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Abstract
Objectives In this multicenter study, we sought to develop and validate a preoperative model for predicting early recurrence 
(ER) risk after curative resection of intrahepatic cholangiocarcinoma (ICC) through artificial intelligence (AI)-based CT 
radiomics approach.
Materials and methods A total of 311 patients (Derivation: 160; Internal and two external validations: 36, 74 and 61) from 
8 medical centers who underwent curative resection were collected retrospectively. In derivation cohort, radiomics and 
clinical–radiomics models for ER prediction were constructed by LightGBM (a machine learning algorithm). A clinical 
model was also developed for comparison. Model performance was validated in internal and two external cohorts by ROC. 
In addition, we investigated the interpretability of the LightGBM model.
Results The combined clinical–radiomics model that included 15 radiomic features and 3 clinical features (CA19-9 > 1000 U/
ml, vascular invasion and tumor margin), resulting in the area under the curves (AUCs) of 0.974 (95% CI 0.946–1.000) in 
the derivation cohort, and 0.871–0.882 (95% CI 0.672–0.962) in the internal and external validation cohorts, respectively, 
which are higher than the AJCC 8th TNM staging system (AUCs: 0.686–0.717, p all < 0.05). Especially, the sensitivity of 
this machine learning model could reach 94.6% on average for all the cohorts.
Conclusions This AI-driven combined radiomics model may provide as a useful tool to preoperatively predict ER and 
improve therapeutic management of ICC patients.

Keywords Machine learning · Intrahepatic cholangiocarcinoma · Recurrence · Radiomics · CT · Multicenter study · 
LightGBM · Prediction model · Biliary tract cancer · Recurrence-free survival

Abbreviations
AUC   Area under the curve
ER  Early recurrence
ICC  Intrahepatic cholangiocarcinoma
mRMR  The maximum relevance minimum redundancy
RFS  Recurrence-free survival

ROC  Receiver operator characteristic
SHAP  The Shapley Additive exPlanations
VOI  Volume of interest

Introduction

Cholangiocarcinoma comprises diverse groups of malignant 
tumors that appear in biliary system and can be anatomi-
cally classified into intrahepatic, perihilar and distal chol-
angiocarcinoma [1]. Although not as common as hepatocel-
lular carcinoma, detected incidence of cholangiocarcinoma, 
especially intrahepatic cholangiocarcinoma (ICC), has been 
on rising in many countries, and has become the second 
most common liver malignancy [2]. Unlike extrahepatic 
cholangiocarcinoma, ICC rarely causes jaundice and is also 
usually asymptomatic at early stage [3], which makes early 
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ICC diagnosis difficult. Consequently, only about 30–40% 
of patients can undergo curative surgical resection [4]. Fur-
thermore, 40–80% of patients experienced recurrence with 
44% of them detected in the first year after surgery [5]. In 
addition, ICC is usually more aggressive and frequently 
refractory to chemotherapy than HCC, making ICC a deadly 
cancer, resulting in 5-year survival rate below 30% after sur-
gery [6]. Therefore, an accurate preoperative assessment of 
ICC patients’ risk of recurrence will help to improve clinical 
management and prognosis of patients with ICC.

Currently, the AJCC 8th TNM staging system has been 
used for risk stratification of ICC [7]. However, in clinical 
practice, postoperative recurrence and prognosis differ mark-
edly even among patients classified at the same stages [6, 8]. 
The use of existing clinical factors did play a positive role 
in patient stratification [9]. However, due to the high hetero-
geneity of ICC, the current clinical staging system still has 
many limitations, which prompted clinicians to seek more 
effective predictive tools.

Dynamic enhanced CT is routinely used for detection and 
evaluation of ICC. However, traditionally, the diagnosis and 
prognosis assessment are largely subjected to the physician's 
personal interpretation of images, which inevitably carries 
non-objectiveness and makes quantitative comparison diffi-
cult [10]. Moreover, with the busy workload of radiologists, 
relying solely on human’s eyes sometimes inevitably leads to 
oversights. In contrast, radiomics is a novel and integrated 
discipline that combines artificial intelligence with imaging 
analysis, which has been increasingly used in oncology prac-
tice, such as tumor diagnosis, staging and assessment [11, 
12], and is popular for its accessibility and non-invasiveness.

