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Abstract
Background  Relapse of hepatocellular carcinoma (HCC) due to vascular invasion is common, but the genomic mechanisms 
remain unclear, and molecular determinants of high-risk relapse cases are lacking. We aimed to reveal the evolutionary 
trajectory of microvascular invasion (MVI) and develop a predictive signature for relapse in HCC.
Methods  Whole-exome sequencing was performed on tumor and peritumor tissues, portal vein tumor thrombus (PVTT), and 
circulating tumor DNA (ctDNA) to compare the genomic profiles between 5 HCC patients with MVI and 5 patients without 
MVI. We conducted an integrated analysis of exome and transcriptome to develop and validate a prognostic signature in two 
public cohorts and one cohort from Zhongshan Hospital, Fudan University.
Results  Shared genomic landscapes and identical clonal origins among tumor, PVTT, and ctDNA were observed in MVI 
( +) HCC, suggesting that genomic changes favoring metastasis occur at the primary tumor stage and are inherited in meta-
static lesions and ctDNA. There was no clonal relatedness between the primary tumor and ctDNA in MVI ( – ) HCC. HCC 
had dynamic mutation alterations during MVI and exhibited genetic heterogeneity between primary and metastatic tumors, 
which can be comprehensively reflected by ctDNA. A relapse-related gene signature named RGSHCC was developed based 
on the significantly mutated genes associated with MVI and shown to be a robust classifier of HCC relapse.
Conclusions  We characterized the genomic alterations during HCC vascular invasion and revealed a previously undescribed 
evolution pattern of ctDNA in HCC. A novel multiomics-based signature was developed to identify high-risk relapse 
populations.

Keywords  Hepatocellular carcinoma · Microvascular invasion · Whole-exome sequencing · Circulating tumor DNA · 
Relapse

Introduction

Liver cancer has had the fastest growing mortality rate over 
the decades, with a 5-year survival rate of 20%, the second 
lowest among all cancers [1]. Hepatocellular carcinoma 
(HCC) is the most common pathological type of liver cancer, 
accounting for 75–85% of all cases [2]. As technology has 
improved, so has our understanding of the genetic altera-
tions related to liver carcinogenesis. Genomic analyses have 

delineated several characteristic genomic events associated 
with the etiology of HCC, including FGF19 gene amplifica-
tions and mutations in the CTNNB1 and TP53 genes [3–5]. 
A comprehensive understanding of HCC pathogenesis and 
progression at the molecular level would help us identify 
core oncogenic events for developing new therapeutic strate-
gies but currently remains an unmet need.

Although optimal clinical management has improved the 
survival of HCC patients, the high frequency of postopera-
tive relapse and the presence of metastases limit long-term 
outcomes [6–8]. The risk of relapse is unpredictable in most 
HCC patients in current clinical practice. Microvascular 
invasion (MVI), considered the initial stage of hematog-
enous metastasis of HCC, is an important risk factor that 
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influences the relapse and prognosis of HCC after hepatec-
tomy [9, 10]. However, the genetic mechanisms underlying 
the vascular invasion of HCC, especially the clonal evolution 
between the primary tumor and portal vein tumor thrombus 
(PVTT), remain poorly understood. Therefore, comprehen-
sive genomic profiling based on emerging high-throughput 
technologies and a gene-based predictive model highly 
associated with disease relapse are required to enhance the 
molecular understanding of HCC progression and promote 
individualized treatment of HCC.

Another major challenge in achieving precision medicine 
for HCC is the intratumor heterogeneity and lack of tissue of 
advanced HCC [11]. In this context, circulating tumor DNA 
(ctDNA), a key component of liquid biopsy, has received 
much attention as it integrates genomic information from 
different lesions and can be obtained in a minimally inva-
sive manner [12]. The application prospects of ctDNA in the 
diagnosis and treatment of HCC have been widely discussed 
[13–15]. However, although ctDNA is released throughout 
malignant progression, from initial growth to metastatic 
spread, the evolutionary pattern of ctDNA in different stages 
of HCC remains largely unknown.

Here, we aim to systematically elucidate the genomic 
landscape during the clonal evolution of HCC from the per-
spective of tumor and ctDNA and to identify mutations asso-
ciated with MVI and relapse. We performed whole-exome 
sequencing (WES) of tumor and peritumor tissues, PVTT, 
ctDNA, and peripheral blood mononuclear cells (PBMCs) in 
5 HCC patients with MVI and 5 HCC patients without MVI. 
Using these samples, we compared genomic profiles, includ-
ing mutational landscapes and clonal evolution patterns, 
between HCC patients with MVI and those without MVI 
to investigate the genomic evolution during HCC vascular 
invasion. Finally, focusing on the significantly mutated genes 
(SMGs) associated with MVI, we performed an integrative 
genomic analysis with the transcriptome and developed a 
prognostic signature for relapse prediction in HCC.

