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Abstract
Background  Host genome integration of HBV sequence is considered to be significant in HBV antigen expression and the 
development of hepatocellular carcinoma (HCC).
Method  We developed a probe-based capture strategy to enrich integrated HBV DNA for deep-sequencing analysis of inte-
gration sites in paired patient samples derived from tumor, liver tissue adjacent to tumor, saliva and plasma, as a platform 
for exploring the correlation, significance and utility of detecting integrations in these sample types.
Results  Most significantly, alpha fetoprotein levels significantly correlated to the amounts of integrations detected in tumor. 
Viral-host chimeric DNA fragments were successfully detected at high sequencing coverage in plasma rather than saliva 
samples from HCC patients, and each fragment of this type was only seen once in plasma from chronic hepatitis B patients. 
Almost all plasma chimeric fragments were derived from integrations in tumor rather than in adjacent liver tissues. Over 
50% of them may produce viral-host chimeric transcripts according to deep RNA sequencing in paired tissue samples. 
Particularly, in patients with low HBV DNA level (< 250 UI/ml), the seemingly normal HBsAg titers may be explained by 
larger amounts of integrations detected. Meanwhile, we developed a strategy to predict integrants by pairing breakpoints for 
each integration event. Among four resolved viral patterns, the majority of Pattern I events (81.2%) retained the complete 
opening reading frame for HBV surface proteins.
Conclusion  We achieve the efficient enrichment of plasma cell-free chimeric DNA from integration site, and demonstrate 
that chimeric DNA profiling in plasma is a promising noninvasive approach to monitor HBV integration in liver cancer 
development and to determine the ability of integrated sequences to express viral proteins that can be targeted, e.g. by 
immunotherapies.

Keywords  Circulating cell-free DNA · Liquid biopsy · DNA capture · Viral integration · Repeat elements · Hepatocellular 
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Background

Hepatitis B virus (HBV) integration has been known 
to occur in hepatocellular carcinoma (HCC) as well as 
chronic liver infection [1, 2]. Double-stranded linear DNA 
(dslDNA) seems to be preferred DNA substrate for inte-
gration [2]. Recently, the resequencing of HCC genomes 
has identified hundreds of integration sites in the human 
genome implicating many cellular genes [3-5]. HBV inte-
grations were more likely to occur in chromosome sites 
of genomic instability such as long interspersed nuclear 
elements (LINEs), short interspersed nuclear elements 
(SINEs), microsatellites and telomeres [6, 7], and further 
studies also showed integration sites tend to occur within 
boundaries of the altered copy numbers of a gene [8, 9]. 
Viral integrations may occur early during HBV infection 
and will constantly happen during the long infection his-
tory, and their patterns have already been applied to detect 
cell clonal expansion in both tumor and non-tumor tissues 
[10, 11]. Chimeric DNA fragments from integration sites 
released by tumor cells account for a proportion of plasma 
cell-free DNA (cfDNA), could serve as a biomarker, and 
reflect a part of the genetic changes in tumor genomes 
[12].

Theoretically, the analysis of the plasma cfDNA pool is 
not only more accessible but also more representative of 
the entire liver than single liver biopsies. In addition, it can 
theoretically be repeated at each patient visit. The scarcity of 
chimeric virus-host DNA in cfDNA requires deep sequenc-
ing depth similar to circulating tumor DNA detection, which 
currently limits the wide-scale implementation in a clini-
cal scenario [13]. Hence, we aimed at enriching viral-host 
fragments using capture probes prior to deep sequencing to 
reduce the sequencing volume and increase the sensitivity to 
detect HBV integration events. Although it has been shown 
that chimeric DNAs reflect tumor recurrence after surgery 
[14], no efforts have been made to examine if integrants 
originating from tumor lesions may be detected once HCC 
occurred or to identify integrations in plasma from chronic 
hepatitis B patients.