Despite the potential of radiomics, some investigators 
have urged the field to expand studying the reproducibil-
ity and generalizability of models generated, which is also 
a point that must be considered although radiomics has 
great potential, some researchers have called for the field 
to broaden its focus to include investigating the reproduc-
ibility and generalizability of the models it generates. This 

is an important consideration for the practical application 
of radiomics studies [13, 14]. Since ICC is an uncommon 
tumor, most of the previous studies were single center 
based and reported a relatively small number of cases (for 
instance < 200) [15, 16]. Therefore, a multicenter study with 
a large sample is necessary. Moreover, different CT instru-
ments and parameters utilized by different centers pose a 
great challenge to develop an accurate and reproducible pre-
diction system. In this study, we collected large cohorts of 
ICC data from different regional centers in China and sought 
to develop and validate a preoperative model for predicting 
risk of early recurrence (ER) within 1 year after curative 
resection of ICC through artificial intelligence (AI)-based 
CT radiomics approach.

Materials and methods

Patients

The study was reported according to the STROBE guide-
lines. This multicenter study included ICC patients who 
underwent radical surgical resection between January 2008 
and December 2020 at eight hospitals in China. Two inclu-
sion criteria applied for enrollment: (1) contrast-enhanced 
CT examination was performed within 1  month before 
surgery; (2) patients underwent surgery with curative 
intent and ICC was confirmed by postoperative pathology. 
Patients with following characteristics were excluded: (1) 
lack of preoperative CT data; (2) previous history of other 
ICC treatments (including interventional and ablation, etc.); 
(3) history of other malignancies; (4) lost to follow-up, and 
whether recurrence occurs within 1 year after surgery was 
unknown. A total of 311 cases were included in the study 
(Fig. 1). Patients were divided into three cohorts and each of 
which was located within each province territory (detailed 
comprising hospitals were listed in Supplementary Mate-
rials). Finally, a derivation cohort was established within 

Fig. 1  Flowchart of the enrolled study patients
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the Cohort 1 and randomly divided into a training group 
(n = 140) and an internal validation group (n = 36) at a ratio 
of 8:2, and both Cohort 2 (n = 74) and Cohort 3 (n = 61) 
served as two independent external validation cohorts.

Clinical data and assessments

Following clinical and laboratory data before surgery were 
collected: basic demographic information, serum levels of 
alanine transaminase (ALT), aspartate transaminase (AST), 
albumin, total bilirubin, TNM tumor staging (8th edition), 
concurrent hepatobiliary system disease (viral hepatitis, cir-
rhosis, biliary fluke infection, primary sclerosing cholangitis 
and cholelithiasis), alpha-fetoprotein (AFP), carcinoembry-
onic antigen (CEA) and carbohydrate antigen 19-9 (CA19-
9). The threshold values for ALT, AST, AFP, CA19-9, and 
CEA used here were 35, 40 U/L, 20 ng/ml, 1000 u/ml, and 
5 ng/L, respectively.

Radiographic data and assessments

Preoperative dynamic-enhanced CT (both unenhanced 
and arterial enhancement phases) images were collected. 
Details of CT acquisition and parameters are described in 
(Supplementary Table S1). Two experienced radiologists 
(JZ and YKX) independently documented tumor number, 
size, margins, vascular invasion, and lymph node metastases 
(see supplementary materials for detailed definitions). When 
disagreement presented, a consensus was made through dis-
cussion with a third radiologist.

Image segmentation and feature extraction

Two radiologists (JZ and YKX, both with more than 15 years 
of experience in abdominal imaging), who were blinded to 
clinical outcomes, independently performed segmentation of 
the tumor layer-by-layer, resulting in 3D volume of interest 
(VOI) using 3D Slicer (version 4.10.2). Then, a peri-tumoral 
area through a uniform expansion of 5 mm outward from an 
entire VOI edge was calculated and generated by 3D Slicer 
(Supplementary Fig S1). The largest one was selected for 
analysis if there were multiple tumors. To ensure the stability 
of the extracted features, the inter-observer reproducibility 
of the extracted features between two readers was evaluated. 
And images from 50 cases in the derivation cohort were then 
randomly selected and the same segmentation procedure was 
repeated 2 weeks later by the same two radiologists to assess 
the intra-observer reproducibility. Inter-observer and intra-
observer reproducibility were evaluated by calculating the 
infraclass correlation coefficient.