Materials and methods

Patient cohort

Biospecimens for WES were collected from 10 patients 
diagnosed with pathologically confirmed HCC during 
curative resection at Zhongshan Hospital, Fudan Univer-
sity between June 2016 and July 2016, including 5 with 
MVI and 5 without MVI. Peritumor tissues, tumor tissues, 
PBMCs, and ctDNA from these 10 patients, as well as 5 
PVTTs from MVI-positive patients, were subjected to WES 
(a total of 45 samples). PBMCs were used as the control. 
Patients were included based on the following criteria: radi-
cal resection; no prior intervention, such as transhepatic 

artery embolization, chemotherapy, or radiotherapy; and no 
history of other malignancies or inflammatory disease. The 
presence of MVI in the tumor was independently judged 
by two experienced pathologists. In addition, we retrospec-
tively collected 172 tumor samples from HCC patients who 
received hepatectomy during January 2012 and December 
2012 in Zhongshan Hospital, Fudan University, as an exter-
nal validation for our signature (PCR cohort) with the same 
inclusion criteria.

Demographic and clinicopathological data, including 
age, sex, laboratory tests, and pathology reports, were col-
lected from the electronic medical record system. Liver 
function was assessed based on the Child‒Pugh scoring 
system. Tumors were staged according to the 8th edition 
of the tumor-node-metastasis (TNM) classification system 
[16]. The postoperative follow-up scheme was conducted 
as previously described [17]. Relapse-free survival (RFS) 
was defined as the interval between surgery and relapse or 
the study endpoint. The clinicopathological characteristics 
of patients were summarized in the Supplementary Table 1. 
All patients were HBV positive and patients with MVI were 
diagnosed as MVI ( +) after surgery. The study design was 
conducted in accordance with both the Declarations of Hel-
sinki and Istanbul and approved by the Ethics Review Board 
of Zhongshan Hospital, and all participants provided written 
consent.

Genomic DNA preparation and WES

Genomic DNA from fresh-frozen specimens and PBMCs 
was extracted using the QIAamp DNA FFPE Tissue Kit and 
QIAamp DNA Blood Mini Kit (Qiagen, Germany), respec-
tively, according to the manufacturer’s instructions. DNA 
was then quantified using a Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific, USA) and assessed for integrity by agarose 
gel electrophoresis.

Sequencing libraries were prepared using the Agilent 
SureSelectXT Low Input Reagent Kit (Agilent Technolo-
gies). Briefly, qualified genomic DNA was sheared to frag-
ments in the range of 180–280 bp using a Biorupter Ultra-
sonicator (Diagenode) and then purified using AMPure 
SPRI beads. Later, DNA fragments were ligated with 
Illumina paired-end indexed adapters and amplified by 
8 cycles of PCR to construct uniquely indexed libraries. 
After size distribution examination on the 4200 TapeSta-
tion High Sensitivity D1000 ScreenTape, the libraries 
were subjected to exon target capture using the SureSelect 
Human All Exon V5 Kit (Agilent Technologies). The cap-
tured exon-enriched libraries were assessed on an Agilent 
2100 Bioanalyzer and quantified using a Qubit 2.0 Fluo-
rometer (Thermo Fisher Scientific, USA). Finally, librar-
ies were sent for sequencing on the Illumina HiSeq 2000 
platform using the format of 150 bp paired-end reads.
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Sequence alignment and variant calling

Filtered raw sequencing data in FastQ format were aligned 
to the reference human genome (UCSC GRCh37/hg19) 
using Burrows‒Wheeler Aligner (BWA) software to gen-
erate mapping results in BAM format [18]. GATK2 and 
Picard were then used for local realignment and base recal-
ibration [19]. Somatic single-nucleotide variations (SNVs) 
were identified using MuTect, and somatic indels were 
detected by GATK Somatic Indel Detector [20]. High-
confidence variants were identified using the following 
criteria: coverage for all samples was more than 10 × , the 
variant allele fraction (VAF) was at least 10% in the tumor 
samples and less than 2% in peritumoral samples and the 
number of reads supporting the variant allele was > 3. 
ANNOVAR was conducted to annotate Variant Call For-
mat (VCF). Somatic SNVs and indels were then compared 
against the single nucleotide polymorphisms (SNPs) pre-
sented in the 1000 Genomes Project to remove common 
SNPs and SNVs with minor allele frequencies greater than 
1% or located in segmental duplications.

Spectra of somatic mutations and mutation 
signature analysis

Mutation spectra of six mutation types (C > T, T > C, 
C > A, T > A, C > G, and T > G) were analyzed in all 
samples. For mutation signature analysis, the relative 
contribution of each mutation signature in each sample 
was statistically quantified based on somatic SNVs using 
the “deconstructSigs” package in the R project [21]. The 
extracted signatures were analyzed for similarity with 30 
previously depicted COSMIC mutation signatures.

Copy number variation (CNV) analysis

GATK software was applied to detect somatic CNVs and 
identify loss of heterozygosity (LOH) regions. The recur-
rently amplified and deleted genomic regions were then 
inferred using the GISTIC algorithm [22]. G-scores were 
calculated to evaluate the frequency and magnitude of 
amplified and deleted genomic fragments. Peak regions 
with a p value less than 0.05 were defined as significant 
CNV regions.

Identification of SMGs

The MutSigCV method was used to quantify the 
importance of nonsilent mutations (including SNVs 
and indels) and estimate the background mutation rate 

based on silent mutations. SMGs were defined as genes 
with a significantly higher mutation frequency than 
the background mutation rate (false discovery rate 
(FDR) < 0.05). In HCC patients with MVI, shared SMGs 
among tumors, PVTTs, and ctDNA were identified as 
SMGs associated with MVI.

