource of human
signaling pathways developed previously by our group. This resource will provide a platform to the scientific community in
facilitating identification of novel therapeutic targets for diseases associated with dysregulated IL-33 signaling. Database URL:
http://www.netpath.org/pathways?path_id=NetPath_120.
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DAMP Danger-associated molecular patterns
IL-33R IL-33 receptor complex
NF-κB Nuclear factor-κB
TRAF6 TNF receptor associated factor 6

Introduction

Interleukin-33 (IL-33), also known as IL-1F11, is a member of
the Interleukin-1 (IL-1) family of cytokines that play varied
roles in the regulation of immune responses. It is encoded by
the IL33 gene located on the human chromosome 9 (9p24.1)
(Schmitz et al. 2005). IL-33 was first cloned from canine
vasospastic cerebral arteries after subarachnoid hemorrhage
(DVS27) and was identified as a gene encoding an unknown
nuclear protein (Onda et al. 1999; Baekkevold et al. 2003).
However, in 2005, Schmitz et al. for the first time identified
IL-33 to be the ligand of the ST2 (IL1RL1) receptor. Through
sequence-based homology analysis, they demonstrated that
IL-33 was similar to IL-1 and IL-18 and therefore, exhibited
similar biological functions (Schmitz et al. 2005). The struc-
tural similarity to cytokines was also confirmed by three-
dimensional analysis (Lingel et al. 2009; Liu et al. 2013).
IL-33 was initially found to be highly expressed in the endo-
thelial cells of high endothelial venules (Baekkevold et al.
2003). Subsequent studies reported the constitutive expression
of IL-33 inmultiple cell types including the epithelial lining of
the gut, gastric glands, lung, smooth muscle cells,
keratinocytes, adipocytes, ovaries and in the central nervous
system (Moussion et al. 2008; Carriere et al. 2007; Schmitz
et al. 2005; Carlock et al. 2014; Hudson et al. 2008). The basal
level of expression was reported to be further elevated by
inflammatory mediators and upon tissue injury. Multiple
splice forms of IL-33 have also been identified in airway ep-
ithelial cells, keratinocytes, and diverse cancer cells suggest-
ing altered localization and activity (Tsuda et al. 2012; Hong
et al. 2011; Gordon et al. 2016).

Similar to most of the IL-1 family members, IL-33 is syn-
thesized as a full length (pro-IL-33) precursor. It consists of a
non-classical nuclear localization sequence, a chromatin-
binding domain at the N-terminus (Roussel et al. 2008) and
a C-terminal domain with cytokine activity. The proteolytic
processing of IL-33 is mediated by several proteases including
calpain, elastase and cathepsin G resulting in the production of
mature 18 kDa form consisting of the cytokine domain
(Martin 2013; Palmer and Gabay 2011). IL-33, therefore has
dual functions- acting both as a cytokine as well as a transcrip-
tional regulator (Haraldsen et al. 2009). Although initial stud-
ies indicated that IL-33 possessed transcriptional regulatory
properties modulating NF-κB activity (Carriere et al. 2007;
Ali et al. 2011; Choi et al. 2012), a recent study refuted the
findings by suggesting that the extracellular and not the en-
dogenous nuclear form of IL-33 regulates protein expression

in primary human endothelial cells. It is likely that the nuclear
localization of IL-33 may be a mechanism to sequester/
regulate its activity (Gautier et al. 2016). As a cytokine, it acts
as an important mediator of the innate immune signaling
mainly responsible for Th2-mediated immune responses
(Hardman and Ogg 2016). The release of IL-33, both in
its full length and processed forms, is mediated by sev-
eral pro-inflammatory cytokines such as TNF-α, IFN-γ,
IL-4 (Kopach et al. 2014; Meephansan et al. 2012;
Kunisch et al. 2012; Zhao and Hu 2012), pathogen-
associated molecular patterns (PAMPs) (Polumuri et al.
2012; Zhang et al. 2011), ATP (Hudson et al. 2008) and
by Notch-mediated signaling (Sundlisaeter et al. 2012).
However, the release is not mediated by apoptosis
(Zhao and Hu 2010).