All voxel of images were resampled at a size of 
1 × 1 × 1  mm3 for standardization to establish comparable 
and reproducible radiomics analysis. Then, CT features were 

extracted from the normalized images and filtered images 
under Wavelet and Laplacian of Gaussian (LoG) filters 
using Pyradiomics (version 3.0). The detailed parameters 
were listed in Supplementary materials. A total of 6296 
features covering tumoral and peri-tumoral areas for each 
case were finally obtained. The features were classified to 
include seven categories: (1) Shape; (2) First-order statis-
tics; (3) Gray Level Cooccurrence Matrix; (4) Gray Level 
Run Length Matrix; (5) Gray Level Size Zone Matrix; (6) 
Neighboring Gray Tone Difference Matrix; (7) Gray Level 
Dependence Matrix [17].

Feature selection

The features were first normalized by the z-score method to 
eliminate differences in scale. Then, the procedure of feature 
selection in the derivation cohort consists of three steps: (1) 
robust features with the intraclass correlation coefficients 
(both inter-observer and intra-observer) higher than 0.75 
were retained; (2) features were ranked by the maximum 
relevance minimum redundancy (mRMR) algorithm, and the 
top 100 features were retained to select the features with the 
highest correlation and minimum redundancy; (3) recursive 
feature elimination and cross-validation were performed to 
determine the best feature subset.

Clinical features (including laboratory tests and conven-
tional imaging features) were selected through univariable 
and multivariable logistic regression for subsequent model 
building.

Model construction and validation

The selected features were analyzed by the LightGBM 
machine learning algorithm to construct two models: (1) 
Radiomics model; and (2) Combined clinical–radiomics 
model. A clinical model was also developed by the clinical 
factors selected by the above univariable and multivariable 
analysis. Discrimination was quantified with the area under 
the curve (AUC). Prediction accuracy was evaluated by cali-
bration curves, confusion matrix and Hosmer–Lemeshow 
test [18]. Net reclassification index and integrated discrimi-
nation improvement were used to evaluate the incremen-
tal differences of the combined clinical–radiomics models. 
The LightGBM model was demonstrated using the Shapley 
Additive exPlanations (SHAP) to visualize the correlation 
between variables and ER. Patients in each cohort were 
stratified according to the risk predicted by the combined 
radiomics model and plotted by Kaplan–Meier analysis. 
Additionally, we also tried several different machine learn-
ing classifiers and found that LightGBM performed the best 
(Supplementary Table S2). Finally, we compared the com-
bined clinical–radiomics model with AJCC 8th TNM system 
in predicting ER. Evaluation of TNM tumor staging model 
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was derived using the classical logistic regression model 
based on different staging grade variables.

Follow‑up

Patients were followed up postoperatively at each center per 
the guideline recommendations [19–22]. Clinical assess-
ment, and CT or MRI examinations were performed every 
3 months during the first year after surgery, and at 6 months 
interval thereafter. Considering > 40% of ICC patients may 
experience recurrence in the first year after surgery [5], 
ER in this study was defined as recurrence within 1 year 
after surgery. Locations of the recurrence were classified as 
intrahepatic only, extrahepatic only, or concurrent intra- and 
extrahepatic for the purposes of analysis. Recurrence-free 
survival (RFS) was defined as interval between curative-
intent surgery and the date of tumor recurrence or the last 
follow-up date (without recurrence).

Statistical analysis

Statistical analyses were performed by SPSS (version 26), 
R software (version 3.6.2) and Python (version 3.8). For 
normal distribution, data are expressed as means ± SD and 
analyzed by one-way ANOVA. For abnormal distribution, 
data are described as medians [interquartile ranges, IQR] 
and analyzed by the Kruskal–Wallis H test. Comparison 
between different ROC curves was performed by Delong test 
[23]. mRMR analysis was performed using the ‘mRMRe’ 
package of R software. The rest of the feature selection 
and model construction were performed using the Python-
based ‘scikit-learn’ machine learning framework [24]. ROC 
curves, confusion matrices and radar plots were plotted by 
the Python-based 'Matplotlib' library. For all tests, p < 0.05 
was considered statistically significant.

Results

Patient characteristics

A total of 311 ICC patients from 8 different hospitals cov-
ering the southern and eastern China were included in this 
study. Summary of the demographics and clinical baseline 
characteristics of all patients is listed in Table 1. The inci-
dence of cholelithiasis was relatively more common in the 
Cohort 3 (65.6% (40/61)), accompanied by relatively high 
bilirubin levels. The remaining clinical features were not 
statistically different among centers. In addition, owing to 
the lack of data on liver flukes and primary sclerosing chol-
angitis in more than half of the retrospective cases, they 
were not further included in the analysis. Most patients 
(87.1% (271/311)) received R0 resection with no significant 

differences between cohorts. After a median follow-up time 
of 50 weeks [IQR 28–106 weeks], the median RFS time was 
approximately 45–50 weeks, and there was no difference in 
the ER rates (ranging from 47.2 to 54.1%) among the four 
cohorts.