Phylogenetic tree construction and driver mutation 
labeling

A phylogenetic tree was constructed based on nonsynony-
mous somatic mutations, including SNVs and indels, using 
PHYLIP to analyze the evolutionary trajectory of HCC 
[23]. Phylogenetic tree can be used to visualize the affinities 
between species or genes using tree branching graphs, and 
to calculate the evolutionary relationships between organ-
isms by performing mathematical and statistical algorithms 
on gene mutations. The lengths of the branches and trunks 
were determined according to the number of mutated genes. 
For driver labeling, we collected a list of potential driver 
genes for HCC by a literature review of sequencing studies 
and assessed the mutation types in these genes. Genes were 
identified as driver genes and labeled to the phylogenetic 
tree when they had one of the following three variant types: 
nonsynonymous SNVs or indels, copy number amplifica-
tion of oncogenes or fragment deletion of tumor suppressor 
genes and breakpoints in gene structure.

Cancer cell fraction (CCF) and mutation cluster 
analysis

Dynamic changes in the mutational landscape were analyzed 
using CCF value as mentioned previously [24]. This allows 
us to analyze the proportion of cells carrying a particular 
gene mutation in different samples, which can reflect the 
dynamic changes in the mutational characteristics of tumors 
during metastasis. For each somatic mutation, CCF was cal-
culated using the following formula: VAF =

α×CCF

α×CNT+1−α×CNP
 , 

where α indicates the tumor purity and CNT and CNP rep-
resent the copy number of tumor and peritumor samples, 
respectively. The tumor purity and copy number of each 
sample were detected using ABSOLUTE [25]. VAF was 
calculated using the following formula: VAF =

N
var

N
var

+N
ref  , 

where Nvar and Nref indicate the number of reads supporting 
the variant allele and reference allele, respectively. For muta-
tion cluster analysis, mutation clusters were inferred based 
on somatic SNVs and indels using the PyClone method. 
Clusters containing only silent mutations were removed 
before further analysis.
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Analysis of public databases

Liver cancer cohorts from two public databases were 
employed in this study: the LIHC cohort from The Can-
cer Genome Atlas (TCGA) database (n = 356) and the 
GSE14520 cohort in the Gene Expression Omnibus (GEO) 
database (n = 221) from the Liver Cancer Institute (LCI) 
at Zhongshan Hospital. Patients with pathological types 
of HCC were included. The LIHC cohort was used as the 
training dataset, and the GSE14520 cohort was employed 
for external validation (LCI validation dataset 1). RNA 
sequencing data and clinical information were downloaded 
from the corresponding websites. For data processing, tran-
scriptome data from the LIHC cohort were logarithmically 
transformed and normalized; gene expression profiles from 
the GSE14520 cohort were processed on the Affymetrix 
platform. The probe names were converted into the cor-
responding gene symbols according to the annotation of 
each cohort. Batch effects were eliminated using the Com-
Bat method. Gene set enrichment analysis was performed 
with C2 gene sets obtained from the Molecular Signatures 
Database. The Tumor Immune Dysfunction and Exclusion 
(TIDE) algorithm, a computational approach to evaluate 
tumor immune evasion potential based on gene expression 
profiles, was used to predict the immunotherapy response of 
HCC samples [26]. The regimen of immunotherapy refers to 
anti-PD-1 antibodies (pembrolizumab, nivolumab) and anti-
CTLA-4 antibody (ipilimumab) based on the TIDE website.

Development of the relapse‑related gene signature 
(RGSHCC) for HCC

Overlapping genes in MVI-associated SMGs and the TCGA-
LIHC cohort and GSE14520 cohort were identified as 
relapse-related genes. Univariate Cox regression analysis of 
these genes was then performed in the TCGA training data-
set to screen for prognosis-related genes. The least absolute 
shrinkage and selection operator (LASSO) Cox regression 
model was used to determine the final genes to be included 
in the signature and to calculate the corresponding gene 

coefficients. Analysis was performed using the “glmnet” 
package in the R project with tenfold cross-validation. A 
prognostic signature based on the weighted gene expression 
was finally constructed, and the model score was calculated 
using the following equation: RGSHCCScore =

∑n

i=1
cixi , 

where x and c indicate the expression levels of specific genes 
and the corresponding coefficient, respectively.

Quantitative RT‒PCR (qRT‒PCR)

Tumor samples were treated with TRIzol reagent (Invitro-
gen) to extract total RNA using a general protocol. After 
quantification by a Qubit 2.0 Fluorometer (Thermo Fisher 
Scientific, USA), RNA was reverse-transcribed into cDNA 
using the PrimeScript RT reagent Kit with gDNA Eraser 
(TaKaRa, Japan). The PCR system was prepared using RT2 
SYBR Green qPCR Master Mix (QIAGEN), and qRT‒PCR 
was performed on the Applied Biosystems™ QuantStudio™ 
3 platform (Thermo Fisher Scientific, USA). GAPDH was 
used as the control. The relative mRNA levels of target 
genes were determined using the ΔΔCt method. The primers 
for qRT‒PCR are summarized in Supplementary Table 2.

