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Abstract
Floods represent a substantial and consequential from of natural disasters within 
Hanoi City. To minimize the detrimental effects on agriculture, an all-encompassing 
decision support instrument is necessary for flood management and alert systems. 
The primary aim of the current study is to delineate flood susceptible regions by 
employing SPOT satellite imagery and a hybrid Principal Component Analysis-Sup-
port Vector Machine (PCA-SVM) model, thereby gauging the influence of floods 
on land utilization for agricultural purposes in Hanoi City. The prediction results 
demonstrate a high model performance with R2

test = 0.904, and AUC = 0.921. Areas 
classified as exhibiting high to very high flood susceptible encompass 55.882% 
of the overall expanse, while those classified as having low and very low flood 
risk account for 10.357% and 6.278% respectively. The amalgamation of satellite 
imagery and the PCA-SVM model in the formulation of flood susceptible zoning 
maps confers valuable insights to bolster flood prevention endeavors. The current 
research findings will make a substantial contribution to the strategic planning and 
preservation of food security for the nation.
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A. N. T. Do

1  Introduction

Floods are a frequently occurring and highly destructive occurrence in the natural 
realm, resulting in significant harm to agricultural crops and posing a threat to food 
security (Hirabayashi et al. 2008; Bhattacharya et al. 2019). In recent years, floods 
have escalated in severity, exerting substantial influence on the agricultural sector, 
disrupting infrastructure and causing economic and social setbacks (Lee and Moha-
mad 2014; Su et al. 2021). Consequently, there has been an increasing emphasis on 
the mapping of flood-susceptible areas for the purposes of early warning systems and 
impact evaluation (Do et al. 2022a, b, c). Traditional approaches to flood mapping 
rely on ground surveys and aerial observations, but the irregular and extensive nature 
of floods renders these methods time-consuming, expensive, and impedes the prompt 
assessment of flood-related effects on the economy and livelihoods (Peng and Peng 
2018; Chen et al. 2019; Do and Tran 2023a, b, c).

Hanoi City has recently encountered frequently instances of flooding during pro-
longed rainfall (Anh 2021). Due to rapid urbanization, numerous main roads have 
been expanded without coordinated drainage planning, leading to localized flood-
ing in various areas during heavy rainfall. Among these areas, three-quarters of the 
total area comprise plains, with agriculture still occupying a significant portion of 
the economic structure. Consequently, the impact of floods has resulted in localized 
inundation (Anh 2023). Nowadays, one- and two-dimensional models are progres-
sively being employed to enhance the precision of simulation results (Lin et al. 2006; 
Liu et al. 2015). However, the primary drawback of this technique is the substantial 
amount of input data required for the model, necessitating extensive time and effort 
for field surveys, data collection, and model calibration (Klemas 2015; Lin et al. 
2016). Furthermore, in susceptible areas due to torrential rain, the current hydraulic 
models have not been able to provide a comprehensive resolution (Brakenridge et al. 
1994). The development of remote sensing technology and GIS has supplied pow-
erful tools for data acquisition, spatial analysis, and graphical representation in the 
monitoring and identification of flooded areas (Zaharia et al. 2017; Al-Abadi 2018). 
Remote sensing data possesses the capacity to gather information over vast areas and 
for extended periods with a high repetition frequency (Do et al. 2022b). The inte-
gration of remote sensing and GIS within machine learning models facilitates rapid 
calculation and assessment of areas at susceptible of flooding and inundation (Do et 
al. 2022a, b, c).