Recently, it has been shown that integrated HBV DNA, 
containing an intact open reading frame (ORF) of envelope 
proteins, can serve as an additional template for producing 
hepatitis B surface antigen (HBsAg) and influences antivi-
ral treatment responses and disease prognosis [15]. Further-
more, a study has demonstrated, that liver cells harboring 
integrated HBV DNA sequences can express peptides that 
can be recognized by HBsAg-specific T cells [16]. Nev-
ertheless, almost all previous studies adopting short read 
sequencing have only taken each breakpoint as single inte-
gration event and were unable to predict the viral integrants, 
which would require that the two ends have been identified. 

Thus, we intended to evaluate a novel prediction strategy in 
identifying those integrants with HBsAg production ability. 
It may facilitate novel immunotherapies targeting viral pro-
teins as neoantigens, and monitor liver disease progression.

In this study, we designed viral DNA probes covering the 
whole HBV genome so that we could enrich plasma cfDNAs 
for HBV-containing sequences for deep sequencing. The 
small size of the HBV genome enabled us to achieve a deep 
sequencing coverage at a small sequencing volume, with 
a significantly increased ability to detect viral integrants. 
Using this technique, we analyzed tumor and adjacent non-
tumor liver samples alongside cfDNA derived from either 
plasma or saliva sampled from the same patient. We found 
this to be an efficient strategy to characterize viral integra-
tion events stemming from tumors with a potential use to 
characterize liver cancers in patients with HBV infection 
in a noninvasive fashion. In addition, we use the short read 
sequencing data to predict the orientation and length of inte-
gration by pairing the two ends of each integration event.

Methods

Patients and samples

The present study was conducted in You’an Hospital (Bei-
jing, China). A total of 42 patients were enrolled in the 
stages of sample collection (Fig. 1a). Among these patients, 
27 patients had HCC, 5 patients had bile duct carcinoma 
(BDC, all HBV positive), and 10 patients had chronic hepa-
titis B. Blood samples from HCC and BDC patients were 
collected before surgery, and the corresponding liver tissues 
were obtained afterwards. A total of four samples, which 
included two tumor sites and two adjacent non-tumors, were 
used for the analysis. Chronic hepatitis B patients only pro-
vided blood samples for analysis. The diagnosis was made 
according to the guidelines for the prevention and treatment 
of chronic hepatitis B: a 2015 update [17]. The BCLC staging 
criteria were used to classify HCC patients. The laboratory 
findings are summarized in Tables S1 and Table S2. The 
study protocol conformed to the ethical guidelines of the 
1975 Declaration of Helsinki and was approved by the Eth-
ics Committee of You’an Hospital. An informed consent was 
obtained from all patients. In Stage II of sample collection 
(Fig. 1a), 16 HBV-related cancer patients (11 HCC and 5 bile 
duct carcinoma, BDC, Tables S2-S3). Besides, four patients 
without either HBV infection or HBV DNA detected, includ-
ing two HCV-related HCC patients, one HCC and one BDC, 
served as negative controls, and status for other markers, see 
Table S1 (I008, N001, N002, and N003). DNA sample of 
HepG2.2.15 cell line was provided by Beijing Tricision Bio-
Therapeutics Inc, and cell line authentication was examined 
by Guardian Technology Co. Ltd. using short tandem repeat 
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loci. We performed three capture experiments (replicate 1–3) 
using HepG2.2.15 DNA samples following the below proce-
dure, and obtained 1G, 1.5G, and 2G raw sequencing data, 
respectively (Table S3). Sample collection and DNA extrac-
tion, see Supplementary Methods for details.

Viral capture experiment: design and bioinformatic 
analysis

Probe design and experiment, Sequencing experiments and 
Integration calling, and Breakpoint annotation and visualiza-
tion, see Supplementary Methods for details.

a

b

c

d
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DNA microarray experiment for structure variation 
analysis

The genome-wide genotyping of tumor tissues was per-
formed using the HumanCoreExome-24 BeadChip (Illumina 
Inc.), which was scanned by the iScan Reader (Illumina Inc). 
The LogR ratio (LRR) and B allele frequency (BAF) of each 
genotyped locus were extracted by Illumina GenomeStu-
dio 2011. Variations in copy numbers by each sample were 
determined by pennCNV [18].