Statistical analyses

The data are presented as the mean ± standard deviation 
(SD) and frequencies (proportion) according to the variable 
type. Quantitative data were compared using Student’s t 
test or the Mann‒Whitney U test, and the composition ratio 
between groups was compared using Pearson’s chi-square or 
Fisher’s exact test. The Kaplan − Meier method and log-rank 
test were used for survival analysis. All statistical analyses 
were performed using SPSS (version 23.0; IBM) software 
or R project (version 4.0.0) with a two-sided p value of 0.05 
as a statistically significant threshold.

Results

Profiles of the genomic alterations in HCC patients 
with and without MVI

To investigate the genomic alterations in HCC during the 
process of MVI, we performed WES of 45 samples, includ-
ing paired tumor and peritumor tissues, PVTTs, PBMCs, 
and ctDNA, from 10 HCC patients (5 of whom had no MVI 
and 5 of whom had MVI) with an average sequencing depth 
of 232.74 × (ranging from 198 × to 280 ×) for tissues and 
339.6 × (ranging from 302 × to 406 ×) for ctDNA (Fig. 1A). 
Approximately 99.6% of the targeted bases had a coverage 
depth greater than 10 × . We performed strict data qual-
ity control on each sample by applying filters to exclude 
sequence artifact features enriched in FFPE samples. Finally, 

Fig. 1   Overview of the genomic alterations in HCC patients with and 
without MVI. A Flow chart of whole-exome sequencing in the pre-
sent study. Preoperative PBMCs and ctDNA and postoperative peri-
tumor tissue (PT), tumor tissue (TT), and PVTT from MVI ( +) cases 
of 10 HCC patients were collected for sequencing. B Top: The distri-
bution of 6 substitution mutations in all samples. Bottom: The rela-
tive coefficients of mutation signatures in all samples. C Patterns of 3 
identified mutation signatures (Signature A, B, and C) and their most 
similar COSMIC mutation signatures. D Top: The whole-genome 
distribution of CNVs (upper, red represents amplification; lower, 
blue represents deletion) inferred using the GISTIC algorithm. The 
G-score was used to assess the frequency and magnitude of CNVs. 
Bottom: The distribution of CNVs in samples from the MVI ( – ) 
group (L01-05) and the MVI ( +) group (H06-10)

◂
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by mapping sequence reads to the human reference genome, 
we identified a total of 10,945,468 SNVs and 1,567,536 
indels, with a median of 775 (ranging from 587 to 1,067) 
somatic mutations per tumor.

Our analysis of the mutation spectrum revealed a pre-
dominance of C > T and T > C transitions and C > A transi-
tions in all samples (Fig. 1B, top panel), a feature shared by 
other HCC cohorts [4, 5, 27, 28]. Furthermore, the mutation 
spectra were fairly consistent between tumors and PVTTs 
from the same patient with MVI. No significant difference in 
mutational spectrum was observed between MVI ( – ) HCCs 
and MVI ( +) HCCs.

We next performed mutation signature analysis of 96 
substitution patterns to explore the temporal dynamics of 
the genomic landscapes in MVI ( – ) HCCs and MVI ( +) 
HCCs and identified 3 signatures across almost all samples 
(except tumor tissue of L05) (Fig. 1B, bottom panel). Sig-
natures A and B, predominant signatures in most samples, 
were mainly characterized by C > T transitions and exhib-
ited high similarity to the previously described Cosmic Sig-
nature 5 (A: cosmic similarity = 0.82; B: cosmic similar-
ity = 0.86), which has been reported to be associated with 
aging (Fig. 1C) [29]. Signature C, characterized by T > A 
mutations, was only dominant in 3 MVI ( – ) tumor samples 
and had a close correlation (cosmic similarity = 0.98) with 
Cosmic Signature 22, which is known to be a result of aris-
tolochic acid exposure [30]. A significant feature revealed 
by analyses was the similar mutation signature profile of 
tumor and PVTT samples in HCC patients with MVI, sug-
gesting that metastatic lesions formed after vascular invasion 
follow a similar mutational process as the primary tumors. 
In addition, we found that in HCC patients with MVI ( – ), 
the relative contributions of signatures showed substantial 
variation between tumors and ctDNA; in contrast, in HCC 
patients with MVI ( +), the contribution of signatures was 
comparable, suggesting that ctDNA can effectively reflect 
the mutation features of tumors and metastases only when 
HCC progresses to the MVI stage.

In addition, CNV analysis revealed 56 amplified frag-
ments harboring several genes, such as PPIAL4D, TARP, 
and DAD1, and 17 deleted fragments containing genes, 
including FCGR1A, MUC5B, and KDM6B, across the 
entire sample (Fig. 1D, top panel). The number of CNVs 
in the tumor and PVTT was significantly greater than that 
in the peritumor tissue, and more CNVs were detected in 
tumor and PVTT samples from the MVI ( +) group than 
in those from the MVI ( – ) group, suggesting the involve-
ment of CNVs in hepatocarcinogenesis and vascular inva-
sion (Fig. 1D, bottom panel). In addition, similar numbers of 
CNVs to those in tumor tissue could be detected in ctDNA 
in 3 HCC patients with MVI, indicating that the charac-
teristics of genomic CNVs can be reflected from ctDNA 
to some extent in MVI ( +) HCCs. Taken together, these 

findings demonstrate that initial hematogenous metastases 
share similar genomic alterations with the primary tumor, 
and these features can be captured from ctDNA at the MVI 
stage of HCC.

