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Abstract
The study proposes a comprehensive strategy for intelligent trajectory planning and 
energy optimization within building energy systems to mitigate carbon emissions. 
The goal is to optimize energy consumption patterns while ensuring tenant comfort 
and operational efficiency. The proposed model, termed SGDo-HP-LR-GP, com-
bines XGBoost, stochastic gradient descent optimizer (SGDo), Hyperparameters 
(HP), lasso regression (LR), geographical mapping (GP) and polynomial features 
to enhance prediction accuracy in the Intelligent Emergency Routing Response Sys-
tem (IERRS) for road traffic trajectories. This proposed model surpasses existing 
approaches in accuracy and predictive capability, enabling intelligent trajectory 
planning for energy usage. Machine learning is employed to construct a predictive 
model for forecasting building energy demands, recognizing the interconnected-
ness between road traffic trajectory and building energy usage. The design and lay-
out of road networks play a pivotal role in influencing energy consumption within 
buildings, as efficient road systems reduce travel distances and fuel consumption. 
Finally, integrating piezoelectric materials in strategic locations is explored as a sus-
tainable energy source to power buildings, demonstrating the potential to contribute 
to greener energy practices and enhance overall energy sustainability in the future. 
This study aims to bridge the gap between piezoelectric technology and building 
energy sustainability, offering innovative approaches for efficient energy utilization 
and a more environmentally friendly future.
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1  Introduction

The convergence of building energy use, carbon emissions, fuel consumption, 
road traffic dynamics, and machine learning creates a complex nexus of issues 
and opportunities in modern civilization. Buildings and transportation are signifi-
cant contributions to energy consumption and carbon emissions. Using machine 
learning algorithms to examine and enhance these elements provides a compel-
ling path to reaching sustainability objectives. This study investigates the use 
of machine learning methodologies to address the complex interaction between 
building energy, fuel use, and road traffic, with the goal of developing solutions 
for a greener and more efficient future. The importance of connecting building 
energy systems with traffic on the roads is beneficial in the quest to reduce carbon 
emissions, boost energy efficiency, and create more functionally designed cities. 
Given the relationships between these systems, it is feasible to anticipate that the 
energy consumption of buildings will be optimized in accordance with the vol-
ume of traffic and that the use of renewable energy sources will become more 
efficient in place of fossil fuels. Additionally, by optimizing charging, this inte-
gration increases the uptake of electric vehicles and lowers greenhouse gas emis-
sions in urban areas. The integration strategy leads to better urban design, more 
effective resource utilization, and a more robust energy distribution system. This 
method involves using Bayesian techniques to calibrate the model and machine 
learning algorithms to improve the accuracy of the calibration. The combination 
of these two techniques can help to reduce the uncertainty associated with build-
ing energy models and improve their predictive capabilities (Zhu et  al. 2020). 
The model uses advanced evolutionary optimization techniques to improve its 
accuracy and has been evaluated by assessing thousands of retrofit variations of 
a case study building.. The model aims to provide a rapid and accurate estima-
tion tool to be used in the energy efficiency optimization of complex and het-
erogeneous buildings. This approach can help decision-makers identify the most 
effective retrofit strategies and reduce the energy consumption of non-domestic 
buildings (Seyedzadeh et  al. 2020). The study aimed to provide a reliable and 
accurate energy demand forecasting model to improve the energy efficiency of 
buildings for a sustainable economy. The results of the study can help facility 
managers improve the accuracy of their building’s long-term energy forecasts and 
identify the most effective energy efficiency measures (Luo et al. 2020). The use 
of machine learning algorithms in building controls has the potential to improve 
building performance and energy efficiency significantly. However, there are 
still challenges to be addressed, such as the need for large amounts of data and 
the complexity of the algorithms (Zhou and Zheng 2020). Accurate prediction 
of energy consumption can help building managers identify the most effective 
energy efficiency measures and reduce energy costs. Machine learning algorithms 
can be used to optimize building energy systems and reduce energy consump-
tion without compromising occupant comfort. Predictive models developed using 
machine learning can be used to identify patterns and trends in energy consump-
tion, which can help to inform policy decisions and improve energy efficiency 
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at a larger scale (Pham et  al. 2020). A holistic approach to urban planning that 
integrates transportation and building considerations is vital for enhancing energy 
efficiency.

By strategically locating buildings in proximity to well-connected roads and pub-
lic transit hubs, cities can encourage sustainable transportation choices, minimizing 
the energy needed for commuting (Walker et  al. 2020). Such research is essential 
for understanding variations and making informed decisions to promote environ-
mentally friendly transportation options. Furthermore, the flexible grid-based elec-
trolysis approach for hydrogen production, specifically for fuel cell vehicles, offers 
a promising avenue to decrease expenses and curb greenhouse gas emissions. Inte-
grating renewable energy sources into the electrolysis process optimizes hydrogen 
generation, enhancing cost-effectiveness while reducing the environmental foot-
print. Finally, a concerted effort involving technology, policy, and public awareness 
is crucial to achieving carbon emissions reduction and improved fuel efficiency on 
a global scale. Integrating innovative technologies, such as machine learning and 
renewable energy, and addressing regulatory and infrastructure challenges are essen-
tial steps toward a greener and more sustainable future.

In summary, these classifiers are all supervised learning algorithms that make 
predictions based on labeled data. Random forest and AdaBoost are ensemble learn-
ing methods that combine multiple models to make predictions. At the same time, 
KNN and decision tree algorithms rely on nearest neighbors or recursive splits to 
classify new data points.

The main contributions to the research work.

•	 Poor air quality from traffic emissions necessitates enhanced filtration in HVAC 
systems, increasing energy consumption for ventilation and air purification 
within buildings.

•	 Piezoelectric materials embedded in roadways can convert vehicle-induced 
vibrations into electricity, potentially powering nearby buildings and street light-
ing.

•	 Higher traffic volumes and noise levels require better building insulation, add-
ing to energy demands for heating and cooling to maintain a comfortable indoor 
environment.

•	 Vibrations caused by heavy traffic can impact the structural integrity of build-
ings, potentially requiring additional energy for structural reinforcements and 
maintenance.

Traffic emissions necessitate improved HVAC filtration to mitigate poor air 
quality, amplifying energy consumption for effective building ventilation and 
air purification. Balancing this with sustainability goals is essential to minimize 
environmental impact while maintaining indoor air quality. Embedding piezo-
electric materials in roadways allows for converting vehicle-induced vibrations 
into electricity. This innovative approach holds the potential to power nearby 
buildings and street lighting, enhancing sustainability in urban environments. 
Elevated traffic and noise levels mandate enhanced building insulation to sustain 
a cozy indoor atmosphere. However, this leads to escalated energy requisites for 



	 S. K. Raju, S. Kannan    25   Page 4 of 31

heating and cooling systems, posing a dual challenge of comfort maintenance and 
energy efficiency in today’s urban landscape. Balancing both is vital for sustain-
able, comfortable living spaces. Heavy traffic vibrations can jeopardize building 
structural integrity, necessitating extra energy for reinforcement and mainte-
nance. This dual concern underscores the need for balanced urban development, 
integrating structural stability with energy-efficient strategies to ensure sustain-
able, resilient cities.