IL-33 exerts its effects through a heterodimeric receptor
complex composed of IL-1 receptor-like 1 (IL1RL1) and a
co-receptor, IL-1 receptor accessory protein (IL1RAcP).
IL1RL1, also known as ST2, is encoded by IL1RL1 gene
and is a member of Toll-like/IL-1-receptor (TLR/IL-1R) su-
perfamily (Tominaga et al. 1991; Yanagisawa et al. 1993). It
has two main splice forms resulting from the differential pro-
moter binding - the transmembrane isoform (ST2L) which
acts as the receptor for IL-33 (Schmitz et al. 2005) and the
soluble isoform lacking the transmembrane domain (sST2)
which acts as the decoy receptor regulating IL-33 mediated
activity (Hayakawa et al. 2007; Hayakawa et al. 2016). ST2L
was first identified in fibroblasts (Tominaga 1989) and is high-
ly expressed on hematopoietic cells including mast cells
(Moritz et al. 1998; Tung et al. 2014), Th2 lymphocytes
(Lohning et al. 1998), macrophages (Joshi et al. 2010;
Kurowska-Stolarska et al. 2009), basophils, eosinophils
(Pecaric-Petkovic et al. 2009; Suzukawa et al. 2008), innate
lymphoid cells including ILC1, ILC2 and ILC3 (Monticelli
et al. 2011; Neill et al. 2010; Li et al. 2018)as well as in
epithelial and endothelial cells (Miller et al. 2008;
Sundlisaeter et al. 2012; Yagami et al. 2010). The for-
mation of a ternary IL-33-IL1RL1-IL1RAcP complex
result in the recruitment of adaptor proteins - MyD88
and IL-1R-associated kinase (IRAK) (Lingel et al. 2009;
Liu et al. 2013). This complex, in turn, leads to activa-
tion of downstream mitogen-activated protein kinases
(MAPK) and NF-κB through TRAF6 (Choi et al.
2009; Funakoshi-Tago et al. 2008). IL-33 also exerts
its function by increasing the phosphorylation and sub-
sequent activation of several signaling pathways
includingphosphoinositide-3-kinase (PI3K)/protein kinase
B (AKT), JAK2 and SYK pathways (Mun et al.
2010).Further, from our previous study, we identified
IL-33 mediated regulation of phosphorylation of 672
proteins including several members of MAPK family
and protein phosphatases including PTPN12 and
MYPT1 in macrophages. Additionally, our analysis
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revealed IL-33-mediated activation of cdc42/Rho signal-
ing, which is essential for cellular processes such as cell
migration, polarity and actin cytoskeleton reorganization
(Pinto et al. 2015).

IL-33 is an essential mediator of both innate and adaptive
immune responses as it induces the production and release of
predominantly Th2 cytokines such as IL-4, IL-5 and IL-13
from the cells involved in innate immune signaling (Schmitz
et al. 2005). IL-33 also supports Th1 immune response
resulting in the release of interferon-gamma and TNF
(Bourgeois et al. 2009; Smithgall et al. 2008) and IL-33-
mediated activation of MAPK signaling modules contribute
to the maturation of mast cells and dendritic cells (Saluja et al.
2014). Further, IL-33 has also been reported to play important
role in controlling regulatory T cell accumulation and effector
functions thereby mediating immunosuppression and tissue
repair. The process is mediated by direct or indirect activation
of type 2 innate lymphoid cells (ILC2) and polarization of
macrophages (Braun et al. 2018; Cayrol and Girard 2018).
Additionally, impaired IL-33 signaling is implicated in several
immune-related disorders including allergy, asthma, rheuma-
toid arthritis, autoimmunity, organ fibrosis and cardiovascular
diseases (Liew et al. 2016; Braun et al. 2018).

Although several studies have been carried out at the mo-
lecular level to characterize the IL-33 signaling pathway, the
information about the IL-33 signaling pathway is scattered
across the literature. To our knowledge, there are no public
resources that provide a comprehensive view of the IL-33
signaling pathway data for visualization and analysis. In this
study, the molecular events that occur upon IL-33 stimulation
have been compiled from the available literature. The data
pertaining to IL-33 mediated signaling is made available
through NetPath. Our group has previously developed several
such Interleukin mediated signaling pathways including IL-1,
IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9 and IL-11
(Balakrishnan et al. 2013; Kandasamy et al. 2010), TSLP
(Zhong et al. 2014), gastrin (Subbannayya et al. 2014) and
Oncostatin M (Dey et al. 2013).The comprehensive signaling
pathway map developed in this study will foster further re-
search on IL-33 mediated signaling and delineate roles of
individual molecules and their modules associated with spe-
cific diseases.