Feature selection and development of radiomics 
model

Of the 6296 radiomic features, 528 of them were deemed 
unreliable (intra- or inter-class correlation coefficient < 0.75) 
and excluded, and then the remaining features were ranked 
by the mRMR algorithm to retain the top 100 features (Sup-
plementary Fig S2A). The final 15 radiomic features were 
generated after subjecting to recursive feature elimina-
tion + cross-validation (Supplementary Fig S2B). Radiom-
ics model was developed using the tree kernel-based Light-
GBM algorithm, showing AUCs values of 0.877 (95% CI 
0.816–0.938), 0.780 (95% CI 0.627–0.934), 0.751 (95% CI 
0.636–0.866) and 0.739 (95% CI 0.611–0.866) in the deri-
vation cohort, internal and two external validation cohorts, 
respectively.

Development of combined radiomics model

Univariable and multivariable analyses showed that CA19-9 
(> 1000 U/ml), vascular invasion and tumor margin were 
independently associated with ER (Supplementary Fig S3) 
with variance inflation factors (1.8, 1.7 and 1.5, respec-
tively) all < 10, suggesting no multicollinearity between 
the variables. A combined radiomics model was developed 
through incorporating the above three clinical features into 
the radiomics model using the LightGBM algorithm (see 
Supplementary Materials for detailed parameters). The cat-
egorical net reclassification index and integrated discrimina-
tion improvement of the combined radiomics model were 
improved in all the four cohorts with the addition of radi-
omics features (Supplementary Table S3). The inclusion 
of SHAP enables to perform an interpretative analysis of 
the combined radiomics model through visualizing specific 
impact of each variable on ER prediction (Fig. 2). Further-
more, each patient can be analyzed individually (Supple-
mentary Fig S4).

Internal and external validation of combined 
radiomics model

As shown by ROC curves (Fig. 3A–D), the combined radi-
omics model yielded the highest AUCs of 0.974 (95% CI 
0.946–1.000), 0.882 (95% CI 0.672–0.962), 0.871 (95% CI 
0.786–0.955) and 0.878 (95% CI 0.797–0.960) in the deri-
vation cohort, internal and two external validation cohorts, 
respectively. All the four cohorts showed good agreement on 
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Table 1  Baseline characteristics of ICC patients in the derivation cohort and 3 validation cohorts (n = 311)

Characteristics Derivation cohort Internal validation cohort External validation cohorts p value

Cohort 1 (n = 140) Cohort 1 (n = 36) Cohort 2 (n = 74) Cohort 3 (n = 61)

Age 59.06 ± 11.85 55.44 ± 10.55 56.53 ± 10.50 60.15 ± 10.79 0.092
Gender 0.166
 Male 53 (37.9) 14 (38.9) 37 (54.4) 32 (52.5)
 Female 87 (62.1) 22 (61.1) 39 (52.7) 29 (47.5)

Total bilirubin (µmol/L)† 17.15 [13.00–25.73] 15.20 [8.85–21.93] 11.92 [7.98–27.95] 17.40 [10.90–50.90] 0.015
Albumin (g/L)† 37.70 [34.15–40.20] 37.10 [34.38–39.00] 36.84 [33.12–40.05] 37.50 [34.20–40.80] 0.459
PLT  (109/L) 218.75 (84.34) 219.75 (82.03) 256.96 (92.93) 225.03 (87.07) 0.018
ALT (U/L)† 32.00 [23.00–44.50] 31.00 [19.50–75.50] 25.15 [15.35–71.08] 32.00 [17.10–94.00] 0.442
AST (U/L)† 31.00 [24.00–42.75] 32.00 [23.50–54.00] 30.27 [21.23–53.80] 37.00 [23.20–94.00] 0.479
AFP (ng/ml) 0.166
  ≤ 20 130 (92.9) 33 (91.7) 59 (86.8) 58 (95.1)
  > 20 10 (7.1) 3 (8.3) 9 (13.2) 3 (4.9)

CEA (ng/l) 0.151
  ≤ 5 100 (71.4) 26 (72.2) 40 (58.8) 33 (54.1)
  > 5 40 (28.6) 10 (27.8) 28 (41.2) 28 (45.9)