In recent years, the utilization of machine learning techniques and data mining has 
proven to be valuable in the realm of flood prediction (Mosavi et al. 2018; Do and 
Tran 2023a). One particularly popular method employed in this context is the Sup-
port Vector Machine (SVM) non-linear model (Khan et al. 2019). The distinguishing 
feature of SVM lies in its ability to employ kernel functions to transform the original 
feature space, thereby facilitating the handling of non-linear features (Do and Tran 
2023c). Consequently, SVM is able to classify flood data based on non-linear fea-
tures such as the interplay between environmental factors, topography, and weather. 
Additionally, the SVM model is effective in managing large datasets, thus reducing 
the time and resources required for computation (Costache 2019). However, it should 
be noted that SVM is susceptible to data noise and exhibits relatively high computa-
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tional complexity, especially when complex kernel functions are employed or when 
dealing with substantial amounts of data (Do and Tran 2023c). Therefore, in the cur-
rent study, the Principal Component Analysis (PCA) algorithm has been utilized to 
identify the principal components of the data, the components with the highest vari-
ance, with the aim of enhancing the performance of the SVM prediction model (Xu 
and Wang 2005).

In order to assess the effects of floods on agriculture, it is necessary to possess 
a spatial distribution map of agricultural land (Do et al. 2022a, b, c). Over the past 
few years, there has been rapid development in various machine learning algorithms 
for mapping land cover/land use (LULC), including agricultural land (Pham et al. 
2023a, b, 2024; Do et al. 2023). The efficacy of machine learning methods in han-
dling limited sample data has been demonstrated through their generalization and 
noise resistance capabilities. As a result, machine learning algorithms have become 
invaluable tools in processing remote sensing data and offering solutions within the 
realm of agriculture (Anh 2023). Currently, algorithms based on the Convolutional 
Recurrent Neural Network (CRNN) have emerged as a prominent subject of interest 
in this field, utilizing convolutional layers and pooling techniques (Rajendran et al. 
2020; Moharram and Sundaram 2023). The CRNN model the ability to automatically 
extract features and information from the original images based on the combination 
of two types of network, Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN), thereby enhancing the accuracy of classification results (Cao et 
al. 2019).

In light of this reality, the primary objectives of the current investigation are as 
follows: (i) to examine the practicality of the CRNN model in extracting agricultural 
land using SPOT 7 satellite imagery; (ii) to map flood-susceptible areas using the 
PCA-SVM model; and (iii) to evaluate the impacts of floods on agricultural land use 
in Hanoi City.

2  Materials and methods

2.1  Study area

The Hanoi City area is distinguished by numerous advantages for the advancement 
of high-quality agriculture. It is the largest city in Vietnam, encompassing an area of 
roughly 3,360km2, and it ranks second in terms of population and population density 
among Vietnam’s 63 provinces and cities. Situated in the northwest of the central 
Red River Delta, within the latitude range of 20°34’ to 21°18’ north and the longitude 
range of 105°17’ to 106°02’ east, Hanoi is situated in the triangle of the Red River 
Delta, an area known for its fertile and abundant land (Fig. 1). Hanoi has an extensive 
hydrological system consisting of various small and large rivers, including the Red 
River, Duong River, Da River, Nhue River, Cau River, Day River, and Ca Lo River. 
The city possesses all the necessary prerequisites for the development of a contem-
porary agricultural sector and serves as a market for high-quality rice, catering to a 
substantial and steadfast demand.
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2.2  Data collection and SPOT image preprocessing

This investigation collected satellite imagery data from SPOT 7 in January 2023, 
featuring a resolution of 1.5 m, while ensuring that the acquired images contained a 
cloud cover of less than 10% in the study area. The SPOT 7 images underwent atmo-
spheric and spectral correction to derive radiometric values. Several atmospheric 
correction models, such as COST, DOS, MODTRAN, ATCOR, or FLAASH, can 
be employed for atmospheric correction (Pham et al. 2023a, b, 2024; Do, 2024). 
To enhance accuracy, the ATCOR (Atmospheric and Topographic Correction) atmo-
spheric correction model was integrated into the PCI Geomatica 2018 software to 

Fig. 1  A map showing Hanoi city
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execute atmospheric correction. The quality of satellite imagery is heavily dependent 
on the image processing. Typically, the acquired satellite image channels have pixel 
values that are distributed within a narrow range compared to the display capabilities 
of the image. Each individual channel tends to be relatively dark or bright when dis-
played. Therefore, to enhance the contrast of the image, we need to perform an image 
stretching operation. This is done to transform the actual gray-level range of the 
original image into a gray-level range that the display device is capable of showing. 
After the processing, the satellite image will have good image quality, appropriate 
contrast, accurate color representation, even color distribution, and will be suitable 
for LULC cover classification purposes. The image preprocessing procedure entailed 
four steps, as depicted in Fig. 2, encompassing geometric correction and enhance-
ment facilitated by ENVI 5.3 software, utilizing the UTM projection grid, VN-2000 
coordinate system, and zone 48 with a resolution of 2.5 m.