The rest of the sections are Related Work, Methods and Materials, Results and 
Discussions, Intelligent Routing System, Conclusion and References.

1.1 � Novelty of the research work

The introduction of the SGDo-HP-LR-GP framework represents a groundbreaking 
innovation, merging advanced optimization methods with Lasso Regression and 
geographical mapping. This integration revolutionizes the Intelligent Emergency 
Routing Response System (IERRS) for road traffic trajectories, offering a holistic 
approach to traffic analysis and safety. Real-time data collection, stochastic optimi-
zation, and geographical mapping combine to provide a multidimensional view of 
traffic behavior, enabling the identification of bottlenecks and emergency routes. 
The research work innovatively integrates road network design with building energy 
use, emphasizing efficiency. Efficient road systems minimize travel distances, reduc-
ing fuel consumption and building energy needs. Strategic urban planning, align-
ing transportation and buildings, optimizes sustainability, highlighting the vital link 
between road traffic and energy-efficient urban development. Piezoelectric materi-
als integrated into roadways harness mechanical pressure from passing vehicles to 
generate electricity, contributing to sustainable energy production. This innovation 
transforms road vibrations into a renewable power source, enhancing the efficiency 
of urban infrastructure while promoting eco-friendly energy solutions.

1.2 � Why the integration in the proposed model

The integration of five intelligent models of our proposed model, namely XGBoost, 
SGDo, HP, LR, GP and PF, in the development of the proposed SGDo-HP-LR-GP 
model fills the need for very accurate road traffic trajectory prediction in the IERRS 
system. XGBoost gives good accuracy in predictions, while the Stochastic Gradi-
ent Descent Optimizer avails itself in the right optimization of model parameters. 
Hyperparameter tuning increases efficiency and is followed by Lasso Regression, 
which helps in the selection of features and reduces overfitting. Geographical Map-
ping places the forecast into a geographical perspective, and polynomial features 
give rise to accuracy, which refines the usefulness of the system, especially in actual 
operations. This particular synergy utilizes a wide range of strengths unrelated to 
one another to increase the chances of high success rates in predicting the best emer-
gency routing responses while being time-sensitive.
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2 � Related work

Researchers have developed a high-density piezoelectric energy harvesting sys-
tem that can generate energy from highway traffic. The system can reach an 
energy density as high as 15.37 J/(m.pass.lane) based on laboratory evaluations 
and road tests. The project team took an integrated multi-disciplinary approach 
involving mechanical, electrical, engineering, civil, and automobile engineer-
ing, material science, and physics to develop technologies for harvesting high-
density piezoelectric energy (Chen et  al. 2021). An equivalent circuit model of 
the stacked piezoelectric transducer that considers loss impedance to optimize the 
output electrical energy of a piezoelectric monitoring system under traffic load. 
The authors also consider the spatial arrangement of the piezoelectric transduc-
ers to optimize the output (Wang et al. 2022a). The authors propose a structure 
optimization method for piezoelectric energy harvesters that can improve the 
power generation effect of the road. The proposed system can help enhance the 
efficiency of piezoelectric energy harvesting systems and promote their applica-
tion in road infrastructure (Wang et al. 2022b). The authors propose a structure 
optimization method for piezoelectric energy harvesters that can improve the 
power generation effect of the road. The proposed system can help enhance the 
efficiency of piezoelectric energy harvesting systems and promote their applica-
tion in road infrastructure. The study highlights the importance of considering 
the traffic environment applicability of piezoelectric energy harvesting devices to 
optimize their performance (Wang et al. 2021).

The authors found that the piezoelectric flooring tiles can generate electric-
ity from the footsteps of commuters and can be used to power lighting and other 
electrical devices in the station. The study highlights the potential of piezoelec-
tric energy harvesting systems to generate electricity in public buildings and 
reduce their reliance on the grid (Moussa et al. 2022). The system is optimized 
to generate electricity from solar energy and foot traffic. The authors also incor-
porate machine learning forecasting to optimize the system’s performance. The 
proposed system can help enhance the efficiency of smart buildings and pro-
mote sustainable energy use (Mukilan et  al. 2023). Piezoelectric materials can 
be integrated into building structures, such as floors, walls, and roofs, to gener-
ate electricity from mechanical vibrations caused by human activities, wind, and 
other sources. It can also be used for self-sustained smart sensing in buildings, 
such as structural health monitoring, occupancy detection, and indoor air quality 
monitoring (Chen et al. 2019). In the automotive domain, an innovative approach 
combining active steering control (ASC) and direct yaw control (DYC) has been 
introduced to improve lane-following performance, especially in challenging road 
conditions. Simulation results validate the practicality and efficiency of these 
strategies, particularly when tire-ground adhesion and road curvature are unpre-
dictable (Yang et al. 2019).

Moving to network traffic analysis, researchers have proposed trajectory-based 
methods that convert individual trajectory data into evolving graphs to ana-
lyze network-wide traffic patterns (Kontorinaki et  al. 2019) (Kim et  al. 2022). 
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A dataset of city-scale vehicular continuous trajectories known as holographic 
traffic data has also been developed to reproduce comprehensive traffic dynamics 
(Wang et al. 2023). Traffic trajectory extraction, prediction, clustering, classifica-
tion, anomaly detection, reconstruction, and generation are active research areas. 
Innovative techniques using deep learning, attention mechanisms, generative 
adversarial networks, and more promise to enhance our understanding of traffic 
behavior and improve traffic management (Liu et al. 2023; Luo et al. 2023; Ding 
et al. 2020; Prasanth et al. 2022; Zhao and Shi 2019; Rahman and Hasan 2022; 
Banifakhr and Sadeghi 2021; Balado et al. 2020; Zhang et al. 2021; Jarry et al. 
2021).

In conclusion, these research endeavors represent a glimpse into the exciting 
developments across various fields, from robotics and traffic management to IoT and 
machine learning. As these innovations continue to evolve, they hold the potential to 
shape a safer, more efficient, and interconnected future.

2.1 � Research gap

The previous studies investigate how to increase the reliability of building energy 
simulation and discuss the possibilities of using piezoelectric materials to gener-
ate electricity; there is room for advancement. It is rather surprising that these two 
spheres are not interconnected. Previous papers have yet to discuss how to pursue 
the integration of real-time traffic data, affected by geometric characteristics and 
weather etc., with the building energy management systems (BEMS). This integra-
tion brings out the possibility of a system that is able to take a more holistic look at 
the energies used in a particular building and the effectiveness of methods that can 
be implemented to minimize waste.

