
REVIEW

Proteasome inhibitors in cancer therapy

Lisa J. Crawford & Brian Walker & Alexandra E. Irvine

Received: 21 December 2010 /Accepted: 13 January 2011 /Published online: 31 January 2011
# The International CCN Society 2011

Abstract The ubiquitin proteasome pathway plays a
critical role in regulating many processes in the cell which
are important for tumour cell growth and survival.
Inhibition of proteasome function has emerged as a
powerful strategy for anti-cancer therapy. Clinical valida-
tion of the proteasome as a therapeutic target was achieved
with bortezomib and has prompted the development of a
second generation of proteasome inhibitors with improved
pharmacological properties. This review summarises the
main mechanisms of action of proteasome inhibitors in
cancer, the development of proteasome inhibitors as
therapeutic agents and the properties and progress of next
generation proteasome inhibitors in the clinic.
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The ubiquitin proteasome pathway

The degradation of cellular proteins is a highly complex and
tightly regulated process that plays a central role in regulating
cellular function and maintaining homeostasis. The ubiquitin
proteasome pathway (UPP) represents the major pathway for
intracellular protein degradation. More than 80% of cellular
proteins are degraded through this pathway including those

involved in a broad array of processes such as cell cycle,
apoptosis, transcription, DNA repair, protein quality control
and antigen presentation. It has become increasingly clear that
defects within this pathway are associated with a number of
diseases, including cancer.

Degradation of a protein via the UPP involves two distinct
and successive pathways (Fig. 1). Proteins destined for
proteolysis are initially tagged by a covalently linked
polyubiquitin chain in a multistep process involving the
coordinated action of three enzymes—E1 (ubiquitin-activating
enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiq-
uitin ligase). The process begins with activation of ubiquitin
by formation of a thiol ester bond between E1 and ubiquitin,
in an ATP-dependent manner (McGrath et al. 1991). The
activated ubiquitin moiety is then transferred to an active site
residue within an E2 enzyme which shuttles ubiquitin either
directly or in concert with an E3 enzyme to a lysine residue in
the target protein. There are more than 30 different E2 and
over 500 E3 enzymes, which work in conjunction to confer
exquisite substrate specificity to the UPP (Nagy and Dikic
2010). The successive conjugation of ubiquitin moieties
generates a polyubiquitin chain that acts as a signal to target
the protein for degradation by the 26S proteasome. Ubiquitin
conjugation can occur through linkage on one of ubiquitin’s
seven acceptor lysines, resulting in ubiquitin chains of various
lengths, types and functions. Polyubiquitination mediated by
lysine 48 is required for substrate degradation via the
proteasome whereas polyubiquitination at lysine 63 plays a
role in cellular signalling.

The 26S proteasome

The 26S or constitutive proteasome is found in the nucleus
and cytoplasm of all eukaryotic cells. It is composed of a
core 20S particle capped with two 19S structures. The 20S
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catalytic core is made up of 28 subunits arranged into four
stacked rings, creating a central chamber where proteolysis
occurs. The two outer rings are composed of 7 different α
subunits, which are predominantly structural and the two
inner rings are composed of 7 different β subunits, at least
three of which contain catalytic sites (Groll et al. 1997).
Catalytic activities of the proteasome are classified into
three major categories, based upon preference to cleave a
peptide bond after a particular amino acid residue. These
activities are referred to as chymotrypsin-like (CT-L), trypsin-
like (T-L) and caspase-like (C-L) and are associated with β5,
β2 and β1 subunits respectively. The CT-L activity cleaves
after hydrophobic residues, the T-L activity cleaves after basic
residues and the C-L activity cleaves after acidic residues
(Groll et al. 1999; Heinemeyer et al. 1997). Substrates gain
access to the proteolytic chamber by binding to the 19S
regulatory particle at either end of the 20S proteasome.
Polyubiquitin-tagged proteins are recognised by the 19S
particle, where ubiquitin is cleaved off and recycled and the
target protein is unfolded and fed into the 20S catalytic
chamber (Groll et al. 2000a, b; Navon and Goldberg 2001).