The current study executed the acquisition of sample data for image classification 
within the research area. In order to reference during the classification and prediction 
process, a land use map of Hanoi city for the year 2022 has been collected. The cur-
rent study has collected a total of 363 samples encompassing all land cover classes 
and surveyed flood-sensitive areas throughout the entire research region. These 
samples include on-site data collection (95 samples), utilization of high-resolution 
imagery from Google Earth, historical flood locations, and direct sampling on SPOT 
7 satellite imagery. Five various types of land cover have been classified, including: 
other land, construction, forest and urban green space, water surface, and agriculture. 
The collected dataset was divided into two, with 70% of the samples utilized for 
training the classification model (training data) and the remaining 30% utilized for 
validating the classification results (testing data).

2.3  Selection of LULC classification method

Currently, there exist multiple machine learning algorithms designed for land use 
land cover (LULC) classification using satellite imagery (Nahuelhual et al. 2012; 
Hua 2017). Among these algorithms is the Convolutional Recurrent Neural Network 
(CRNN), which combines the Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN), and Connectionist Temporal Classification (CTC) (Fig. 3). 

Fig. 2  Simple flow of SPOT 
image preprocessing
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CRNN is commonly employed for image classification tasks (Cao et al. 2019). This 
neural network architecture seamlessly integrates feature extraction, sequence mod-
eling, and decoding within a unified framework. CNN is utilized to extract structural 
features from the images (Kattenborn et al. 2021), RNN is employed to model the 
sequential information (Mou et al. 2017), and CTC is utilized to enhance the perfor-
mance of the CRNN model (Hsu and Li 2021). The training process of the CRNN 
model for image segmentation generally involves the utilization of training data con-
sisting of image-label pairs. The model is adjusted through the optimization of a 
loss function, such as cross-entropy loss, to attain the most accurate segmentation 
results (Kattenborn et al. 2021). Numerous studies have demonstrated the commend-
able performance of CRNN in LULC classification (Wu and Prasad 2017; Zhao and 
Zettsu 2018). To evaluate the classification performance, the current study employed 
the overall accuracy (OA) and cross-validated accuracy (CV) metrics (Anh 2021; Do 
et al. 2022b).

	 OA = (TP + TN)/(TN + TP + FN + FP)
� (1)	

CV =

(
2TP2

(TP + FN) .(TP + FP)

)
/

(
2TN2

(TP + FN) .(TP + FP)

)
� (2)

where TP represents accurately classified agricultural objects, TN represents accu-
rately classified non-agricultural objects, FP represents incorrectly classified agricul-
tural objects, and FN represents incorrectly classified non-agricultural objects.

2.4  PCA-SVM model in susceptible prediction of floods

Principal Component Analysis (PCA) is a technique utilized to diminish the dimen-
sionality of data within the feature space by identifying the principal components of 
the data (Do et al. 2022b). Within this investigation, the PCA algorithm was employed 
to eliminate less significant components from a total of 16 input variables (Table 1) in 
order to decrease the dimensionality of the data and optimize the model for better per-
formance. Following the reduction of data dimensionality through PCA, the principal 
components were selected as input features for the Support Vector Machine (SVM) 
model, which is a supervised machine learning model utilized for regression prob-
lems aiming to discover an optimal hyperplane for classifying data into flood-suscep-
tible and flood-insensitive (Do et al. 2022b; Do and Tran 2023c). When employing a 
linear kernel, the SVM decision function takes the form (Gao et al. 2003):