CA-199 (u/ml) 0.137
  ≤ 1000 110 (78.6) 29 (80.6) 55 (74.3) 39 (63.9)
  > 1000 30 (21.4) 7 (19.4) 19 (25.7) 22 (36.1)

Tumor number 0.518
 Single 108 (77.1) 29 (80.6) 62 (83.8) 45 (73.8)
 Multiple 32 (22.9) 7 (19.4) 12 (16.2) 16 (26.2)

Tumor size (cm) 4.80 ± 2.04 4.65 ± 1.83 5.33 ± 2.19 4.78 ± 1.98 0.230
Viral hepatitis 0.066
 No 95 (67.9) 23 (63.9) 49 (66.2) 49 (80.3)
 Yes 45 (32.1) 13 (36.1) 25 (33.8) 12 (19.7)

Cirrhosis 0.129
 No 106 (75.7) 27 (75.0) 50 (67.6) 52 (85.2)
 Yes 34 (24.3) 9 (25.0) 24 (32.4) 9 (14.8)

Cholelithiasis 0.001
 No 99 (70.7) 24 (66.7) 54 (73.0) 21 (34.4)
 Yes 41 (29.3) 12 (33.3) 20 (27.0) 40 (65.6)

CT-reported lymphatic metastasis 0.556
 No 87 (62.1) 20 (55.6) 49 (66.2) 42 (68.9)
 Yes 53 (37.9) 16 (44.4) 25 (33.8) 19 (31.1)

CT-reported vascular invasion 0.082
 No 84 (60.0) 26 (72.2) 54 (73.0) 46 (75.4)
 Yes 56 (40.0) 10 (27.8) 20 (27.0) 15 (24.6)

Tumor margin 0.560
 Smooth 53 (37.9) 10 (27.8) 25 (33.8) 25 (41.0)
 Non-smooth 87 (62.1) 26 (72.2) 49 (66.2) 36 (59.0)

AJCC 8th TNM 0.797
 IA 35 (25.0) 11 (30.6) 15 (20.3) 20 (32.8)
 IB 17 (12.1) 3 (8.3) 12 (16.2) 10 (16.4)
 II 29 (20.7) 6 (16.7) 14 (18.9) 10 (16.4)
 IIIA 13 (9.3) 1 (2.8) 8 (10.8) 2 (3.3)
 IIIB 42 (30.0) 13 (36.1) 22 (29.7) 18 (29.5)
 IV 35 (25.0) 11 (30.6) 15 (20.3) 20 (32.8)

Recurrence 0.895
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the calibration curves (Fig. 4A–D), and the Hosmer–Leme-
show test suggested no significant differences between the 
predicted probabilities and the actual observed recurrence 
probabilities (p = 0.988, 0.541, 0.241 and 0.330), support-
ing the accurate performance by this model. The confusion 
matrix for each model is shown in Supplementary Fig S5.

In addition, comparisons between each ROC curve in the 
three validation cohorts all showed p value greater than 0.05 
(Supplementary Table S4), which also suggested good sta-
bility and reproducibility of the combined radiomics model.

Patients in each cohort were preoperatively stratified 
according to the risk predicted by the combined radiomics 
model and Kaplan–Meier analysis all suggested good dis-
crimination (Supplementary Fig S6).

Then, we compared the combined radiomics model 
with the AJCC 8th TNM system, showing that the 

combined radiomics model performed better in both inter-
nal and external validation cohorts (Table 2 and Fig. 5). 
Especially, the combined radiomics model had a signifi-
cantly higher sensitivity reaching up to 94.6% on average 
for all the cohorts. The ROC curves comparison between 
with the combined radiomics and the AJCC 8th TNM 
staging showed significant difference (p < 0.05) in all the 
cohorts by Delong test (Supplementary Table S5).

In terms of practical applications, as shown in Fig. 6, it 
helps clinicians to identify a subset of patients preopera-
tively who are at high ER risk and tailor better treatment 
and follow-up plans, such as early combination of neoad-
juvant chemotherapy or shortening the follow-up interval, 
which would help reduce the risk of ER and improve the 
prognosis of patients.

