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Abstract Apoptosis is a genetically directed process of pro-
grammed cell death. A variety of microRNAs (miRNAs), en-
dogenous single-stranded non-coding RNAs of about 22 nu-
cleotides in length have been shown to be involved in the
regulation of the intrinsic or extrinsic apoptotic pathways.
There is increasing evidence that the aberrant expression of
miRNAs plays a causal role in the development of diseases
such as cancer. This makes miRNAs promising candidate
molecules as therapeutic targets or agents. MicroRNA
(miR)-217-5p has been implicated in carcinogenesis of vari-
ous cancer entities, including colorectal cancer. Here, we an-
alyzed the pro-apoptotic potential of miR-217-5p in a variety
of colorecatal cancer cell lines showing that miR-217-5pmim-
ic transfection led to the induction of apoptosis causing the
breakdown of mitochondrial membrane potential, externaliza-
tion of phosphatidylserine, activation of caspases and frag-
mentation of DNA. Furthermore, elevated miR-217-5p levels
downregulated mRNA and protein expression of atypical pro-
tein kinase c iota type I (PRKCI), BAG family molecular
chaperone regulator 3 (BAG3), integrin subunit alpha v
(ITGAV) and mitogen-activated protein kinase 1 (MAPK1).
A direct miR-217-5p mediated regulation to those targets was

shown by repressed luciferase activity of reporter constructs
containing the miR-217-5p binding sites in the 3′ untranslated
region. Taken together, our observations have uncovered the
apoptosis-inducing potential of miR-217-5p through its regu-
lation of multiple target genes involved in the ERK-MAPK
signaling pathway by regulation of PRKCI, BAG3, ITGAV
and MAPK1.
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Abbreviations
AEG-1 Astrocyte-elevated gene-1
AP-1 Activating protein-1
BAG3 BAG family molecular chaperone regulator 3
BIRC3 Baculoviral IAP repeat containing 2
BRCA1 BRCA1 DNA repair associated
CCCP Carbonyl cyanide m-chlorophenyl hydrazine
CRC Colorectal cancer
CTNNB1 Catenin beta 1
DMSO Dimethyl sulfoxide
DT Death inducing
EGFR Epidermal growth factor receptor
ElK1 Ets like protein 1
ERK Extracellular-signal regulated kinase
FCS Fetal calf serum
FITC Fluorescein isothiocyanate
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
HRP Horseradish peroxidase
ITGAV Integrin subunit alpha v
MAP K1 Mitogen-activated protein kinase 1
miR MicroRNA
MMP Mitochondrial membrane potential
MYC Transcriptional activator MYC

Marion Flum and Michael Kleemann contributed equally to this work.

* Michael Kleemann
kleemann@hochschule-bc.de

1 Institute of Applied Biotechnology, University of Applied Sciences
Biberach, Hubertus-Liebrecht-Str. 35, 88400 Biberach, Germany

2 Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11,
89079 Ulm, Germany

3 Boehringer Ingelheim Pharma GmbH & Co KG, Cell Culture
Development CMB, Birkendorfer Straße 65,
88397 Biberach, Germany

J. Cell Commun. Signal. (2018) 12:451–466
DOI 10.1007/s12079-017-0410-x

mailto:kleemann@hochschulec.de
http://crossmark.crossref.org/dialog/?doi=10.1007/s12079-017-0410-x&domain=pdf


NF-kB Nuclear factor-kappa B
NT Non-targeting
PARP Poly (ADP-ribose) polymerase
PBS Phosphate-buffered saline
PI Propidium iodide
PIK3CA Phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit alpha
PPIA Peptidylprolyl isomerase A
PRKCI Protein kinase c iota type I
PS Phosphatidylserine
RAC1 Ras-related C3 botulinum toxin substrate 1
RAF1 Raf-1 proto-oncogene, serine/threonine kinase
SDS-
PAGE

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis

siRNA Small interfering RNA
SOX2 Sex determining region Y-box 2
TGFBR2 Transforming growth factor beta receptor 2
TMRE Tetramethylrhodamine ethyl ester perchlorate
TRAIL Tumor necrosis factor related apoptosis inducing

ligand
UTR Untranslated region

Introduction

MicroRNAs (miRNAs) are endogenous single-stranded,
about 22 nucleotides long non-coding RNA molecules that
regulate gene expression post-transcriptionally (Breving and
Esquela-Kerscher 2010). MiRNAs are evolutionary con-
served and generated in a multistep process starting with the
RNA-polymerase II-mediated transcription and processing by
Drosha/DGCR8 in the nucleus (Breving and Esquela-
Kerscher 2010; Han et al. 2006). The precursor miRNA is
translocated into the cytoplasm for further processing to gen-
erate the RNA duplex, comprising a 5p and 3p strand. Finally,
the functional strand is loaded onto a miRNA-induced-
silencing complex for its direction to the target mRNA (Kim
et al. 2009). Mammalian miRNAs interact with the target
mRNA by imperfect base pairing mostly leading to transla-
tional repression or degradation of the mRNA. MiRNAs are
estimated to be involved in the expression control of 30–50%
of human proteins (Breving and Esquela-Kerscher 2010; van
Kouwenhove et al. 2011) and the regulation of fundamental
processes including development, cell proliferation, differen-
tiation, and apoptosis (Bushati and Cohen 2007).

Apoptosis is a genetically directed process of programmed
cell death. Its execution is mainly regulated by two distinct but
interrelated signaling cascades, the extrinsic and the intrinsic
apoptosis death pathway. The extrinsic pathway involves
binding of a pro-apoptotic inductor ligand like tumor necrosis
factor related apoptosis inducing ligand (TRAIL) or tumor
necrosis factor to a death receptor (MacFarlane 2003) whereas
the intrinsic pathway is initiated by cytochrome c release from

the mitochondria (Zimmermann et al. 2001). The signaling
cascades culminate in activation of caspases and subsequent
specific morphological and biochemical changes like nuclear
condensation, cleavage of genomic DNA and cell shrinkage
resulting in programmed cell death and elimination of
degenerated cells by phagocytosis (Elmore 2007). A variety
of miRNAs have been shown to be involved in the regulation
of the intrinsic or extrinsic apoptotic pathways (Fischer et al.
2015; Jovanovic and Hengartner 2006; Lima et al. 2011;
Lynam-Lennon et al. 2009) and there is increasing evidence
that the aberrant expression of miRNAs plays a causal role in
the development of diseases such as cancer. Due to these ob-
servations, miRNAs are promising candidate molecules as
diagnostic or prognostic biomarkers and as therapeutic targets
or agents (Lynam-Lennon et al. 2009).

