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Abstract
It is demonstrated herein that a slight expansion of the utility function in the 
duopolistic Hotelling game enables any symmetric location pair with respect to 
the center to be in equilibrium, which implies that any level of locational differ-
entiation between the minimum Hotelling (Econ. J.39:41–57, 1929) and maximum 
D’Aspremont (Econom. 47:1145–1150, 1979) is obtained in one model. The loca-
tion equilibrium is monotone with respect to the introduced parameter (k), while 
the equilibrium price and profits are not monotone (they are U-shaped). That is, the 
nearer the two firms are located, the higher their prices are set (with an upper limit) 
when k is sufficiently large. This counterintuitive phenomenon is interpreted as an 
example of strategic complementarity that is inherent in the Hotelling games.
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1  Introduction

In his seminal paper (Hotelling 1929) developed a spatial competition model and 
showed the tendency of central agglomeration (principle of minimum differentia-
tion). D’Aspremont et  al. (1979) found that this principle is incomplete since the 
price equilibrium does not exist when the firms are near. As a solution for this prob-
lem,1 they assumed a quadratic transportation cost function in distance, instead of 
the linear function described by Hotelling (1929). More specifically, they assumed 
that the utility function of consumers is given by U = r − p − td2 ; where r is a con-
stant, p is the mill price, d is the distance to the firm, and t is the transportation rate. 
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1  See, for example, Caplin and Nalebuff (1991) for a comprehensive analysis of the existence of equilib-
rium.
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D’Aspremont et al. (1979) analyzed a two-stage game in which the firms first decide 
their locations and then choose the prices. As a result, they observed the opposite 
tendency, i.e., the principle of maximum differentiation, where firms locate as far 
apart as possible. Since the D’Aspremont et al. (1979) study, an important theme in 
the literature is the question of what locational differentiation occurs. For example, 
Egli (2007) assumed two types of consumers whose transportation costs are linear 
and quadratic, and he showed that various differentiation patterns emerge depend-
ing on the proportions of them. Dragone and Lambertini (2020) assumed convex 
production costs to restore the existence of equilibrium under a linear transporta-
tion cost function, and they also observed the principle of minimum differentiation. 
Other extended studies focused on the role of the transportation-cost term in the util-
ity function. To the best of our knowledge, there have been no general studies that 
revised the price term. The objective of the paper is to show what happens in the 
Hotelling game if the price term is changed into another functional form.

Specifically, we revise the utility function of D’Aspremont et  al. (1979) as 
U = r − pk − td2 (k > 0) . The greater k, the steeper the slope of the utility function 
is in the domain of p > 1 . In contrast, when the price is sufficiently small and less 
than 1, an increase in k makes the slope gradual. The parameter k can be interpreted 
as a measure of how strong the convexity with respect to the price is for consumers’ 
utility.2 We should be careful in choosing the value of k. Suppose that k is suffi-
ciently large. Then, the higher the price, the larger the decrease in utility by 1 dollar 
increase in price. For example, the decrease in utility from p = 1000 to p = 1001 
(0.1 percent increase in price) is much larger than that from p = 1 to p = 2 (100 per-
cent increase in price), which seems strange. Therefore, although k is arbitrary in the 
model, we should choose an adequate value of k in reality. For better readability, we 
begin with the case of k = 2 to quickly demonstrate the features of our model, and 
other cases will be analyzed later.

The remainder of the paper is organized as follows. Section 2 provides our model. 
In Sect. 3 we obtain the price and location equilibrium under k = 2 . Section 4 deals 
with the general cases of k > 0 . Section 5 provides our conclusions.

2 � Model

We consider a spatial duopolistic competition à la Hotelling in a linear space 
L = [0, 1] with quadratic transport costs as in D’Aspremont et  al. (1979). Let 
i ∈ {1, 2} denote the index of firms, and let xi ∈ L be the location of firm i. Without 
a loss of generality, we assume 0 ≤ x1 ≤ x2 ≤ 1 . The firms provide a homogeneous 
product with zero marginal cost. We consider a two-stage game: In the first stage the 

2  One may think that t is the same role in the first place. However, t does not affect the location equilib-
rium in D’Aspremont et al. (1979), and we will see that k matters for the equilibrium. Further, regarding 
price sensitivity, Puu (2002) dealt with an elastic demand in the Hotelling game and also showed the 
various location equilibrium values. In their model, the demand function is linear: f (z) = � − �z , where 
z = p + td is the linear full cost.
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firms simultaneously determine their locations, and in the second stage they simul-
taneously determine their prices. We adopt subgame perfection as an equilibrium 
concept, and we only deal with the equilibrium in pure strategies.