Methods

Literature mining and curation of signaling events
mediatedby IL-33

We carried out an extensive survey of published litera-
ture using PubMed to develop a comprehensive signal-
ing map pertaining to IL-33/ST2 signaling. Articles
were fetched using the query terms- “IL-33” OR

“IL33” OR “Interleukin-33” AND “Signaling” OR
“Pathway”. The research articles were further screened
to assess the presence of IL-33-induced signaling
events. Only those molecular events that were reported
under the influence of IL-33 stimulation have been con-
sidered for further documentation based on the criteria
described in NetPath (Kandasamy et al. 2010). From
these research articles, information regarding protein-
protein interactions (PPIs), post-translational modifica-
tions (PTMs), translocation and activation/inhibition of
proteins which occur on stimulation with IL-33 in mam-
malian cells/cell lines were screened and manually an-
notated using PathBuilder annotation tool (Kandasamy
et al. 2009). Additionally, gene regulation events medi-
ated by IL-33 in mammalian cells/cell lines have also
been documented. Whenever available, the information
on transcription regulators were also included. Each re-
action annotated in IL-33 signaling pathway was
hyperlinked to the respective research article from
which the data has been obtained. Additional informa-
tion including details of the cell lines used in the ex-
periment, protein site/domain involved in PPIs has also
been provided. In case of PTM, site and residue infor-
mation for PTM was curated. Each curated event was
further subjected to quality control and internal review
process followed by an external review by a Pathway
Authority, an experienced scientist working in the field.
All recommendations of the Pathway Authority were
incorporated into the signaling pathway.

Generation of signaling pathway map

The pathway map of IL-33 mediated signaling events has
been pictorially represented using PathVisio software
(van Iersel et al. 2008). Further, a subset of highly con-
fident IL-33 mediated signaling events was determined
using the selection and representation criteria provided
in the NetSlim database (http://www.netpath.org/netslim/
criteria.html). The reactions induced by IL-33 have been
arranged topologically from ligand-receptor interaction to
transcriptionally regulated genes. Pathway modules such
as MAPK signaling, PI3K/AKT signaling which are reg-
ulated by IL-33 have also been depicted in the pathway
map. The NetSlim version of the signaling pathway map
can be downloaded in various compatible file formats
such as .png, .gpml and .pdf formats.

A list of protein-protein interactions across the molecules
involved in IL-33 signaling was generated using STRING
(http://string-db.org/) (Szklarczyk et al. 2015). The parameters
used for the STRING analysis include interaction sources
from experimentally derived data, text mining, co-
occurrences in the literature and gene fusion events.
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Results and discussion

Data integration and development of IL-33/IL-33R
signaling pathway map

In the current study, 2100 research articles were screened
using PubMed until November, 2017 using a number of key-
words to search for articles describing IL-33-induced signal-
ing events. Of these, 200 research articles had information
pertaining to IL-33 signaling. From the screened articles, a
total of 322 molecules involved in IL-33 mediated events
including 19 protein-protein interactions, 740 enzyme-
substrate reactions, 4 activation/inhibition reactions, and 6
protein translocation events have been documented. PPIs in-
clude 15 binary interactions and 4 protein complexes. The
PTMs annotated include phosphorylation, dephosphorylation
and ubiquitination. Of the 740 enzyme-substrate reactions,
literature evidence was available for 672 events concerning
the PTM site and residue modifications. The upstream en-
zymes for 4 PTM modified proteins have also been
catalogued. A largemajority of the enzyme-substrate reactions
cataloged in this pathway are ‘indirect’ events obtained from
the IL-33 regulated quantitative phosphoproteomics study
published previously by our group. These include IL-33-
induced phosphorylation changes in 800 sites mapping to
575 proteins. In addition, 2492 genes that were found to be
differentially regulated at the transcript level upon IL-33 stim-
ulation have also been documented (Pollheimer et al. 2013).
Of these, 1433 genes were identified to be overexpressed, and
1058 were found to be downregulated. Wherever available,
the information on differentially regulated genes upon IL-33
stimulation were also catalogued. To our knowledge, this is
the first pathway resource cataloging IL-33 mediated such
molecular reactions.

