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Abstract
We examine a two-stage location-price model of a mixed duopoly where a private 
profit-maximizing firm competes with a public welfare-maximizing firm in a Hotel-
ling-type framework. A noteworthy result in this model is that, with quadratic trans-
portation costs, which has become the usual assumption in the literature, the socially 
optimal locations are obtained in equilibrium. We show here that under the alterna-
tive assumption of cubic transportation costs this result no longer holds: equilibrium 
locations are socially suboptimal. We find that just as in the case of linear transpor-
tation costs, previously studied in the literature, for some locations there is price 
equilibrium in the second stage of the game and for other locations there is not. But, 
in contrast with such a case, there is a location pair for which there is price equilib-
rium in the second stage of the game and neither firm has an incentive to marginally 
change its location. We also find that, in contrast with the case of quadratic transpor-
tation costs, this location pair is not socially optimal.

Keywords  Mixed duopoly · Hotelling line · Socially optimal locations · Product 
differentiation

JEl Classification  L13 · L32 · L33 · H44

1  Introduction

There are markets in which public firms coexist in competition with private firms. 
For example, in the banking sector Caixa Geral de Depositos in Portugal, Banco 
Nacional in Costa Rica, BancoEstado in Chile and Banco de la República Orien-
tal in Uruguay, all government-owned banks, are major players in their respective 
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countries.1 Similar examples can be found in sectors like telecommunications, 
energy, health, postal services or education. In consonance with the importance of 
this kind of markets, which have come to be known as mixed markets, a growing 
literature2 has developed studying their different facets, among them their spatial 
dimension. A noteworthy result3 is that competition in a mixed duopoly between 
a profit-maximizing private firm and a welfare-maximizing public firm4 yields 
the socially optimal outcome in the standard location-price Hotelling model. This 
result is obtained under the assumption that transportations costs are quadratic, 
and contrasts with the socially suboptimal equilibrium locations in a purely private 
duopoly.5

Here we study if the result that a mixed duopoly yields the socially optimal loca-
tions continues to hold when we abandon the assumption of quadratic transportation 
costs-which has become the standard assumption in Hotelling-type models of mixed 
markets-by examining the alternative assumption of cubic transportation costs. We 
find that under this extension the result no longer holds: firms’ locations are socially 
suboptimal.

The most noticeable examples of steeply increasing transportations costs, such 
as cubic transportation costs, may be those where the Hotelling model is interpreted 
as referring to consumers that have heterogeneous tastes over some characteristic 
of a product, such as the sweetness of cereal.6 In this interpretation, the location 
of a consumer refers to his or her most preferred specification of this characteristic 
(the most preferred degree of sweetness) and the transportation costs refer to the 
disutility from consuming a product with a different specification. This disutility 
may steeply increase as a product characteristic gets increasingly different from the 
consumer’s preferred choice, which is the equivalent of a store being located at a 
longer distance from a consumer. Similarly, in the interpretation of actual physical 
locations, the transportation costs may be also steeply increasing if they include not 
only the monetary cost of travelling but also the disutility from the time spent in 
the travel and from the uncertainty in its length.7 One can easily envisage situations 
where as the distance, and thus the time spent in the journey and the uncertainty in 

2  This literature has expanded to study a variety of issues, such as partial privatization (Matsumura 
1998; Jain and Pal 2012), mergers (Bárcena-Ruiz and Garzón 2003; Artz et  al. 2009; Méndez-Naya 
2008) and capacity choice (Nishimori and Ogawa 2004; Lu and Poddar 2005), to name but a few.
3  See Cremer et al. (1991) and Matsumura and Matsushima (2004).
4  Modelling the public firm as maximizing social welfare is typical in the mixed oligopoly literature. For 
an alternative approach see Bennett and La Manna (2012) and Zhang and Zhong (2015).
5  D’Aspremont et  al. (1979) show that in a private duopoly with quadratic transportation costs firms 
locate too far away from each other from a social point of view, at the edges of the line.
6  Hotelling (1929) original paper refers to this interpretation with the example of the sweetness of cider. 
For an exposition of the Hotelling model and alternative interpretations of it see also Tirole (1988) and 
Waterson (1994).
7  The literature of transportation costs takes into account not only the average travel time, but also its 
variability. See for example Lam and Small (2001), Small et al. (2005) and Asensio and Matas (2008).

1  Information on these banks can be found at www.cgd.pt, www.bncr.fi.cr, www.corpo​rativ​o.banco​estad​
o.cl and https​://www.the-brow.com/ for the cases of Portugal, Costa Rica, Chile and Uruguay, respec-
tively. Barros and Modesto (1999) provide a detailed analysis of the Portugal banking system in the 90 s.

http://www.cgd.pt
http://www.bncr.fi.cr
http://www.corporativo.bancoestado.cl
http://www.corporativo.bancoestado.cl
https://www.the-brow.com/
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its duration, increases, the disutility steeply increases.8 More importantly, since there 
is no certainty in the exact functional form of transportation costs, it is of relevance 
to examine if and how different assumptions on them change the outcomes that we 
obtain. Cubic transportation costs provide us with a natural alternative assumption 
to perform such an investigation.

To explain our results let us mention that Lu (2006) finds that there is no equilib-
rium in the two-stage location-price model of a mixed duopoly under linear trans-
portation costs, while Cremer et al. (1991) show that an equilibrium does exist and 
yields the socially optimal locations under the alternative assumption of quadratic 
transportation costs. Here we show that under cubic transportation costs, just as in 
Lu (2006), for some locations there is price equilibrium in the second stage of the 
game and for other locations there is not. But, in contrast to Lu, there is a location 
pair for which there is price equilibrium in the second stage of the game and neither 
firm has an incentive to marginally change its location and, moreover, in contrast to 
Cremer et al. (1991), this location pair is not socially optimal.