Statistical analysis

Statistical analysis, including Chi-square test, t test, linear 
regression, and Pearson correlation, was performed using R 
packages (https​://www.r-proje​ct.org/).

Results

Landscape of HBV integration in cancer 
and adjacent non‑cancer liver tissues

To enrich for viral integrants in cfDNA isolated from 
plasma, we designed DNA probes specific for HBV DNA 
sequences (Method). In probe validation in HepG2.2.15 
cells known to harbor integrated copies of HBV (Stage I, 
Fig. 1a), we identified sequencing five integration sites in 
three replicates (Table S3). The virus-cell DNA junctions in 
the integrant fragments consisted of both the viral genome 
ends (viral breakpoints, Fig. 1b) and cellular genome ends 
(host breakpoints, Fig. 1b). We then applied the method to 
80 biopsy samples collected from 20 liver cancer patients 

(study design in Fig. 1a), and identified 424 integration 
events (Fig. 2a). The number of detected integration events 
detected per sample varied from 2 to 82 (average: 26) among 
the 16 HBsAg-positive patients. Nevertheless, there was 
no significant difference in integration events between the 
tumor sites and paired adjacent non-tumor sites of the same 
individuals (t test, p > 0.05, Figures S1-S2). In four HBsAg-
negative patients as negative control, three (N001, N002, 
and N003) had none integrations detected. I008 with HCV 
infection, negative for all viral markers and HBV DNA, had 
three integration at extreme low coverage (< 10 sequencing 
depth) identified. Additionally, the detection of viral integra-
tions in five patients with bile duct carcinoma may indicate 
contribution of hepatocytes in their tumor origins. 

Genomic annotation of host breakpoints specific to tumor 
or non-tumor tissues revealed no significant differences in 
cellular genome locations of the integration sites in these 
two types of tissues, which can be either between genic and 
intergenic regions (Chi-square test, p = 0.9; Table S4), or 
between repeated and non-repeated regions (Chi-square test, 
p = 0.09). The most commonly directly interrupted gene 
was FN1, which was detected in 8 out of 17 patients; while 
the most common directly interrupted repeat sequence was 
ALR/Alpha, which was also found in 8 patients (Fig. 2b). 
Furthermore, integrations in the telomeres of chromosomes, 
characterized by the repeat sequence of (TTA​GGG​) n, were 
also very common (23.5%, 4/17). We also observed 29.4% 
(5/17) patients had integration sites in the promoter region 
of TERT, which was consistent with a previous finding 
(23.7%, 18/76) [3]. Besides, GO analysis for genes directly 
interrupted by integrations or locating within 20 K around 
integration sites did not identify significantly enriched GO 
items (Figure S2), indicating the random nature of viral 
integrations.

Most patients were infected by genotype type C (88%, 
15/17) (Table S3), and about 71% (12/17) had single tumor 
lesions detected and had multiple lesions or diffuse liver 
tumor. We compared the amounts of integrations detected 
in different groups of patients, including genders, e anti-
body status, presence of multiple lesions, antiviral therapies, 
and BCLC stages A and B. We also examined the corre-
lation between the number of detected integration events 
and alpha fetoprotein (AFP), HBV DNA level, or HBsAg 
titers (Figure S1). We observed a correlation between the 
quantity of integrations, the AFP levels (Pearson correla-
tion coefficient = 0.641, p value = 0.01, Figure S1). Although 
the amount of integrations detected in adjacent liver tissues 
did correlate with those found in tumor samples (Pearson 
correlation coefficient = 0.683, p-value = 0.0025, Fig. 2d), 
AFP levels were better correlated with integrations for 
tumor tissue (Pearson correlation coefficient = 0.767, p 
value = 0.00085, Fig. 2e) compared to adjacent liver tissues 
(R = 0.498, p value = 0.059, Fig. 2f).