3 � Methods and materials

Machine learning is a field of computer science that develops algorithms and models 
that enable computers to learn from data and make predictions or decisions based on 
that data. Here are some key concepts in machine learning:

3.1 � Piezoelectric materials for highway energy harvesting opportunities 
and threats

An application discussed is the tapping of energy from highway traffic utilizing 
high-density piezoelectric materials.

3.1.1 � Types and properties of piezoelectric materials

Ceramics: This includes lead zirconate titanate (PZT) and barium titanate 
(BaTiO3) that have high piezoelectric coefficients (a measure of the material’s abil-
ity to convert mechanical stress to electricity). Thus, while they remain valuable 
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materials they can be somewhat brittle and also prone to the detrimental effects of 
their environment.

Polymers: Polyvinylidene fluoride (PVDF) is another example of this type; it is 
more flexible and provides better performance in severe working conditions. How-
ever, translated their piezoelectric coefficients are generally lower than ceramics.

Composites: It is also found that scientists are working on the idea of integrat-
ing ceramics and polymers where the corresponding material will have considerable 
flexibility as well as good energy conversion.

3.2 � Practical challenges of integrating piezoelectric materials in roads

Durability and wear: These bare areas go through a lot of stress, heavy weights and 
weather conditions. Piezoelectric materials must be able to endure these conditions 
for long periods without considerable change in their characteristics.

Cost-effectiveness: At the moment sometimes the piezoelectric materials and fix-
ing them can be rather costly. This has to be accompanied by the considerable energy 
generation capacity in the future to make the technology economically profitable.

Efficiency optimization: The next step is to identify the correspondence between 
the characteristics of the given traffic flow and vehicle type on the one hand and the 
precise location and design of piezoelectric members as a part of the road pavement 
on the other.

Maintenance and repair: It can be seen that the inclusion of piezoelectric materi-
als complicates road design. Solutions for easy and cheap standards of maintenance 
and repair should be provided.

Environmental impact: The various phases in the piezoelectric material’s life 
cycle, from extraction of the required raw material to actual processing and final dis-
posal, must be closely managed from the environmental point of view.

3.3 � Basic machine learning concepts

Supervised and unsupervised learning are two fundamental paradigms within 
machine learning, each with distinct characteristics and applications. As the name 
suggests, supervised learning relies on labeled data with known correct answers dur-
ing the training process. This labeled data serves as a teacher guiding the model 
to learn patterns and relationships between input features and corresponding target 
labels. The model then generalizes from this training to make predictions on new, 
unlabeled data. It’s widely used in image classification, sentiment analysis, and 
speech recognition tasks.

The architecture flow diagram in Fig.  1 shows how the initial dataset is pre-
processed before being transmitted to the models, including the proposed model. 
Although the other models produce superior outcomes, the proposed model yields 
the best outcome, as can be shown in Tables 1, 2 and 3. For the Intelligent Emer-
gency Routing Response System (IERRS) to deliver optimum routing that reduces 
carbon emissions and fuel consumption to the cars, the Enhanced Interior Gateway 
Routing Protocol (EIGRP) was implemented.
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3.4 � Feature extraction

Feature extraction is vital in machine learning, enhancing models by choosing 
essential features through stats, domain expertise, or automated methods, reduc-
ing dimensionality, and improving pattern recognition.

3.5 � Model evaluation

Model evaluation is essential to determine how well a machine learning model 
performs. Various metrics, such as accuracy, precision, recall, and F1 score, help 
assess a model’s performance. Choosing the right metric depends on the specific 
task and the balance between precision and recall required.

Fig. 1   Architectural flow diagram

Table 1   Comparison of other models with the proposed model

Algorithms Accuracy Precision Recall F1-score Error-rate % Loss function 
%

Computa-
tional time 
(ms)

Random forest 86.91% 78.28% 86.81% 79.14% 12.94 17.88 39.54
Decision tree 86.87% 78.04% 86.89% 79.03% 13.04 17.91 55.46
AdaBoost 

Classifier
88.08% 79.23% 86.81% 79.08% 12.94 17.03 18.89

Knearest-
Neighbor

84.53% 77.13% 85.05% 79.63% 14.96 19.02 20.91

Proposed 
model

95.76% 89.87% 97. 23% 89.41% 12.43 16. 48 18.61
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3.6 � Overfitting

Overfitting is a common pitfall in machine learning where a model becomes too 
complex and starts capturing noise in the training data rather than genuine pat-
terns. Regularization and cross-validation mitigate overfitting and ensure the 
model generalizes well to new data.

3.7 � Random forest

Random forest is an ensemble learning algorithm that combines multiple deci-
sion trees to make predictions. By aggregating the results of individual trees, it 
improves accuracy and reduces overfitting. Random forest is a powerful choice 
for classification and regression tasks.

Table 2   Epochs with metrics for different models

Epochs Random Forest Decision tree

Accuracy 
%

Precision 
%

Recall % F1-score 
%

Accuracy 
%

Precision 
%

Recall % F1-score %

100 85.32 77.53 85.34 78.31 85.45 77.06 85.43 78.36
200 85.65 77.72 85.60 78.54 85.72 77.46 85.76 78.66
500 85.92 77. 93 85.94 78.89 85.95 77.78 85.93 78.87
1000 86.21 78.34 86.32 79.02 86.33 77.93 86.32 78.97
1200 86.91 78.28 86.81 79.14 86.87 78.04 86.89 79.03

Epochs Adaboost K-nearest neighbor

Accuracy 
%

Precision 
%

Recall % F1-score 
%

Accuracy 
%

Precision 
%

Recall % F1-score %

100 87.12 78.25 85.64 78.09 83.61 76.12 84.03 78.67
200 87.45 78.58 85.91 78.39 83.78 76.43 84.36 78.78
500 87.85 78.89 86.02 78.79 83.92 76.72 84.71 78.93
1000 87.98 78.96 86.32 78.96 84.14 76.94 84.89 79.32
1200 88.08 79.23 86.81 79.08 84.53 77.13 85.05 79.63

Epochs Proposed

Accuracy % Precision % Recall % F1-Score %

100 87.12 78.13 86.11 78.12
200 87.43 78.43 86.43 78.47
500 87.89 78.96 86.78 78.84
1000 88.31 79.36 86.92 79.12
1200 95.76 89.87 97. 23 89.41



	 S. K. Raju, S. Kannan    25   Page 10 of 31

3.8 � Decision tree

Decision trees are tree-like structures where each node represents a condition or 
feature, and each branch corresponds to a possible outcome. Decision tree algo-
rithms recursively select the best feature to split the data, making them interpret-
able and useful for classification and regression.

3.9 � AdaBoost

AdaBoost is another ensemble learning method that combines multiple weak 
classifiers to create a strong classifier. It iteratively assigns higher weight to mis-
classified samples, forcing the model to focus on the challenging instances, thus 
improving overall performance.