Colorectal cancer (CRC) represents the third most common
cancer in men and the second most common cancer in women
globally (Cunningham et al. 2010; Debarros and Steele 2013;
Qaseem et al. 2012). With the development of early diagnosis
and treatment modalities, the 5-year survival rate of CRC has
been improved over the past two decades (Cunningham et al.
2010; Ragnhammar et al. 2001). Research has been focused
on tumor suppressor genes, oncogenes and cell signaling path-
ways, including their role in the proliferation, apoptosis and
aggressiveness of these tumors (Moss 2014). Various
miRNAs have been shown to be involved in CRC tumorigen-
esis, demonstrating that abnormal expression or mutations of
miRNAs play a role in different stages of CRC development
(Bader 2012; Cekaite et al. 2016; Slaby et al. 2009).

The involvement in the regulation of fundamental cellular
processes such as apoptosis together with the increasing evi-
dence for a potential function as tumor suppressor genes
makes miRNAs highly interesting candidate molecules for
the generation of novel anticancer therapeutics. Based on pre-
vious cellular high throughput screenings (Fischer et al. 2014;
Kleemann et al. 2017) we identified miR-217-5p to strongly
induce apoptosis in a CRC cell line. The aim of the current
study was to further elucidate the role of miR-217-5p in pro-
grammed cell death. Since miRNAs are known to regulate the
expression of a multiplicity of target genes and to influence
cellular signaling pathways at various sites, we intended to
identify target gene networks to elucidate the pro-apoptotic
molecular mechanisms of miR-217-5p.

Materials and methods

Cell culture

HCT 116 and T98G cells were grown in RPMI-1640medium,
HT-29 cells in McCoy’s 5A and SW480 cells in Leibovitz’s
L-15 medium. SKOV3 and HEK293T cells were
grown in DMEM. All media were obtained from Thermo
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Fisher Scientific, Waltham, MA, USA and supplemented with
10% (v/v) heat inactivated fetal calf serum (Sigma-Aldrich,
München, Germany). Cells were cultured at 37 °C and 5%
CO2. The phenotype of all cell lines was proofed frequently
by microscopy.

Cell confluence after miRNAmimic transfection was mon-
itored by the fully automated cell imager NyOne (Synen-Tec
Bio Services, Münster, Germany).

Transfection of miRNA mimics

The cells were seeded one day prior to transfection in 96-well
cell culture plates (Greiner Bio-One). MiRNA mimics
(Qiagen, Hilden, Germany) comprised the sequence of the
human miR-217-5p (obtained from miRBase version 21
(Kozomara and Griffiths-Jones 2014)). For controls, a non-
targeting small interfering RNA (siRNA) (NT) as well as a
cell death inducing siRNA (DT) (Qiagen) were used. Cells
were transfected with 62.5 nM miRNA mimic and
ScreenFect®A (InCella, Eggenstein-Leopoldshafen,
Germany).

Cell death assays

To quantify apoptosis induction by miRNA mimic transfec-
tion, cells were harvested, stained for different characteristics
of cell death and analyzed via flow cytometry using the
MACSQuant® Analyser (Miltenyi Biotec, Bergisch
Gladbach, Germany). Assay validity of the cell death assays
was tested by simultaneously accessing cells treated with the
chemical apoptosis inducers Etoposide (25 μM) and TRAIL
(80 ng/ml (HCT 116), 150 ng/ml (HT-29, SW480)) (Enzo Life
Sciences, New York, USA).

To quantify the fragmentation of DNA and the reduction of
detached cellular DNA content, cells were processed by
Nicoletti staining comprising the resuspension in 80 μl hypo-
tonic staining buffer (0.1% w/v sodium citrate (Biochemika,
Fluka, Buchs, Switzerland), 0.05% v/v Triton X-100 (Carl
Roth GmbH & Co. KG, Karlsruhe, Germany), 10 μg/ml
Propidium Iodide and 3.3 μg/ml RNase A (Carl Roth GmbH
& Co. KG) in phosphate-buffered saline (PBS, GE
Healthcare, Buckinghamshire, UK). The stained cells were
analyzed by flow cytometry.

For detection of phosphatidylserine (PS) externalization,
cells were washed in PBS, resuspended in 100 μl binding
buffer to which 2.5 μl Annexin V-FITC staining solution
was added (Annexin V-FITC Apoptosis detection Kit,
Affimetrix, Frankfurt am Main, Germany). After a washing
step in 200 μl binding buffer and resuspension in 90 μl bind-
ing buffer, 5 μl propidium iodide (PI) solution was added. The
cells were quantified by flow cytometry.

To access the breakdown of mitochondrial membrane po-
tential, active mitochondria of healthy cells were stained with

Tetramethylrhodamine ethyl ester perchlorate (TMRE). To
this end, cells were resuspended in 80 μl fresh medium. As
positive control for the loss of mitochondrial function, untreat-
ed cells were incubated with 5 μM carbonyl cyanide m-
chlorophenyl hydrazine (CCCP). Then, TMRE (Santa Cruz
Biotechnology, Dallas, Texas, USA) was added at a final con-
centration of 300 nM and cells were analyzed by flow cyto-
metric analysis.

To measure caspase-3 and -7 activity, cells were incubated
with CellEvent® Caspase-3/7 Green Detection Reagent at a
final concentration of 500 nM (CellEvent® Caspase-3/7
Green Flow Cytometry Assay Kit, molecular probes™,
Thermo Fisher Scientific) and analysed by flow cytometry.

Quantification of endogenous miR-217-5p expression

To determine the endogenous miR-217-5p expression in co-
lorectal cancer cells, HCT 116, HT-29 and SW480 cells were
stimulated with Etoposide (25 μM), TRAIL (80 ng/ml (HCT
116), 150 ng/ml (HT-29, SW480)). Then, cells were harvested
and total RNA was isolated using the miRNeasy Mini Kit
(Qiagen) according to the manufacturer’s protocol. CDNA
was synthesized by reverse transcription of 1 μg RNA using
the miScript II RT Kit and the included 5× miScript HiSpec
Buffer to ensure reverse transcription from mature miRNA
(Qiagen). CDNA was diluted 1:30 and used for miR-217-5p
expression analysis by quantitative PCR. To this end, 2 x
GreenMasterMix (Genaxxon Bioscience, Ulm, Germany)
were mixed with miRNA-specific forward primer (5 μM
stock) comprising the mature miR-217-5p (5′-TACT
GCATCAGGAACTGATTGGA-3′) or miR-217-3p (5′-
CATCAGTTCCTAAT GCATTGCCT -3′) sequence based
on the information on miRBase, 10× miScript Universal
Primer and 1:30 pre-diluted cDNA. For normalization of
cDNA input, the U6 snRNA was co-amplified using U6
snRNA-specific forward primer (5′-AACGCTTCACGAAT
TTGCGT-3′) and U6 snRNA-specific forward primer (5′-
CTCGCTTCGGCAGCACA-3′). Quantitative PCR was per-
formed in the LightCycler® 480 (Roche Diagnostics GmbH).
Each cDNA sample was measured in triplicates. At the end, a
melting step was included to access amplification of one spe-
cific product and collected fluorescence data were analyzed by
the ΔΔCT method to calculate the relative differences in
miRNA expression.

