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Abstract The modifiable areal unit problem refers to the modifications of any statis-
tical analysis when changing the scale of observation (e.g. from region to countries)
or the aggregation criterion (e.g. different partitions of one country at a given scale).
In a previous work (Arbia in Spatial data configuration in the statistical analysis of
regional economics and related problems, Kluwer, Dordrecht 1989), we analyzed the
effects of the modifiable areal unit problem on statistical analysis without referring
to any specific random field. The quoted work concentrated on the modification of
the first and second order properties of a random field. In this paper we reanalyse
the same problem by looking specifically at the effects of MAUP on linear spatial
econometric models looking in particular at the SARAR (1,1) model.
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1 Introduction

The MAUP (Modifiable Areal Unit Problem) is a particular manifestation of the more
general Modifiable Unit Problem discussed by Yule and Kendall (1950) and has a
long tradition in Statistics and Geography. It manifests itself in two ways: the scale
problem dealing with the indeterminacy of any statistical measure to changes in the
level of aggregation of data, and the aggregation problem having to do with the in-
determinacy of any statistical measures to changes in the aggregation criterion at a
given spatial scale. A full understanding of the effects of MAUP is relevant in many
statistical issues: to assist the choice of the scale of analysis and of the spatial par-
tition to be considered in geographical studies, to avoid ecological fallacies, to infer
individual (or disaggregated level) relationships from spatially aggregated data, to in-
terpret correctly the parameters’ estimates, to identify the worst cases scenarios when
changing the level of aggregation, to suggest how to approximate the value of param-
eters when we are interested at a fine level of aggregation (e.g. in EU the NUTS-3
level), but we only avail data at a coarser level of aggregation (e.g. in the NUTS-2
level), to suggest grouping criteria that preserve some properties of the estimators
when choosing between alternative zoning systems at a given scale, in spatial inter-
polation and small area estimation to name only few. The effects of MAUP on statis-
tical measures pioneered by Gehlke and Biehl (1934), Yule and Kendall (1950) and
Robinson (1950), have been studied at length by Openshaw and Taylor (1979) and
Arbia (1989) amongst the others. In particular the effects on standard econometric
models are well known dating back to the early contributions of Prais and Aitchin-
son (1954), Theil (1954), Zellner (1962), Cramer (1964), Haitovsky (1973), Orcutt
et al. (1968) and more recent contributions are found in Barker and Pesaran (1989),
Okabe and Tagashira (1996), Tagashira and Okabe (2002), Griffith et al. (2003). The
main results found in the literature are that the GLS estimators of regression’s param-
eters are BLUE with a sampling variance greater than that obtained using GLS on the
original data. Such underestimation of the variance of the estimators leads to biases
in the hypothesis testing on the parameters leading to wrong inferential conclusions.
The null hypothesis is rejected more frequently than it should and we accept as good
models that should be discarded. The loss in efficiency due to aggregation depends on
the grouping criterion and it is minimized when groups are made so as to maximize
the within group variability with respect to the between group variability. Further-
more the coefficient of determination R2 is emphasized and generally micro-data can
better discriminate between alternative specifications of the models.

In a bivariate setting Arbia (1989) derived the formal relationship between the
simple Pearson’s correlation coefficient at the original process level (say level-
1) and the correlation at the aggregate process level (say level-2) when data are
spatial correlated. Conclusions were based on two particular specifications of the
variance-covariance matrix of X and Y, namely: (i) the uniformly covariant variance-
covariance matrix where all individual units are equally correlated introduced by
Smith (1980) also termed the equicorrelated hypothesis by Shabenberger and Got-
away (2000) and the uniform weights assumption by Kelejian (2008), and (ii) the
locally covariant variance-covariance matrix where each individual unit is correlated
with only its first order neighbor through a common parameter.



Effects of MAUP on spatial econometric models 175

In this paper we explicitly study the effects on the precision of the parameters’
estimates in spatial econometric models. We present here some results of our ap-
proach and we consider, in particular, the effects on the SARAR linear models. We
will present the theory and some examples based on artificial data. Results are orga-
nized in the following way. In Sect. 2 we will consider the effects of MAUP on spatial
linear models while Sect. 3 contains some concluding remarks and some indications
for future research.