Fig. 1   Study design. a Sample collection in five stages. HCC, 
hepatocellular carcinoma; BDC, bile duct carcinoma; negative, 
three patients with liver cancer but without HBV infection. b DNA 
amounts for sequencing library construction in tissue and plasma 
(left). Integrations lead to two host breakpoints and two viral break-
points in the human genome and HBV genome, respectively. Two 
host breakpoints are located at upstream and downstream of the 
integrated viral fragment. Most of integration sites have deletions 
in human genome, leading two 35- <  4500  base pairs in distance 
between two host breakpoints (Pattern I). In some cases (Pattern II), 
sequences of both breakpoints are consistent. c Experiment work flow 
for the capture assay. d Sequencing volumes for captured fragments 
(left), and junction read mapping to the reference region of integra-
tion sites. Human fragments in the virus-host junction reads can be 
mapped to either the upstream or downstream of the breakpoints. 
Theoretically, each integration event should be supported by these 
four types of junction read pairs with adequate read depth at both 
upstream and downstream breakpoints. In pair-end sequencing, at 
most, one read in a read pair would represent the junction read cover-
ing the integration boundary. The other read would either be a host 
fragment (read pairs with a dashed line in blue) or a viral fragment 
(read pairs with a dashed line in light green), and the read alignment 
shows the mapping of these two groups of read pairs in the corre-
sponding color

◂

https://www.r-project.org/
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Our capture strategy achieved high sequencing cover-
age (number of junction reads) of integration breakpoints, 
with 70% (296/424) of integrations having sequencing 
coverage over 100 in at least 1 of 4 aliquots analyzed 
in the same individual. The sequencing coverage of a 
breakpoint could indicate the abundance of the integrant, 
reflecting the size of the clone carrying the correspond-
ing integration. Integration events in tumor samples had 
sequencing coverage around tenfold higher than that in 
adjacent non-tumor samples (Figs. 2c and 3b), indicating 
significant expansion of tumor clones. In conclusion, our 
assay can be applied to efficiently capture and character-
ize integration events.

Capturing the HBV integrations in body fluids

To examine the suitability of saliva, a recently adopted liq-
uid biopsy solution for other cancers [19], we collected the 
saliva samples along with plasma samples for seven liver 
cancer patients (Stage III, Fig. 1a; Table S1). In total, 32 
integration events were successfully detected in 5 patients 
(Table  S5). Only one patient had integration detected 
in saliva (Table S5). Although she had 5 integrants with 
high abundance (250–881 junction read pairs) in plasma 
(Table S5), only 1 integrant (279 junction read pairs in 
plasma) was seen in saliva supported by 1 non-redundant 
junction (Fig. 3a). Therefore, only 1 of 32 (3%) integrations 

a b

c ed f

Fig. 2   a All integration events connecting the viral and human 
genomes. Each light blue line indicates one integration event, with 
one end showing the breakpoint in the HBV genome and the other in 
human chromosomes [23]. Each integration event was only observed 
in one patient. Bubbles with diverse diameters, between chromo-
somes and central connections, illustrate the sequencing read depth 
in multiple samples from each patient. T two samples from tumor tis-
sues; N adjacent non-HCC tissues. The hotspot for viral breakpoints 
locates at approximately nt 1600–1900. b Integration events with 
the same sequence features at the disrupted human genome regions 
and integration burden in all patients. The top panel shows the diag-
nosis of liver cancer, the age of the patient and the Barcelona clinic 
liver cancer (BCLC) stages. The middle panel provides the number 
of integration events per MB according the total events observed in 

all four solid tissue samples obtained from each individual. At the 
bottom panel, patients were listed by frequencies (left part) of the 
26 types of integrations observed in > 2 patients (right part). c Com-
parison of sequencing read depths of integrations in tumors and adja-
cent liver tissues [23]. The values for the sequencing depths were 
log transformed. Each dot indicates the sequencing read depth of an 
integration in tumor (y axis) and non-HCC liver (x axis). A higher 
read depth in two sites of each sample was used for plotting. Diverse 
colors indicate the different patients. d The amounts of integrations 
detected in all tumor samples significantly associate with the amounts 
detected in all paired adjacent liver tissues (adj_liver). The amount 
value is normalized by sequencing volume in corresponding samples 
(per GB). AFP levels relate to amounts of detected integrations in 
tumor samples (e), rather than in paired adjacent liver samples (f)
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were detected in the saliva samples suggesting that saliva is 
not as informative or accurate as plasma samples and thus 
not a suitable sample for detection of viral integration in 
liver cancer, possibly due to the distance between the liver 
and the oral cavity—a parameter previously reported as 
important in the detection of tumor DNA-based biomarkers 
in head and neck squamous cell carcinomas [20].