Fig. 3  Land use land cover classification steps using CRNN model
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	 f (x) = sign(wTx + b)� (3)

where w is the weight vector, x is the feature vector of the data sample, b is the bias 
term, and sign() is the sign function. In the present study, the parameter C was used 
to regulate the model’s regularization. A larger C value directs the SVM model to 
prioritize error minimization and tolerate fewer violations, while a smaller value of C 
prioritizes minimizing the magnitude of w and allows more violations of the margin. 
In the SVM model, the optimal value of the parameter C is determined through tech-
niques such as grid search or error optimization. This process involves training and 
evaluating the model using both the training and testing datasets.

To evaluate the accuracy of the PCA-SVM model in predicting flood sensitivity 
in the study area, the study utilized the coefficient of determination (R2), and the root 
mean square error (RMSE) (A. N. T. Do et al. 2022a, b, c; T. A. T. Do et al., 2022; 
Do et al., 2024; Do, 2024).

	

R2 =

∑k
i=1 [(Yi − Y) (Xi − X)]√

∑k
i=1(Yi − Y)2.

√∑k
i=1(Xi − X)2

� (4)

Variables Description
Altitude The height of a point on the Earth’s 

surface in relation to sea level
Aspect Derived from a digital elevation model 

DEMSlope
Curvature
Land cover/land use Land categories include agricultural land, 

forest land, building land, water surface…
(Normalized difference 
vegetation index) 
NDVI

(NIR– RED)/ (NIR + RED)

Temperature Data was gathered from hydrological 
monitoring stationsRainfall

Agriculture density The degree of concentration of agricul-
tural activities in a specific area

Forest density The degree of concentration of forests in 
a specific area

Construction density The degree of concentration of construc-
tion works in a specific area

Water density The degree of concentration of water bod-
ies (such as lakes, rivers, and streams) in 
a specific area

Distance to agriculture The distance from a specific location to 
the nearest agricultural areas

Distance to forest The distance from a specific location to 
the nearest forested areas

Distance to 
construction

The distance from a specific location to 
the nearest construction sites

Distance to water 
surface

The distance from a specific location to 
the nearest water surface

Table 1  Database for flood 
susceptibility mapping
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RMSE =

√
1

k

∑k

i=1
(Yi − Xi)

2� (5)

where Yi, and Y represent the predicted variable and the mean value, respectively; 
Xi, and X represent the observed variable and the mean value, respectively, and k is 
the sample size.

3  Results

3.1  CRNN model in agricultural land classification

In the current study, the utilization of the CRNN model has been employed for the 
purpose of classifying LULC in Hanoi city. The results of this classification are dis-
played in Table 2, which the area and percentage for each respective LULC type. 
Agricultural land, with an expansive area of 141,982.871 ha (42.258%); followed 
by construction (32.259%); forest and urban green space (13.304%); water surface 
(11.744%); and finally, other land only accounting for a mere 0.425% of the total 
area. To gauge of precision of the SPOT 7 image classification results, the study 
utilized the overall accuracy (OA) and the coefficient of variation (CV) as evaluation 
metrics. The evaluation results are as follows: the overall accuracy achieved 88.005% 
and the CV reached 0.855 (Table 3). Among these results, the water surface category 
displayed the highest classification accuracy (OA = 95.027%, and CV = 0.931), fol-
lowed by forest, urban green space, construction, other land, and finally agriculture 
(OA = 80.282%, and CV = 0.782). Overall, the CRNN model demonstrated a high 
level of accuracy and suitability for classifying land cover within the Hanoi city area.