Table 1  (continued)

Characteristics Derivation cohort Internal validation cohort External validation cohorts p value

Cohort 1 (n = 140) Cohort 1 (n = 36) Cohort 2 (n = 74) Cohort 3 (n = 61)

 No 65 (46.4) 17 (47.2) 34 (45.9) 30 (49.2)
 Yes 75 (53.6) 19 (52.8) 40 (54.1) 31 (50.8)

Sites of recurrence 0.988
 Intrahepatic 47 (62.7) 11 (57.8) 26 (65.0) 20 (64.5)
 Extrahepatic 8 (10.7) 4 (21.1) 6 (15.0) 4 (12.9)
 Intrahepatic and extrahepatic 20 (26.6) 4 (21.1) 8 (20.0) 7 (22.6)

RFS (weeks) 50.0 [27.0–94.5] 49.0 [29.3–123.5] 49.5 [26.0–116.5] 45.0 [34.0–109.0] 0.877

Values in parentheses are percentages
ALT alanine transaminase, AST aspartate transaminase, AFP alpha-fetoprotein, CA19-9 carbohydrate antigen 19-9, CEA, carcinoembryonic anti-
gen
† For abnormal distribution, data are shown as medians [interquartile ranges] and were analyzed by the Kruskal–Wallis H test

Fig. 2  Contribution analysis 
of each feature by using the 
SHapley Additive exPlana-
tions (SHAP) in the LightGBM 
model. The features are ranked 
according to the sum of the 
SHAP values for all patients. A 
positive/negative SHAP value 
indicate a positive/negative cor-
relation between a variable and 
outcome
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Discussion

In this multicenter study, we established and evaluated a 
combined radiomics model with LightGBM machine learn-
ing algorithm for predicting ER after curative resection in 
ICC. Using this robust model, a total of 149 patients were 
identified as having high risk of recurrence in all cohorts, 
accounting for 94.6% of the actual ER patients and only 
5.1% patients were missed by this model, which is of great 
importance for ICC, a tumor with high malignancy.

Several radiomics studies have been reported on the pre-
diction of the prognosis of ICC. Liang et al. [15] developed 
a nomogram based on preoperative MR images to predict 
ER of ICC in a single center study with AUCs of 0.90 and 
0.85 in the training and validation groups. In the present 
study, the AUCs reached 0.97 and 0.88 in the training and 
internal validation cohorts, and still reached more than 0.87 
in two independent external validation centers, indicating 
that both CT and MR image-based radiomics models can 
achieve comparable predictive efficacy, and CT has more 
economical and temporal advantages. Also as a preoperative 
CT image-based study, Park et al. [25] segmented the tumor 

on the single transverse section and developed a model by 
LASSO-COX regression, yielding the C-index with 0.75 and 
0.71 in the training and validation groups, which was not 
significantly different from the existing TNM staging sys-
tem (C-index: 0.73). In our study, the combined radiomics 
model outperformed the TNM system in both internal and 
external validation, highlighting two factors for improving 
the ability for ER prediction: one is the 3D VOI segmen-
tation and peri-tumoral area included, and the other is the 
use of LightGBM-based machine learning algorithm to con-
struct the model. Recently, Zhu Y et al. also predicted early 
recurrence of ICC based on a CT radiomics approach, with 
the AUCs of 0.844 (95% CI 0.751–0.912) and 0.793 (95% 
CI 0.617–0.914) in the training and validation groups [16]. 
Admittedly the model performed well, but its AUCs still 
slightly lower than our model. And the study by Zhu Y et al. 
was also based solely on the transverse section of tumor 
maximum diameter for segmentation and its relatively small 
number of cases (only 125) should also be noted.

The variables included in the model of this study included 
15 radiomic features and 3 clinical features. It is worth not-
ing that 93.3% (14/15) of the radiomics features were 3D and 

Fig. 3  Comparison of ROC 
curves between different models 
for predicting the risk of early 
recurrence after curative resec-
tion of ICC. ICC cholangiocar-
cinoma, ROC receiver operating 
characteristic

(b) Internal validation cohort (Cohort 1)(a) Derivation cohort (Cohort 1)