Overview of somatic mutations and SMGs in HCC 
patients with and without MVI

To determine the potential molecular relationships among 
peritumor tissue, tumor tissue, PVTT, and ctDNA in each 
patient, we analyzed the nonsynonymous somatic mutations, 
including SNVs and indels, across all samples. As shown in 
Fig. 2A, different extents of shared mutations were detected 
in tumor tissues and PVTTs of MVI ( +) HCCs (account-
ing for 56.6%-83.2% of all mutations in each patient). In 
addition, tumor and PVTT samples, as well as ctDNA, of a 
given MVI ( +) case harbored fairly overlapping repertoires 
of somatic mutations, although to varying extents among 
individuals (ranging from 28.8% to 52.3%). However, in the 
MVI (-) patients (except L03), there were few shared muta-
tions between tumor tissue and ctDNA (0.0–0.5%). These 
results suggest a potential clonal relatedness and identical 
origin between the primary tumor and PVTT, as well as 
ctDNA, in MVI ( +) HCC.

Discovery of key mutation events is an essential step to 
fully uncover the molecular mechanisms of tumorigenesis 
and progression [31]. Hence, we next revealed genes that 
were significantly mutated in the samples (Fig. 2B, Top 
30 genes are shown). TP53 was the most significant SMG 
and was mutated in all tumor and PVTT samples (100.0%) 
from the patients with MVI but only 2 of 5 tumor samples 
from the patients without MVI (40.0%). Moreover, we 
observed that mutations in 20 of these 30 genes (66.7%) 
were detected only in the MVI ( +) but not MVI ( – ) HCC 
patients, suggesting that mutations affecting these genes 
mainly contribute to vascular invasion in HCC. In addition, 
somatic mutations in some genes, such as LPHN2, GRIA1, 
SBSPON, OSBPL3, LGR6, and ZNF541, were detected in 
the tumor, PVTT, and ctDNA of at least two HCC patients 
with MVI, indicating that mutations in these genes are more 
likely to be involved in MVI of HCC rather than incidental 
occurrence. Moreover, the profile of SMGs in ctDNA was 
highly consistent with that of the tumor and PVTT samples 
in the MVI ( +) patients. Collectively, we identified some 
metastasis-promoting gene mutation events that occur at the 
primary tumor stage and are inherited in metastatic tumors 
and ctDNA.

The evolutionary trajectory of vascular invasion 
in HCC

To further determine the evolutionary pattern in vascular 
invasion of HCC, we constructed a phylogenetic tree for 
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each patient based on the somatic mutated genes (Fig. 3A). 
The first noteworthy finding is that the phylogenetic tree 
varies considerably between different MVI ( +) HCC cases, 
i.e., different branch evolution times between individuals 
resulted from vascular invasion. Nevertheless, we observed 
different lengths of trunk genes in the highly metastatic 
HCC group (H06, H07, H08, H09, and H10), suggesting 

a monoclonal origin of metastatic tumors, primary tumors, 
and ctDNA. No trunk gene length was observed in the low 
metastatic HCC group (L01, L02, L03, L04, and L05). In 
addition, as indicated by the divergent evolution of branch-
ing clones in different samples, there was significant spatial 
heterogeneity between geographically separated primary 
tumors, PVTT and ctDNA, suggesting that different patterns 

Fig. 2   Profiles of somatic mutations and SMGs in HCC patients 
with and without MVI. A Venn diagrams of shared nonsynonymous 
somatic mutations among peritumor (P), tumor (T), PVTT, and 
ctDNA samples from the MVI ( – ) group (L01-05) and the MVI ( +) 

group (H06-10). B The distribution of SMGs in each sample. The top 
30 statistically significant genes are shown. Mutation types are anno-
tated in the lower panel
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Fig. 3   The evolutionary trajectory of vascular invasion in HCC. A 
Phylogenetic trees showing the clonal relationship among peritumor 
(P), tumor (T), PVTT, and ctDNA samples from one HCC patient 
based on somatic mutations. The lengths of the branch and trunk 

reflect the number of mutated genes. Driver genes are labeled on the 
tree. B–C The copy number (upper) and LOH (lower, shown as BAF 
distribution) profiles of peritumor (P), tumor (T), PVTT, and ctDNA 
samples from L03 and H06
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of genetic evolution occur in primary and metastatic HCC, 
as well as ctDNA, upon isolation.

We next analyzed the distributions of copy number and 
B-allele frequency (BAF) of samples from the same patient. 
As illustrated by the representative profiles of the L03 and 
H06 cases in Fig. 3B and C, tumors, PVTTs, and ctDNA 
in MVI ( +) HCCs shared mutation clusters, again indicat-
ing the monoclonal origin of primary/metastatic tumors and 
ctDNA from another perspective. This phenomenon was not 
observed in the HCC patients without MVI. These results 
confirm the clonal relevance of ctDNA to primary and meta-
static tumors in MVI ( +) HCC.