Figure 4 displays the spatial distribution map of agricultural land, which was clas-
sified using the CRNN model and SPOT satellite imagery. It can be observed that 
agricultural land encompasses a significant area and is primarily distributed in subur-
ban areas. Areas devoid of agricultural land are predominantly situated in inner-city 

Land cover/land use OA (%) CV
Other land 85.934 0.820
Construction 87.395 0.842
Forest, urban green space 91.385 0.899
Water surface 95.027 0.931
Agriculture 80.282 0.782
LCLU 88.005 0.855

Table 3  Performance of the 
CRNN classification model
 

Land cover/land use Area (ha) Percentage (%)
Other land 1,428.591 0.425
Construction 108,418.382 32.269
Forest, urban green space 44,699.180 13.304
Water surface 39,457.853 11.744
Agriculture 141,982.871 42.258

Table 2  Area and percentage of 
area of each type of LCL
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areas such as Ba Dinh and Dong Da districts, as well as in highland areas such as Ba 
Vi district (Fig. 4). In general, agriculture plays a prominent role in the economy and 
food production within the research area. However, it exhibits an uneven distribution, 
primarily concentrated in suburban areas, delta regions, and areas in close proximity 
to rivers and streams. With water surfaces covering 11.744% of the total area, flood 
events can cause significant losses to crops in these areas.

Fig. 4  Spatial distribution of agricultural land in Hanoi city in 2023
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3.2  The importance of variables

Sixteen variables were selected as input variables to prediction flood susceptibil-
ity in the research area, as depicted in Fig. 5. Nevertheless, incorporating an exces-
sive number of input variables would give rise to overfitting concerns for the SVM 
model. Therefore, principal component analysis (PCA) was employed to diminish 
the dimensionality of the data and improve the predictive performance of the model. 
The results of the PCA analysis indicate a distinct separation of data points into sepa-
rate clusters. The principal component PC1, which represents rainfall, accounts for 
a significant portion of the data’s variance, with, with R2 = 0.342 (Fig. 6) indicating 
its utmost importance in relation to flood variables. Rainfall holds a critical role in 
flood modeling in Hanoi, an area characterized by a humid tropical climate with a 

Fig. 5  Predictors of flood susceptibility in the study area. a) altitude; b) aspect; c) slope; d) curvature; 
e) LCLU; f) NDVI; g) temperature; h) rainfall; i) agriculture density; k) forest density; l) construction 
density; m) water density; n) distance to agriculture; o) distance to forest; p) distance to construction; 
and q) distance to water surface
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total area of 3,360 km2, Large and abrupt increases in rainfall can result in flood-
ing and give rise to various flood-related issues. Consequently, constructing a flood 
modeling approach sensitive to Hanoi requires comprehensive data on the intensity 
and distribution of rainfall within the region. This result underscores the significant 
role of rainfall in instigating floods and reaffirms its importance in the flood suscep-
tibility prediction model within the research area. The variables exhibiting correla-
tions greater than 0.25 include water density (R2 = 0.316), distance to water surface 
(R2 = 0.290), forest density (R2 = 0.274), and LULC (R2 = 0.252). These results indi-
cate that LULC plays a pivotal role in identifying susceptible areas. The level of 
susceptible and susceptibility heavily relies on the interplay between land cover and 
rainfall. Forests and land use can influence watershed runoff, soil permeability, and 
water absorption capacity. Regions with a substantial forest cover can mitigate flood 
susceptible in the vicinity. Altitude, aspect, slope, curvature, NDVI, temperature, 
agriculture density, construction density, distance to agriculture, distance to forest, 
distance to construction, and distance to water surface possess R-square values rang-
ing from 0.107 to 0.216 (Fig. 6). Although these variables exhibit a certain degree 
of correlation with flood susceptibility, their significance is not as pronounced as the 
aforementioned variables.