2 Effect of MAUP on the regression coefficients estimators efficiency

Let us consider the effects of aggregation on linear spatial econometric models and
let us refer to the general formulation of a SARAR (1,1) (model Kelejian and Prucha
(1998)):

y
n·1

= λ W
n·n y

n·1
+ X

n·k β
k·1

+ u
n·1

|λ| < 1

(1)
u
n·1

= ρ W
n·n u

n·1
+ ε

n·1
|ρ| < 1

where X is an n by k matrix of known constants, ε
n·1

∼ N.I.D(0, σ 2
ε I ) and W is the

row-standardized n by n matrix defined according to the rook’s case definition. The
first equation considers the spatially lagged variable of the dependent variable as
one of the regressors and may also contain spatially lagged variables of some of the
exogenous variables. The second equation considers a spatial model for the stochastic
disturbances. In the previous equation if λ = 0 we have the Spatial Error Model, if
ρ = 0 the Spatial Lag Model, Arbia (2006). Finally if λ = ρ = 0 we have the classical
linear econometric model with no spatial effects. We will review the effects of MAUP
on such model considering different combinations of the spatial parameters λ and ρ.

2.1 Effects on the benchmarking classical econometric model

Just to produce some benchmarking results, let us start considering the classical linear
econometric model with no spatial effects (λ = ρ = 0)

y
n·1

= X
n·k β

k·1
+ ε

n·1
(2)

with ε
n·1

∼ N.I.D(0, σ 2
ε I ) and let us define the aggregated data as:

X∗
m·k = G

m·n X
n·k

y∗
m·1

= G
m·n y

n·1
ε∗
m·1

= G
m·n ε

n·1

with m < n and where the aggregation m by n matrix G is taken in the case of
perfect aggregation, discussed by Theil (1954), in which each level-2 unit contains
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the same number of level-1 units. In this way we neglect the aggregated problem and
we concentrate only on the scale problem.
G is defined as:

G
m·n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r times︷ ︸︸ ︷
1 . . . 1 0 . . . . . . . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

. . . . . . . . .

0 . . . 0 0 . . . 0 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the integer r is given by r = n
m

.

The aggregated model is:

y∗
m·1

= X∗
m·k β∗

k·1
+ ε∗

m·1
(3)

E(ε∗)
m·1

= 0

E(ε∗ε∗T )
m·m

= σ 2
ε (GGT )

m·m
= rσ 2

ε I
m·m = σ 2

ε∗ I
m·m

where the regression coefficients β∗
k·1

are the parameters of the aggregated model,

GGT = r I
m·m and σ 2

ε∗ = rσ 2
ε .

We call β̂∗
OLS
k·1

the OLS estimators of the parameters β∗
k·1

in (3):

E(β̂∗)
k·1

=
(
X∗T X∗)−1

X∗T y∗ =
(
XT GT GX

)−1
XT GT Gy ≡ f (r;σ 2

ε ) (4)

Furthermore we have that the variance of the OLS estimators are given by

�
β̂∗

k·k
= Var(β̂∗) = σε∗

(
X∗T X∗)−1 = σ 2

ε

(
XT GT GX

)−1 ≡ f (r, σ 2
ε ) (5)

where �
β̂∗ is a k by k variance-covariance matrix and the OLS estimator is not fully

efficient, the loss in efficiency depending on the aggregation criterion (r) and on the
variance of the random component.

Here below we show some results based on the above expressions. A regular
square lattice grid 64-by-64 (n = 4096) is progressively aggregated by constituting
groups of 4 neighboring units into a 32-by-32 (n = 1024), 16-by-16 (n = 256), 8-
by-8 (n = 64) and 4-by-4 (n = 16). Correspondingly, the number of units in each
groups are r = 4, 16, 64, 256, 1024. We consider only one independent variable
(k = 1) and the values 1 and 0.5 for the true β . The results are displayed in Fig. 1:
the efficiency loss is monotonic and there is no systematic effect due to aggregation
depending on different values of β .
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Fig. 1 Efficiency loss of the estimator of the regression coefficient at different scale levels

2.2 Effects on the Spatial Lag model

Let us now consider an alternative model where a spatially lagged dependent variable
is included in the list of independent variables (Spatial Lag model. See Anselin 1988;
Arbia 2006):

y
n·1

= X
n·k β

k·1
+ λW

n·n y
n·1

+ ε
n·1

(6)

where ε
n·1

∼ N.I.D(0, σ 2
ε I ) and W is the row-standardized n by n matrix defined

according to the rook’s case definition. The model can be recast:

y
n·1

=
(
I − λ

n·n W
)−1

X
n·k β

k·1
+ u

n·1
(7)

where u
n·1

= (I − λ
n·nW)−1 ε

n·1
hence

E( y
n·1

) = (I − λ W)−1 Xβ

E(uuT )
n·n

= σ 2
ε (I − λW)−1 (I − λW)−T

see Arbia (2006).
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We define the aggregated data as:

X∗
m·k = G

m·n X
n·k; y∗

m·1
= G

m·n y
n·1

; ε∗
m·1

= G
m·n ε

n·1
,

with m < n, and the aggregated model is:

y∗
m·1

= X∗
m·k β∗

k·1
+ λ∗ W ∗

m·m y∗
m·1

+ ε∗
m·1

(8)

where W ∗
m·m is exogenously given and represent the weight matrix at the aggregated

level. We can rewrite (7) as:

y∗
m·1

= (I − λ∗
m·mW ∗)−1X∗

m·k β∗
k·1

+ u∗
m·1

(9)

where u∗
m·1

= (I − λ∗
m·mW ∗)−1 ε∗

m·1
.

Hence

E(u∗u∗T )
m·m

= E
[(

I − λ∗W ∗)−1
ε∗ε∗T

(
I − λ∗W ∗)−T

]

= E
[
(I − λW)−1 GεεT GT (I − λW)−T

]

= σ 2
ε

[
(I − λW)−1 GGT (I − λW)−T

]

= rσ 2
ε

[
(I − λW)−1 (I − λW)−T

]
.

The model in (8) contains a spatial lag in the dependent variable. This term is a en-
dogenous and models of this kind are usually estimated via Maximum Likelihood or
Instrumental Variables (IV method) when λ is unknown. On the contrary if is known
the GLS estimator coincides with the Maximum Likelihood. In the remainder of this
paper we are going to consider the spatial parameter λ under experimental control
and we are going to monitor how the precision of the estimator changes for different
values of it. As a consequence considering the GLS estimator is not a limitation in
the present analysis. The GLS estimators of β∗

k·1
, β̂∗

GLS
k·1

are given by:

β̂∗
GLS

k·1
=

(
X∗T

k·m �−1
m·m X∗

m·k

)−1

X∗T

k·m �−1
m·m y∗

m·1
(10)

where

�
m·m = r

[(
I − λ∗

m·mW ∗)−1 (
I − λ∗

m·mW ∗)−T
]

.

Hence

β̂∗
GLS =

{
XT GT

(
I − λ∗W ∗)T (

I − λ∗W ∗)GX
}−1
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× XT GT
(
I − λ∗W ∗)T (

I − λ∗W ∗)Gy ≡ f (r, λ). (11)

In this case the variance of the GLS estimators are given by:

�
β̂∗

k·k
= Var(β̂∗

GLS) = σ 2
ε

(
X∗T �−1X∗)−1

= rσ 2
ε

[
XT GT

(
I − λ∗W ∗)T (

I − λ∗W ∗)GX
]−1 ≡ f (r, σ 2

ε , λ) (12)

where �
β̂∗ is a k by k variance-covariance matrix whose element are a function of

the aggregation criterion, of the stochastic component variance and of the spatial
parameter λ. In order to measure the loss of efficiency produced by the aggregation
it is useful to consider the ratio between the variance of the estimators (that are the
diagonal elements of �

β̂∗ ) at the more disaggregated level and the variance after
aggregation. Thus, for each level of aggregation we can define:

[
EL(β̂∗

GLS)
]
i
= [XT GT (I − λ∗W ∗)T (I − λ∗W ∗)GX]ii

[rXT [(I − λW)T (I − λW)]X]ii ≡ f (r, λ)

for i = 1, . . . , k. (13)

Furthermore, to measure how the presence of a spatial lag affects the loss in efficiency
we can look, at any given level of aggregation, at the ratio between the variance of
the estimators in the classical model and the variance in the spatial lag model, thus
define a relative efficiency loss (REL) which is given by:

[
REL(β̂∗

GLS)
]
i
= [XT GT (I − λ∗W ∗)T (I − λ∗W ∗)GX]ii

[XT GT GX]ii ≡ f (r, λ)

for i = 1, . . . , k. (14)

Results on the loss in efficiency are reported in Fig. 2. In the simulations we consid-
ered only one independent variable (k = 1 with β = 1) and 6 values of the parameter
λ (±0.7; ±0.24; ±0.1).

Values of REL < 1 refer to cases where the REL is exacerbated by the presence of
spatial effects; whereas values of REL > 1 refer to cases value the REL is moderated
by the presence of λ.