Dynamic changes in the mutational landscape 
during vascular invasion of HCC

To better understand the dynamic alterations in the muta-
tional landscape during HCC progression and to identify 
specific mutations related to vascular invasion, we next 
performed clonal and subclonal structure analyses of the 
mutations in MVI ( +) HCC based on the CCF value calcu-
lated using the PyClone method [32]. Comparison of CNVs 
harbored by three samples from the H08 cases confirmed the 
clonal relatedness across samples (Fig. 4A). Interestingly, as 
illustrated by representative clonal architectures of the H08 
case in Fig. 4B, we observed that TP53R117S maintained high 
cellular prevalence both in primary tumors and in PVTT, 
suggesting that it may be the trunk mutation and acquired at 
the early stage of carcinogenesis. Furthermore, the cellular 
prevalence of SNX6G6C, SLC14A2E526K, and KIF18AK57N, 
which were present in the primary tumor but relatively low, 
increased in the PVTT samples, while BRD7Y455X muta-
tions were eliminated after vascular invasion. This find-
ing indicates that HCC subclones harboring these specific 
mutations acquired invasive ability and finally generated 
vascular metastasis. In addition, novel mutations, such as 
HS3ST2S47T, SCN9A W349X, and NEBV196I, were acquired at 
the vascular invasion stage in the evolutionary cascade, sug-
gesting that the cancer cells in the tumor embolus continue 
to mutate to adapt to the metastatic state. We also found that 
trunk mutations, metastasis-promoting mutations or metas-
tasis-specific mutations were detected in ctDNA to different 
extents. These results demonstrate that despite its monoclo-
nal origin, HCC has dynamic mutational changes during 
vascular invasion and mutational heterogeneity between 
primary and metastatic foci, which can be comprehensively 
reflected by ctDNA.

Development of an integrated molecular signature 
to predict relapse for HCC

Given that genes found to be significantly mutated in MVI 
( +) HCC are likely to play an important role in the invasion 

and relapse of HCC and that transcriptomic data can provide 
additional information to determine whether the expression 
of mutated genes is altered, we next integrated the exome 
and transcriptome data to construct a gene expression-based 
prognostic signature. A concise flowchart of signature devel-
opment and validation is shown in Fig. 5A. We obtained 
a total of 220 shared mutated genes from MVI-associated 
SMGs and two public HCC datasets. By applying univariate 
and LASSO Cox regression analyses, we finally developed a 
relapse-related prognostic signature containing 11 genes and 
named it RGSHCC. These genes, with characteristic amino 
acid mutation patterns, were detected in tumors, PVTT, and 
ctDNA of MVI ( +) HCC (Fig. 5B). Based on the coeffi-
cients for each gene shown in Fig. 5C, the RGSHCC score 
for each patient was calculated, and the median score was 
used as the cutoff value to determine the high-RGSHCC and 
low-RGSHCC groups. Association analyses of the risk score 
and clinicopathological characteristics of HCC patients 
indicated that patients with high RGSHCC scores had worse 
tumor differentiation and tumor staging, larger tumor size, 
higher α-fetoprotein (AFP) levels, and vascular invasion than 
those with low RGSHCC scores (Supplementary Table 3). 
In addition, as indicated in the TCGA training dataset, the 
RGSHCC score successfully segregated cases with a high risk 
of relapse from those with a low risk (hazard ratio [HR], 
2.34 [95% confidence interval (CI), 1.71–3.21], p < 0.0001; 
Fig. 5D). Furthermore, the signature was externally vali-
dated in the GSE14520 cohort (LCI validation dataset 1) 
and PCR cohort (LCI validation dataset 2), for which HCC 
patients in the high-RGSHCC group experienced more relapse 
events than those in the low-RGSHCC group (validation data-
set 1, HR, 1.7 [95% CI, 1.19–2.44], p = 0.0034; validation 
dataset 2, HR, 1.78 [95% CI, 1.14–2.79], p = 0.0097; Fig. 5E 
and F).

To examine whether the RGSHCC score is independent of 
other prognostic factors, we next performed univariate and 
multivariate Cox regression analyses. The results indicated 
that the RGSHCC score remained significant for RFS after 
considering other prognostic variables, including MVI and 
TNM stage, in the TCGA training dataset (Supplementary 
Figs. S1A and S1B). Consistently, the prognostic signature 
exhibited independent predictive value in two validation 
datasets (Supplementary Figs. S1C-S1F). These results sug-
gest that the RGSHCC score is a robust risk factor for HCC 
relapse.