To trace the origin of integrants in plasma cfDNA, we col-
lected paired tumor and adjacent normal tissues from HCC 
patients (Stage IV, Fig. 1a; Clinical information, Table S1). 
The cfDNA in all seven HBV-positive HCC patients was 
analyzed (one plasma sample failed in the cfDNA extrac-
tion) (Table S2). Overall, the plasma integration events 
predominantly reflected the tumor tissues. First of all, we 
detected 29 integration events from 7 plasma cfDNAs 

(MaxCF > 0, Table  S6) and all of them (29/29, 100%) 
could be detected in the corresponding liver tumor samples 
(Fig. 3b, Table S6). Notably, junction abundance for integra-
tion in plasma samples correlated with that in tumor samples 
(R2 = 0.64, p = 6.2 × 10–29, Table S6; Fig. 3c), but not in the 
paired non-tumor liver tissues (R2 = 0.32, p = 6.2 × 10–12). 
This also supported cell-free junctional DNA was shed by 
the tumor tissue compared to the non-tumor tissue.

Deep RNA sequencing for the same tumor and adja-
cent liver aliquots were performed for four patients (c001, 
c002, c003, c005 in Table  S6). Totally, chimeric RNA 
transcripts were observed for 17 integration sites, among 
which 13 were also seen in plasma cfDNA and the rest 4 
were only observed in the transcriptome data. As a result, 
among 24 integrants in cfDNAs from these 4 patients, 54% 
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Fig. 3   Detection of integration events in saliva and plasma obtained 
from HCC patients. a The integration event in saliva. Only one non-
redundant junction read is obtained in comparison to high sequenc-
ing coverage in paired plasma sample. b The cfDNA was successfully 
extracted in seven of eight patients, and viral integration events were 
detected in all seven plasma samples. More integration events were 
identified in paired liver tissues. The limited integration events were 
shared between tumors and paired non-HCC liver samples (green). In 

particular, the detected integrations in plasma well reflected the coun-
terparts uncovered in tumor tissues (orange and purple), and the inte-
gration events specific to paired non-HCC liver tissues (blue) were 
not observed in the corresponding plasma samples. c The read depths 
of integration events in tumors, non-tumor liver tissues and plasma 
samples. For those detected in all three tissues (T.N.P.). d HBsAg 
titers associated with the amount of integrations in patients with low 
HBV DNA level
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(13/24) had transcription activity. Besides, the amounts of 
chimeric transcripts from integration sites showed a better 
association with DNA junction abundance in tumor tissues 
(R2 = 0.27, p = 1.5 × 10–8, Table S6), than that in adjacent 
liver tissues (R2 = 0.01, p = 0.15). It suggested integration 
events observed in cfDNAs were more likely to have tran-
scription activity in tumor than in adjacent liver tissues, and 
they would contribute to viral antigen production if they kept 
intact ORFs of these proteins.

A lot of factors may hinder the attempt to dissect the cor-
relation between HBsAg titers and integrations, one of the 
major factors is the contribution to viral antigen production 
by HBV cccDNA. To minimize its influence, we examined 
11 patients having integrations detected along with low HBV 
level (< 250 IU/ml), including I001, I003, I007, I008, I012, 
I014, I016, s003, s004, c001, and c002 (Table S1 and S2) in 
Stage II–IV of this study (Fig. 1). In this group of patients, 
HBsAg titers reached the level observed in those patients 
with relative high HBV DNA level, and over 50% (6/11) 
had a titer of more than 5000 IU per ml. Their HBsAg levels 
were significantly positively correlated to the amount of inte-
grations detected in their samples (Pearson correlation coef-
ficient = 0.718, p-value = 0.0128, Fig. 3d), suggesting their 
serological HBsAg may be attributed to viral integrations.