Monitoring of mRNA expression of potential target genes

To determine mRNA expression of potential target genes 48 h
upon miRNA mimic transfection, total RNA was isolated as
described before and 1 μg RNAwas used for cDNA synthesis
via the Transcriptor High Fidelity cDNASynthesis Kit (Roche
Diagnostics GmbH) and the included anchored oligo(dT)18
Primer. The cDNA was diluted 1:30 and used for mRNA
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expression. To this end, 2 x GreenMasterMix (Genaxxon
Bioscience) were mixed with target gene-specific forward
primer and reverse primer (5 μM stock) and 1:30 pre-diluted
cDNA. Peptidylprolyl isomerase A (PPIA) mRNAwas ampli-
fied as housekeeping gene. Quantitative PCR was performed
and analyzed as described in the preceding paragraph. The
following primer sequences were used: MAPK1 forward (5′-
TCTGCACCGTGACCTCAA-3′), MAPK1 reverse (5′-
GCCAGGCCAAAGTCACAG-3′), MAPK3 forward (5′-
CCCTAGCCCAGACAGACATC-3′), MAPK3 forward (5′-
CCCTA GCCCAGACAGACATC-3′), MAPK3 reverse (5′-
GCACAGTGTCCATTTTCTAACAGT-3′), ITGAV forward
(5′-AAGCTGAGCTCATCGTTTCC-3′), ITGAV reverse (5′-
GCACAGGAAAGTCTTGCTAAGG-3′), PRKCl forward
(5′-TCCCTTGTGTACCAGAAC GTC-3′), PRKCl reverse
(5′-GGCACAATAAAGCTTTCTCCA-3′), BAG3 forward
(5’-CTCAGCCAGATAAACAGTGTGG-3′), BAG3 reverse
(5′-GTCAGAGGCAGCTGGAGA CT-3′), PPIA forward
(5′-ATGCTGGACCCAACACAAAT -3′) and PPIA reverse
(5′-TCTTTCACTTTGCCAAACACC -3′).

Western blot analysis of protein expression of potential
target genes and apoptosis induction

For protein analysis of potential target genes and assessment
of apoptosis induction cells were harvested 60 h after miRNA
mimic transfections and lysed with radioimmunoprecipitation
assay (RIPA) buffer consisting of 1 mM ethylenediaminetet-
raacetic acid, 0.5 mM dithiothreitol, 0.5% sodium
deoxycholate in PBS. The protein concentration was deter-
mined by bicinchoninic acid assay (BCA) and 20 μg protein
were separated on a gradient SDS-PAGE (8–16%) and trans-
ferred to a polyvinylidene difluoride (PVD) membrane (Carl
Roth GmbH&Co. KG). Themembrane was blocked with 5%
w/v bovine serum albumin in PBS-0.1%Tween (PBS-T) and
probed with primary antibodies. These primary antibodies
comprised rabbit monoclonal anti-integrin alpha V (#60896),
anti-protein kinase C iota (PKCι/λ) (#2998), rabbit polyclonal
anti-p44/42 MAPK (Erk1/2) (#9102) antibodies from Cell
Signaling Technology (Cambridge, United Kingdom) and
mouse anti-BAG3 (SAB1404732 from Sigma Aldrich). To
access apoptosis induction by miR-217-5p mimic transfec-
tion, PVDFmembranes were also probed with the rabbit poly-
clonal caspase-3 (#9662), anti-PARP (#9542), rabbit mono-
clonal anti-cleaved caspase-3 (#9664) and rabbit polyclonal
anti-cleaved PARP (#9541) antibodies from Cell Signaling
Technology. The mouse monoclonal anti-GAPDH antibody
(MA5–15738, Thermo Fisher Scientific) was used as loading
control. Bound antibody was revealed with the appropriate
secondary HRP linked antibody (anti-rabbit IgG, (#7074,
Cell Signaling) or anti-mouse IgG, (A4416, Sigma Aldrich,
München, Germany)) and protein was visualized by enhanced
chemi l um ine s cence u s i ng Immob i l on Wes t e rn

Chemiluminescent HRP Substrat from Merck Millipore and
the Fusion FX image acquisition system (Vilber Lourmat,
Eberhardzell, Germany) for detection.

In silico target prediction

Six different in silico target prediction tools were applied to
identify potential miR-217-5p target genes, the prediction
tools TargetScan Human (Agarwal et al. 2015), miRanda
(Betel et al. 2010), Rna22 (Miranda et al. 2006), DIANA
TOOLS (Vlachos et al. 2015), miRDB (Wong and Wang
2015) and miRWalk (Dweep et al. 2011) were used.

Employing the free-accessible online gene classification
soft-ware PANTHER (Protein Analysis Through
Evolutionary Relationships) (Thomas et al. 2003) and IPA
(Ingenuity Pathway Analysis) (Qiagen Bioinformatics) sug-
gested potential target genes were restricted to genes with
anti-apoptotic or survival promoting functions. In addition,
already experimentally validated miR-217-5p target genes
listed in miRTarBase (Chou et al. 2016) and DIANA-
TarBase (Vlachos et al. 2015) were excluded from the further
investigations. Upon examination of tissue expression profiles
of predicted potential target genes employing online databases
as The Human Protein Atlas (Uhlen et al. 2015) or
GeneCards® (Rebhan et al. 1997) a selection of potential
target genes was chosen to access their potential post-
transcriptional regulation by miR-217-5p.

Potential miR-217-5p binding sites were obtained from the
database microRNA.org (Betel et al. 2010) by aligning miR-
217-5p with the mRNA transcript of predicted potential target
genes.

Luciferase reporter assay

Complementary oligonucleotide pairs comprising a portion of
putative miRNA binding sites were synthesized, annealed and
cloned into the pmirGlo® Dual Luciferase miRNA target ex-
pression vector (Promega Corporation, USA) between the
NheI/NotI restriction sites of the multiple cloning site down-
stream of a luciferase gene.

For luciferase assays, HEK 293 T cells were co-transfected
with 200 ng of the pmirGlo® Dual Luciferase miRNA target
expression vector and miR-217-5p or microRNA inhibitor
anti-miR-217-5p or non-targeting siRNA control (NT) at a
final concentration of 50 nM using Lipofectamine® 3000
(Thermo Fisher Scientific) according to the manufacturer’s
instructions. Three days after transfection, cells were lysed
with the Dual-Glo® Reagent (Dual-Glo® Luciferase Assay
System; Promega Corporation) and luciferase activity was
quantified on a SpectraMax M5e microplate reader
(Molecular Devices, Sunnyvale, CA, USA). After calculating
the ratio of firefly luminescence to the luminescence from
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Renilla, the experimental well ratio was normalized to the
ratio of the control wells.