By comparing the incentives that firms face when choosing their locations under 
linear, quadratic and cubic transportation costs, our analysis also sheds light on why 
the result that a mixed duopoly yields the socially optimal outcome is not robust. To 
minimize transportation costs, the public firm always chooses its location such that 
it is half as far away from the closest edge of the Hotelling line as it is from the loca-
tion of the private firm, irrespective of the convexity of these costs. In contrast, the 
location choice of the private firm involves a trade-off between getting closer to the 
public firm to increase its market share given fixed prices, and getting away from the 
public firm to increase prices,9 and the convexity of the transportation costs affects 
the relative strength of these two forces. As the degree of convexity changes, the 
resolution of the trade-off also changes. This results in the private firm wanting to 
get as close as possible to its competitor under linear transportation costs,10 locating 
at just the right distance from it—from a social point of view-under quadratic trans-
portation costs, and moving too far away from it, to the extent that it locates at one 
edge of the line, under cubic transportation costs.

The robustness of the result that a mixed duopoly yields the socially optimal out-
come has been studied with respect to other assumptions of the model. Matsumura 
and Matsushima (2004) show that it continues to hold when the private and public 
firms have different marginal costs, and Matsumura and Matsushima (2003) show 
that it also holds if there is a sequential choice of locations with the public firm 
acting as the leader. On the other hand, Kitahara and Matsumura (2013) show that 
the result no longer holds when the assumption of inelastic demand is dropped, and 
Benassi et al. (2017) show that it also fails to hold when the assumption of a uniform 
consumers’ distribution is replaced by other distributions.

8  An extreme example would be the choice of an obstetric unit or birth center.
9  This trade-off also appears in the private duopoly, as explained in Tirole (1988), and has been previ-
ously mentioned in the location choice of the private firm in a mixed duopoly in, for instance, Benassi 
et al. (2017).
10  Which in turns leads to the non-existence of equilibrium.
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Yet, none of these papers examines the role of transportation costs, which is the 
focus of our paper.

2 � The model

We use a standard location-price model of a mixed duopoly as studied by Cremer 
et  al. (1991). Consumers are uniformly distributed with unit density on the inter-
val [0,1] and inelastically demand one unit of a product. Two firms produce this 
product with zero marginal cost: firm 0, a welfare-maximizing public firm located 
at x0 , and firm 1, a profit-maximizing private firm located at x1 . We assume that 
0 ≤ x0 < x1 ≤ 1 . The firms compete in the following two-stage game: in the first 
stage, they simultaneously choose their locations.11 In the second stage, they simul-
taneously choose prices. We also assume, contrary to the standard assumption of 
quadratic transportation costs, that a consumer located at y incurs a transportation 
cost of ||y − x0

||3 from buying firm 0’s product and ||y − x1
||3 from buying firm 1’s 

product.

3 � Results

Let pi be firm i’s price and qi firm i’s demand, i = 0, 1. A consumer located at y 
incurs a total cost (price plus transportation cost) of p0 + ||y − x0

||3 to buy from firm 
0 and of p1 + ||y − x1

||3 to buy from firm 1. Let y∗ be the solution of the equation12:

If 0 ≤ y∗ ≤ 1 , y∗ is the location of the consumer indifferent between buying from 
either firm. Moreover, since the consumers located to the left of y∗ prefer to buy 
from firm 0, while those located to the right of y∗ prefer to buy from firm 1, y∗ is also 
firm 0’s demand. On the other hand, if y∗ < 0 (y∗ > 1) then all consumers prefer to 
buy from firm 1 (firm 0). We therefore have:

(1)p0 +
||y∗ − x0

||3 = p1 +
||y∗ − x1

||3

q0 =

⎧⎪⎨⎪⎩

0 if y∗ ≤ 0

y∗ if 0 ≤ y∗ ≤ 1

1 if 1 ≤ y∗

11  We assume for simplicity that firms choose different locations. Just as in Lu (2006) there would be 
infinite price equilibria in the second stage if they chose the same location. As we explain below, we 
restrict our attention to a subset of first-stage locations for which there is a unique price equilibrium in 
the second stage.
12  To see that Eq.  (1) has a solution and it is unique, notice that the continuous function 
d(y) = p

0
+ ||y − x

0
||3 − p

1
− ||y − x

1
||3 : (1) approaches −∞ as y approaches −∞ , (2) approaches +∞ as y 

approaches +∞ , and (3) is strictly increasing.
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It is easy to check that q0 satisfies13:

while q1 is given by

Since demand is completely inelastic, maximization of social surplus is equiva-
lent to minimization of transportation costs, which are given by:

and can be written as:

Firm 0 chooses p0 to minimize TC. It follows from (1) and (5) that to solve this 
problem it sets

To see this notice first that, from (5), transportation costs are minimized when 
q0 =

x0+x1

2
 because TC is strictly decreasing (increasing) in q0 when 0 ≤ q0 ≤ x0 

( x1 ≤ q0 ≤ 1) , dTC
dq0

= 0 when q0 =
x0+x1

2
 and d

2TC

dq2
0

> 0 in the interval x0 ≤ q0 ≤ x1 . 
Notice then that, from (1), firm 0 must set p0 = p1 to achieve q0 =

x0+x1

2
.