There are consumers whose mass is normalized to one. They are evenly distrib-
uted over L, and inelastically they buy one unit of the good. Each consumer’s utility 
at z is given by Eq. (1)

if a consumer buys from firm i, where r > 0 is the reservation utility, pi is the mill 
price of firm i, and k > 0 is the main parameter. As mentioned in the Introduction, 
let k = 2 for the moment. The value of r is assumed to be high enough for the utility 
to be positive, which ensures that each consumer always buys from either firm.

This utility generates the demand for each firm. When x1 = x2 , all consumers buy 
from the firm that posts a lower price. If their prices are equal, each firm’s demand 
is assumed to be one-half. When x1 ≠ x2 , solving uz(p1, x1) = uz(p2, x2) with respect 
to z, we have:

as the border between the market areas of both firms if 0 ≤ z ≤ 1 . Let the solutions 
of z = 1 and z = 0 be p+

1
 and p++

1
 , respectively. Then, we have

From these calculations the demand for firm 1 is given by Eq. (3)

Applying the same computation for firm 2, we get the demand for firm 2 defined as 
D2 = 1 − D1 . Finally, the profits for firm i are defined as:

We find that �i is continuous and quasi-concave with respect to pi over the admissive 
domain, [0, p++

i
] , which implies that a price equilibrium exists in pure strategies for 

any location pair.

3 � Equilibrium under k = 2

Applying backward induction, we analyze the the second-stage game problem. First, 
we find that any agglomerated location x1 = x2 leads to severe price competition, 
which results in zero profits due to the zero price at equilibrium. The firms can, 

(1)uz(pi, xi) = r − pk
i
− t(z − xi)

2

(2)z =
p2
2
− p2

1

2t(x2 − x1)
+

x1 + x2

2

p+
1
= {p2

2
+ t(x2

2
− x2

1
− 2(x2 − x1))}

1∕2
< {p2

2
+ t(x2

2
− x2

1
)}1∕2 = p++

1
.

(3)D1 =

⎧⎪⎨⎪⎩

z, if p+
1
≤ p1 ≤ p++

1
;

0, if p1 > p++
1

;

1, if 0 ≤ p1 < p+
1
.

(4)�i = piDi.
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however, earn positive profits by being away from the rival and setting a positive 
price. Thus, x1 ≠ x2 holds in equilibrium.

Let us focus on firm 1. When p1 < p+
1
 ( D1 = 1 ), an increase in price can enhance 

the profits. When p1 > p++
1

 ( D1 = 0 ), the firm can earn positive profits by setting 
its price under p++

1
 . Therefore, the price equilibria would satisfy p+

1
≤ p1 ≤ p++

1
 . A 

similar analysis can be applied to firm 2. As a result, it is sufficient that we seek 
equilibria in the case in which both firms have positive demand. Then, the fist-order 
conditions ��i∕�pi = 0 yield:

which is the unique price equilibrium.3 We next consider the first-stage given the 
above price equilibrium. Substituting Eq. (5) into Eq. (4), we have:

Straightforward calculations yield the best-response functions for firm 1 and firm 2, 
respectively:

By solving these two equations simultaneously, we obtain the unique location equi-
librium as (x1, x2) = (1∕6, 5∕6) . Substituting it into Eqs. (5) and (6), we have the 
following proposition.

Proposition 1  Assume that the utility function of consumers in the Hotel-
ling game be (1) with k = 2 . Then, the unique Nash location equilibrium is 
(x1, x2) = (1∕6, 5∕6) . The correspondent prices and the profits are p1 = p2 =

√
3t∕3 

and �1 = �2 =
√
3t∕6 , respectively.

Unlike the maximum differentiation given by D’Aspremont et al. (1979), the firms 
choose in-between differentiation. Locational differentiation softens price competi-
tion in the Hotelling game. In our revised model, the consumers are more price-sen-
sitive; therefore, the firms should set lower prices than in the case of D’Aspremont 
et al. (1979) ( k = 1 ). This implies that our revision weakens the positive effects of 
locational differentiation, and the firms prefer to expand their markets by approach-
ing the market center.

(5)p1 =
1

2

√
t(x2 − x1)(x1 + x2 + 1), p2 =

1

2

√
t(x2 − x1)(3 − x1 − x2),

(6)�1 =
1

8

√
t(x2 − x1)(x1 + x2 + 1)3, �2 =

1

8

√
t(x2 − x1)(3 − x1 − x2)

3,

(7)x1(x2) =
{

(2x2 − 1)∕4, if 1∕2 ≤ x2 ≤ 1;
0, if 0 ≤ x2 < 1∕2.