An alternative proteasome isoform known as the immuno-
proteasome can be formed in response to cytokine signalling.
Interferon-gamma and tumour necrosis factor-alpha induce
the expression of a different set of catalytic β-subunits and a
different regulatory cap to form the immunoproteasome.
Subunits β1i (LMP2), β2i (MECL1) and β5i (LMP7) replace
constitutive subunits β1, β2 and β5 and the 19S regulatory
cap is replaced with an 11S regulatory structure. These
modifications allow the immunoproteasome to generate
antigenic peptides for presentation by the major histocombat-
ability (MHC) class 1 mediated immune response (Rock and

Goldberg 1999). The expression of the immunoproteasome
appears to be tissue-specific and is particularly abundant in
immune-related cells.

The proteasome as a drug target

Proteasome inhibitors were initially synthesized as in vitro
probes to investigate the function of the proteasome’s
catalytic activity. As the essential role of the proteasome in
cell function was unravelled, the possibility that proteasome
inhibitors may have potential as therapeutic agents was
considered. Early studies showed that proteasome inhibitors
induced apoptosis in leukaemic cell lines (Imajoh-Ohmi
et al. 1995; Shinohara et al. 1996; Drexler 1997) and were
active in an in vivo model of Burkitt’s lymphoma
(Orlowski et al. 1998). Further in vitro investigations
demonstrated that proteasome inhibitors displayed a broad
spectrum anti-proliferative and pro-apoptotic activity
against haematological and solid tumours. While these
studies established the potential of proteasome inhibitors as
anti-cancer agents, many of the compounds available were
limited to laboratory studies due to a relative lack of
potency, specificity or stability. This led to the design of
new inhibitors with more potent and selective activity.

Critical targets for proteasome inhibitors in malignant
cells

Pre-clinical studies have demonstrated that malignant cells
are more susceptible to the cytotoxic effects of proteasome
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inhibition than normal cells. The mechanisms behind the
higher sensitivity of malignant cells are unclear, however, it
is likely that they exploit the proteasome to regulate
proliferation and anti-apoptotic pathways. Most tumour
cells are highly proliferative and have an increased
requirement for protein synthesis which would make them
more vulnerable to proteasome inhibition. We have previ-
ously demonstrated that increased proteasome activity in
leukaemic cell lines is correlated with an increased
sensitivity to proteasome inhibitors (Crawford et al. 2009).
In accordance with this, Nawrocki et al. (2008), have
shown a direct correlation between proteasome inhibitor
sensitivity and rates of translation in multiple myeloma
cells. Nonetheless, proteasome inhibitors demonstrate better
efficacies in certain malignancies than others and there are
clearly other determinants that account for this. It is likely
that the relative importance of the mechanisms depends on
the tumour type. Inhibition of NFκB activity, altered
degradation of cell cycle related proteins, altered pro-
apoptotic and anti-apoptotic protein balance, endoplasmic
reticulum stress and inhibition of angiogenesis and DNA
repair have all been reported to contribute to the apoptotic
affect of proteasome inhibitors in tumour cells. These
mechanisms are summarised below and in Fig. 2.

NFκB

One of the first mechanisms of action attributed to
proteasome inhibitors was inhibition of the inflammation-
associated transcription factor NFκB, through stabilization
of its inhibitor IκB (Traenckner et al. 1994). NFκB
regulates various immune and inflammatory responses,
but also plays an important role in tumourigenesis by
inducing angiogenesis, proliferation, migration and
suppression of apoptosis. NFκB is bound to its inhibitor
IκB in the cytoplasm and is activated by proteasomal
degradation of IκB. Inhibition of proteasome activity
prevents degradation of IκB and subsequent activation
and translocation of NFκB to the nucleus to activate
downstream pathways. NFκB is constitutively active in a
large proportion of advanced cancers (reviewed in Luqman
and Pezzuto 2010) and has been shown to play a role in
resistance to chemotherapeutic agents. It has therefore been
of interest as a potential therapeutic target for some time.
Proteasome inhibition was demonstrated to induce accu-
mulation of IκB and pre-clinical and clinical studies with
bortezomib showed down-regulation of transcriptional
targets of NFκB (eg IL-6). However, studies are now
challenging the concept that proteasome inhibitors inhibit
NFκB activation. Dolcet et al. (2006) first reported that
proteasome inhibitors actually activate NFκB in endome-
trial carcinoma cells. This work was supported by a study
in MM cells demonstrating that bortezomib activates two