Firm 1 chooses p1 to maximize Π1 , where

Suppose first that firm 1 chooses a price p1 in the interval 
−
(
x1 − x0

)3 ≤ p1 − p0 ≤ (
x1 − x0

)3 , which corresponds to x0 ≤ q0 ≤ x1 . The first-
order condition to maximize profits in the interior of this interval is given by:

(2)q0 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

= 0 if p1 − p0 ≤ −
�
x3
1
− x3

0

�
∈
�
0, x0

�
if −

�
x3
1
− x3

0

� ≤ p1 − p0 ≤ −
�
x1 − x0

�3
∈
�
x0, x1

�
if −

�
x1 − x0

�3 ≤ p1 − p0 ≤ �
x1 − x0

�3
∈
�
x1, 1

�
if
�
x1 − x0

�3 ≤ p1 − p0 ≤ �
1 − x0

�3
−
�
1 − x1

�3
= 1 if

�
1 − x0

�3
−
�
1 − x1

�3 ≤ p1 − p0

(3)q1 = 1 − q0

(4)TC =

q0

∫
0

||y − x0
||3dy +

1

∫
q0

||y − x1
||3dy

(5)TC =

⎧
⎪⎪⎨⎪⎪⎩

�
x4
0
−(x0−q0)

4
+(x1−q0)

4
+(1−x1)

4
�

4
if 0 ≤ q0 ≤ x0�

x4
0
+(q0−x0)

4
+(q0−x1)

4
+(1−x1)

4
�

4
if x0 ≤ q0 ≤ x1�

x4
0
+(q0−x0)

4
−(q0−x1)

4
+(1−x1)

4
�

4
if x1 ≤ q0 ≤ 1

(6)p0 = p1

(7)Π1 = p1
(
1 − q0

)

13  We present in the appendix q
0
 written as an explicit function of p

0
 and p

1
.
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It is convenient to obtain �q0
�p1

 directly from the condition (1), which takes the form

when x0 ≤ q0 ≤ x1 . This condition implies that

and therefore firm 1’s first-order condition is:

Let us solve for p0 and p1 in (6) and (8). Condition p0 = p1 from (6) implies 
q0 =

x0+x1

2
 which in turn implies, using (8), that:

Suppose instead that firm 1 chooses a price p1 such that p1 − p0 ≤ −
(
x1 − x0

)3 . 
We will then have p1 < p0 and firm 0 will not minimize TC (which is done by choos-
ing p0 = p1 ). Similarly, if firm 1 chooses a price p1 such that 

(
x1 − x0

)3 ≤ p1 − p0 
we will have p1 > p0 and, again, firm 0 will not minimize TC.

Therefore, if there is an equilibrium in the second stage of the game, it is given 
by the prices in Eq. (9). To know if these prices are indeed an equilibrium, we need 
to make sure that neither firm can improve its objective function by deviating to 
another price.

As argued above, given any p1 [and therefore also firm 1’s price in Eq.  (9)], 
firm 0 minimizes transportation costs by setting p0 = p1 . Thus, firm 0 can-
not lower transportation costs by deviating to another price. However, given 
p0 as in Eq.  (9), firm 1’s response, according to condition (8), only tells us that 
p1 satisfies a necessary condition to maximize Π1 in the interior of the range 
p0 −

(
x1 − x0

)3 ≤ p1 ≤ p0 + (x1 − x0)
3 . Therefore, we have to examine if firm 1 can 

increase its profits by deviating to another price either in this range or outside of it. 
It turns out that for some locations (x0, x1) , firm 1 is able to increase its profits by 
deviating from the price in Eq.  (9). For these locations, there is no equilibrium in 
the second stage of the game. Technically, the reason for the non-existence of equi-
librium is the lack of quasi-concavity of firm 1’s profit function. For these locations, 
given p0 as in Eq. (9) although firm 1’s profit function has one local maximum at 
p1 = p0 , it has another one that yields higher profits at another value of p1.

�Π1

�p1
= −p1

�q0

�p1
+ 1 − q0 = 0

p0 +
(
q0 − x0

)3
= p1 +

(
x1 − q0

)3

�q0

�p1
=

1

3
(
q0 − x0

)2
+ 3

(
x1 − q0

)2

(8)
�Π1

�p1
=

−p1

3
(
q0 − x0

)2
+ 3

(
x1 − q0

)2 + 1 − q0 = 0

(9)p0 = p1 =
3
(
2 − x0 − x1

)(
x1 − x0

)2
4
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Proposition 1  For every x0 , there exists x∗
1
∈

�
3x0+2

5
,

�√
13−2

�
x0+5−

√
13

3

�
 such that 

there exists a Nash equilibrium in prices in the second stage of the game if x1 > x∗
1
 

while there does not exist equilibrium if x1 < x∗
1
 . Whenever it exists, the equilibrium 

is given by Eq. (9).

Proposition 1 tells us that there exists price equilibrium in the second stage of the 
game if firms are sufficiently far apart, but not otherwise. It tells us that, for each x0 , 
there is a cutoff point x∗

1
 such that x1 needs to be further away from x0 than this point 

to have equilibrium.
It follows from Proposition  1 that the restriction x0 ≤ 0.34 , x1 ≥ 0.66 , which 

amounts to banning firms from locating at distance smaller than 0.16 from the city 
center, is a sufficient condition for a price equilibrium to exist in the second stage of 
the game. We impose such assumption on the locations of firms before proceeding 
with the analysis of the first stage. This restriction may be justified by zoning regula-
tions [see for example Lai and Tsai (2004), Chen and Lai (2008) or Matsumura and 
Matsushima (2012)]. A particular type of zoning regulation bans some businesses 
from locating around the city center for several reasons. One of them is pollution, 
which tends to be particularly intense in this area14 and thus calls for the prohibi-
tion of polluting businesses. Another reason is traffic congestion, for which busi-
nesses that by their nature generate a lot of traffic may also be banned around the 
city center.15