(d) External validation cohort (Cohort 3)(c) External validation cohort (Cohort 2) 
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wavelet features, which is consistent with the results of pre-
vious studies [26, 27] and indicates that tumor heterogeneity 
can be reflected as differences in the spatial distribution of 
voxel intensities in images, which is one of the assumptions 
of radiomics [28]. After univariate and multifactorial regres-
sion analyses, three variables were finally selected in terms 
of clinical features: CA19-9 (> 1000 U/ml), tumor vascular 
invasion and tumor margin, where the latter two variables 
were consistent with several previous studies and were con-
sidered as one of the independent risk factors for postop-
erative recurrence [29]. Whether CA19-9 can serve as an 
independent risk factor used for the prediction of recurrence 
is controversial. Park et al. [25] and Jeong et al. [9] con-
cluded that tumor markers including CA19-9 and CEA were 
not significantly associated with postoperative recurrence, 
while the studies of Wang et al. [29] and Ji et al. [30] found 
that CA19-9 (> 1000 U/ml) was significantly associated with 
RFS (p < 0.05). In addition, Roongruedee et al. [31] also 
found that CA19-9 > 1000 U/ml was the optimal threshold 
for predicting the prognosis after resection by comparing 
different thresholds of CA19-9 (≥ 100, ≥ 500, ≥ 1000 U/

ml), and these findings are also consistent with the present 
study. Finally, it is of interest that although tumor size was 
associated with ER in univariate analysis, it did not show 
significant statistical differences in multivariate analysis 
(p = 0.146). In AJCC 8th staging, T1 stage was divided into 
T1a and T1b stages using tumor diameter > 5 cm as the cut-
off value, while several studies also suggested that tumor 
diameter > 5 cm was an independent risk factor for tumor 
recurrence and survival [32, 33]. However, the aforemen-
tioned studies mainly focused on patients with solitary ICC 
without vascular invasion, i.e., in stage T1, whereas in our 
study, the staging of the included ICC patients varied and 
was not limited to stage T1, suggesting that tumor diameter 
size may not be a major influencing factor associated with 
ER after covering all stages of ICC.

In real world, variables may interact in both linear and 
non-linear fashions. Traditional linear models used in pre-
vious studies often yielded poor performance in real-world 
testing. However, machine learning can capture complex lin-
ear and non-linear relationships between variables. In this 
study, the LightGBM algorithm was selected for its superior 

Fig. 4  Calibration curves in 
each cohort. The dotted line in 
the middle diagonal is the ideal 
perfect situation. The solid line 
is the predicted performance of 
the current model, and the verti-
cal bars represent confidence 
interval. When the solid line 
is closer to the dotted line, the 
goodness of fit of the model is 
better
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performance after comparing different algorithms. As an 
emerging algorithm born in 2017, LightGBM is also an 
algorithm based on ensemble learning. In addition to its high 
accuracy, LightGBM also has the advantages of supporting 
distributed learning, faster training speed and lower memory 
usage. It has won the Kaggle data science competitions sev-
eral times and has been practically applied in the finance and 
power industries [34, 35]. In this study, LightGBM delivered 
efficient performance, the average training time takes < 30 s 

even after 100,000 times of cross-validation, which greatly 
enhances the possibility of practical clinical applications in 
the future.

Derived from Gdbt, LightGBM has better accuracy in 
prediction compared to traditional linear models, but it 
also loses the interpretability of linear models, and is usu-
ally considered a black box model. In 2017, Lundberg and 
Lee [36] proposed SHAP values, a unified approach to 
interpreting model predictions, thus making it possible to 

Table 2  Comparison of prediction performance between Combined radiomics model and AJCC 8th TNM staging

ACC  Accuracy, AUC  Area Under the Curve, NPV Negative predictive value, PPV Positive predictive value, SEN Sensitivity, SPE Specificity, CI 
confidence interval
† Comparison of the ROC curves of the combined radiomics model and the TNM system by Delong test