upstream NFκB activating kinases (RIP2 and IKKβ),
promotes non-proteasomal degradation of IκB and
increases NFκB DNA binding (Hideshima et al. 2009).
The discrepancy between the original concepts and recent
discoveries of the effect of proteasome inhibition on NFκB
may be in part accounted for by the fact that earlier studies
demonstrated that proteasome inhibitors blocked inducible
NFκB activity but did not investigate the effect of
proteasome inhibition on basal NFκB activity. The role of
NFκB in mediating the effects of proteasome inhibition
remains controversial.

Cell cycle

Progression through the cell cycle occurs through tightly
controlled interplay between cyclins and cyclin depen-
dent kinases (CDKs). Loss of cell cycle control is a
critical step in oncogenesis. The ubiquitin proteasome
pathway mediates the degradation of many cell cycle
regulatory proteins. There are a number of ways in
which proteasome inhibitors may induce cell cycle arrest
by interfering with the degradation of cyclins and cell
cycle regulatory proteins in malignant cells. For example,
the tumour suppressor molecule p27 is a CDK inhibitor
that inhibits both cyclin D and cyclin E to negatively
regulate progression through the G1/S phase of the cell
cycle (Sherr and Roberts 1999). Degradation of p27
therefore promotes progression through the cell cycle and
cellular levels of p27 are controlled by the ubiquitin
proteasome pathway. Low p27 expression is reported to be
associated with tumour progression and poor prognosis in
various malignancies including lymphoma, breast, lung,
colon, prostate, ovarian and brain cancer (Chu et al. 2008).
The ubiquitin ligase S-phase kinase protein 2 (Skp-2)
targets p27 for degradation by the proteasome. High
expression of Skp-2 has been reported in some cancers
including non-small cell lung carcinoma (Inui et al. 2003)
and it is thought to contribute to enhanced degradation of
p27. Proteasome inhibition has been shown to result in a
downregulation of Skp-2 and accumulation of p27 result-
ing in cell cycle arrest (Hussain et al. 2009).

Regulation of apoptosis

Apoptosis is regulated by the opposing activities of pro-
apoptotic and anti-apoptotic molecules. Cancer cells often
have disregulated apoptotic signalling pathways which give
malignant cells a survival advantage and can confer
resistance to chemotherapeutic agents. The proteasome is
involved in the control of apoptosis by modulating the
levels of pro- and anti-apoptotic factors. Inhibition of
proteasome activity results in an upregulation of pro-
apoptotic factors such as p53, Bax and NOXA, while
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reducing levels of anti-apoptotic proteins such as Bcl-2 and
IAP (inhibitor of apoptosis) proteins (McConkey and Zhu
2008). Proteasome inhibitors have been demonstrated to
induce apoptosis in numerous malignant cell types when
used as a single agent and induce sensitivity to other
chemotherapeutic agents in combination.

p53

The tumour suppressor p53 is a critical regulator of
apoptosis induced by DNA damage and transforming
oncogenes. It is often inactivated in malignant cells, leading
to tumour progression and drug resistance. Hyperactivation
of MDM2, an E3 ligase for p53, and subsequent proteaso-
mal degradation is a common mechanism for downregula-
tion of p53 activity (Momand et al. 1998). Proteasome
inhibition results in accumulation of p53 and has been
shown to activate p53 downstream target genes such as
p21, Fas ligand, PUMA and Bax (Williams and McConkey
2003). Proteasome inhibitors have been demonstrated to
induce p53-dependent apoptosis in malignancies such as
renal cell carcinoma cell lines (Vaziri et al. 2009), colon
cancer (Ding et al. 2007), melanoma and multiple myeloma
(Qin et al. 2005). However, this appears to be cell type
dependent as bortezomib has been shown to act indepen-
dently of p53 in B-cell lymphoma (Strauss et al. 2007) and
glioma cells (Yin et al. 2005).