Development of IL-33 mediated signaling network
map

The data pertaining to IL-33 signaling pathway is accessible in
NetPath (http://www.netpath.org/pathways?path_id=
NetPath_120). The pathway page also provides a short
description and statistics of the molecular reactions involved
in IL-33 mediated signaling. Each annotated molecule is
linked to its respective NetPath molecule page which provides
information based on HGNC criteria as well its association
with other pathways available in NetPath. Additionally, a brief
description for each type of reaction listed is included from the
literature. A total of 364 molecules involved in 393 reactions
are visually depicted in NetSlim. The NetSlim version map
generated is provided in Fig. 1. The high confidence reaction
signaling map can be downloaded from http://www.netpath.
org/netslim/IL33_pathway.html. The pathway information for
both the NetPath and NetSlim versions have been made

available in multiple community standard data exchange
formats such as Proteomics Standards Initiative for Molecular
Interaction (PSI-MI), Biological PAthwayeXchange (BioPAX
level 3) and Systems Biology Markup Language (SBML) and
can be accessed easily.

Summary of IL-33 mediated signaling pathway

The dual function cytokine IL-33 is primarily localized in the
nucleus where it interacts with p50 and p65 subunits in human
HEK293RI cells and mouse embryonic fibroblasts (Ali et al.
2011). Upon release of IL-33 by DAMPs and PAMPs, IL-33
specifically binds to ST2L on target cells and undergoes con-
formational changes resulting in the recruitment of IL1RAcP
forming a ternary complex. In most cell types, IL-33 signaling
activates the classical MyD88/IRAK/TRAF6module. TRAF6
further activates TAK1 (MAP3K7) which results in the acti-
vation of transcriptional regulator NF-κB by the activation of
stress-activated protein kinase p38 and c-Jun N-terminal ki-
nases (JNK). Additionally, activation of ERK signaling has
also been observed in several cell types. Interestingly, in
TRAF6-deficient mouse embryonic fibroblasts, ERK signal-
ing is reported to be activated independently of TRAF6 me-
diated signaling (Funakoshi-Tago et al. 2008).

IL-33 also mediates activation of other signaling mod-
ules, and these seem to be cell-type specific. In murine
Th2, innate lymphoid cells, eosinophils and human endo-
thelial cells, IL-33 results in the activation of PI-3 K/AKT/
mTOR pathway (Salmond et al. 2012). In bone marrow-
derived mast cells and Th2 cells, IL-33 also induces MK2/
3-mediated phosphorylation of mTOR complex 1
(mTORC1), RPS6KB1 at Thr444 and Ser447. IL-33-
induced IL-6 and IL-13 production strongly depend on
MK2/3-mediated activation of ERK1/2 and PI3K signaling
(Drube et al. 2016). In human umbilical vein endothelial
cells, IL-33 through ST2/TRAF6/PI3K/Akt/eNOS signal-
ing pathway induces the production of nitric oxide (NO)
resulting in increased vascular permeability and angiogen-
esis (Choi et al. 2009). IL-33 has also been implicated in
osteoclast cellular fates. In a study by Mun et al., it has
been shown to stimulate osteoclastogenesis from CD14(+)
monocytes by inducing the phosphorylation of SYK,
PLCγ and GAB2 as well as enhance the expression of
osteoclast differentiation factors including TRAF6, c-Fos,
NFATc1 among others that are essential for osteoclast de-
velopment (Mun et al. 2010). On the contrary, two studies
report anti-osteoclastogenic effect of IL-33/ST2 signaling
wherein IL33 was observed to increased the expression of
pro-apoptotic molecules in bone-marrow derived cells
(Lima et al. 2015) and repressed expression of osteoclast
differentiation factors such as NFATc1 (Schulze et al.
2011). In murine embryonal fibroblasts, IL-33 activates
JAK2 which in turn induces NF-κB activation; however,
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the activation of MAPK signaling modules including ERK,
JNK and p38 remained unaffected (Funakoshi-Tago et al.
2011). In mast cells, cross-activation of c-Kit by IL-33R
has been reported which results in the phosphorylation of
c-Kit at Y721 as well as the phosphorylation of ERK1/2,
JNK1, PKB and STAT3. Inhibiting c-Kit in mast cells re-
sults in impaired JNK1/2 and ERK1/2 activation suggest-
ing c-Kit-mediated regulation (Drube et al. 2010). In nor-
mal epithelial and breast cancer cells JB6 Cl41, MDA-
MB231 and MCF7 cel ls ; IL-33 dose- and t ime-
dependently increases the phosphorylation of mitogen-
activated protein kinase kinase kinase 8 (MAP3K8) at
S400 via ST2-COT (MAP3K8) interaction (Kim et al.
2015). In addition, the data obtained from the quantitative
phosphoproteomics study carried out by our group re-
vealed IL-33-induced changes in phosphorylation status
of molecules involved in Rho-mediated signaling(Pinto
et al. 2015).