Let us consider the first stage of the game. Replacing the equilibrium prices p0 
and p1 in (9), and the implied firm 0’s demand q0 , into the transportation costs in (5) 
and firm 1’s profits in (7), we obtain both transportation costs and firm 1’s profits as 
a function of the first-stage locations x0 and x1 as follows:

In the first stage of the game, firm 0 chooses x0 to minimize TC as given in (10) 
and firm 1 chooses x1 to maximize Π1 as given in (11). Minimization of TC with 
respect to x0 leads to the following first-order condition:

(10)
TC =

x4
0
+ 2

(
x1−x0

2

)4

+
(
1 − x1

)4

4

(11)Π1 =
3
(
x1 − x0

)2(
2 − x1 − x0

)2
8

14  As evidenced by the closely related fact that some cities have severely limited or completely ban most 
vehicles from the city center, putting special attention in the most polluting vehicles.
15  Also, for historic reasons, the city center in many places has an outstanding cultural value, which 
makes certain businesses incompatible with the preservation of its character.
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The second-order condition is:

Maximization of Π1 with respect to x1 leads to the following first-order condition:

It follows from (14) that, since 𝜕Π1

𝜕x1
> 0 for all x0 < x1 < 1 and �Π1

�x1
= 0 for x1 = 1 , 

firm 1’s optimal choice is x1 = 1 . It follows from (12) and (13) that firm 0’s optimal 
choice is x0 =

x1

3
 . Simultaneous optimization of (10) and (11) therefore yields:

which is a location pair outside the restricted zone and, thus, for which there is equi-
librium in the second stage. This is the unique subgame-perfect equilibrium, or loca-
tion equilibrium, of the whole game.

The problem of non-existence of price equilibrium for some locations in the sec-
ond stage of two-stage location-price models also arises in private oligopolies. We 
follow the approach of this literature (Economides 1984, 1986, 1989)16 and define 
the direction in which �Π1

�x1
 is positive as the ‘relocation tendency’ of firm 1. Simi-

larly, we define the direction in which �TC
�x0

 is negative as the ‘relocation tendency’ of 
firm 0.17

We have shown that with cubic transportation costs, 𝜕Π1

𝜕x1
> 0 for all x0 < x1 < 1 

and thus firm 1’s relocation tendency is toward the right edge, away from firm 0, for 
all interior points, and it is zero at the edge of the line: �Π1

�x1
= 0 for x1 = 1 . When 

x1 = 1 , the relocation tendency of the public firm is towards the private firm when 
x0 <

1

3
 
(

𝜕TC

𝜕x0
< 0

)
 , away from the private firm when x0 >

1

3
 
(

𝜕TC

𝜕x0
> 0

)
 and it is zero 

when x0 =
1

3
 . Therefore, when (x0, x1) = (1∕3, 1) the relocation tendency is zero for 

(12)
�TC

�x0
= x3

0
−
(x1 − x0

2

)3

= 0

(13)
𝜕
2TC

𝜕x2
0

= 3x2
0
+

3

2

(x1 − x0

2

)2

> 0

(14)
�Π1

�x1
=
(
3

2

)(
2 − x0 − x1

)(
x1 − x0

)(
1 − x1

)
= 0

(15)x0 =
1

3
, x1 = 1

16  See also Hinloopen and Van Marrewijk (1999) and Posada and Straume (2004).
17  The literature on private oligopolies uses a slightly different definition for equilibrium in the location-
price game. It considers the whole set E of first-stage locations for which there is unique price equilib-
rium in the second stage, instead of considering only a subset of E as we do here. It then considers the 
zero-relocation locus (in our case is �Π1

�x
1

=
�TC

�x
0

= 0 ). The intersection of this locus with E defines an 
equilibrium (Economides 1986). It is easy to see that our results do not change if we use this alternative 
definition. Notice that with linear transportation costs this alternative approach underscores that when-
ever firms choose locations in E, they have a tendency to move away from this zone and into the zone 
where there is no equilibrium.
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both firms. At this location pair, neither firm improves its objective function by mar-
ginally changing its location.

We can compare the results of linear, quadratic and cubic transportation costs as 
follows. The reaction function of the public firm is the same with all three transpor-
tation costs. This firm always minimizes transportation costs by setting x0 =

x1

3
 . For 

location pairs satisfying this condition, the public firm will have no incentives to 
relocate.

The private firm, in contrast, will behave differently as we change the convexity 
of the transportation costs. There are two forces that drive firm 1’s behavior. First, 
there is an incentive for firm 1 to move closer to firm 0 because with fixed prices, 
this movement increases its demand. Second, there is an incentive for firm 1 to move 
away from firm 0 to increase second-stage prices. An increase in the convexity of 
the cost function increases the strength of the second effect relative to the first one. 
With linear transportation costs, the trade-off of the two effects results in a relo-
cation tendency for firm 1 towards firm 0’s location, which results in turn in the 
absence of equilibrium. If we increase the convexity of transportation costs and con-
sider quadratic transportation costs, firm 1 has a relocation tendency towards firm 0 
if it is far from this firm, but away from firm 0’s location if it is close to it. The relo-
cation tendency vanishes exactly at the social optimum. If we further increase the 
convexity of transportation costs and consider cubic transportation costs, firm 1 has 
a relocation tendency away from firm 0. Since the existence zone of second-stage 
price equilibrium is precisely the zone of locations where firms are not too close, the 
tendency of firm 1 to move away from firm 0 keeps firms in the existence zone and 
leads to an equilibrium with firm 1 at the right edge and firm 0 one-third of the line 
away from the other edge.

Importantly, for the socially optimal locations (1∕4, 3∕4) there is also equilibrium 
in the second stage of the game, but the private firm exhibits a tendency to move 
away from the public firm: 𝜕Π1

𝜕x1
> 0 . Given the public firm’s location x0 = 1∕4 , the 

private firm increases its profits by marginally changing its location from x1 = 3∕4 
to the right.