Endoplasmic reticulum stress

The endoplasmic reticulum (ER) plays an important role in
protein folding and maturation. Unfolded or misfolded
proteins are directed to the proteasome for degradation.
Proteasome inhibition results in the accumulation and
aggregation of misfolded proteins in the ER resulting in ER
stress, which in turn elicits the unfolded protein response

(UPR). The UPR is primarily a pro-survival response to
reduce the accumulation of unfolded proteins and restore ER
function. However, if protein accumulation is persistent, as in
the case of proteasome inhibition, signalling switches from
pro-survival to pro-apoptotic. Malignant cells generally have
higher protein synthesis rates than their normal counterparts,
thus making them more prone to protein aggregation and
perhaps more sensitive to proteasome-inhibitor induced
apoptosis. For example, multiple myeloma cells constitutively
express ER stress survival factors to function as antibody-
secreting cells. Inhibition of proteasome activity has been
demonstrated to induce pro-apoptotic ER stress in numerous
cancer cells including, multiple myeloma (Obeng et al. 2006),
pancreatic (Nawrocki et al. 2005), head and neck cancer
(Fribley and Wang 2006) and non small cell lung carcinoma
(Morgillo et al. 2010).

Inhibition of angiogenesis

The success of proteasome inhibitors in multiple myeloma has
been attributed not only to direct effects on myeloma cells but
also the effects of proteasome inhibitors on the tumour
microenvironment, including anti-angiogenic effects. Protea-
some inhibitors were initially shown to have an indirect effect
on angiogenesis by decreasing the secretion of vascular
endothelial growth factor (VEGF) (Hideshima et al. 2001;
Nawrocki et al. 2002). Subsequently, direct anti-proliferative
effects of bortezomib on vascular endothelial cells were
demonstrated using a range of functional assays including
chemotaxis, adhesion to fibronectin and capillary formation
(Roccaro et al. 2006). More recently, Tamura et al. (2010),
have shown that bortezomib potently inhibits cell growth of
vascular endothelial cells by suppressing the G2/M transition
of the cell cycle and increasing the permeability, thus
displaying a unique mechanism of action as a vascular
targeting drug.
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FOXM1

The oncogenic transcription factor Forkhead Box M1
(FoxM1) has recently emerged as a new target for
proteasome inhibitors. FoxM1 induces the expression of
genes involved in cell cycle progression and is overex-
pressed in many cancers including non small cell lung
carcinoma (Gialmanidis et al. 2009), breast cancer
(Bektas et al. 2008), colorectal cancer (Yoshida et al.
2007), glioblastomas (Liu et al. 2006), pancreatic carci-
nomas (Wang et al. 2007) and squamous cell carcinomas
(Gemenetzidis et al. 2009). Conversely, FoxM1 is lowly
expressed in normal non-dividing cells and for this reason
it provides an attractive target for anticancer drugs. Gartel
and colleagues demonstrated that proteasome inhibitors
suppress FoxM1 transcriptional activity and expression in
a number of malignant cell lines (Bhat et al. 2009; Gartel
2010) and may contribute to the anti-cancer effect of
proteasome inhibitors.

DNA repair

Recent research has demonstrated a role for the UPP in
regulating DNA repair through mechanisms such as
nucleotide excision repair, post-replication repair and
homologous recombination (reviewed in Motegi et al.
2009). Proteasome inhibitors may impact these pathways
through the depletion of available nuclear ubiquitin;
inhibition of proteasome activity results in an accumulation
of nondegraded polyubiquitinated proteins leading to a
reduction in the amount of free ubiquitin in the cell. This
depletion of free ubiquitin results in a loss of monoubiqui-
tinated histones in the nucleus and consequently impairs
DNA-damage responses. Proteasome inhibitors have been
shown to sensitize tumour cells to various anti-tumour
therapies such as radiation, camptothecin and topoisomerase
inhibitors, all of which induce DNA damage.