Taken together, we find plasma integration profile is 
valuable for the detection of tumor-derived integration 
events, and RNA sequencing data not only confirmed that 
some of these integrations are transcriptionally active 
but information about tumor expression could be derived 
from the plasma. Then, we also sought HBV integrations 
in the plasma cfDNAs of ten chronic hepatitis B patients 
without liver cancer (Stage V, Fig. 1a; Clinical informa-
tion, Table S2). No events met the integration criteria in all 
these patients (“Methods” section). We did observe a lot of 
single-junction reads indicating the existence of integration 
events, and breakpoint distribution of them was consistent 
with that of breakpoints found in tumor and liver tissues 
(Figure S3). However, their authenticity should be sup-
ported by analyzing paired tissue samples from liver biopsy. 
The scarcity of DNA fragments derived from chronically 
infected liver was likely due to a combination of limited 
turnover of infected cells and clonality. It would be inter-
esting to evaluate the cfDNA from patients where there is 
an active HBsAg-specific T-cell response where selective 
killing could increase the overall number of HBV integra-
tions detected.

HBV integrant prediction: sequence boundary 
of a single integration in human genome

To accurately infer the HBV integration, sequence and ori-
entation will be valuable for assessing the viral protein/pep-
tide potential of integrations. Each integration should have 

two viral breakpoints and two host breakpoints (Fig. 3a). 
As a premise, we assumed that two independent integra-
tion events in host genome should be far away from each 
other (Method). Therefore, we applied a rule that two cel-
lular breakpoints that occurred within 20 K base pairs (bp) 
were a single integration event (Fig. 4). Among the total 
424 integrations observed in paired tumor and adjacent non-
tumor tissues, we were able to map 218 of these accurately at 
each end of the integrated sequence. The genomic distance 
between breakpoints ranged mostly from 0 to 50 bp (87%, 
189/218; Fig. 4a, b Figure S4). The probability of break-
points belonging to two independent integrations located 
within such a small region under current integration rate 
was extremely small (p50bp = 5 × 10–7, the calculation see 
Supplementary Method). The frequency of large deletions 
(> 1000 bp, 5%, 11/218; Fig. 4c) and redundant human DNA 
fragments (13%, 30/218; Fig. 4d) were relatively low. Nota-
bly, 7 of the 11 integrations in the intronic region of FN1 
gene had repeated sequences at the breakpoints.

Obviously, genomic structure variation may influence the 
pairing analysis of the remaining 206 integrations (Fig. 5a). 
To test this hypothesis, the whole genome genotyping of 
tumor tissues from four HCC patients was performed. 
Among the 19 unpaired breakpoints identified in these 
patients, 9 breakpoints were located at the telomere or cen-
tromere regions, while 10 host breakpoints were located at 
the boundary of large structure variations (SV in Table S6 
and Figures S5A-S5H). Particularly, two sites in chromo-
some 9 were separated by 1.7 M bp, and each was located 
at one end of a same-length deletion region in the human 
genome (Fig. 5b). Thus, the alterations in tumor genomes 
and the inaccurate mapping of junction reads in repetitive 
sequences were the two major reasons for the inability to 
pair some host breakpoints.

HBV integrant prediction: four patterns 
of integrated viral fragments

After pairing the host breakpoints for individual integration, 
we obtained the corresponding sequences covering viral 
boundary of this integration event. Then, accurate mapping 
of the integrated viral sequence could be achieved (Fig. 6). 
Among 218 integration events with known host breakpoints, 
215 integrated sequences could be characterized including 
the orientation of the viral sequence. Four distinct viral 
sequence patterns were observed (Fig. 6a, b). Their viral 
breakpoints were relatively consistent, showing similar dis-
tributions between the integration patterns. The majority of 
integrated sequences consisted of nt 1600–1900 of the viral 
genome (64.2%, 138/215) (Fig. 6c, d). This region included 
the cohesive ends of DR1 and DR2, which also are features 
of dslDNA ends. Almost all Pattern I integrations had viral 
ends consistent with the ends of the dslDNA and the viral 
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segments in this group were shorter than the full-length 
HBV genome, ranging from 952 to 3214 bp (Fig. 6e). Inter-
estingly, viral breakpoints in viral pattern II were located 
more commonly between nt 1–1000 than those in viral pat-
tern I (p = 3.1 × 10–7, t test), and most of them had a length 
under 1000 bp (Fig. 6f). The viral segments in viral pattern 
II (21.4%, 46/215) were shorter than pattern I, ranging from 
32 to 1584 bp. Viral integrants in viral pattern III (10.2%, 
22/215) and IV (4.2%, 9/215) appeared to be formed by liga-
tion of the ends of least two viral fragments in a 3′-to-3′ or 
5′-to-5′ manner. In addition, most individual samples con-
tained all four patterns (Figure S6). We acknowledged here 