(8)x2(x1) =
{

(2x1 + 3)∕4, if 0 ≤ x1 ≤ 1∕2;
1, if 1∕2 < x1 ≤ 1.

3  We readily find that the second-order conditions are satisfied for the equilibrium.
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4 � General cases

Let us deal with the general case with k > 0 . The utility function is:

Lambertini (1993) provided more differentiated equilibrium (x1, x2) = (−1∕4, 5∕4) 
assuming that the firms can be located anywhere in (−∞,∞) under k = 1 . In other 
words, his model allows outside-city location ( xi > 1 ) in the model of D’Aspremont 
et  al. (1979). To compare our result with his study, let the firms be located in 
(−∞,∞) in our model too, with other things being equal. In order to abbreviate the 
analysis, we assume the positive demand for each firm. The demand function is then 
rewritten as:

The profit function is defined similarly as in Eq. (4). In the second stage the first-
order conditions ��i∕�pi = 0 yield the price equilibrium4:

Note that if k = 2 , the equations degenerate into the price equilibrium given by (5) 
in Sect. 3 above.

We proceed to the first stage. Substituting Eq. (11) into the profit function, we 
have:

where p1 and p2 are given by Eq. (11). If x1 + x2 = 1 (the locations are symmet-
ric with respect to the center), �i = pi∕2 holds. Solving the first-order conditions 
��i∕�xi = 0 , we obtain the symmetric location equilibrium x∗

i
 as a function of k as 

follows:

Proposition 2  The location equilibrium is symmetric and given by:

(9)uz(pi, xi) = r − pk
i
− t(z − xi)

2.

(10)D1 =
pk
2
− pk

1

2t(x2 − x1)
+

x1 + x2

2
, D2 = 1 − D1.

(11)

p1 =

{
t(x2 − x1)

(
2 + k(x1 + x2)

)
k(k + 2)

}1∕k

, p2

=

{
t(x2 − x1)

(
2 + k(2 − x1 − x2)

)
k(k + 2)

}1∕k

.

(12)�1 =
p1
(
2 + k(x1 + x2)

)
2(k + 2)

, �2 =
p2
(
2 + k(2 − x1 − x2)

)
2(k + 2)

,

(13)x∗
1
(k) =

k2 − 2

2k(k + 1)
, x∗

2
(k) = 1 − x∗

1
(k).

4  We can easily confirm that the second-order conditions are satisfied ( 𝜕2𝜋i∕𝜕p2i < 0).
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Figure  1 shows the equilibrium. The variable x∗
1
 is independent from t, and 

it monotonically increases with respect to k and is convergent to 1/2 since 
dx∗

1
∕dk = (k2 + 4k + 2)∕(2k2(k + 1)2) > 0 and limk→∞ x∗

1
= 1∕2 . In other words, the 

greater the value of k, the nearer to the center the firms are located, which implies 
that the principle of minimum differentiation almost holds if k is large. Note that the 
firms never choose the same location because a price-cutting war leads to zero prof-
its (non-existence of equilibrium), and the principle of minimum differentiation does 
not hold literally.

In an opposite direction, we consider a lower k value. The fact of x∗
1
(1) = −1∕4 

reproduces the result reported by Lambertini (1993). Further, we find that x∗
1
≤ 0 

when k ≤
√
2 . If we reject the firms’ outside location ( xi ∉ [0, 1] ), then the firms are 

to be located at the edges ( x∗
1
= 0 and x∗

2
= 1 ) since 𝜕𝜋1∕𝜕x1 < 0 and 𝜕𝜋2∕𝜕x2 > 0 

hold when xi ∈ [0, 1].

Proposition 3  (Principle of Maximum Differentiation) Assume that the firms must 
be located in L = [0, 1] and k ≤

√
2 . The principle of maximum differentiation then 

holds ( x∗
1
= 0 and x∗

2
= 1).

Without the above-mentioned restriction, since limk→0 x
∗
1
= −∞ , we find that the 

smaller the k, the more differentiated the locations from each other the firms will 
choose.

We next analyze the properties of the price and the profits in equilibrium. 
Remember that the profits are half of the price ( �∗

i
= p∗

i
∕2 ) because x∗

1
+ x∗

2
= 1 . 

Substituting Eq. (13) into Eq. (11), we have:

We first confirm 𝜕p∗
i
∕𝜕t > 0 . Differentiating this price with respect to k, we find

(14)p∗
1
(k, t) = p∗

2
(k, t) =

(
t(k + 2)

k2(k + 1)

)1∕k

.