Statistical analysis

Data are presented as mean ± SD. Statistical analysis was
carried out using GraphPad Prism (version 5.04). Apoptosis
rates were statistical tested by a two-way ANOVA followed
by Bonferroni post-test, whereas differences in miRNA ex-
pression after apoptosis induction were tested by one-way
ANOVA followed by Bonferroni post-test. Differences be-
tween the mRNA expression of potential target genes in
miR-217-5p mimic and NT transfected cells as well as lucif-
erase reporter data were analyzed using the two-tailed un-
paired t-test. A p-value <0.05 was considered to be statistically
significant.

Results

Apoptosis screening identified miR-217-5p to act
pro-apoptotic in colon carcinoma cells

MiRNAs are highly interesting candidate molecules for the
generation of novel anticancer therapeutics due to their in-
volvement in the regulation of fundamental cellular processes
such as apoptosis together with the increasing evidence for a
potential function as tumor suppressor-genes. Therefore, we
investigated the potential effects of miRNAs identified in two
previous apoptosis screenings (Fischer et al. 2014; Kleemann
et al. 2017) in various human cancer cell lines including HCT
116, SKOV3 and the human glioblastoma cell line T98G. The
different cell lines were used to test the apoptosis effect of
these miRNAs to identify general and tissue specific acting
miRNAs. Apoptosis induction by miRNAs was accessed by
transient miRNA mimics transfection and subsequent apopto-
sis measurement by quantitative flow cytometry. In addition to
described apoptosis inducing and tumor suppressor miRNAs
such asmiR-133a-3p (Yang et al. 2017; Zhang et al. 2015) and
miR-185-5p (Liu et al. 2011) (Fig. 1a), microRNA 217-5p
was identified to induce apoptosis in the CRC cell line HCT
116. Compared to a non-targeting siRNA control (NT), miR-
217-5p significantly raised apoptosis (cells in subG0/G1)
from 10.7% (± 2.4%) to 42.3% (± 1.3%). The previously
reported pro-apoptotic miR-133a-3p and miR-185-5p were
able to induce apoptosis up to 55.6% (± 0.9%) and 35.6% (±
3.6%) in these cells, respectively. Based on these initial data
from the previous screening, we further focused on dissecting
the pro-apoptotic effects of miR-217-5p in CRC cell lines. In
this study, we aimed to reveal the mechanism of action leading
to apoptosis by the sequence conserved miR-217.

miR-217-5p expression was increased after apoptosis
induction

To further access the functions of miR-217-5p in the reg-
ulation of the apoptotic process in CRC, the expression of
miR-217-5p was determined by qRT-PCR in a set of CRC
model cell lines comprising HTC 116, HT-29 and SW480.
In all cell lines, the basal expression level of miR-217-5p
was significant lower compared to the complementary
miR-217-3p strand (Fig. 1b). To examine the expression
pattern of miR-217-5p in all cell lines after induction of
apoptosis, cells were incubated with Etoposide or TRAIL.
Etoposide is an inductive stimulus for the intrinsic apo-
ptotic pathway through inhibition of topoisomerase II
(Montecucco et al. 2015), whereas TRAIL induces extrin-
sic apoptosis by binding to its receptor on the cell surface
(Wang and El-Deiry 2003). Apoptosis rates were deter-
mined 48 h after treatment by flow cytometric analysis
and were found to be increased in all cell lines tested.
The induction of apoptosis in HT-29 cells was small due
to its known resistance to TRAIL treatment (Lee et al.
2011) (Fig. 1c). Analysis of miR-217-5p expression by
qRT-PCR revealed a highly significant increase in expres-
sion after treatment with Etoposide of about 20-fold in
HT-29 and 14-fold in SW480 cell lines, whereas no effect
was seen in HCT116 cells. In contrast, TRAIL did not
elevate expression of miR-217-5p (Fig. 1d) in any of the
cell lines examined. The observed upregulation of miR-
217-5p expression after treatment with Etoposide sug-
gested an involvement of the analyzed miRNA strand in
the initiation or progression of the intrinsic apoptotic
pathway.

Repression of cell growth and proliferation bymiR-217-5p

In order to substantiate our observations on pro-apoptotic
effects of miR-217-5p and to provide a better understand-
ing of the underlying molecular mechanisms, we further
dissected miRNA functions in the apoptotic pathways.
Due to low basal miR-217-5p expression levels gain-of-
function studies were conducted employing transient
transfection of miR-217-5p mimic. In addition, the trans-
fection with either miR-133a-3p mimic or treatment with
Etoposide or TRAIL as well as transfection with a cell
death inducing siRNA (DT) served as positive controls,
while transfection with a non-targeting siRNA (NT) or
treatment with DMSO were used as negative controls.
Measurement of cell confluence 72 h after transient trans-
fection and Etoposide or TRAIL treatment revealed a
highly significant reduction in cell confluence especially
for miR-217-5p mimic transfected HCT 116 cells (0.36
fold ±0.01 fold compared to NT control). Although the
reduction of relative cell confluency was lower in miR-
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217-5p transfected HT-29 (0.84 fold ±0.01 fold) and
SW480 cells (0.69 fold ±0.05 fold), it confirmed assay
validity and in addition highlighted the strong miR-217-
5p responsiveness of HCT 116 cells (Fig. 2a). The data
point towards a potential role of miR-217-5p in the regu-
lation of cellular growth and proliferation.