Biological features underlying RGSHCC and its 
predictive value for therapeutic response

We next examined the biological features underlying the 
signature using gene set enrichment analysis. As illustrated 
in Fig. 6A, several biological processes, such as tumorigen-
esis, epigenetic alterations, and tumor-driving transcription, 
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were enriched in the high-RGSHCC group, while the low-
RGSHCC tumors had stronger inflammatory responses and 
higher chemotherapeutic sensitivity. This result drove us 
to investigate whether the high and low RGSHCC groups 
had different chemotherapeutic responses. As expected, 
based on the IC50 obtained from the GDSC database, we 

found that low-RGSHCC tumors tended to be more sensi-
tive to four chemotherapy drugs approved for solid tumor 
treatment: docetaxel, erlotinib, temsirolimus, and dasatinib 
(Fig. 6B–E). Considering that immunotherapy is currently 
a promising treatment for HCC, we also used the TIDE 
algorithm to predict the immunotherapy response for each 

Fig. 4   Monoclonal origin and dynamic mutation alterations during 
vascular invasion of HCC. A Circos plots showing the CNVs in each 
sample of H08. The first circle represents the coverage of sequencing, 
the second circle represents the density of SNP indels, and the third 
circle represents the distribution of CNVs (red indicates amplifica-

tion, blue indicates deletion, green indicates normal copy number). B 
The cellular prevalence of specific somatic mutations in tumor (left), 
PVTT (middle), and ctDNA (right) samples from H08. The peak 
and distribution of somatic mutations were determined based on the 
allelic fraction and copy number using PyClone analysis
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Fig. 5   Development of an 11-mRNA signature named RGSHCC to 
predict relapse for HCC. A The flow chart of the signature devel-
opment and validation in the present study. A total of 220 shared 
mutated genes in the MVI-associated SMGs and the TCGA-LIHC 
cohort and GSE14520 cohort were included for univariate and 
LASSO Cox regression analyses in the TCGA training dataset 
(n = 356). In total, 11 genes were finally selected to construct the 
signature named RGSHCC. The prognostic value of the signature 

was externally validated in the GSE14520 cohort (n = 221) and PCR 
cohort (n = 172). B Graphical summary of the sample distribution 
(right) and the amino acid mutation pattern (middle) of 11 genes 
included in the signature. C The LASSO coefficient of 11 genes in 
the signature. D–F Kaplan‒Meier analyses of RFS between the low-
RGSHCC and high-RGSHCC groups in the TCGA training dataset (D), 
LCI validation dataset 1 (E), and LCI validation dataset 2 (F). Log-
rank test was used for survival comparisons in Fig. 5D–F
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sample in LCI validation dataset 1. As indicated in the four-
fold contingency table in Fig. 6F, HCC patients in the low-
RGSHCC group had a higher immunotherapy response rate 

than those in the high-RGSHCC group (43.24% vs. 27.27%, 
p = 0.017). Furthermore, we matched the expression pro-
files of HCC patients in two groups with a published cohort 

Fig. 6   The biological processes underlying RGSHCC and its predictive 
value for therapeutic response. A Gene set enrichment analysis of dif-
ferentially enriched gene sets in the low- and high-RGSHCC groups in 
the TCGA dataset. B–E Box plots of the estimated IC50 values for 
docetaxel, erlotinib, temsirolimus, and dasatinib between the low- 

and high-RGSHCC groups. F Association between RGSHCC and the 
predicted immunotherapy response of HCC patients using the TIDE 
algorithm in LCI validation dataset 1. G Submap analysis of the 
putative immunotherapeutic response in the low- and high-RGSHCC 
groups
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of 47 melanoma patients receiving anti-CTLA4 and anti-
PD-1 treatments and found that patients with low RGSHCC 
were likely to have a better response to anti-PD-1 therapy 
(Fig. 6G). These findings suggest that the dismal outcomes 
of high-RGSHCC HCC may result from more aggressive bio-
logical processes, and HCC patients with low RGSHCC scores 
may benefit more from chemotherapy and immunotherapy.

Discussion

Vascular invasion of HCC is a spatially and temporally 
dynamic process that is poorly understood, resulting in 
very limited therapeutic interventions to effectively inhibit 
hematogenous metastasis and a lack of risk evaluation sys-
tems to accurately predict relapse of HCC. Here, by per-
forming WES and comprehensive bioinformatics analyses, 
we obtained an explicit view of the clonality of metastatic 
HCC and the evolution pattern of ctDNA. First, genomic 
alterations that promote vascular invasion in HCC occur at 
the primary tumor stage and are inherited by metastatic foci. 
Geographically separated primary tumors and metastases 
will continue to evolve independently and present genetic 
heterogeneity. Furthermore, ctDNA can reflect the landscape 
of genomic alterations in metastatic HCC but has no clonal 
correlation with primary tumors in the absence of MVI. 
Moreover, we developed a practical and reliable molecular 
signature containing 11 genes for HCC relapse prediction 
based on the integration analysis of SMGs associated with 
MVI. This work contributes to a better understanding of the 
evolutionary process of HCC and to the prognostic stratifica-
tion of HCC patients.