AUC (95% CI) ACC SEN SPE PPV NPV p  value†

Derivation cohort (cohort 1) 0.010
Combined radi-

omics model
0.974 (0.946–

1.000)
0.964 (0.929–

0.993)
0.973 (0.920–

1.000)
0.954 (0.908–

1.000)
0.961 (0.923–

1.000)
0.969 (0.913–

1.000)
AJCC 8th TNM 

staging
0.717 (0.631–

0.803)
0.700 (0.629–

0.771)
0.747 (0.627–

0.867)
0.646 (0.508–

0.753)
0.704 (0.635–

0.782)
0.688 (0.590–

0.800)
Internal validation cohort (cohort 1) 0.046
Combined radi-

omics model
0.882 (0.672–

0.962)
0.889 (0.778–

0.972)
0.895 (0.732–

1.000)
0.941 (0.765–

1.000)
0.938 (0.792–

1.000)
0.850 (0.700–

1.000)
AJCC 8th TNM 

staging
0.686 (0.510–

0.862)
0.667 (0.528–

0.806)
0.684 (0.421–

0.895)
0.647 (0.412–

0.882)
0.688 (0.546–

0.875)
0.650 (0.500–

0.842)
External validation cohort (cohort 2) 0.028
Combined radi-

omics model
0.871 (0.786–

0.955)
0.851 (0.770–

0.919)
0.950 (0.725–

1.000)
0.764 (0.618–

0.941)
0.830 (0.745–

0.943)
0.920 (0.744–

1.000)
AJCC 8th TNM 

staging
0.702 (0.580–

0.824)
0.703 (0.595–

0.797)
0.725 (0.600–

0.875)
0.677 (0.471–

0.824)
0.718 (0.622–

0.829)
0.677 (0.567–

0.813)
External validation cohort (cohort 3) 0.018
Combined radi-

omics model
0.878 (0.797–

0.960)
0.820 (0.738–

0.902)
0.968 (0.748–

1.000)
0.800 (0.533–

1.000)
0.821 (0.689–

1.000)
0.852 (0.682–

1.000)
AJCC 8th TNM 

staging
0.712 (0.581–

0.843)
0.689 (0.574–

0.803)
0.710 (0.516–

0.903)
0.667 (0.467–

0.867)
0.688 (0.581–

0.826)
0.688 (0.568–

0.857)

Internal validation (Cohort 1) External validation (Cohort 2) External validation (Cohort 3)

Fig. 5  The radar chart visualization of prediction performance for Combined radiomics model and AJCC 8th TNM staging
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interpret black box models such as LightGBM and neural 
networks possible. This new approach not only allows us 
to understand the intricate relationships between the pre-
dictors and the target variables, but also helps to explore 
in depth the relationship between these large number of 
mathematically transformed features in radiomics and 
gene expression in life science.

There are several limitations in this study. First, consid-
ering the long appointment time for MR and the conveni-
ence available for CT, we chose CT images for analysis, 
but the use of MR has also attracted increasing attention in 
hepatobiliary diseases, especially MRCP and MR-specific 
sequences [37, 38]. Second, we selected non-contrast and 
arterial phase-based images for analysis in this study and, 
theoretically, although there might be a decrease in pre-
dictive performance compared to the full-phase CT image 
model. Surprisingly, the predictive model we developed 
also achieved relatively superior performance compared to 
related studies (AUC = 0.871–0.974), which can be attrib-
uted to the relatively large sample size in our study and 
the machine learning algorithm. In the future, we also plan 
to perform feature extraction and analysis based on the 
full-phase CT. Third, considering the accuracy of image 
segmentation, we used manual segmentation of ROI, but 
it inevitably takes more time. With the development of 
AI technology, the inclusion of automatic segmentation 
may further improve the practical clinical application in 
the future. Fourth, the present study only evaluated 311 
Chinese ICC patients and was unable to evaluate different 

ethnic patients. Further validations of the main findings by 
international multicenter are required.

In conclusion, we used the LightGBM machine learning 
algorithm to construct the combined radiomics model for 
ICC ER prediction. The combined radiomics model showed 
highly sensitivity and detected 94.6% of the ICC patients 
who actually developed ER for all the cohorts and delivered 
a better performance to TNM staging system. This model, 
once further validated, may provide a new clinical tool to 
improve clinical management of ICC patients.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12072- 023- 10487-z.
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TNM stage: II TNM stage: Ia
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RFS: 92 weeks + RFS: 34 weeks

Combined radiomics model: high-risk 

Fig. 6  Two representative contrast-enhanced CT image examples 
of ICC. A CT image of a 48-year-old man in arterial phase shows a 
7.9 × 4.8  cm nodular lesion with arterial peri-tumoral enhancement 
(arrow) in hepatic segment IV. Postoperative pathology showed 
positive vascular invasion and the TNM staging of this patient is II. 
Using the combined radiomics model, this patient was stratified as 
low risk and he survived without recurrence until the last follow-up 

(92  weeks); B CT image of a 74-year-old woman in arterial phase 
shows a 4.3 × 2.6 cm nodular lesion without obvious arterial enhance-
ment in hepatic segment V/VIII. Postoperative pathology showed 
negative vascular invasion, and his TNM staging was stage Ia. How-
ever, using the combined radiomics model, this patient was stratified 
as high risk and the tumor recurred 34 weeks after surgery. ICC intra-
hepatic cholangiocarcinoma, RFS recurrence free survival
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data including codes can be obtained after asking for the corresponding 
authors and clarifying purpose of use.
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