Proteasome inhibitors in clinical development

Bortezomib, a peptide boronate inhibitor, was the first
proteasome inhibitor to enter clinical practice. Growing
evidence from translational research and clinical trials with
bortezomib established the proteasome as a novel and
legitimate therapeutic target. However, there are restrictions
to the use of bortezomib including dose limiting toxicity,
particularly peripheral neuropathy, limited activity in solid
tumours, resistance and intravenous administration. This
prompted the development of a new generation of structur-
ally distinct proteasome inhibitors. In addition to bortezo-
mib, there are currently five proteasome inhibitors in
clinical development, representing three different structural

classes—peptide boronic acids, peptide epoxyketones and
β-lactones (Fig. 3). These inhibitors bind either reversibly
or irreversibly to catalytic sites within the proteasome. An
overview of bortezomib along with second generation
proteasome inhibitors currently in clinical development is
presented below (Table 1).

Bortezomib

Bortezomib is a reversible inhibitor primarily acting on the
CT-L activity of the proteasome. This compound was
chosen from a panel of boronic acid analogues that were
screened against the National Cancer Institute’s (NCI’s)
panel of 60 cancer cell lines, on the basis of its potency and
cytotoxicity (Adams et al. 1999). Bortezomib was further
investigated in vitro and in vivo in various tumour types
and showed early indications of activity in non-small cell
lung cancer, prostate cancer, multiple myeloma and mantle
cell and follicular non-Hodgkin’s lymphoma. Bortezomib
proved to be particularly active against multiple myeloma
and Phase I through to Phase III clinical trials quickly
confirmed its efficacy in this disease (Orlowski et al. 2002;
Richardson et al. 2003; Jagannath et al. 2004; Richardson et
al. 2005). Bortezomib was approved for third-line treatment
of multiple myeloma by the FDA in 2003 (Kane et al.
2006) and expanded to first-line treatment in 2008;
approval for use in mantle cell lymphoma came in 2006
(Kane et al. 2007). While bortezomib exhibits considerable

Bortezomib (Peptide Boronate)  Carfilzomib (Epoxykeytone) 

NPI-0052 (Salinosporamide A) 

ONX 0912 (Epoxyketone) 

MLN9708 (Peptide Boronate)  

CEP-18770 (Peptide Boronate) 

Fig. 3 Chemical structures of proteasome inhibitors in clinical
development
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activity as a single agent, its main use is as a means to
overcome resistance and induce sensitivity to a variety of
other chemotherapeutic agents. Bortezomib has been
combined with doxorubicin, thalidomide, melphalan, dexa-
methasone, and lenalidomide, among others and has
generally been successfully combined with other agents
without increased toxicity. There are currently over 200
active clinical trials involving bortezomib, the majority of
which are investigating novel combination therapy for
haematological malignancies, particularly multiple myelo-
ma and lymphoma. There are also trials involving a wide
variety of advanced solid tumours, most notably non small
cell lung carcinomas, renal cell carcinoma, and breast
cancer; further information on these trials can be found at
www.clinicaltrials.gov. Although bortezomib exhibited
anti-tumour activity in multiple malignancies in pre-
clinical studies, clinical trials in solid tumours have proved
disappointing to date. The reasons for this are unclear but it
is postulated that the dosing regimes may be sub-optimal
for the treatment of solid tumours (Bennett and Kirk 2008)
and has prompted interest in the possibility that second-
generation proteasome inhibitors may have a broader
clinical efficacy.

Carfilzomib

Epoxomicin, a member of the epoxyketone family of
natural peptide proteasome inhibitors, inhibits proteasome
activity through a unique mechanism, by binding to both
the hydroxyl and amino groups of the catalytic site
threonine residue (Groll et al. 2000a, b). Carfilzomib
(formerly PR-171) is an epoxomicin-based proteasome
inhibitor, with improved pharmaceutical properties. Unlike