In addition to the activation of various signalingmodules in
diverse cell types, the downstream effector proteins that are
induced by IL-33 vary across cell types. IL-33 induces the
activation and nuclear translocation of cytosolic NFκB1 pro-
teins in endothelial cells and cardiac fibroblasts which results
in the production and release of IL-6 and MCP-1 (Zhu and
Carver 2012; Demyanets et al. 2011). In pancreatic
myofibroblasts and mouse embryonic fibroblasts, IL-33 in-
duces the expression of IL-6, IL-8, MCP-1andMCP-3 where-
as in Th2 cells, IL-33 induces expression of IL-4, IL-5 and IL-
13 (Funakoshi-Tago et al. 2008). In macrophages and primary
human monocyte-derived macrophages, IL-33 through
ERK1/2, JNK and PI3K-AKTsignaling reduce the expression
of ADAMTS family of metalloproteases (Ashlin et al. 2014).
A subset of biological functions regulated by IL-33 is depicted
in Fig. 1. A list of protein-protein interactions across the mol-
ecules identified to be involved in IL-33 signaling based on
the STRING analysis tool version 10.5 is provided in
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Supplementary Table 1. This network would help to obtain an
insight into cross-talk between multiple signaling modules
such as NF-κB, ERK, p38MAPK, JAK-STAT and PLCγ.

Regulation of IL-33 dependent signaling

The regulatory mechanisms of IL-33-mediated signaling have
also been annotated and depicted in the pathway map.
Currently, three different modes of regulations are reported
in the literature including binding by the decoy soluble ST2
receptor that abrogates IL-33 signaling. Another mechanism
observed in murine lung MLE12 cells involves sequential
phosphorylation and activation of FAK upon IL-33 stimula-
tion which in turn phosphorylates GSK3B at Y216. The acti-
vated GSK3B, in turn, phosphorylates ST2L at S442 resulting
in its rapid internalization and subsequent interaction between
carboxyl terminus of mouse ST2L and FBXL19 an E3 ubiq-
uitin ligase (Zhao et al. 2012). The polyubiquitinated receptor
is further targeted for proteasome mediated degradation.
Interestingly, interaction with the membrane protein TMED1
results in a protective effect which positively modulates cyto-
kine production (Connolly et al. 2013). Several studies have
shown that a single Ig IL-1R-related molecule (SIGIRR)/Toll
IL-1R8 negatively regulates TLR-IL-1R-mediated signaling.
A similar mechanism of regulation has also been ob-
served upon IL-33 stimulation wherein the extracellular
and the intracellular TIR domain of SIGIRR form a
complex with ST2 in HEK293 cells stably transfected
with hST2, suggesting that SIGIRR (TIR domain) in-
hibits IL-33-mediated signaling through its interaction
with the receptor complex (Bulek et al. 2009).

Other mechanisms involved in regulating IL-33 activity
include cell-type specific expression of IL-33, mediated by
inflammatory cytokines such as TNF, IL-1 and IFN-γ
(Meephansan et al. 2012; Kopach et al. 2014), alternate splice
forms resulting in varied localization and activity (Tsuda et al.
2012; Hong et al. 2011; Gordon et al. 2016), miR-487b me-
diated regulation of IL-33 expression (Xiang et al. 2016;
Yamazumi et al. 2016; Kearley et al. 2015; Xi et al. 2013),
and proteolytic cleavage of mature form of IL-33 by proteases
secreted from mast cells and neutrophils (Lefrancais et al.
2012; Lefrancais et al. 2014) and subsequent degradation by
increased amount of inflammatory proteases. A recent study
describes inactivation of IL-33 shortly after its release by ox-
idation of cysteine residues resulting in conformational
change rendering it incapable to bind to the IL-33 receptor
complex (Cohen et al. 2015).