Table 3   Batch size versus other models

Batch 
size

Random forest Decision tree

Accuracy 
%

Precision 
%

Recall % F1-Score 
%

Accuracy 
%

Precision 
%

Recall % F1-Score %

50 K 85.28 77.33 85.62 78.43 85.5 77.13 85.68 77.76
100 K 85.67 77. 76 85.91 78.76 85.73 77.45 85.85 77.97
150 K 86.03 77.87 86.12 78.92 86.11 77.6 86.24 78.07
275 K 86.45 78.02 86.32 79.04 86.65 77.71 86.81 78.13

Batch 
size

Adaboost K-nearest neighbor

Accuracy 
%

Precision 
%

Recall % F1-Score 
%

Accuracy 
%

Precision 
%

Recall % F1-Score %

50 K 87.02 78.55 85.84 78.31 83.63 76.39 84.27 78.67
100 K 87.23 78.79 86.01 78.69 83.85 76.65 84.61 78.89
150 K 87.76 78.87 86.12 78.91 84.02 76.83 84.79 79.02
275 K 88.03 79.04 86.42 79.01 84.33 77.01 84.97 79.33

Batch size Proposed

Accuracy % Precision % Recall % F1-Score %

50 K 87.41 78.56 86.39 78.51
100 K 87.87 78.91 86.76 78.77
150K 88.01 79.23 86.88 78.93
275K 95.76 89.87 97. 23 89.41
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3.10 � K nearest neighbors (KNN):

KNN is a simple but effective classification and regression algorithm. It relies 
on the proximity of data points in feature space to make predictions. It’s a non-
parametric method, meaning it doesn’t assume specific data distributions and can 
adapt to various data types.

3.11 � Stochastic gradient descent optimizer

Stochastic gradient descent (SGD) is an optimization algorithm that trains 
machine learning models. It updates model parameters iteratively, using small 
random subsets of the data (mini-batches), making it efficient for large datasets 
and deep learning models.

3.12 � Hyperparameters

Hyperparameters are settings that control the learning process but are not learned 
from the data itself. These include learning rates, regularization strengths, and 
the number of hidden layers in a neural network. Choosing appropriate hyperpa-
rameters is crucial for achieving optimal model performance.

3.13 � Lasso regression

Lasso regression is a variation of linear regression that introduces L1 regulariza-
tion, which encourages the model to use fewer features and results in a sparser 
and more interpretable model. It’s particularly useful when dealing with high-
dimensional data.

3.14 � Geographical mapping

Geographical mapping involves creating visual representations of the Earth’s sur-
face. It requires collecting geographical data and presenting it in various forms, 
such as maps, charts, and graphs. Geographical mapping is essential in cartogra-
phy, geographic information systems (GIS), urban planning, and environmental 
science.

Figure 2 shows the construction of the proposed model using SGDo-HP-LR-
GP, which combines XGBoost, stochastic gradient descent optimizer (SGDo), 
Hyperparameters (HP), lasso regression (LR), geographical mapping (GP) and 
polynomial features (PF) to enhance prediction accuracy.

F(x): The decision tree output for input x.
leaf value: The value assigned to a specific leaf node in the decision tree.

(1)F(x) = Σ(leaf value ∗ indicator function(leaf))
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Indicator function(leaf): A function that returns 1 if x falls into the correspond-
ing leaf and 0 otherwise.

RF(x): The output of the Random Forest for input x.
Fk (x) : The output of the kth decision tree in the Random Forest.

Gini(p): Gini impurity for a particular node.
Pi: The probability of class I in the node.

Entropy(p): Entropy for a particular node.
Pi: The probability of class i in the node.

4 � Results and discussions

In the research study integrating road traffic data with building energy consump-
tion using machine learning techniques, we observed a strong correlation between 
traffic patterns and energy usage in buildings. The machine learning models 
effectively predicted energy consumption based on traffic density, time of day, 

(2)RF(x) = ΣFk (x)

(3)Gini(p) = 1 − Σ(Pi
2)

(4)Entropy(p) = −Σ(pi ∗ log2(pi)

Fig. 2   Construction of the proposed model
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and weather conditions. High traffic periods corresponded to increased energy 
demand in nearby buildings, indicating a potential for optimizing energy man-
agement strategies. The results suggest that leveraging machine learning in this 
context holds promise for developing real-time energy optimization systems that 
respond dynamically to traffic fluctuations, ultimately leading to enhanced energy 
efficiency and sustainability in urban environments.

Compute the weighted error of the weak classifier:

where y i is the true label of the ith training example, and ht(xi ) is the prediction of 
the weak classifier on the ith example. Compute the weight of the weak classifier:

Update the weights of the training examples:

Normalize the weights so that they sum up to 1:

where Zt is a normalization factor given by the sum of all weights:

Euclidean distance calculation:
The KNN algorithm uses the Euclidean distance to measure the similarity 

between data points. The Euclidean distance between two points, represented as 
vectors, x and y, in an n-dimensional space is given by Euclidean Distance

Compute the exponentially decaying average of past gradients: m = β1 * 
m + (1—β1) * ∇θJ(θ), where β1 is the first-moment decay rate (typically set to 
0.9).

Update the second-moment estimate:
Compute the exponentially decaying average of past squared gradients:

where β2 is the second-moment decay rate (typically set to 0.999).
Bias correction:
Compute bias-corrected first-moment estimate:

(5)�(t) = Σ{i = 1}N ∗ wi ∗ (yi) ≠ ht(xi)

(6)�(t) = 0.5 × ln

(
1 − �(t)

�(t)

)

(7)wi = wi ∗ exp(∗∗ (xi))

(8)Wi =
Wi

Zt

Zt =
∑

(i = 1)N ∗ wi

(9)f (x, y) = sqrt
((

x1 − y1
)2

+
(
x2 − y2

)2
+ ... +

(
xn − yn

)2)

(10)v = �2 ∗ v +
(
1 − �2

)
∗ (∇�J(�)�J(�))
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Compute bias-corrected second-moment estimate: 

Update the parameters:
Update the parameters using the bias-corrected estimates:

where α is the learning rate and ε is a small constant (e.g.,10−8 ) added for numerical 
stability.

Preprocessing is used to calculate machine learning models such as Random 
Forest, Decision Tree, AdaBoost, Knearest Neighbor, and proposed model metrics. 
Preprocessing requires training the dataset for proper predictions. Jupiter Python is 
used for all classification and prediction analyses. The metrics given below provide 
further context for the research as well as clear projections. As seen in Table 1, The 
proposed model provides great accuracy while taking less computational time.