Proposition 2  (x0, x1) = (1∕3, 1) is the unique location equilibrium of the location-
price game with cubic transportation costs. In this equilibrium locations are differ-
ent from the socially optimal locations (x0, x1) = (1∕4, 3∕4).

4 � Conclusion

We have studied a standard Hotelling location-price model of a mixed duopoly with 
cubic transportation costs. We have shown that, in contrast with the case of linear 
transportation costs, there exists a location pair for which there exists a unique price 
equilibrium in the second stage and neither firm has incentives to marginally relo-
cate. We have also shown that, in contrast with the case of quadratic transportation 
costs, this location pair is not socially optimal.
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Appendix

Proof of Proposition 1

Let p∗ = 3(2−x0−x1)(x1−x0)
2

4
 be the candidate equilibrium common price in Eq.  (9) 

and Π∗
1
=

3(2−x0−x1)
2
(x1−x0)

2

8
 be the candidate equilibrium firm 1’s profits as given in 

Eq. (11). We now examine if given p0 = p∗ , firm 1 can increase its profits above Π∗
1
 

by choosing a price p1 ≠ p∗.
(1) if firm 1 chooses a price in the interval p0 −

(
x3
1
− x3

0

) ≤ p1 ≤ p0 −
(
x1 − x0

)3
, 

then q0 ∈
[
0, x0

]
 and we have

from where

and therefore:

Replacing p1 from (16) into (17) and using p0 = p∗ we obtain

The denominator in the RHS of (18) is positive because 
q0 ≤ x0 < x1 . The numerator is also positive because (a) it is 
decreasing in q0 (its derivative with respect to q0 is equal to 
72q0 − 24

(
x0 + x1 + 1

) ≤ 72x0 − 24
(
x0 + x1 + 1

)
= −24

(
x1 − x0

)
− 24

(
1 − x0

)
< 0 ) 

and (b) it is positive when q0 = x0 (it is then equal to 
(
x1 − x0

)(
−13x0 + 7x1 + 6

)
> 0).

It follows that Π1 is increasing over the whole range 
p0 −

(
x3
1
− x3

0

) ≤ p1 ≤ p0 −
(
x1 − x0

)3 . Let Πa
1
 be firm 1’s profits when 

p1 = p0 −
(
x1 − x0

)3-which implies q0 = x0 - and p0 = p∗ . Then

(16)p0 +
(
x0 − q0

)3
= p1 +

(
x1 − q0

)3

�q0

�p1
=

1

3
(
x1 − q0

)2
− 3

(
x0 − q0

)2

(17)
�Π1

�p1
=

−p1

3
(
x1 − q0

)2
− 3

(
x0 − q0

)2 + 1 − q0

(18)
�Π1

�p1
=

36q2
0
− 24

(
x0 + x1 + 1

)
q0 + 7x2

1
+ 4x0x1 + 6x1 + x2

0
+ 18x0

12
(
−2q0 + x0 + x1

)

Πa
1
=

(
3
(
2 − x1 − x0

)(
x1 − x0

)2
4

−
(
x1 − x0

)3
)(

1 − x0
)
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If we substract from these profits the candidate equilibrium profits Π∗
1
 we obtain, 

after some simplifications,

which implies that firm 1 will not deviate to such a price, and will thus neither devi-
ate to any price p1 with p0 −

(
x3
1
− x3

0

) ≤ p1 ≤ p0 −
(
x1 − x0

)3.
(2) If firm 1 chooses a price in the interval p0 −

(
x1 − x0

)3 ≤ p1 ≤ p0 +
(
x1 − x0

)3 , 
then q0 ∈

[
x0, x1

]
 and we will have:

and thus

Therefore:

Replacing p1 from (19) into (20) and using p0 = p∗ we obtain, after some 
simplifications:

Therefore, �Π1

�p1
= 0 if q0 =

x0+x1

2
 , which implies p1 = p0 = p∗. Notice also that, 

from (20):

and that this second derivative evaluated at p1 = p0 = p∗ (and thus at q0 =
x0+x1

2
 ) is 

negative:

Therefore, p1 = p∗ is a local maximum, and it is also the only value where �Π1

�p1
 

vanishes (in the segment q0 ∈
[
x0, x1

]
 ) unless the following equation has roots in 

q0 ∈
[
x0, x1

]
∶

Πa
1
− Π∗

1
=

(
x1 − x0

)3(
−3x1 + 5x0 − 2

)
8

< 0

(19)p0 +
(
q0 − x0

)3
= p1 +

(
x1 − q0

)3

�q0

�p1
=

1

3
(
q0 − x0

)2
+ 3

(
x1 − q0

)2

(20)
�Π1

�p1
=

−p1

3
(
q0 − x0

)2
+ 3

(
x1 − q0

)2 + 1 − q0

�Π1

�p1
=

[
2q0 − x0 − x1

][
16q2

0
−
(
10

(
x0 + x1

)
+ 12

)
q0 +

(
7x1 − 10x0 + 6

)
x1 + 7x2

0
+ 6x0

]

−12
(
q0 − x0

)2
− 12

(
x1 − q0

)2

�
2Π1

�p2
1

=
−
(
3
(
q0 − x0

)2
+ 3

(
x1 − q0

)2)
+ 6p1

((
q0 − x0

)
−
(
x1 − q0

))
�q0

�p1(
3
(
q0 − x0

)2
+ 3

(
x1 − q0

)2)2
−

�q0

�p1

𝜕
2Π1

𝜕p2
1

=
−4

3
(
x1 − x0

)2 < 0
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Equation (21) is a second degree equation in q0 with discriminant equal to