bortezomib, carfilzomib binds irreversibly to the CT-L
subunit, leading to more sustained proteasome inhibition. In
preclinical studies carfilzomib was shown to exhibit equal
potency but greater selectivity than bortezomib for the
CT-L activity in vitro and in vivo studies demonstrated anti-
tumour activity, tolerability and dosing flexibility in several
xenograft models (Kuhn et al. 2007; Demo et al. 2007).
Carfilzomib has also been shown to act synergistically with
histone deacetylase inhibitors in vitro in lymphoma and
leukaemia (Fuchs et al. 2009; Dasmahapatra et al. 2010).
Results from Phase I studies in patients with haematological
malignancies demonstrated that it was well tolerated and may
exhibit less peripheral neuropathy than bortezomib (O’Connor
et al. 2009). Carfilzomib is currently in Phase III trials in
multiple myeloma and Phase I trials for acute myeloid
leukaemia, acute lymphoblastic leukaemia, chronic lympho-
cytic leukaemia and solid tumours.

NPI-0052

NPI-0052, also known as Salinosporamide A, is a β-lactone
compound derived from the marine bacterium Salinospora
tropica (Macherla et al. 2005) and is structurally related to
the lactacystin-derived proteasome inhibitor Omuralide. In
contrast to bortezomib which is a slowly reversible
inhibitor, NPI-0052 binds irreversibly to all three catalytic
activities of the proteasome. While bortezomib is adminis-
tered intravenously, NPI-0052 has the advantage of being
orally bioactive. Initial in vitro studies established the
effectiveness of this compound in multiple myeloma cell
lines, including those that were resistant to bortezomib
(Chauhan et al. 2005). Pre-clinical studies have also shown
activity of NPI-0052 in Waldenstrom’s macroglobulinemia

Table 1 Properties of proteasome inhibitors in clinical development

Proteasome
inhibitor

Type Target Binding Route of
administration

Clinical development

Bortezomib peptide boronic
acid

CT-L reversible IV Approved for MM and MCL

Carfilzomib peptide
epoxyketone

CT-L irreversible IV Phase III in MM

Phase I in AML, ALL, CLL and solid
tumours

NPI-0052 β-lactone CT-L, T-L, C-
L

irreversible Orally bioavailable Phase I in MM, solid tumours and
lymphoma

MLN9708 peptide boronic
acid

CT-L reversible IV and orally
bioavailable

Phase I/II in MM

Phase I in lymphoma and solid tumours

CEP-18770 peptide boronic
acid

CT-L reversible IV and orally
bioavailable

Phase I/II in MM

ONX0912 peptide
epoxyketone

CT-L irreversible Orally bioavailable Phase I in solid tumours

CT-L chymotrypsin-like; T-L trypsin-like; C-L caspase-like; IV intravenous; MM multiple myeloma; MCL mantle cell lymphoma; AML acute
myeloid leukaemia; ALL acute lymphocytic leukaemia; CLL chronic lymphocytic leukaemia
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(Roccaro et al. 2008), acute leukaemias (Miller et al. 2007,
2009), chronic lymphocytic leukaemia (Ruiz et al. 2006)
and prostate (Baritaki et al. 2009), pancreatic (Sloss et al.
2008) and colon cancer (Cusack et al. 2006). Animal
tumour model studies demonstrated reduced tumour growth
without significant toxicity (Chauhan et al. 2005; Singh et
al. 2010a). Phase I trials of NPI-0052 in advanced solid
tumours, refractory lymphoma and non small cell lung
carcinoma are currently ongoing.

MLN9708

MLN9708 like bortezomib is also a boron containing
peptide proteasome inhibitor and was selected from a panel
of inhibitors based on having a biochemical profile distinct
from that of bortezomib. MLN9708 hydrolyses immediately
in plasma to its biologically active form MLN2238.
MLN2238 displays similar potency and selectivity for the
CT-L proteasome subunit, however, it has a substantially
shorter half-life than bortezomib which may improve tissue
distribution. Cell viability studies revealed a strong anti-
proliferative effect on a variety of tumour cell lines and in vivo
studies have demonstrated efficacy in human prostate
xenograft, colon cancer and lymphoma models where both
intravenous and oral dosing were effective (Kupperman et al.
2010). This compound is currently being evaluated in Phase
I studies in patients with lymphoma and non-haematological
malignancies and in Phase I/II trials for multiple myeloma.