Molecular changes during apoptosis induced
by miR-217-5p

To investigate the pro-apoptotic potential of miR-217-5p,
we applied several flow cytometric methods to access
molecular changes in apoptotic pathways induced upon
transient miR-217-5p mimic transfection into the three
CRC cell lines. Nicoletti staining was performed to detect
apoptotic cells in SubG1/G0. As in the case of reduction
in cell confluency (Fig. 2a), HCT 116 cells showed the

highest amount of cells in SubG1/G0 (3.01 fold ±0.03 vs
1.61 fold ±0.06 in HT-29 and 1.77 fold ±0.14 fold in
SW480 cells) (Fig. 2b). Based on these data, only
HCT116 cells were used for further detailed analysis on
the time response of different apoptosis markers. A hall-
mark of apoptosis is the externalization of PS located on
the cytoplasmic surface of the cell membrane. PS translo-
cates to the outer leaflet of the membrane in the interme-
diate stages of apoptosis where it can be detected.
Performing Annexin V-FITC staining 24 h, 48 h, and
72 h after miR-217-5p and miR-133a-3p mimic transfec-
tions revealed a highly significant time dependent in-
crease in PS externalization of up to 40.24% (± 0.6%)
and 44.36% (± 4.33%) after 72 h respectively, compared
to 17.46% (± 1.81%) for the NT control (Fig. 2c). This
observation provides evidence for the induction of apo-
ptosis by elevated levels of miR-217-5p or miR-133a-3p.
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As part of the intrinsic apoptotic pathway the mito-
chondrial membrane potential (MMP, ΔΨm) decreases
and subsequently leads to cytochrome C release (Wang

2001). The MMP was traced by the lipophilic cationic
fluorescent dye Tetramethylrhodamine ethyl ester perchlo-
rate (TMRE), which is unable to accumulate in the
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Fig. 2 Apoptosis induction after miR-217-5p mimic transfection. HCT
116, HT-29 and SW480 cells were seeded one day prior transfection with
miR-217-5p, miR-133a-3p mimics, non-targeting siRNA (NT) or
treatment with Etoposide (25 μM) TRAIL (80 ng/ml) or DMSO in 96
well plates. 72 h after transfection of miR-217-5p and miR-133a-3p
(62.5 nM) cell confluency was determined by automated microscopy
using NyONE (a). The apoptosis rates 72 h after treatment were
analyzed by Nicoletti staining and flow cytometric analysis (b). After
24 h, 48 h, and 72 h, molecular characteristics of apoptosis were
detected in HCT 116 cells by measuring phosphatidylserine
externalization (c) or the breakdown of mitochondrial membrane

potential ΔΨm by TMRE staining during flow cytometric analysis (d).
As a positive control for the breakdown of mitochondrial potentialΔΨm,
5 μM CCCP was used. 48 h after transfection HCT 116 cells were
harvested and lysed followed by SDS-PAGE and immunoblotting with
procaspase-3, cleaved caspase-3, PARP and cleaved PARP antibodies.
GAPDH was used as loading control (f). Caspase-3 and -7 activities
were detected by flow cytometry using a labeled fluorescent substrate
(e). Statistical analysis was performed by two-way ANOVA followed
by Bonferroni post-test [n = 3 biological replicates; mean ± SD,
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001]
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mitochondrial matrix after MMP breakdown (Gottlieb and
Granville 2002). To investigate the effects of miR-217-5p
on MMP, HCT 116 cells were transfected with miRNA
mimics and stained with TMRE 24 h, 48 h, and 72 h after
transfection (Fig. 2d). In addition to the cell death siRNA
control, cells were treated with Carbonyl cyanide m-
chlorophenyl hydrazone (CCCP), which uncouples oxida-
tive phosphorylation (Perry et al. 2011), to control assay
validity. The increase in cells with reduced ΔΨ m upon
miR-217-5p mimic transfection, shown by 60.03% (±
4.87%) low fluorescent cells compared to 27.56% (±
1.21%) for the NT control at 48 h post transfection, indi-
cated a loss of mitochondrial integrity. These data give
strong evidence for the induction of the intrinsic, mito-
chondr ia l apopto t ic pa thway upon miR-217-5p
transfection.

Both intrinsic as well as extrinsic apoptotic pathways
converge in the activation of the effector caspase-3 and -7
(Strasser et al. 2000). To access the effects of miR-217-5p
on the cleavage and activation of effector caspases, we
quantified the amount of cells with caspase-3 and -7 ac-
tivity 12 h, 24 h, 48 h, and 72 h after transfection of miR-
217-5p and miR-133a-3p mimics using fluorescent la-
beled caspase substrates and subsequent flow cytometric
analysis. We observed highly significant caspase-3 and -7
ac t iv i t i e s a t 48 h and 72 h af t e r miR-217-5p
(23.2% ± 1.23% and 17.21% ± 2.12%) and miR-133a-
3p (21.04% ± 1.75% and 24.24% ± 3.09%) mimic trans-
fections compared to NT control (8.3% ± 1.4% and
7.16% ± 1.14%). In addition, treatment with Etoposide
led to highly significant caspase activities of 24.33% (±
1.64%) at 48 h and 29.56% (± 5.4%) at 72 h compared to
cells treated with DMSO (4.97% ± 0.23% at 48 h and
8.68% ± 1.33% at 72 h) (Fig. 2e). At these time points,
caspase activity was decreasing in TRAIL treated cells,
which indicated that cells were already entering the state
of late apoptosis or secondary necrosis.

To confirm the induction of apoptosis induced by miR-
217-5p mimic and to validate the results received by flow
cytometric analyses at the molecular level, Western blot
analysis detecting cleaved caspase-3 as well as cleaved
poly (ADP-ribose) polymerase (PARP), which is a sub-
strate of activated caspase-3 (Cregan et al. 2004), were
conducted in miR-217-5p-mimic, NT or cell death
siRNA transfected HCT 116 cells. At 60 h after transfec-
tion, the protein level of PARP and procaspase-3
remained almost unchanged in control (NT) and untreated
cells (Fig. 2f), whereas cell death siRNA led to an expect-
ed increase in the abundance of cleaved caspase-3 as well
as cleaved PARP accompanied by reduced levels of
procaspase-3 and undetectable levels of PARP.
Comparable results were found for miR-217-5p,
confirming the flow cytometry data (Fig. 2b).

In summary, the pro-apoptotic effects of miR-217-5p
were confirmed by various methods detecting different
characteristics of apoptosis after transient transfection in
HCT 116 cells and point towards a possible role of miR-
217 in the intrinsic apoptotic pathway.