If the discriminant in (22) is negative �Π1

�p1
 will only vanish at q0 =

x0+x1

2
 (which 

corresponds to p1 = p∗ ) in the segment q0 ∈
[
x0, x1

]
. If this discriminat is posi-

tive, then Eq. (21) will have two roots:

But, qH
0
> x1 , since the positiveness of the discriminant in (22) implies that (a) 

qH
0
>

5x0+5x1+6

11
 , and (b) x1 <

5x0+6

11
 , because this discriminat is strictly decreasing 

in x1 and it is negative when x1 =
5x0+6

11
 . These two facts imply 

qH
0
− x1 ≥ 5x0+5x1+6

11
− x1 =

5x0−11x1+6

11
> 0 . Thus, qL

0
 is the only possible root addi-

tional to q0 =
(x0+x1)

2
 in the range q0 ∈

[
x0, x1

]
 , which cannot therefore be a local 

maximum (since p1 = p∗ is a local maximum and �Π1

�p1
 only vanishes at p∗ and pL 

(associated to qL
0
 ) then Π1 is strictly decreasing in p1 ∈

(
p∗, pL

)
 if p∗ < pL and, 

similarly, it is strictly increasing in p1 ∈
(
pL, p∗

)
 if pL < p∗).

Since we proved above that firm 1 will not deviate to a price p1 such 
that q0 = x0 , the only price that remains to be considered in this interval is 
p1 = p0 +

(
x1 − x0

)3 which corresponds to q0 = x1 . If p0 = p∗ and firm 1 chooses 
such a price, firm 1’s profits will be equal to

Subtracting the candidate equilibrium profits Π∗
1
 from Πb

1
 we obtain:

with

(21)16q2
0
−
(
10

(
x0 + x1

)
+ 12

)
q0 +

(
7x1 − 10x0 + 6

)
x1 + 7x2

0
+ 6x0 = 0

(22)12
(
−29x2

1
+
(
70x0 − 12

)
x1 − 29x2

0
− 12x0 + 12

)

(23)qH
0
=

5x0 + 5x1 + 6 +
√
3

�
−29x2

1
+
�
70x0 − 12

�
x1 − 29x2

0
− 12x0 + 12

16

(24)qL
0
=

5x0 + 5x1 + 6 −
√
3

�
−29x2

1
+
�
70x0 − 12

�
x1 − 29x2

0
− 12x0 + 12

16

Πb
1
=

(
3
(
2 − x0 − x1

)(
x1 − x0

)2
4

+
(
x1 − x0

)3
)(

1 − x1
)

gb
(
x
0
, x

1

)
= Πb

1
− Π∗

1
=

(
3
(
2 − x

0
− x

1

)(
x
1
− x

0

)2
4

+
(
x
1
− x

0

)3
)(

1 − x
1

)

−
3
(
2 − x

0
− x

1

)2(
x
1
− x

0

)2
8
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For any given x0,gb
(
x0, x0

)
= 0 , gb

(
x0, x1

)
 reaches a maximum at x1 =

(7x0+3)
10

 

with gb
(
x0,

(7x0+3)
10

)
=

27(1−x0)
4

16,000
> 0 , and gb

(
x0, 1

)
=

−3(1−x0)
4

8
< 0 . Since 

gb
(
x0, x1

)
 is strictly increasing in x1 for x0 < x1 <

(7x0+3)
10

 , strictly decreasing in x1 

for (7x0+3)
10

< x1 < 1 , and gb
(
x0,

(3x0+2)
5

)
= 0 , it follows that, when 3x0+2

5
≤ x1 ≤ 1 , 

gb
(
x0, x1

) ≤ 0, and firm 1 does not find this deviation profitable, while for 
x1 <

3x0+2

5
 , gb

(
x0, x1

)
> 0 , firm 1 does deviate from the candidate equilibrium 

price and there does not exist an equilibrium in the second stage of the game.
(3) if firm 1 chooses a price in the interval 

p0 +
(
x1 − x0

)3 ≤ p1 ≤ p0 +
(
1 − x0

)3
−
(
1 − x1

)3 , then q0 ∈
[
x1, 1

]
 and we have

from where

and therefore:

Replacing p1 from (25) into (26) and using p0 = p∗ we obtain

The denominator of �Π1

�p1
 is positive because x0 < x1 ≤ q0 . 

�Π1

�p1
 will vanish when 

the numerator does so, which yields a quadratic equation in q0 with discriminant 
equal to

The discriminant in (27) is strictly decreasing in x1 and it is equal to zero when 
x1 = xR

1
 , with

Therefore,

�gb
(
x0, x1

)
�x1

=
−
(
x1 − x0

)2(
10x1 − 7x0 − 3

)
4

(25)p0 +
(
q0 − x0

)3
= p1 +

(
q0 − x1

)3

�q0

�p1
=

1

3
(
q0 − x0

)2
− 3

(
q0 − x1

)2

(26)
�Π1

�p1
=

−p1

3
(
q0 − x0

)2
− 3

(
q0 − x1

)2 + 1 − q0

�Π1

�p1
=

−36q2
0
+ 24

(
x0 + x1 + 1

)
q0 − x2

1
− 4x0x1 − 18x1 − 7x2

0
− 6x0

12
(
2q0 − x0 − x1

)

(27)144
(
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4

)

xR
1
=

�√
13 − 2

�
x0 + 5 −

√
13

3
∈

�
3x0 + 2

5
, 1

�
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(a) when x1 > xR
1
 , the discriminant in (27) is negative and �Π1

�p1
 never vanishes (it 

is negative). It then suffices to consider the price deviation associated to q0 = x1 
(which yields profits Πb

1
 ). Since xR

1
>

3x0+2

5
 , we have that x1 >

3x0+2

5
 and thus 

gb
(
x0, x1

)
< 0 , Πb

1
< Π∗

1
 and there is equilibrium.