Fig. 6  The coefficient of determination between flood susceptibility and sixteen metrics applied from 
SPOT satellite
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3.3  Mapping flood-susceptible areas

To evaluate the performance of the flood sensitivity prediction model, this study uti-
lized the R2, RMSE, and ROC curve metrics, as indicated in Fig. 7; Table 4. The 
R2

train value of 0.938 signifies that the model accounts for 93.8% of the variability 
in the training data, suggesting a strong fit to the training data (Table 4). Addition-
ally, the PCA-SVM model demonstrated commendable performance on the test data, 
achieving an R2

test value of 0.904. The results revealed an AUC of 0.921 (Fig. 7), 

Coefficient SVM PCA-SVM
R2

train 0.830 0.938
R2

test 0.794 0.904
RMSE 8.801 5.752
AUC 0.752 0.921

Table 4  Performance of PCA-
SVM on flood susceptibility in 
Hanoi city

 

Fig. 7  The ROC plot shows the performance of the flood prediction model using the PCA-SVM model
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signifying the model’s ability to accurately classify flood susceptibility at a rate of 
92.1%. Therefore, the PCA-SVM model proves valuable for flood susceptibility pre-
diction in the study area.

Drawing on the prediction results obtained from the PCA-SVM model, this cur-
rent study was able to identify and depict the spatial distribution map of flood-sus-
ceptible areas in Hanoi city (Fig. 8). Generally, susceptible areas are predominantly 
found along major rivers, especially the Red River. Additionally, flood-susceptible 
areas are typically located in low-lying regions with inadequate drainage, high river 
density, and substantial rainfall. Table 5 presents the distribution of areas based on 
flood susceptible zones, with the very low and low-risk levels accounting for 6.278% 

Fig. 8  Flood susceptibility map in the study area
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and 10.357% respectively, primarily concentrated in hilly areas with low river den-
sity (Fig. 5). The average flood susceptible level encompasses a substantial portion 
of approximately 27% of the total area (Table 5). In contrast, the highest proportion 
(over 55%) of high and above flood susceptible levels is concentrated in the delta 
region with high river density and heavy rainfall. Through the overlay of the flood 
classification layer beneath the agricultural land use layer (Fig. 9), this current study 
has successfully identified flooded agricultural land in areas with high to very high 
flood susceptible. Overall, more than 70% of agricultural land is situated in high-risk 
and above areas, indicating that flooding can result in inundation, crop loss, and a 
decline in agricultural quality and productivity.

4  Discussion

Floods are severe natural phenomena that annually cause substantial damage in 
Hanoi city annually (Do et al. 2022a, b, c; Anh 2021). Therefore, the analysis of flood 
susceptible contributes to the examination of areas at an unacceptable high suscep-
tibility to flooding and the identification of locations for risk mitigation actions (Liu 
and Wu 2011; Costache 2019). Historically in Vietnam, the delimitation of flood zone 
heavily relied on hydro-meteorological monitoring data obtained from stations (Do 
et al. 2022a, b, c). However, these stations are widely spaced, with an average cover-
age of approximately 1,650 km2 per station (Anh 2023). Therefore, the utilization of 
data from Earth observation satellites, which provide detailed information and have 
shorter repetitive cycles, has been regarded as a superior approach to complement the 
traditional monitoring methods facilitated by existing stations (Lee and Mohamad 
2014; Lin et al. 2016).

To evaluate the impact and extent of floods on agriculture, the classification of 
LULC becomes essential (Ahmadlou et al. 2019). In the realm of multi-level tasks, 
deep learning algorithms have progressively outperformed traditional algorithms in 
terms of fast processing speed, and classification accuracy (Amitrano et al. 2018; Su 
et al. 2021; Do and Tran 2023b). Among them, the CRNN model has demonstrated 
remarkable effectiveness in LULC classification (Wu and Prasad 2017). The findings 
of the study unveil that the CRNN model attains favorable classification accuracy, 
with OA = 88.005%, and CV = 0.855 (Table 3). The research results indicate that the 
CRNN model achieves commendable classification accuracy, with an OA of 88.005% 
and CV of 0.855 (Table 3). Based on the computed results, agriculture encompasses 
nearly half of the total area (Table 2) and is mainly concentrated in low-lying and 
riverine areas. Nevertheless, the agricultural land area in Hanoi city is diminishing, 
as documented by studies conducted by Anh (2021, 2023). Despite being the largest 

Flood susceptibility Area (ha) Percentage (%)
Very low 21,093.256 6.278
Low 34,798.161 10.357
Medium 92,339.273 27.483
High 149,483.921 44.491
Very high 38,272.265 11.391

Table 5  Area and percentage of 
each flood risk level in Hanoi 
city
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city in Vietnam, Hanoi still retains a significant portion of agricultural land, which 
not only plays a pivotal role in food provision but also in conservation and sustain-
able development. Therefore, when flooding transpires, it can result in inundation, 
reduced quality, and productivity, as well as substantial economic losses.