In Table  1, we can observe the performance metrics for different algorithms 
after a thorough analysis. The Random Forest algorithm achieved an accuracy of 
86.91%, a precision of 78.28%, a recall of 86.81%, and an F1-score of 79.14%. The 
Decision Tree algorithm had similar results with an accuracy of 86.87%, precision 
of 78.04%, recall of 86.89%, and an F1-score of 79.03%. The AdaBoost Classifier 
showed slightly improved performance with an accuracy of 88.08%, precision of 
79.23%, recall of 86.81%, and an F1-score of 79.08%. The KnearestNeighbor algo-
rithm achieved an accuracy of 84.53%, precision of 77.13%, recall of 85.05%, and 
an F1-score of 79.63%. Finally, the Proposed Model outperformed the other algo-
rithms, obtaining an accuracy of 95.76%, precision of 89.87%, recall of 97.23%, and 
an F1-score of 89.41%. The F1 score is particularly useful for evaluating models as 
it considers precision and recall and provides a single metric that balances them. The 
provided metrics can be further analyzed to make informed decisions based on the 
desired trade-offs between accuracy, precision, recall, and score. Additionally, the 
error rate and loss function can be considered as measures of model performance, 
where lower values indicate better performance. The computational time is also an 
essential factor to consider, as it impacts the efficiency of the algorithms in real-time 
applications.

Learning Rate (α):
Notation: α
Equation:

(11)
∧m =

m

1 − �
t

1

(12)
∧v =

V

1 − �
t

2

(13)� =
� − � ∗ m�√
(∧v) + �

�

(14)�new = �old − � ∗ ∇J
(
�old

)
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where θold and θnew are the old and updated parameter values, ∇J(θold ) is the gradient 
of the loss function concerning the parameters.

Number of Iterations (epochs):
Notation: epochs.
Equation: Loop for i in range(epochs): # Training iterations.
Regularization Parameter (λ):
Notation: λ
Equation:

where J(θ) is the regularized loss function, Loss(θ) is the original loss function, and 
Regularization(θ) is the regularization term.

Number of Hidden Units:
Notation: Hidden
Equation: Number of hidden units in the neural network architecture.
Kernel Parameters (e.g., Gaussian Kernel):
Notation: σ (sigma).
Equation

where K is the kernel function, x and x′ are data points, and 
(
||x−x�||2

)
 is the 

squared Euclidean distance between x and x’s.
In Table 2, the model’s performance improves as the number of epochs increases, 

leading to higher accuracy, precision, recall, and F1-Score. The metrics used in the 
evaluation provide a comprehensive understanding of the model’s performance, tak-
ing into account both true positives and negatives and false positives and negatives, 
which is essential in imbalanced datasets.

In Table 3, accuracy measures the proportion of correctly classified instances out 
of the total instances in the dataset. Precision measures the proportion of true posi-
tive predictions (correctly predicted positive instances) out of all positive predictions 
made by the model. Recall measures the proportion of true positive predictions (cor-
rectly predicted positive instances) out of all actual positive instances in the dataset. 
F1-Score is the harmonic mean of precision and recall. It balances precision and 
recall, especially when dealing with imbalanced datasets. High accuracy, precision, 
recall, and F1-Score are desirable in a machine-learning context. However, choos-
ing the most appropriate metric depends on the specific problem and the associated 
costs of false positives and negatives.

4.1 � Accuracy

Machine learning model accuracy measures its ability to classify or predict data cor-
rectly. It’s the ratio of correct predictions to total predictions, e.g., 90% accuracy means 
90 correct predictions out of 100. While useful for balanced classes, it needs more 

(15)J(θ) = Loss(θ) + λ ∗ Regularization(θ)

(16)
K
(
x, x�

)
= exp

((||x−x�||)2)
(2∗�2)
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balanced data or multi-class scenarios. High accuracy doesn’t guarantee overall effec-
tiveness or reflect class imbalances. In such cases, supplementary metrics like preci-
sion, recall, and F1 score provide a more comprehensive evaluation. Precision empha-
sizes correct positive predictions, recall focuses on true positives, and the F1 score 
balances both, aiding in a holistic assessment of model performance.

4.2 � Precision

Precision, a key machine learning metric, assesses a model’s accuracy in identifying 
positive instances. It calculates the ratio of true positives (correctly classified positives) 
to all predicted positives (true positives + false positives). In binary classification tasks, 
precision is vital for reliable identification. High accuracy minimizes false positives but 
can reduce the model’s ability to detect all true positives. Achieving an optimal balance 
between precision and recall ensures top performance, guaranteeing accurate predic-
tions while minimizing overlooked positives.

4.3 � Recall

Recall that machine learning measures the ability of a model to identify all relevant 
instances within a dataset correctly. It quantifies the ratio of true positive predictions to 
the total actual positives. High recall indicates fewer false negatives, which is crucial 
for tasks like medical diagnosis, where missing positive cases can be costly.

4.4 � F1‑score

The F1 score in machine learning is a metric that balances precision and recall. It com-
bines both metrics into a single value, comprehensively measuring a model’s perfor-
mance. It’s particularly useful when dealing with imbalanced datasets or when there’s 
a need to balance minimizing false positives and negatives. The F1 score is calculated 
as the harmonic mean of precision and recall and ranges between 0 and 1, where higher 
values indicate better model performance.

(17)Accuracy =
Number of correct predictions

Total number of predictions

(18)precision =
true positives

true positives + false positives

(19)Recall =
true positives

true positives + falsenegatives

(20)F1 − score = 2 ∗
precision ∗ recall

precision + recall
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4.5 � Error rate

The error rate in machine learning represents the discrepancy between predicted 
and actual outcomes in a model. It quantifies the model’s accuracy, with lower 
error rates indicating better performance. Reducing error rates is a key goal, 
achieved through refining algorithms, optimizing data preprocessing, and select-
ing appropriate models. Lower error rates enhance the model’s reliability and 
applicability in various domains.

4.6 � Computational time

Computational time in machine learning refers to the duration required for a 
model to process and analyze data, make predictions, and refine its parameters 
during training. It’s a critical factor impacting the model’s efficiency and scalabil-
ity. Efficient algorithms, hardware acceleration, and parallel processing can help 
reduce computational time, making machine-learning models more practical for 
real-world applications.

(21)ErrorRate =
Number of incorrect predictions

Total number of predictions

Fig. 3   Classifiers comparison of accuracy, precision, recall, F1-score, loss function, error rate



	 S. K. Raju, S. Kannan    25   Page 18 of 31

5 � Intelligent road traffic routing and building energy

Air quality and noise pollution are critical urban challenges. Enhancing building 
insulation and utilizing piezoelectric materials can mitigate both noise and vibra-
tions. Piezoelectric materials, when integrated into infrastructure, can convert 
mechanical vibrations from traffic into electrical energy. Intelligent road traffic man-
agement systems optimize traffic flow, reducing congestion and emissions. Effec-
tive building insulation not only aids in noise reduction but also improves energy 
efficiency, contributing to better air quality. Addressing these issues collectively can 
create healthier, more sustainable urban environments, striking a balance between 
human comfort and environmental preservation.