(b) when x1 ≤ xR
1
 the discriminant in (27) is positive and �Π1

�p1
= 0 has the fol-

lowing roots:

Now, from (26)

Also, from (26), �Π1

�p1
= 0 implies that

Replacing p1 from (29) and q0 with qc
0
 in (28) we get:

Similarly, when q0 = qd
0
 we get:

Therefore Π1 reaches a local maximum at qc
0
 and a local minimum at qd

0
.

Let Πc
1
 be firm 1’s profits when p1 is such that q0 = qc

0
,

and let gc
(
x0, x1

)
= Πc

1
− Π∗

1
 . gc

(
x0, x1

)
 is the increase in profits when firm 1 

chooses p1 such that q0 = qc
0
 instead of the candidate equilibrium price p∗.

qc
0
=

2x1 + 2x0 + 2 +

√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4

6

qd
0
=

2x1 + 2x0 + 2 −

√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4

6

(28)

�
2Π1

�p2
1

=
−3

(
q0 − x0

)2
+ 3

(
q0 − x1

)2
+ p1

(
6
(
q0 − x0

)
− 6

(
q0 − x1

))
�q0

�p1(
3
(
q0 − x0

)2
− 3

(
q0 − x1

)2)2
−

�q0

�p1

(29)p1 =
(
1 − q0

)(
3
(
q0 − x0

)2
− 3

(
q0 − x1

)2)

�
2Π1

�p2
1

=
−3

√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4

(
x1 − x0

)(√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4 − x0 − x1 + 2

)2

�
2Π1

�p2
1

=
3

√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4

(
x1 − x0

)(√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4 + x0 + x1 − 2

)2

Πc
1
=

(
3
(
2 − x0 − x1

)(
x1 − x0

)2
4

+
(
qc
0
− x0

)3
−
(
qc
0
− x1

)3
)(

1 − qc
0

)
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Since we know that for x1 <
3x0+2

5
 there is no equilibrium (because Πb

1
> Π∗

1
 ), 

while for x1 > xR
1
 there is equilibrium, we will focus our attention on the behav-

iour of gc
(
x0, x1

)
 in the interval x1 ∈

[
3x0+2

5
, xR

1

]
.

We have that gc
(
x0,

3x0+2

5

)
> 0 , gc

(
x0, x

R
1

)
< 0,and we will now prove that 

𝜕gc(x0,x1)
𝜕x1

< 0 for x1 ∈
[
3x0+2

5
, xR

1

]
 . This implies that there exists x∗

1
∈
(

3x0+2

5
, xR

1

)
 

such that Πc
1
= Π∗

1
 if x1 = x∗

1
 and Πc

1
> Π∗

1
 
(
Πc

1
< Π∗

1

)
 if x1 < x∗

1
 
(
x1 > x∗

1

)
 . This in 

turn implies that there does not exist (there exists) equilibrium if x1 < x∗
1
 
(
x1 > x∗

1

)
.

We have:

with

and

Now, f
(
x0, x1

)
< 0 because, as can be easily checked, 𝜕

2f

𝜕x2
1

> 0 , 𝜕f

𝜕x1
< 0 when 

x1 =
3x0+2

5
 , 𝜕f
𝜕x1

> 0 when x1 = xR
1
 and f < 0 when both x1 =

3x0+2

5
 and x1 = xR

1
.

Similarly, h
(
x0, x1

)
< 0 because 𝜕

2h

𝜕x2
1

> 0 , 𝜕h
𝜕x1

> 0 when x1 =
3x0+2

5
 and h = 0 when 

x1 = xR
1
.

Proof of socially optimal locations in Proposition 2

Since demand is inelastic, the socially optimal locations are those that minimize 
transportation costs as given in (5). To find them, remember first that, as shown 
above, q0 =

x0+x1

2
 minimizes transportation costs for any locations x0, x1 . Replacing 

this value back in (5) yields TC as a function of x0 and x1 as given in (10). The first-
order conditions to minimize TC in (10) with respect to both x0 and x1 are:

�gc
(
x0, x1

)
�x1

=
f
(
x0, x1

)√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4 + h

(
x0, x1

)

36

√
3x2

1
+
(
4x0 − 10

)
x1 − 3x2

0
+ 2x0 + 4

f
(
x0, x1

)
= −

(
34x3

1
+
(
−12x0 − 90

)
x2
1
+
(
−18x2

0
+ 60x0 + 60

)
x1 + 4x3

0
+ 6x2

0
− 36x0 − 8

)

h
(
x0, x1

)
= 36x4

1
+
(
51x0 − 195

)
x3
1
+
(
−59x2

0
− 35x0 + 310

)
x2
1

+
(
−39x3

0
+ 235x2

0
− 200x0 − 140

)
x1 + 27x4

0
− 69x3

0

− 14x2
0
+ 76x0 + 16

�TC

�x0
= x3

0
−
(x1 − x0

2

)3

= 0

�TC

�x1
=
(x1 − x0

2

)3

−
(
1 − x1

)3
= 0
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from where we can obtain, respectively, x0 =
x1

3
 and x0 = 3x1 − 2 and, therefore, 

x0 =
1

4
 , x1 =

3

4
 . The second order conditions are also satisfied.