To minimize the negative impacts of floods on the agricultural sector, numerous 
investigations have indicated the necessity for effective measures in flood prevention 
and response. This process begins with the assessment and classification of flood 
susceptible s (Liu et al. 2015; Loc et al. 2022; Do and Tran 2023a). Various studies 
have successfully conducted assessments of flood susceptible Hailin et al. (2009) 
employed multi-year average rainfall, storm rainfall days, terrain factors, and flood 

Fig. 9  Distribution of high and very high flood risk levels compared to agricultural land
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frequency in order to map flood hazards. Similarly, Hagos et al. (2022) used GIS 
to identify susceptible areas by considering factors such as annual rainfall, slope, 
drainage systems, and soil type. However, the challenge lies in the multitude of fac-
tors that influence floods, encompassing both natural and socio-economic factors. 
Therefore, prior to incorporating all dependent variables into the prediction model, 
careful consideration of the various factors that impact flood zoning is necessary. The 
current study utilized the PCA method to examine the relationships between factors 
and reduce the dimensionality of the data (Fig. 4).

Figure 6 illustrates that rainfall is the most important factor leading to an increase 
in the quantity of surface water, which in turn affects flow transmission. Furthermore, 
the majority of Ha Noi city comprises areas with low slopes, flat terrain, and pre-
dominantly agricultural land cover in the downstream areas and main river branches 
within the city. The study conducted by Do et al. (2022a, b, c) also demonstrated that 
the aspect variable has minimal influence on flood occurrence. In the current study, 
less significant variables will be eliminated from the input model to ensure opti-
mal model performance. Based on the prediction results from the PCA-SVM model, 
flood susceptible zoning maps at different levels are presented in Fig. 8. The areas 
with high to very high flood susceptible are primarily located in agricultural cultiva-
tion areas (Fig. 9). Conversely, low-risk susceptible areas are typically found in hilly 
regions with abundant forest cover and low river density. Similar conclusions were 
also drawn in studies by Zaharia et al. (2017); Do and Tran (2023a).

According to the study by Anh (2021), revealed that Hanoi city is renowned for 
its exceptional rice and vegetable production in the Red River Delta. The region 
yields an impressive amount of agriculture products, including 952.7 thousand tons 
of rice, 72.5 thousand tons of corn, and 723.2 thousand tons of vegetables, alongside 
other perennial crops. Consequently, any disruptions caused by flooding could have 
a significantly impact on the local food supply. To address this concern, a spatial 
distribution map has been developed to identify areas with varying flood sensitivity 
levels. This map serves as an early warning system for potential hazards and aids in 
assessing the likelihood of flood-related inundation affecting agricultural activities in 
Hanoi city. The results of this study provide valuable reference materials and effec-
tive support for decision-makers when planning land use for agriculture purposes.

5  Conclusions

The findings of the current study introduce a methodology for mapping flood sen-
sitivity, which is highly relevant in distinguishing flood-affected agricultural land 
areas. Through the utilization of satellite imagery data and the PCA-SVM model, 
the study effectively depicts flood susceptible levels, ranging from high to very high, 
in approximately 70% of the agricultural regions. Furthermore, the study identifies 
susceptible areas primarily situated in riverine zones, highlighting their high sus-
ceptibility. that the efficacy of satellite imagery data in detecting and mapping flood 
sensitivity is evident. These findings significantly contribute to assisting decision-
makers in pinpointing susceptible locations and formulating prevention and mitiga-
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tion measures to minimizing the damages incurred by floods in the agriculture sector 
and its related industries.
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