miR-217-5p regulates genes relevant for survival
and apoptosis

In order to elucidate critical downstream targets and sig-
naling pathways controlled by miR-217-5p, accounting
for the discovered pro-apoptotic effects in HCT 116 cells,
in silico target gene prediction analysis for miR-217-5p
was performed. Since the computational target prediction
yielded a large number of putative target genes, all genes
were subjected to a functional clustering analysis using
PANTHER Analys i s (Thomas e t a l . 2003) and
Ingenuity® Pathway Analysis (Qiagen Bioinformatics)
to assort them into functional groups. Focusing on surviv-
al promoting or anti-apoptotic functions, twenty-five tar-
get genes were selected for further analysis (Table 1). For
functional validation, we transiently transfected HCT 116
cells with miR-217-5p mimic or NT and analyzed the
mRNA expression after 48 h by qRT-PCR. Interestingly,
twelve putative target genes were confirmed to be signif-
icantly downregulated after miR-217-5p transfection, in-
cluding integrin subunit alpha V (ITGAV), mitogen-
activated protein kinase 1 (MAPK1), protein kinase C iota
1 (PRKC1), baculoviral IAP repeat containing 2 (BIRC3),
transforming growth factor beta receptor 2 (TGFBR2),
BCL2 associated athanogene 3 (BAG3), catenin beta 1
(CTNNB1 ) , MAPK3 , phospha t i dy l i nos i t o l -4 ,5 -
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA),
epidermal growth factor receptor (EGFR), transcriptional
activator Myb (MYB) and BRCA1 DNA repair associated
(BRCA1), while four predicted target genes showed a sig-
nificant upregulation after miR-217-5p transfection (Ras-
related C3 botulinum toxin substrate 1 (RAC1), Raf-1
proto-oncogene, serine/threonine kinase (RAF1), RAD51
recombinase (RAD51), and BCL2 apoptosis regulator
(BCL2)) (Fig. 3a). Focusing on the twelve downregulated
genes, we next accessed whether this regulatory activity
can be confirmed by reduced protein levels. For target
genes showing the most dramatic downregulation
(ITGAV, MAPK1, MAPK3, PRKC1 and BAG3), we quan-
tified protein levels by Western blot analysis 60 h after
miR-217-5p mimic transfection into HTC 116 cells. As
expected, miR-217-5p led to a significant down-
regulation of MAPK1/3, PRKC1 and BAG3 protein levels
except for ITGAV which might be due to delayed protein
degradation (Fig. 3b and c). Taken together, these findings
strongly suggest a concerted regulatory function of miR-
217-5p during apoptosis.
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Direct regulation of the MAPK pathway by miR-217-5p
in CRC cell lines

In order to test a direct miRNA/mRNA interaction of the
downregulated genes described above, we searched for poten-
tial binding sites within the 3′ untranslated region (3′ UTR) of
the mRNA using microRNA.org, RNA22 (Miranda et al.
2006) and TargetScanHuman (Agarwal et al. 2015). Two pre-
dicted miR-217-5p binding sites in the 3′ UTR of the ITGAV
mRNA transcript, four predicted miR-217-5p binding sites in
the 3′ UTR of the PRKCI mRNA transcript and six predicted
binding sites in the 3′ UTR of the MAPK1 mRNA transcript
were revealed (Fig. 4a and b). However, no binding sites in the
3′ UTR of MAPK3 mRNAwere predicted. To demonstrate a
direct miR-217-5p mediated regulatory effect on the potential
target genes, each predicted miR-217-5p binding site located
in the 3′ UTR of the potential target gene was cloned into the
3′ UTR of a luciferase reporter gene of the pmirGLO Dual-
Luciferase miRNA Target Expression Vector. The three

binding sides of MAPK1 which are already reported (Zhang
et al. 2016) served as controls for the luciferase experiments.

Since well transfectable HEK293T cells are mostly
employed for miRNA luciferase reporter analyses
(Chaudhuri et al. 2013; Fischer et al. 2014), we accessed
the downregulation of relative luciferase activity in this
well-established system. After co-transfection with
pmirGlo® Dual Luciferase miRNA target expression vec-
tors containing the predicted miRNA binding sites and
miR-217-5p mimics, miRNA inhibitor anti-miR-217-5p
or a non-targeting siRNA control, relative luciferase ac-
tivity was determined. As shown in Fig. 5d, relative lu-
ciferase activity of the reporter containing the predicted
miR-217-5p binding sites of the 3′UTR of MAPK1
mRNA transcript was significantly reduced when co-
transfected with miR-217-5p compared to NT. MiR-217-
5p binding to MAPK1 with its 6 binding sites, resulted in
a comparable decreased luciferase activity of less than
0.36 ± 0.04 observed for binding site 1 of MAPK1.
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Fig. 3 Post-transcriptional regulations of potential miR-217-5p target
genes. To experimentally validate miR-217-5p mediated regulation of
potential target genes, HCT 116 cells were transfected with miR-217-5p
mimic or non-targeting siRNA (NT) as described in Fig. 2. After 48 h,
potential target gene expression was analyzed by qRT-PCR (a). The
relative mRNA expression of potential target genes was normalized to
PPIA and NT. In light blue highlighted candidate genes of (a) were
further analyzed by Western blot (b – representative blots; n = 3).

Densitometric analyses of the Western Blot were performed using the
software FusionCapt Advance. GAPDH was used as loading control.
The expression of the respective protein was normalized to NT.
Differences in the expression of mRNA or target proteins between
miRNA mimic transfected cells and NT transfected cells were accessed
using unpaired t-test [n = 3 biological and technical replicates;
mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001]
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Additionally, binding sites 1 to 4, cloned into one
pmirGlo® vector, revealed similar results for downregu-
lated luciferase activity (0.44 ± 0.06). Similar results were
obtained when the pmirGlo® Dual luciferase vector
contained the predicted miR-217-5p binding sites in the
3 ′ UTR of PRKCI mRNA transcr ip t (F ig . 5a) .
Interestingly, no reduction of the luciferase activity be-
yond that observed with the various single PRKCI bind-
ing sites could be achieved with PRKCI_2 to 3. Further,
reduced luciferase activity of the reporter containing the
predicted miR-217-5p binding site of the 3’UTR of

ITGAV mRNA transcript in the presence of miR-217-5p
was shown with a reduction to 0.46 ± 0.10 (Fig. 5b). Also
for the binding site of BAG3 a direct interaction resulted
in the reduction of luciferase activity up to 0.59 ± 0.05
(Fig. 5c). As a control, transfection of miRNA inhibitor
anti-miR-217-5p, the complementary miRNA strand to
miR-217-5p, revealed luciferase activity comparable to
that observed with the non-targeting siRNA control.
Occasionally, there was a slight increase in activity when
compared to non-targeting siRNA pointing to some basal
activity emanating from the endogenous miR-217-5p.