Recall measures the fraction of true positives out of all actual positives, and the 
F1-score is a weighted average of precision and recall in Fig. 3. The choice of loss 
function and error rate is also critical in comparing classifiers. The loss function 
quantifies the difference between predicted and actual values, while the error rate is 
the proportion of misclassifications in the test dataset. Different classifiers may use 
different loss functions and have varying error rates depending on the nature of the 
problem and the data used. Therefore, in comparing classifiers, it is crucial to con-
sider accuracy, precision, recall, and F1-score, as well as the loss function and error 
rate. A comprehensive evaluation of these metrics can help identify the strengths 
and weaknesses of different classifiers and determine the best approach for a par-
ticular problem.

In Fig. 4, you could perform a statistical analysis using the dataset to explore 
the relationship between the number of vehicles involved in an accident and acci-
dent severity. In Fig. 6, it’s important to note that while data analysis can provide 

Fig. 4   Road accidents due to different factors on 1-congestion, 2-accidents and 3-morality
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insights into the causes of accidents and potential ways to reduce them, it’s ulti-
mately up to individuals and organizations to take action to improve road safety.

This may involve implementing better infrastructure, improving driver educa-
tion and training, and promoting safe driving habits. Draw conclusions and make 
recommendations based on your analysis and modeling; you can conclude the 
factors that contribute to accidents on different road types and make recommen-
dations for improving road safety. These recommendations can be used by policy-
makers, transportation agencies, and other stakeholders to reduce the incidence of 
road accidents.

The congestion can increase the likelihood of accidents due to the increased 
number of vehicles on the road, resulting in slower traffic flow, longer travel times, 
and frustration among drivers. Additionally, congestion can lead to reckless driv-
ing behavior, such as tailgating or cutting off other drivers, increasing the risk of 
accidents. Accidents are a common cause of road accidents and can occur for vari-
ous reasons, including driver error, vehicle malfunctions, and poor road conditions. 
Some common types of accidents include rear-end collisions, side-impact collisions, 
and rollovers. Poor driving behavior, such as speeding, distracted driving, and driv-
ing under the influence of drugs or alcohol, can also contribute to road accidents. 
Additionally, moral factors such as a lack of consideration for other drivers or a dis-
regard for traffic laws can also play a role in causing accidents.

5.1 � Curtail carbon emissions

Promote electric vehicles (EVs) use by providing incentives, tax breaks, and 
financial assistance for EV purchases. Build an electric charging system to make 
EV charging easy and common and invest in the research and development of 
hydrogen fuel cell vehicles. These vehicles can replace conventional gasoline as 
they emit only water vapor and no other emissions. To develop and use renewable 
materials such as algae, crop waste, or waste to produce biofuels such as biodiesel 
and ethanol and to promote their use. These fuels have a great impact on reduc-
ing carbon emissions. Public transportation needs to be improved and expanded 
to reduce the number of private vehicles on the roads. Efficient and affordable 
public transport can encourage users to leave their cars at home. Use smart traffic 
management tools to increase traffic. Less traffic, fewer interruptions. Transport 
and urban planning can be incorporated into smart city plans to create sustain-
able cities. Develop and enforce strict regulations regarding the fuel economy of 
new vehicles. The auto industry is encouraged to create a more efficient engine 
and heavy equipment to improve the car’s overall performance. Build mixed com-
munities and cities that reduce the need for long-term travel. This reduces the 
total number of trips required and reduces carbon emissions. Publish educational 
programs promoting eco-friendly driving, such as reducing idle time, using cruise 
control, and inflating tires. Investing in research to develop high-tech technolo-
gies, including multi-use power generators, heavy-duty devices, and accumula-
tors. Perform inspections and strict regulations to ensure vehicles are compliant.
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5.2 � Minimized fuel consumption

A careful interplay between driving tactics and route selection is required to opti-
mize fuel usage within the setting of traffic trajectories. Drivers can use smooth 
acceleration and deceleration by taking advantage of traffic patterns, which elimi-
nates the need for numerous stops and starts that increase fuel usage. To avoid need-
less braking, drivers should adjust their speed to match traffic flow. This results in 
better fuel economy. Additionally, choosing routes with less traffic or using real-time 
traffic data to avoid congestion helps keep a constant driving pace, ultimately saving 
fuel. In essence, synchronizing driving actions with traffic flow allows for a more 
efficient use of fuel resources. Create a cutting-edge fuel injection and engine man-
agement system that uses real-time information from multiple sensors and inputs to 
modify the fuel–air mixture and engine settings dynamically. This technology will 
optimize fuel combustion for optimal efficiency in various driving situations. Utilize 
a network of sensors to collect information on various variables, such as the vehi-
cle’s speed, engine temperature, load, throttle position, air quality, road gradient, 
and more. Use a machine learning system that constantly learns and adjusts to the 
actions of the driver, the road, and the surrounding environment. This algorithm will 
optimize the fuel–air combination and ignition timing for maximum effectiveness 
and performance. Make a dynamic engine map and real-time changes in response to 
sensor and machine learning algorithm input. The conventional fixed engine maps 
will be replaced by this map, enabling increased versatility and flexibility. Create 
predictive skills to prepare for shifting road conditions. For instance, if the system 
anticipates a downward slope, it can momentarily change the engine settings to capi-
talize on the car’s momentum and cut fuel use. Integrate the system with the trans-
mission to enhance gear changes and keep the engine running efficiently under vari-
ous driving conditions.

5.3 � Energy building

Carbon emissions, fuel consumption, and energy usage in buildings are intercon-
nected aspects that significantly impact our environment and sustainability efforts. 
Carbon emissions refer to the release of carbon dioxide and other greenhouse gases 
into the atmosphere, primarily from human activities such as burning fossil fuels 
like coal, oil, and natural gas. These emissions contribute to climate change and 
global warming, with detrimental effects on our planet.

Fuel consumption is the amount of fuel a vehicle, machinery, or equipment 
uses to generate energy. The type and amount of fuel consumed directly affect 
carbon emissions. Fossil fuels are the primary source of energy for transportation 
and heating, making it crucial to optimize fuel consumption to minimize environ-
mental harm. In buildings, energy consumption is a major contributor to carbon 
emissions. Buildings use energy for heating, cooling, lighting, appliances, and 
other purposes. The source of this energy, often fossil fuels, significantly influ-
ences the level of carbon emissions associated with the building. Sustainable 
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practices, such as using renewable energy sources like solar or wind power, can 
help reduce both energy consumption and carbon emissions in buildings.

To mitigate the negative impact of carbon emissions and fuel consumption, we 
need to focus on improving energy efficiency in buildings. This involves employ-
ing energy-saving technologies, better insulation, efficient appliances, and pro-
moting behavioral changes to reduce energy waste. Transitioning to cleaner and 
renewable energy sources is another critical step towards reducing carbon emis-
sions and achieving a more sustainable future.

5.4 � Piezoelectric materials

Piezoelectric materials integrated within roadways harness mechanical pressure 
from passing vehicles, converting it into electrical energy. This innovative infra-
structure captures the vibrations and movements, transforming them into a sus-
tainable power source. As vehicles traverse these piezoelectric-embedded roads, 
the materials generate electricity that can be utilized for various applications, 
promoting energy efficiency and reducing reliance on traditional power grids. 
This advancement exemplifies a promising avenue for sustainable energy genera-
tion, aligning with the global drive towards renewable resources and promoting 
greener, smarter infrastructure for the future.