The high frequency of relapse and poor prognosis of HCC 
after surgery are largely the result of intrahepatic metastases 
through invasion of the portal vein [33]. One of our earlier 
studies found that the gene expression profile of primary 
tumors was very similar to that of metastases in metastatic 
HCC, thus pioneering the novel concept that gene expres-
sion events favoring metastasis were initiated at the primary 
tumor stage from a transcriptome perspective [34]. How-
ever, no relevant studies have been conducted to compre-
hensively characterize the evolutionary trajectory of HCC 
metastasis at the genomic level. In this work, by comparing 
genomic alterations, including mutation spectrum and sig-
natures, CNVs, SMGs, and clonal evolutionary trajectories, 
between 5 paired tumor and PVTT samples, we found that 
primary tumors and metastases have very similar genomic 
alteration profiles and high clonal correlation, indicating a 
monoclonal origin, which is consistent with the clonal evo-
lution theory of cancer [35]. In addition, our results further 
support and complement our previous concept that genomic 
alterations and expression changes promoting metastasis 
occur in primary tumors. This concept may have theoretical 

implications for the exploration of mechanisms underlying 
hepatocarcinogenesis and the development of therapeutic 
strategies but also presents a formidable challenge for early 
interventions of HCC progression. In addition, we observed 
that the landscape of SMGs and potential MVI-driven muta-
tions were different among individuals, suggesting that the 
metastatic drive of HCC involves multiple pathways and is 
heterogeneous, highlighting the necessity of detecting tumor 
genetic features before targeted therapy in each HCC patient.

In HCC, although the most prevalent mutations, such as 
TP53, are not actionable, approximately a quarter of tumors 
have potentially pharmacologically targetable drivers [36]. 
However, the biggest obstacle to achieving precision treat-
ment for HCC is the high intratumor heterogeneity and the 
inaccessibility of tumor tissues [11]. In this setting, ctDNA 
has been proposed to serve as an alternative source of tumor 
DNA and can provide comprehensive and dynamic insight 
into the tumor genome in a minimally invasive manner, 
which may be a way to address the dilemma of current HCC 
biopsy [13]. Indeed, evidence has demonstrated that HCC 
patients benefit from corresponding targeted therapies based 
on the mutations detected in ctDNA [37]. Here, we provide 
new insights into the evolutionary pattern of ctDNA in HCC: 
ctDNA can accurately characterize tumor genomic altera-
tions when MVI occurs but has no clear genetic correla-
tion with primary tumors without vascular invasion. From 
a pathophysiological perspective, this can be explained by 
more cancer cells entering the circulation after the tumor 
breaks through the blood vessels, but more detailed molecu-
lar mechanisms need to be further investigated. This new 
concept suggests that ctDNA may have greater application 
prospects in advanced HCC and can effectively address the 
issues of tissue unavailability at the advanced stage of HCC, 
helping guide treatment decisions and dynamic detection of 
therapeutic efficacy. However, since the mutation frequency 
of single genes in ctDNA is relatively low, a ctDNA panel 
that integrates mutational features of multiple genes to more 
comprehensively, accurately, and adequately reflects the 
metastatic potential of HCC is warranted in the future.

By identifying SMGs and comparing dynamic changes in 
mutation landscapes between tumors and PVTT, we identi-
fied a series of genes and their specific mutations that may 
be involved in the invasion and relapse of HCC. Dissection 
of the subclonal architecture has demonstrated that HCC 
vascular invasion is associated with a lack of BRD7Y455X 
mutation, enrichment of SNX6G6C, SLC14A2E526K, and 
KIF18AK57N mutations, and acquisition of HS3ST2S47T, 
SCN9A W349X, and NEBV196I mutations. The role of some 
genes, such as SNX6, KIF18A, and HS3ST2, in promoting 
tumor invasion and metastasis has been reported [38–40]. 
Therefore, therapies targeting these genes or specific muta-
tions may effectively prevent the postoperative relapse of 
HCC. We also found that some mutations can be detected in 



1474	 Hepatology International (2023) 17:1461–1476

1 3

ctDNA. As mentioned above, whether ctDNA can be used 
as a new tool to obtain important molecular information 
in metastatic HCC deserves further investigation. On the 
other hand, we have to point out that the patients in this 
study were mainly with HBV-associated HCC, so whether 
the aforementioned evolutionary trajectories regarding HCC 
metastasis and ctDNA, as well as the gene mutations related 
to HCC metastasis, are also present in non-HBV-associated 
HCC need to be further studied. Another issue is that our 
sample size is relatively small, so the findings here are yet to 
be validated by a large-sample cohort in the future.

Finally, by integrating MVI-related SMGs with transcrip-
tomic data from several independent HCC cohorts, we suc-
cessfully developed and validated an RNA-based signature 
to robustly distinguish high- and low-risk relapsed HCC 
patients with good predictive performance. Our multivari-
ate Cox regression analyses revealed that RGSHCC score was 
an independent prognostic factor in HCC, which may be 
attributed to its use as a gene -based predictive system that 
can additionally reflect information on molecular features 
associated with metastasis and recurrence within the tumor. 
In addition, we revealed the biological features underlying 
the signature, which may explain the poor prognosis in the 
high-RGSHCC group. The association of the RGSHCC score 
with chemotherapeutic and immunotherapeutic sensitivity 
was also highlighted. Nevertheless, although we have fully 
validated the feasibility of applying RGSHCC for relapse pre-
diction in HCC from our institution, prospective multicenter 
and large-scale cohort studies are still required to thoroughly 
assess its application potential.

In summary, we characterized the genomic alterations 
during HCC vascular invasion and demonstrated a previ-
ously undescribed evolution pattern of ctDNA in HCC, 
which provides an important theoretical basis for a deeper 
understanding of HCC progression. We also developed a 
novel integrated multiomics-based molecular platform to 
identify populations with a high risk of relapse, which has 
significant implications for personalized treatment to pro-
long HCC patient survival.
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