target protein_nr. of
puta�ve binding site localiza�on (nt) binding sequence

PRKCI_1 2608 – 2629
3' aggUUAGUCAAGGACUACGUCAu 5' miR-217-5p

|||: |  |: |:|||||| 
5' ggaAAUUCG-GCUGGGUGCAGUg 3' PRKCI mRNA

PRKCI_2 3039 – 3061
3' agguuagucaaggacuACGUCAu 5' miR-217-5p

|||||| 
5' uauuggaaacuuuaacUGCAGUg 3' PRKCI mRNA

PRKCI_3 3075 – 3097
3' agguuagucaaggaCUACGUCAu 5' miR-217-5p

|||||||| 
5' ugcaaaagaccaagGAUGCAGUu 3' PRKCI mRNA

PRKCI_4 4523 - 4549
3' agGUUAGU-CAAG---GACUACGUCAu 5' miR-217-5p

:|||:: ||||   :|  |||||| 
5' uuUAAUUGUGUUCUGUUUUUUGCAGUc 3' PRKCI mRNA

ITGAV 5185 – 5206
3' agguuagucaAGGACUACGUCAu 5' miR-217-5p

|| | ||||||| 
5' aagagcuuaaUCAU-AUGCAGUa 3' ITGAV mRNA

BAG3 2125 – 2150
3' agguUAGUC-AAGGAC--UACGUCAu 5' miR-217-5p

||:|| | |:||  ||||||| 
5' uuuuAUUAGCUGCUUGGUAUGCAGUa 3' BAG3 mRNA

MAPK1_1 1623 – 1635
3' agguuagucaaggaCUACGUCAu 5' miR-217-5p

|||||||| 
5' uuucugguuugaaaGAUGCAGUg 3' MAPK1 mRNA 

MAPK1_2 1969 – 1995
3' agguuaGUC-AAGGAC---UACGUCAu 5' miR-217-5p

||| ||:: |   ||||||| 
5' uuggccCAGCUUUUAGAAAAUGCAGUc 3' MAPK1 mRNA

MAPK1_3 2085 – 2107
3' agGUUAGUCAAGGACUACGUCAu 5' miR-217-5p

|||  ||  ::  :|||||| 
5' guCAAGAAGCGUUAUGUGCAGUa 3' MAPK1 mRNA

MAPK1_4 2170 – 2192
3' agguuagucaaggacuACGUCAu 5' miR-217-5p

|||||| 
5' agagaaguacaaagguUGCAGUg 3' MAPK1 mRNA

MAPK1_5 4212 - 4237
3' aggUUA-GUCA-AGGAC-UACGUCAu 5' miR-217-5p

||| | || |: || :||||||
5' aagAAUACUGUAUUGUGUGUGCAGUg 3' MAPK1 mRNA

MAPK1_6 5266- 5288
3' agguuagucaaggacuACGUCAu 5' miR-217-5p

|||||| 
5' gcauguauaguuuaauUGCAGUu 3' MAPK1 mRNA

A

B

PRKCI mRNA
(NM_002740)

Coding sequence (239 – 2029 nt) 3´5´ 1 2 3 4

MAPK1 mRNA
(NM_002745)

Coding sequence (241 – 1323 nt) 3´5´ 1 2 3 4 5 6

ITGAV mRNA
(NM_002210)

Coding sequence (277 – 3423 nt) 3´5´ 1

BAG3 mRNA
(NM_004281)
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with putative miR-217-5p
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untranslated region (3′ UTR) of
the respective target gene mRNA
(a) and the miRNA:mRNA
alignment based on the data in
microRNA.org (b)
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Taken together, our data identify PRKCI, ITGAV, BAG3
and MAPK1 as direct targets of miR-217-5p.

Discussion

The involvement in the regulation of fundamental cellular
processes such as apoptosis and the increasing evidence for
a potential function as tumor suppressor genes makes
miRNAs highly interesting candidate molecules for the
generation of novel anticancer therapeutics. Based on pre-
viously performed high-throughput screenings for pro-
apoptotic miRNAs (Fischer et al. 2014; Kleemann et al.
2017), we were able to identify miR-217-5p as a novel
pro-apoptotic miRNA in CRC cell lines. In the current
study, we validated the pro-apoptotic potential of miR-
217-5p in HCT 116 CRC cells by detecting several molec-
ular changes including the externalization of PS (Fig. 2c),
the reduction of the ΔΨm (Fig. 2d), the activation of effec-
tor caspases and the cleavage of PARP (Fig. 2e and f), and
the fragmentation of cellular DNA (Fig. 2b). Further, we
identified a range of target genes whose miR-217-5p-
mediated downregulation suggested to be involved in the
induction of apoptosis in CRC cells.

Initial determination of the endogenous miR-217-5p and
miR-217-3p strand expression level in different CRC cell lines

showed a low basal miR-217-5p expression that was elevated
by the stimulation with Etoposide, an inducer of the intrinsic
apoptotic pathway (Fig. 1b and d). These data are in agree-
ment with the findings of Wang et al. demonstrating a down-
regulation of miR-217-5p in CRC cell lines compared to the
normal human colonmucosal epithelial cell line NCM460 and
in CRC tissue samples compared to the respective adjacent
noncancerous tissue. Further, lowmiR-217-5p expression cor-
relates with poor CRC prognosis (Wang et al. 2015a). These
findings imply a potential regulatory and inhibitory role for
miR-217-5p in apoptosis and tumorigenesis.

Since miRNAs are known to have the potential to control a
multiplicity of target genes, the aim of this study was to iden-
tify the target gene network regulated bymiR-217-5p possibly
underlying the observed pro-apoptotic mechanisms. By in
silico target prediction and experimental validation we identi-
fied a complex network of genes to be regulated by miR-217-
5p and further confirmed several direct target genes involved
in apoptosis. MiR-217-5p was identified to directly regulate
the ERK-MAPK signaling pathway by repressing MAPK1
directly via six binding sites in the 3′ UTR leading to direct
or indirect MAPK1/3 mRNA downregulation. In addition to
previously reported three binding sides (MAPK1_1 to _3;
(Zhang et al. 2016)), we were able to identify three more direct
binding sites of miR-217-5p, all of them leading to significant-
ly reduced luciferase activity (Fig. 5). Since the stimulation of
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Fig. 5 PRKC1, ITGAV, BAG3
and MAPK1 as direct targets for
miR-217-5p in HEK293T cells.
Relative luciferase activity 3 days
after co-transfection of the
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binding sites 2 and 3 of PRKC1
(a), the binding sites of ITGAV
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biological and technical repli-
cates; mean ± SD, *p < 0.05,
**p < 0.01, ***p < 0.001,
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the ERK-MAPK pathway leads to the activation of survival
and proliferation promoting transcription factors, including
proto-oncogene c-myc (Zhang and Liu 2002), Ets like protein
1 (Elk1) or proto-oncogene c-Fos (Klein and Assoian 2008)
and the stabilization of anti-apoptotic Bcl-2 family members
such as Mcl-1 (Thomas et al. 2010) or the destabilization of
pro-apoptotic molecules like BH3-only molecules (Akiyama
et al. 2009), the miR-217-5p mediated downregulation of
MAPK1/3 suggests a pathway mediating the observed pro-
apoptotic effects (Fig. 6).