5.5 � Loss function

A loss function quantifies the disparity between predicted and actual values in 
machine learning. It guides model optimization by minimizing this error. Popular 
loss functions include mean squared error for regression and categorical cross-
entropy for classification. The choice of loss function directly influences model 
training, determining how effectively the model learns patterns in data.

where y represents the true label (0 or 1), and p represents the predicted probability.

(22)L = −Σ(y ∗ log(p) + (1 − y) ∗ log(1 − p))

Table 4   Proposed model 
compared with other models

Algorithm Mortality Accidents Congestions

Random forest 113,743 227 33
Decision tree 113,627 304 72
AdaBoost classifier 113,965 38 43
KNearestNeighbor 110,883 2905 215
Proposed model 113,992 203 65
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5.6 � Mortality

Mortality calculation in road traffic congestion and accidents using machine 
learning can be approached in several ways. One possible method is to use pre-
dictive modeling techniques to analyze historical data on road traffic congestion 
and accidents and identify patterns and trends associated with higher mortality 
rates. The following are some steps that can be taken to develop a machine-learn-
ing model for mortality calculation:

The machine learning methods in Table  4 predict mortality, accidents, and 
congestion. However, the proposed model predicts these outcomes well based on 
data from Tables 1, 2 and 3. Our proposed model is essential in raising the pre-
diction’s accuracy rate and precision.

Fig. 5   Predicted values of classifiers for mortality, accidents, and congestion

Table 5   Comparison of three different routing protocols

Algorithms Accuracy Precision Recall F1-score Error-rate Loss function Compu-
tational 
time

Border gateway pro-
tocol

87.55 79.76 87.57 80.53 11.73 15.16 37.41

Link-state protocols 87.88 79.95 87.83 80.76 11.83 15.19 53.33
EIGRP 88.15 80.16 88.17 81.11 11.73 14.31 16.76



Enhanced building energy harvesting through integrated… Page 23 of 31     25 

5.7 � Accidents

Road traffic accidents occur due to various factors, including human error, 
impaired driving, speeding, adverse weather conditions, and vehicle defects. 
These incidents result in injuries, fatalities, and property damage, posing sig-
nificant societal and economic burdens. To mitigate accidents, measures such as 
driver education, stricter traffic regulations, improved road infrastructure, and 
advanced safety technologies are crucial for enhancing road safety and reducing 
the toll of road traffic accidents.

5.8 � Congestion

Traffic congestion refers to the gridlock and slowdown of vehicles on roadways 
due to excessive demand, often during peak hours. It results in longer travel times, 
increased fuel consumption, and air pollution. Mitigation strategies include traf-
fic management systems, public transportation enhancement, carpooling incen-
tives, and urban planning improvements. These measures aim to alleviate conges-
tion and enhance overall transportation efficiency, benefiting commuters and the 
environment.

In Fig.  5, once you have selected your features, you can train your classifiers 
using various machine learning algorithms such as decision trees, random forests, 
adaboost, KNN, and the proposed model. After training, based on recent data, 
you can use the trained classifiers to predict values for Mortality, Accidents, and 
Congestion.

The metrics in Table 5 are derived from the dataset’s class mobility of highway 
vehicles, which is described in the data accessibility section below. The global rout-
ing system of the internet depends on the Border Gateway Protocol to function prop-
erly. It is essential to ensure that data packets are delivered effectively and depend-
ably across various networks and autonomous systems. Link-state protocols support 

Fig. 6   Intelligent emergency routing response system in great Britain using (EIGRP)
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big and complex networks while efficiently using network resources. With its quick 
convergence and effective use of network resources, EIGRP is made to handle rout-
ing within large, complicated networks.

5.9 � EIGRP in intelligent emergency routing response system (IERRS)

IERRS needs an adaptive, proficient and dependable routing technique for the most 
effective traffic management of emergency vehicles. Indeed, the yen features EIGRP 
as the best-suited protocol for the course since it offers fast convergence, no count-
ing loops, and changes sensitivity in Fig. 6.

•	 Key functionalities of EIGRP in IERRS:

Dynamic route updates: As for the key principles, EIGRP is a fast and efficient 
method that quickly reacts to changes in roads and, traffic situations and emergen-
cies to make correct routing decisions.

Loop-free path calculation: The DUAL algorithm ensures a network does not get 
trapped in a routing loop, which is significant in avoiding any congestion and guar-
anteeing that the emergency response vehicles get to their destination promptly.

Load balancing: EIGRP can load balance, spreading the traffic between multi-
ple links in order to provide system redundancy and control congestion during an 
emergency.

Metric calculation: Also, EIGRP takes into account bandwidth, delay, load, and 
reliability as the criterion to choose the next best path which would help in routing 
the emergency vehicles through the best path.

•	 Implementation and Benefits

To effectively implement EIGRP in IERRS, the following steps can be con-
sidered: To implement EIGRP in IERRS effectively, the following steps can be 
considered.

Network topology mapping: The creation of a network diagram of the transpor-
tation system for the roads, intersections and movement patterns of traffic must be 
drawn.

EIGRP configuration: The next steps involve setting up EIGRP on routers in the 
IERRS network. This involves defining and setting the autonomous systems, net-
works and metrics.

Real-time data integration: Enhance the EIGRP process with real-time traffic 
information, weather conditions and or an incident report.

Emergency vehicle prioritization: Provide ways of filtering and directing the traf-
fic to accord preference to emergency vehicles.

Continuous monitoring and optimization: To optimize the efficiency of the sys-
tem and to adjust routing parameters based on the EIGRP performance and the gen-
eral state of the network.
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Case study:
Suppose a big city at some point in time is facing a very bad traffic jam occa-

sioned by an accident. Based on EIGRP, IERRS quickly determines the best path-
ways that the ambulance has to take when getting to the accident scene with ref-
erences to street closures, traffic congestion, and vicinity. Since the converging 
of routing is swift and almost instant, ambulances are redirected as the condition 
changes to enable the least response time and thus save lives.