(15)
𝜕p∗

i

𝜕k
⋚ 0 ⟺ k ⋚ k̃(t),

Fig. 1   (The location equilib-
rium)
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where k̃(t) is a unique solution5 of:

with limk→0 p
∗
i
= ∞ and limk→∞ p∗

i
= 1 . Summarizing the above, we have the 

following.

Proposition 4  (Properties of price and profit) The equilibrium price is always 
increasing in t, while it is first decreasing in k when k ∈ (0, k̃) and is increasing in k 
when k ∈ (k̃,∞) . The equilibrium profits are half of the equilibrium price.

Figure 2 shows the price curves with respect to k when t = 1 . Solving Eq. (16) 
with t = 1 yields k̃ ≈ 3.25 . Therefore, the curve has an upward-sloping part.

From Proposition 2, the firms approach each other toward the center when k gets 
large; it thus seems that the competition between the firms becomes fiercer. It might 
therefore be expected that p∗

i
 is decreasing in k. However, Proposition 4 shows that this 

intuition is true only when k is relatively low. Recall that when the price is sufficiently 
low, k can be an inverse measure of price-sensitiveness. One explanation is that when k 
is large and the price is low, an increase in k does not necessarily imply that consumers 
are more price-sensitive. Therefore, the competition is relaxed and the price is gradu-
ally increasing.

Let us focus on the price term in the utility function. In contrast to the price itself, 
(p∗)k is monotonically decreasing in k. Figure 3 shows the curve when t = 1 . Note that 
the demand (market share) directly depends on the k-th power of the price, rather than 
the price. The price is adjusted in accordance with the optimal (p∗)k . When k is large, 
a slight reduction in price causes a considerable reduction in (p∗)k . Therefore, firms 
only need a small reduction in price when k is large, even if the firms approach each 
other and competition gets intense. This is another explanation of why the price curve 
is upward-sloping for a larger k.

(16)ln t = −
2k2 + 7k + 4

k2 + 3k + 2
− ln

(
k + 2

k2(k + 1)

)

Fig. 2   (The price curve when 
t = 1)
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5  See Appendix for the details.
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Economically, strategic complements are a key for these properties of equilibrium 
values. That is, the firm chooses a low (high) price when its rival posts a low (high) 
price in the presence of strategic complements in economic analyses. In our model, 
when k is large and the rival firm sets a relatively high price, the rival is not so competi-
tive; hence, enhancing the price does not decrease the demand very much. The high-
price equilibrium is thus reasonable. U-shaped price (profits) curves are an interesting 
feature in our model.

5 � Conclusion

We have shown that a slight change in the price term of the utility function in the Hotel-
ling game enables us to obtain any level of locational differentiation in equilibrium. 
We can reproduce either the minimum differentiation (Hotelling 1929) or the maxi-
mum differentiation (D’Aspremont et al. 1979) in one model by properly choosing the 
parameter. Further, the locational change is monotone with respect to the parameter, 
while the price and the profits are U-shaped.

The well-known feature in the spatial competition of Hotelling (1929), i.e., “soften-
ing competition by locational differentiation,” is not so straightforward, but it is spe-
cific in the case of k = 1 . Our model contributes to a better understanding the Hotelling 
game.

Appendix

On Proposition 2

We have ��
1
∕�x

1
= g

0
⋅ g

1
 and ��

2
∕�x

2
= g

0
⋅ g

2
 , where

g
0
=
{
2k(k + 2)(x

2
− x

1
)
}−1

{t(x
2
− x

1
)((2 − x

1
− x

2
) + 2)}1∕kk−1∕k(k + 2)−1∕k ≠ 0

g
1
= k2(x

2
− x

1
) + 2kx

1
+ 2

g
2
= k2(x

2
− x

1
) + 2k(1 − x

2
) + 2.

Fig. 3   (The price term in the 
utility function: (p∗)k with t = 1
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Therefore, the first-order conditions ��i∕�xi = 0 degenerate into g1 = 0 and g2 = 0 . 
Solving the two equations yield (13) in the proposition. Evaluating the second deriv-
ative �2�i∕�x2i  at Eq. (13), we have:

which implies that the second-order conditions are satisfied.

On k̃

Let f(k) be the right-hand side of Eq. (16). We can easily have df (k)∕dk > 0 
with limk→0 f (k) = −∞ and limk→∞ f (k) = ∞ . This implies that there 
exists a unique solution for Eq. (16) for any t ∈ (0,∞) , and we also find 
dk̃∕dt = (2k4 + 14k3 + 29k2 + 24k + 8)∕k(k2 + 3k + 2)2 > 0.
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2
)
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t
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