Figure 2 shows that the loss in efficiency is more dramatic for high values of λ.
However, when λ = 0.7 the loss tends to diminish increasing the level of aggregation
(r). Conversely when λ = −0.7 the loss is dramatic and independent of the level of
aggregation. In the remaining cases the REL increases with the level of aggregation
with the only exception of λ = 0.24 when aggregation instead reduces the loss. In all
other cases a positive λ has a moderating effect on the efficiency loss and this effect
becomes stronger and stronger increasing the aggregation level.
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Fig. 2 Relative efficiency loss of the estimator of the regression coefficient at different scale levels in a
Spatial Lag Model. Graph is based on 10000 simulations. In all simulations β = 1

2.3 Effects on the SARAR (1,1) model

Let us finally consider the full SARAR model that includes not only a lagged value
of y, but also a spatial model for the residuals, given by:

y
n·1

= λ W
n·n y

n·1
+ X

n·k β
k·1

+ u
n·1

|λ| < 1 (15)

u
n·1

= ρW
n·n u

n·1
+ ε

n·1
|ρ| < 1 (16)

where ε
n·1

∼ N.I.D(0, σ 2
ε I ) and W is the row-standardized n by n matrix defined

according to the rook’s case definition.
Equation (15) considers the spatially lagged variable of the dependent variable y

as one of the regressors and may also contain spatially lagged variables of some of
the exogenous variables. Equation (16) considers a spatial model for the stochastic
disturbances. This model was termed SARAR (1,1) (Kelejian and Prucha 1998) and
encompasses the spatial error and the spatial lag model. The model can be rewritten:

y
n·1

= (I − λ W)−1

n·n
X
n·k β

k·1
+ η

n·1
(17)

where η
n·1

= (I − λ W)−1

n·n
(I − ρ W)−1

n·n
ε

n·1
.

As a consequence:

E(y) = (I − λ W)−1 X β, E(η) = 0
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E(ηηT ) = σ 2
ε [(I − λ W) (I − ρ W)]−1 [(I − λ W) (I − ρ W)]−T

We can now define the aggregated data as:

X∗
m·k = G

m·n X
n·k; y∗

m·1
= G

m·n y
n·1

; ε∗
m·1

= G
m·n ε

n·1
,

with m < n, and the aggregated model as:

y∗
m·1

= λ∗W ∗
m·m y∗

m·1
+ X∗

m·k β∗
k·1

+ u∗
m·1

|λ| < 1

(18)
u∗
m·1

= ρ∗W ∗
m·m u∗

m·1
+ ε∗

m·1
|ρ| < 1

where W ∗ is exogenously given and represents the weight matrix at the aggregated
level.

We can rewrite (18) as:

y∗
m·1

= (I − λ∗
m·mW ∗)−1X∗

m·k β∗
k·1

+ η∗
m·1

(19)

where η∗
m·1

= (I − λ∗ W ∗)−1

m·m
(I − ρ∗ W ∗)−1

m·m
ε∗
m·1

.

Hence

E(η∗η∗T )

= E
[(

I − λ∗W ∗)−1 (
I − ρ∗W ∗)−1

GεεT GT
(
I − λ∗W ∗)−T (

I − ρ∗W ∗)−T
]

= rσ 2
ε

(
I − λ∗W ∗)−1 (

I − ρ∗W ∗)−1 (
I − λ∗W ∗)−T (

I − ρ∗W ∗)−T
.

The GLS estimators of β∗, say β̂∗, now are transformed into:

β̂∗
GLS =

(
X∗T �−1X∗)−1

X∗T �−1y∗ (20)

with

�
m·m = r

(
I − λ∗W ∗)−1 (

I − ρ∗W ∗)−1 (
I − ρ∗W ∗)−T (

I − λ∗W ∗)−T
.

Hence

β̂∗
GLS

k·1
=

[
XT GT

(
I − ρ∗W ∗)T (

I − λ∗W ∗)T (
I − λ∗W ∗) (

I − ρ∗W ∗)GX
]−1

× XT GT
(
I − ρ∗W ∗)T (

I − λ∗W ∗)T (
I − λ∗W ∗) (

I − ρ∗W ∗)Gy

≡ f (r, ρ∗, λ∗). (21)

In this case the variance of the GLS estimator is given by:

�β∗
GLS

k·k
= Var

(
β̂∗

GLS

)
= σ 2

ε

(
X∗T �−1X∗T

)−1
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= rσ 2
ε

(
XT GT

(
I − ρ∗W ∗)T (

I − λ∗W ∗)T (
I − λ∗W ∗) (

I − ρ∗W ∗)GX
)−1

≡ f (r, σ 2
ε , λ∗ρ∗) (22)

which is now a function of the level of aggregation r , of the stochastic component
variance and of the SARAR spatial parameters ρ and λ. Similarly to what we did
with the Spatial Lag Model, we can measure the loss of efficiency produced by the
aggregation on SARAR models. In this case this is equal to:

[
EL

(
β̂∗

GLS

)]
i
= [(XT GT (I − λ∗W ∗)T (I − ρ∗W ∗)T (I − λ∗W ∗)(I − ρ∗W ∗)GX)]ii

[[r(XT (I − λW)T (I − ρW)T (I − λW)(I − ρW))X]]ii
(23)

for i = 1, . . . , k and for each level of aggregation.
Furthermore, in order to assess how the presence of spatial effects modifies the

loss in efficiency, we can look, for any given level of aggregation, at the Relative
Efficiency Loss (REL), that is at the ratio between the variance of the estimators in
the classical model and the variance in the SARAR model:

[
REL

(
β̂∗

GLS

)]
i

= [(XT GT (I − λ∗W ∗)T (I − ρ∗W ∗)T (I − λ∗W ∗)(I − ρ∗W ∗)GX)]ii
[XT GT GX]ii (24)

for i = 1, . . . , k and for each level of aggregation.
Figures 3 and 4 report the REL for various combinations of the parameters

λ and ρ. Here we consider 6 values of the parameters combining the values of
ρ (±0.7; ±0.24; ±0.1) with the values of λ (±0.7; ±0.24; ±0.1).

Figures 3 and 4 show that, at low levels of aggregation, the loss is exacerbated
(REL < 1) with respect to the case of no spatial effect for moderated levels of λ when
ρ is also moderated. Conversely when λ = ±0.7 the loss is always exacerbated apart
from the case in which λ = ρ = 0.7. On the contrary the loss is always mitigated
(REL > 1) at high levels of aggregation when ρ = 0.7 and when ρ > 0 and |λ| < 0.7.
The worst case is when λ = ρ = −0.7. Finally when λ = −0.7 we observe a perfect
ranking of the REL with respect to the value of ρ that ranges from the lowest to the
highest values.

3 Summary and conclusion

In this paper we presented a general framework to analyze the effects of MAUP
on spatial econometric models. In particular dealing with linear spatial economet-
ric models of the SARAR (1,1) class we concentrated on the loss in efficiency of
the parameters’ estimators due to aggregation showing how the presence of spatial
effects affects the classical results. In our analysis we considered the spatial param-
eters as given and studied how they influence the efficiency of the estimators. For
these reasons we limited ourselves to the GLS estimators that, in this experimental
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Fig. 3 Relative Efficiency Loss at various scales for various combinations of the SARAR(1,1) parameters,
with β = 1. Graphs are based on 10000 simulations

situation for any given values of the spatial parameters coincide with the Maximum
Likelihood estimators that are more commonly considered in the literature to tractile
the endogenously of the spatially lagged dependent variable.

The efficiency loss connatural to aggregation is, generally speaking, mitigated by
the presence of a positive spatial correlation parameter and conversely exacerbated
by the presence of a negative spatial correlation parameter. This effect is observed
both with respect to the spatial dependence in the dependent variable and in the er-
ror component even if the pattern of interaction between the two parameter is rather
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Fig. 4 Relative Efficiency Loss at various scales for various combinations of the SARAR(1,1) parameters,
with β = 1. Graphs are based on 10000 simulations

complicated. This result is coherent with the theoretical expectation. Positive spatial
correlation implies that we aggregate between similar values thus preserving vari-
ability. Conversely negative spatial correlation implies aggregation between very dif-
ferent values thus implying a more dramatic enhancement of variability. The results
are also coherent with the previous findings of Arbia (1989). The results presented
here could help to study into details the influence of spatial effects on aggregation of
econometric models. This in turn could lead to important results. First of all it could
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help in identifying worst cases scenarios when changing the level of aggregation.
Secondly it could help to infer the likely value of the models’ parameters at a finer
level of aggregation having in hand data only at a coarser level of aggregation e.g.
exploiting a Bayesian strategy using our results as the likelihood and imposing rea-
sonable priors. In the future we aim at extending the results obtained here to the case
of non-perfect aggregation considering the aggregation (or zoning) problem which
occurs at any given spatial scale. Furthermore we aim at considering the effects of
MAUP on non-linear econometric models like those usually considered in gravity
modelling of spatial interaction flows.
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