Apart from directly influencing the ERK-MAPK signal-
ing pathway by negatively regulating MAPK1/3) (Fig. 5;
(Zhang et al. 2016)), we were able to show that miR-217-
5p indeed regulates this pathway on multiple levels by addi-
tionally targeting the transmembrane protein ITGAV, the

cytoplasmic localized BAG3 and the transcriptional activator
PKCι/λ (Fig. 6). Integrins are a family of transmembrane
receptors composed of two subunits, α and β. These recep-
tors facilitate interactions between cells and the extracellular
matrix, participate in cytoskeleton organization and play im-
portant roles in cell signaling (Stupack and Cheresh 2002).
Upon ligand binding, the PI3K/Akt and ERK- MAPK sig-
naling pathways are stimulated resulting in increased prolif-
eration and survival of the cell (Fu et al. 2015; Stupack and
Cheresh 2002). Thus, downregulation of integrin αV may
subsequently lead to the induction of apoptosis, which has
been shown in laryngeal cancer cells by the use of antisense
oligonucleotide mediated repression of integrin αV leading
to inhibition of proliferation and induction of apoptosis (Lu
et al. 2009). In addition, dysregulated integrin expression has
been associated with tumor cell growth as well as metastasis.
In fact, integrin αV expression levels were demonstrated to
be increased in non-small lung cancer (Fu et al. 2015), cer-
vical squamous cell carcinoma (Hazelbag et al. 2007), laryn-
geal and hypopharyngeal squamous cell carcinoma (Lu et al.
2009) and to correlate with enhanced proliferation, invasion,
metastasis and poor clinical outcome. These data again high-
light the relevance of miRNAs as negative regulators and
potential cancer therapeutics. The use of negative regulators
such as miR-217-5p may display therapeutic potential espe-
cially in addition to the use of monoclonal antibodies as e.g.
the anti-integrin αV antibody etaracizumab, which resulted
in decreased ovarian cancer proliferation and invasion
(Landen et al. 2008). Further, this combined approach might
allow for lower therapeutic antibody concentration with re-
duced side effects.

Another direct target gene of miR-217-5p and promoter of
the ERK-MAPK signaling pathway is BAG3. This co-
chaperone was demonstrated to interact with BRAF to stabi-
lize and protect it from proteasomal degradation (Chiappetta
et al. 2007) and to be overexpressed and involved in the path-
ogenesis and progression of different types of cancer, includ-
ing ovarian carcinoma (Suzuki et al. 2011), pancreatic adeno-
carcinoma (Rosati et al. 2012), hepatocellular carcinoma
(Xiao et al. 2014), and CRC (Shi et al. 2016; Yang et al.
2013). Apart from stimulating the ERK-MAPK pathway via
BRAF (Chiappetta et al. 2007) and facilitating the nuclear
factor-kappa B (NF-κB) signaling by protecting IKKγ from
proteasomal degradation (Ammirante et al. 2010), BAG3 was
found to interact with members of the Bcl-2 protein family,
including Bax to prevent its translocation to the mitochondrial
outer membrane (Festa et al. 2011) and the anti-apoptotic
family members Mcl-1 (Boiani et al. 2013), Bcl-xL and Bcl-
2 (Jacobs and Marnett 2009; Zhang et al. 2012) resulting in
their stabilization, the inhibition of apoptosis and resistance
apoptosis-inducing therapeutic approaches (Chiappetta et al.
2007) implicating the benefit of miR-217-5p mediated BAG3
downregulation.
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Fig. 6 Potential pro-apoptotic mechanisms of miR-217-5p regulating the
ERK-MAPK pathway at different sites. MiR-217-5p was shown to
directly downregulate PRKCI, ITGAV, BAG3 and MAPK1, connected
in a signaling network modulating the ERK-MAPK pathway. Binding of
extracellular matrix components to integrins comprising a β (ITGB) and
α subunit such as αv (ITGAV) may activate the ERK- MAPK signaling
pathway via focal adhesion kinase (FAK) activation, growth factor
receptor-bound protein 2 (GRB2), and guanine nucleotide exchange
factor son of sevenless (SOS), leading to the activation of the kinase
cascade including KRAS, BRAF, MEK, and MAPK1 and the
activation of, Phosphoinositide 3-kinase (PI3K)/Akt. These pathways
culminate in the activation of survival and proliferation promoting
transcription factors including c- myc, c-fos or Ets like protein 1 (Elk1),
in the induction and stabilization of anti-apoptotic members (Bcl-2, Bcl-
xL, Mcl-1) of the Bcl-2 protein family and the inhibition of pro-apoptotic
members including the BH3-only members Bad and Bim promoting the
initiation of intrinsic apoptosis via Bax and Bak. PRKCI, ITGAV, BAG3
and MAPK1 promote cell survival and proliferation by induction of
transcription factors including NK-κB, AP1 or SOX2, or by induction
of the ERK-MAPK pathway via Rac1
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Finally, we identified the PRKCI encoding the protein
PKCι/λ as a direct target gene of miR-217-5p. PKCι/λ
was shown to play a pivotal role in cell proliferation
and differentiation by activating transcription factors such
as sex determining region Y-box 2 (SOX2) (Justilien et al.
2014), NF-κB, and activating protein-1 (AP-1) (Ishiguro
et al. 2009) or by connecting to the MAPK-ERK pathway
via Rac-1 (Regala et al. 2005; Scotti et al. 2010; Zhang
et al. 2004). In addition, PKCι/λ was implicated in the
carcinogenesis of several malignancies, including lung
squamous cell carcinoma (Justilien et al. 2014), tongue
squamous cell carcinoma (Song et al. 2014), and pancre-
atic adenocarcinoma (Scotti et al. 2010). Apart from miR-
217-5p target genes in CRC cells identified within this
study, only Wang et al. identified another direct target,
astrocyte-elevated gene-1/ Metadherin to be directly
downregulated by mir-217-5p in CRC (Wang et al.
2 015a ) . Taken t oge t h e r , t h e co l l e c t i v e po s t -
transcriptional regulation of these target genes may medi-
ate the pro-apoptotic effect of miR-217-5p.

Considering that the miRNA-mediated overall effect is de-
pendent on the tissue specific expression of the different
miRNA target genes, further target genes of miR-217-5p were
identified by others in different tumor entities and may also be
involved in the observed pro-apoptotic effect of miR-217-5p
in CRC. In this regard, miR-217-5p was shown to directly
target KRAS in lung cancer and pancreatic adenocarcinoma
(Zhao et al. 2010), WAS Protein Family Member 3 in osteo-
sarcoma (Shen et al. 2014), Insulin Like Growth Factor 1
Receptor in epithelial ovarian cancer (Li et al. 2016), Runt
related transcription factor 2 in glioblastoma (Zhu et al.
2016), as well as enhancer of zeste homolog 2 (Chen et al.
2015) and glypican 5 (Wang et al. 2015b) in gastric cancer.

In summary, miR-217-5p was validated to induce apopto-
sis in CRC cells. A panel of multiple novel target genes was
identified, contributing to the understanding of the molecular
mechanisms of network regulation by miR-217-5p mediated
apoptosis.
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