IL-33 signaling in diseases

Aberrant IL-33 signaling has been implicated in several dis-
eases including cancer, atherosclerosis and COPD. Increased
expression of IL-33 has been observed in infectious diseases,

inflamed lesions of inflammatory bowel disease, allergic rhi-
nitis and atopic dermatitis. Furthermore, elevated levels of IL-
33 and IL1RL1 have been reported in the serum of patients
with cardiovascular disorders, asthma and COPD suggesting
their potential role as predictive biomarkers (Xia et al. 2015;
Demyanets et al. 2014; Weinberg et al. 2002; Li et al. 2015).
In cancer cells, IL-33 has been shown to stimulate the prolif-
eration, tumor invasion and metastasis of colorectal cancer
cells through the upregulation of matrix metalloproteinase
(MMP) genes including MMP2, MMP3 and MMP9 (Liu
et al. 2014). Administration of the decoy receptor sST2 nega-
tively regulated the tumor growth and metastatic spread.
Additionally, IL-33 through upregulation ofMMP2 stimulates
the proliferation and invasiveness of dendritic stromal cells
that is abolished by the administration of sST2 (Hu et al.
2014). In contrast, however, in the case of pancreatic cancer,
the antitumor activity of IL-33 has been observed. Upon stim-
ulation, IL-33 induces downregulation of proteins involved in
cellular proliferation such as CDK2, CDK4 and increases ex-
pression of pro-apoptotic molecules such as TRAIL and Bax,
thereby promoting apoptosis (Fang et al. 2017). Recent evi-
dence suggests that IL-33 modulates tumor-associated
inflammatory microenvironment to restrain or promote
tumorigenesis by promoting the proliferation, activation
and infiltration of CD8 + T cells and NK cells via
NF-κB mediated signaling resulting in the attenuation
of tumor metastasis (Wasmer and Krebs 2016).

In the case of atherosclerosis, an inflammatory condition
involving the vascular system, IL-33 has been shown to have a
protective role by reducing atherosclerotic plaque formation
(Ashlin et al. 2014; Miller et al. 2008). Similarly, a protective
role of IL-33 mediated signaling pathway has also been
suggested for obesity and adipose tissue-associated in-
flammation. IL-33 mediates downregulation of ADAMTS
metalloproteases in macrophages via ERK-1/2, PI3Kγ/δ and
JNK-c-Jun pathway (Ashlin et al. 2014). In endothelial cells,
IL-33 through ST2/TRAF6 pathway mediates increased pro-
duction of ICAM1 and VCAM as well as stimulates the pro-
duction of endothelial NO. This, in turn, increases angiogen-
esis and vascular permeability. In pulmonary pathologies such
as asthma and COPD, cigarette smoke and allergens are
known to exacerbate the underlying condition by increasing
the expression of IL-33 (Shang et al. 2015). IL-33, in turn, acts
in a paracrine manner and enhances the expression of IL-6 and
IL-8 in HBE cells and PBMCs of COPD patients via ST2/IL-
1RacP pathway and MAPKs pathway (Wu et al. 2014; Shang
et al. 2015). IL-33 also recruits macrophages, neutrophils and
eosinophils in a paracrine manner, thereby increasing pro-
inflammatory responses. In the past decade, several research
groups have explored the possibility of using IL-33 as a treat-
ment modality for reducing the development of atherosclero-
sis (Miller et al. 2008), obesity, clearing fungal infections and
reducing the severity of experimental autoimmune uveitis in
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mice. Recent studies have also suggested a novel therapeutic
role of IL-33 in antibacterial host defense as it enables bacte-
rial clearance by recruiting neutrophils to the site of
infection(Robinson et al. 2017; Robinson et al. 2018).

Conclusions

The availability of comprehensive signaling pathway maps
helps researchers identify signaling modules that play vital
roles in normal and disease physiology. To generate a com-
prehensive IL-33 signaling pathway map, the information
pertaining tosignaling events triggered by IL-33 from litera-
ture was compiled which included data obtained from a quan-
titative phosphoproteomic experiment resulting in the genera-
tion of the largestsignaling network of IL-33 known till date.
We anticipate that this resource will help provide more signif-
icant insights into IL-33 induced signaling mechanism and
will aid in designing experiments aimed at expanding the
existing knowledge of the IL-33 signaling in both normal
physiology and various diseases.
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