CEP-18770

CEP-18770 is a next-generation boronic acid-based protea-
some inhibitor and in common with bortezomib it is a
reversible inhibitor, primarily of the CT-L activity. CEP-
18770 was demonstrated to induce apoptosis in multiple
myeloma cell lines and primary myeloma cells, while
displaying a favourable cytotoxicity profile towards normal
cells (Piva et al. 2008; Dorsey et al. 2008). Its anti-tumour
activity was demonstrated in several animal tumour models
and it has been shown to demonstrate marked anti-myeloma
effects in combination with Bortezomib and melphalan
(Sanchez et al. 2010). CEP-18770 has completed early
Phase I trials for solid tumours and non-Hodgkin’s and is
currently being evaluated in Phase I/II trials for multiple
myeloma.

ONX0912

ONX0912 (formerly PR-047) is a novel orally available
analogue of the proteasome inhibitor carfilzomib. Car-
filzomib, in common with bortezomib, is administered
intravenously, however, proteasome inhibitor therapy
requires twice weekly dosing and therefore an orally

available inhibitor would be advantageous. ONX0912
has demonstrated similar anti-tumour activity to carfil-
zomib in vitro in cell lines and primary cells and
enhanced the anti-myeloma activity of bortezomib,
lenolidomide and histone deacetylase inhibitors; animal
models of multiple myeloma, non-Hodgkin’s lymphoma
and colorectal cancer demonstrated reduced tumour
progression and prolonged survival (Zhou et al. 2009;
Roccaro et al. 2010; Chauhan et al. 2010). A Phase I trial
of ONX0912 in advanced solid tumours is currently
recruiting.

Immunoproteasome inhibitors

A novel approach that is looking promising is the use of
proteasome inhibitors to specifically inhibit catalytic
activities of the immunoproteasome. Immunoproteasomes
are constitutively expressed in immune tissues and
expressed at a much lower level in other cell types.
Thus targeting immunoproteasomes confers a certain
amount of specificity and provides an opportunity to
overcome toxicities associated with proteasome inhibi-
tion, such as peripheral neuropathy and gastrointestinal
effects. A number of immunoproteasome specific inhib-
itors have recently been described and exhibit encourag-
ing pre-clinical activity in haematological malignancies.
PR-924 is a tripeptide epoxyketone related to carfilzo-
mib. It exhibits 100-fold greater selectivity for β5i than
carfilzomib and was demonstrated to inhibit the growth
of multiple myeloma cell lines and primary tumour cells
and inhibited tumour growth in animal models without
significant toxicity (Singh et al. 2010b). The immuno-
proteasome inhibitor ISPI-101 is a peptide aldehyde which
preferentially inhibits the β1i subunit. ISPI-101 induced
accumulation of polyubiquitinated proteins and pro-
apoptotic proteins and inhibited proliferation in in vitro
models of haematological malignancies (Kuhn et al.
2009). At the time of writing this review there are no
clinical trials of immunoproteasome inhibitors in progress,
however, it is likely that the encouraging pre-clinical data
on PR-924 and ISPS-101 will form the basis for future
clinical evaluation of these compounds.

Summary

The UPP is now widely appreciated for its critical role in
regulating diverse cellular processes and the clinical
efficacy of bortezomib has established the proteasome as
a therapeutic target. Although the precise mechanisms of
action of proteasome inhibitors are not yet fully defined,
there are a number of pathways that appear to be important
in the selectivity for malignant cells. While bortezomib
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treatment results in impressive response rates in multiple
myeloma and other haematological malignancies, its success
in solid tumours has been disappointing. Whether this limited
activity in solid tumours is specific to bortezomib or whether it
extends to proteasome inhibitors as a class is as yet unknown.
A number of chemically distinct next generation proteasome
inhibitors have been developed which display unique mech-
anisms of action against the proteasome. The clinical
development of these proteasome inhibitors along with the
development of novel drug combinations should help to
address some of the key issues with bortezomib and offer
possibilities for future anti-cancer therapies.
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