Firm 0’s demand q
0
 written as an explicit function of p

0
 and p

1

If −
(
x3
1
− x3

0

) ≤ p1 − p0 ≤ −
(
x1 − x0

)3 then:

If −
(
x1 − x0

)3 ≤ p1 − p0 ≤ (
x1 − x0

)3 then:

If 
(
x1 − x0

)3 ≤ p1 − p0 ≤ (
1 − x0

)3
−
(
1 − x1

)3 then:

References

Artz, B., Heywood, J.S., McGinty, M.: The merger paradox in a mixed oligopoly. Res. Econ. 63(1), 1–10 
(2009)

Asensio, J., Matas, A.: Commuters’ valuation of travel time variability. Transp. Res. Part E Logist. 
Transp. Rev. 44(6), 1074–1085 (2008)

Bárcena-Ruiz, J.C., Garzón, M.B.: Mixed duopoly, merger and multiproduct firms. J. Econ. 80(1), 27–42 
(2003)

Barros, F., Modesto, L.: Portuguese banking sector: a mixed oligopoly? Int. J. Ind. Organ. 17(6), 869–886 
(1999)

Benassi, C., Chirco, A., Colombo, C.: Mixed spatial duopoly, consumers’ distribution and efficiency. 
Econ. Lett. 156, 74–77 (2017)

Bennett, J., La Manna, M.: Mixed oligopoly, public firm behavior, and free private entry. Econ. Lett. 
117(3), 767–769 (2012)

Chen, C.S., Lai, F.C.: Location choice and optimal zoning under Cournot competition. Reg. Sci. Urban 
Econ. 38(2), 119–126 (2008)

Cremer, H., Marchand, M., Thisse, J.F.: Mixed oligopoly with differentiated products. Int. J. Ind. Organ. 
9(1), 43–53 (1991)

q0 =
x0 + x1

2
−

√√√√4
(
p0 − p1

)
−
(
x1 − x0

)3
12

(
x1 − x0

)

q0 =

�
x0 + x1

�
2

+

⎛⎜⎜⎜⎝

�
4
�
p1 − p0

�2
+
�
x1 − x0

�6
8

−
p0 − p1

4

⎞⎟⎟⎟⎠

1∕3

−

�
x1 − x0

�2

4

�√
4(p1−p0)

2
+(x1−x0)

6

8
−

p0−p1

4

�1∕3

q0 =
x0 + x1

2
+

√√√√4
(
p1 − p0

)
−
(
x1 − x0

)3
12

(
x1 − x0

)



149

1 3

Mixed duopoly in a Hotelling framework with cubic transportation…

D’Aspremont, C., Gabszewicz, J.J., Thisse, J.F.: On Hotelling’s “stability in competition”. Econometrica 
47(5), 1145–1150 (1979)

Economides, N.: The principle of minimum differentiation revisited. Eur. Econ. Rev. 24(3), 345–368 (1984)
Economides, N.: Minimal and maximal product differentiation in Hotelling’s Duopoly. Econ. Lett. 21(1), 

67–71 (1986)
Economides, N.: Quality variations and maximal variety differentiation. Reg. Sci. Urban Econ. 19(1), 

21–29 (1989)
Hinloopen, J., Van Marrewijk, C.: On the limits and possibilities of the principle of minimum differentia-

tion. Int. J. Ind. Organ. 17(5), 735–750 (1999)
Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
Jain, R., Pal, R.: Mixed duopoly, cross-ownership and partial privatization. J. Econ. 107(1), 45–70 (2012)
Kitahara, M., Matsumura, T.: Mixed duopoly, product differentiation and competition. Manch. Sch. 

81(5), 730–744 (2013)
Lai, F.C., Tsai, J.F.: Duopoly locations and optimal zoning in a small open city. J. Urban Econ. 55(3), 

614–626 (2004)
Lam, T.C., Small, K.A.: The value of time and reliability: measurement from a value pricing experiment. 

Transp. Res. Part E Logist. Transp. Rev. 37(2–3), 231–251 (2001)
Lu, Y.: Hotelling’s location model in mixed duopoly. Econ. Bull. 8(1), 1–10 (2006)
Lu, Y., Poddar, S.: Mixed oligopoly and the choice of capacity. Res. Econ. 59(4), 365–374 (2005)
Matsumura, T.: Partial privatization in mixed duopoly. J. Public Econ. 70(3), 473–483 (1998)
Matsumura, T., Matsushima, N.: Mixed duopoly with product differentiation: sequential choice of loca-

tion. Aust. Econ. Pap. 42(1), 18–34 (2003)
Matsumura, T., Matsushima, N.: Endogenous cost differentials between public and private enterprises: a 

mixed duopoly approach. Economica 71(284), 671–688 (2004)
Matsumura, T., Matsushima, N.: Locating outside a linear city can benefit consumers. J. Reg. Sci. 52(3), 

420–432 (2012)
Méndez-Naya, J.: Merger profitability in mixed oligopoly. J. Econ. 94(2), 167–176 (2008)
Nishimori, A., Ogawa, H.: Do firms always choose excess capacity? Econ. Bull. 12(2), 1–7 (2004)
Posada, P., Straume, O.R.: Merger, partial collusion and relocation. J. Econ. 83(3), 243–265 (2004)
Small, K.A., Winston, C., Yan, J.: Uncovering the distribution of motorists’ preferences for travel time 

and reliability. Econometrica 73(4), 1367–1382 (2005)
Tirole, J.: The Theory of Industrial Organization. MIT Press, Cambridge, MA (1988)
Waterson, M.: Models of product differentiation. In: Cable, J. (ed.) Current Issues in Industrial Econom-

ics, pp. 105–133. Palgrave, London (1994)
Zhang, Y., Zhong, W.: Are public firms always less innovative than private firms? Jpn. Econ. Rev. 66(3), 

393–407 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Mixed duopoly in a Hotelling framework with cubic transportation costs
	Abstract
	1 Introduction
	2 The model
	3 Results
	4 Conclusion
	Acknowledgements 
	References