Table 7   Data on road traffic 
emissions in great Britain

Location Vehicle type CO2 emis-
sions (g/
km)

NO2 emis-
sions (g/
km)

Total emis-
sions (g/
km)

Manchester Car 120 0.5 150
Edinburgh Truck 300 2 400

Table 8   Piezoelectric materials 
conversion in great Britain

Material Piezoelectric constant (d, 
pC/N)

Conversion 
to (pC/N)

Quartz 2.33 2.33
PZT-5A 350 350
PVDF 30 30
PMN-PT 1200 1200

Table 9   Road traffic data in 
great Britain

Date Time Location Traffic volume 
(vehicles/hour)

01-01-2023 08:00 Dual carriageway 500
01-02-2023 12:00 Highway A 800
01-03-2023 16:00 City avenue 600
01-04-2023 08:00 Slip road 450
01-05-2023 12:00 Highway A 850
01-06-2023 16:00 City avenue 700

Table 10   Data of buildings insulation

Location Traffic volume (vehicles /
hours)

Noise level dB Building insu-
lation R-value

Dual carriageway 1200 75 20
Slip road 800 80 18
City avenue 1500 78 22
Single carriageway 1000 76 21
Highway A 1800 82 19
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Considerations:
Redundancy: It is recommended to have multiple EIGRP configurations to 

make the system more reliable in the case of router failure.
Security: Secure EIGRP messages so that they cannot be intercepted and the 

routing data modified by unauthorized parties.
Scalability: Structure the IERRS network with a view to expanding and grow-

ing the transportation system in the future.
Hence, if EIGRP is implemented successfully, it will help IERRS to have a 

better emergency response system, improved response time and better safety of 
the public.

Table 6, air quality in Great Britain is monitored by the Department for Environ-
ment, Food & Rural Affairs (DEFRA). They use a network of air quality monitoring 
stations to measure pollutants like nitrogen dioxide, particulate matter, sulfur diox-
ide, ozone, and carbon monoxide. This data helps assess air quality and formulate 
policies to improve environmental health across the country.

Table 7, road traffic emissions in Great Britain contribute significantly to air pol-
lution. They mainly consist of nitrogen dioxide (NO2) and particulate matter (PM). 
Emissions come from vehicles burning fossil fuels, particularly in urban areas. 
Efforts to reduce emissions include promoting electric vehicles, improving public 
transportation, and implementing stricter emissions standards to mitigate the impact 
on air quality and public health.

Table 11   Traffic vibrations and building integrity

Building ID Location Type of structure Distance 
from traffic 
(m)

Vibration intensity Structural integrity

BLDG1785 Manchester Office building 50 High Fair
BLDG1686 Edinburgh Residential 100 Moderate Good
BLDG2685 Liverpool Retail store 30 Low Satisfactory
BLDG3989 Bristol Industrial buildings 72 Moderate Fair
BLDG5376 Sheffield Public buildings 

and monuments
56 Moderate Good

BLDG1492 Cardiff Cottages 93 Low Good

Table 12   Comparison study of models

References Models Accuracy

Mo et al. (2019) Support vector machine (SVM) 78%
Xu et al. (2024) Densely connected convolutional neural network 

(CNN)
94%

Singh and Yassine (2018) Bayesian network 81.89%
Alzoubi (2022) Data fusion 92%
Venkatesan et al. (2022) Random forest (RF) 92%
Fard et al. (2022) Personal comfort models (PCMs) 74%
# Proposed model 95.76%
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Table 8, Great Britain is investing in piezoelectric materials for energy conver-
sion. These materials can convert mechanical stress into electrical energy. Appli-
cations range from energy harvesting in infrastructure to wearable devices. The 
research and development aim to enhance efficiency and broaden applications, con-
tributing to sustainable energy solutions and advancing technological innovation 
within the country.

Tables  9, 10, in Great Britain, improving building insulation reduces heating 
demands, consequently lowering energy consumption and road traffic emissions. 
Energy-efficient buildings decrease the need for heating, positively impacting air 
quality. This integrated approach aligns with sustainability goals, enhancing both 
environmental and public health by minimizing pollution and optimizing energy use 
within the built environment.

Table  11, traffic vibrations in urban areas can impact building integrity. Pro-
longed exposure to vibrations can affect structural stability and occupant comfort. 
Engineers and architects in Great Britain employ design strategies and materials 
to mitigate these effects. Innovative solutions aim to enhance building resilience, 
ensuring structures can withstand vibrations from road traffic while maintaining 
safety and habitability standards.

Comparing different machine learning solutions to solve traffic problems, the pro-
posed model is shown to have a higher accuracy of up to 0.95. 76% in Table 12. 
However, Dense CNN and Random Forest also show good performance, but in prac-
tical applications, the overall performance of these models is affected by many other 
indicators such as efficiency, versatility, and analytical readability. More so, the said 
architecture and the details implied in implementing the proposed model offer a vital 
framework for developing a proper assessment of its benefits compared to previous 
approaches.

Our proposed model, SGDo-HP-LR-GP, has demonstrated exceptional precision 
in key contributions, as evidenced from Tables 6, 7, 8, 9, 10 and 11. Intelligent traf-
fic routing emerges as a crucial factor in optimizing building energy consumption. 
By effectively managing traffic, we not only reduce air pollution and noise but also 
minimize building vibrations, consequently saving energy. Piezoelectric materials 
play a pivotal role in converting vehicle kinetic energy into electrical power, which 
can be utilized for nearby buildings and street lighting. Therefore, efficient traffic 
flow control directly impacts building energy conservation, showcasing the intricate 
interplay between intelligent routing and sustainable building practices.

6 � Conclusion

The key contributions in the research study include the integrated relationship 
between urban traffic and the built environment, highlighting a complex interplay of 
challenges and potential solutions. Mitigating the adverse effects of traffic emissions 
on air quality necessitates enhanced filtration systems in HVAC systems, although 
at the cost of increased energy consumption. On the bright side, the integration of 
piezoelectric materials in roadways offers a promising avenue to utilize vehicle-
induced vibrations and convert them into a sustainable energy source, potentially 
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relieving energy needs for nearby buildings and street lighting. However, the escalat-
ing traffic volumes and resulting noise levels call for improved building insulation, 
amplifying energy requirements for maintaining a comfortable indoor environment. 
Moreover, the structural implications of traffic-induced vibrations underscore the 
necessity for additional energy investments in structural reinforcements and ongo-
ing maintenance efforts for the integrity and safety of buildings in high-traffic urban 
areas. Balancing sustainable energy solutions and the challenges posed by urban 
traffic remains a critical endeavor for creating healthier, energy-efficient, and resil-
ient urban environments.

7 � Future work

These findings pinpoint the interconnection between traffic patterns characteristic 
of big cities, constructed space, and energy use. Although the use of piezoelectric 
technology to convert the kinetic energy from roads into electricity is a concept 
that inspires the development of a sustainable energy source, the issues of air pollu-
tion, noise and structures bring so many very challenging factors. These factors thus 
require innovative means to have the spatial environment responsive to the current 
need and challenge of traffic and urbanization while being sound and sustainable in 
its consumption of resources. The research may be continued by further develop-
ing other machine learning methods, for instance, reinforcement learning for traffic 
control and power production, or generative adversarial networks for emulation and 
forecasting of cities. Further, the latest endeavor in the domain of Sensing technol-
ogy and Data fusion methodology can be used to acquire and process holistic infor-
mation regarding traffic flow, air quality, noise level, and even building performance, 
as a result of which, management can make informed decisions which can, in turn, 
can form the base to develop so many forecasting models to govern the Utilities of 
Smart city.
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