that the method infers patterns by assembling sequence data 
from multiple 150 bp reads. Clearly, a direct verification 
would require a sequence of long DNA segments without 
fragmentation.

Furthermore, we observed chimeric RNA transcripts 
from all four viral patterns of integration sites in tissue sam-
ples with both DNA capture experiments and deep RNA 
sequencing. In all, 76 integrations were identified in the 
DNA capture experiments (Table S6). Among them, viral 
patterns of breakpoints were determined in 42 integrants, 
and each pattern had 19% integrations with transcrip-
tion activity (Table S6). Therefore, there were no obvious 
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differences in transcription activity among these four pat-
terns of integration events.

Discussion

DNA capture increases the sensitivity to detect integra-
tion and reduces the interference from non-integrated HBV 
DNA in samples. In our experiments, we have shown that 
the concentration of adequate probes is a critical parameter 
to optimize capture which has not been discussed so far. 
To this end, we determined that applying 200 ng of probes 
for each sample to ensure that all viral fragments would be 
captured. Theoretically, a 200-ng probe scan can capture at 
least 1011 target molecules. The DNA extracted from each 
liver tissue consisted of 105 cells that resulted in 600 ng 

of double-stranded DNA. Unlike circulating tumor DNA 
which is confounded by the DNA released from blood cells, 
detection of virus-host DNA junction may be influenced by 
both integrated and non-integrated HBV DNA. Each HBV-
infected cell can contain up to 1000 copies of replicative 
intermediates, resulting in approximately 108 copies of non-
integrated HBV DNA, which can only consume a maximal 
of 1/1000 of input probes. Thus, there were sufficient probes 
to capture all HBV integration events.

Although this assay was not designed to perform a quan-
titative analysis on integrations, the same number of viral 
probes and a relatively equal amount of input DNA enabled 
the comparison of the relative abundance of individual as 
well as total integration events among all analyzed samples. 
The same, unique HBV integration site carried by many liver 
tumor cells was uncovered by a higher number of sequencing 
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boundaries of a same-length genomic deletion



335Hepatology International (2020) 14:326–337	

1 3

reads, supporting the idea that the relative abundance of 
HBV integrations can serve as a genetic marker for clonal 
selection and the expansion of affected hepatocytes [11]. 
Notably, the highest sequencing read depth for the cellu-
lar sequence breakpoints from liver tissues reached 11,579 
in the present study. Hence, we assume that the potential 
for identification of the majority of integration events in a 
given sample was adequately addressed in the present study. 
However, we cannot rule out the possibility that more tissue 
aliquots, more probes or ultra-deep sequencing may identify 
additional integrations at low frequencies or increase the 
read depth for breakpoints.

The detection of new integration events or changes in 
integration events over time may help to monitor disease 
progression in the liver and may have the potential to indi-
cate metastases or secondary tumors both of which are hard 

to detect in particular in a cirrhotic liver. Theoretically, 
cfDNA in blood HBV-containing HBV-host DNA junctions 
should mirror integration events in the liver, since it must 
have been released from the liver as HBV only infects hepat-
ocytes and only integrates into hepatocytes. The present data 
revealed that the HBV integration events detected in plasma 
cfDNA predominantly originated from liver cancer cells. 
In the cancer and paired non-HCC liver tissues from the 
patients at Stage II (Fig. 1a), we observed that the integra-
tion events had much higher sequencing read numbers in 
non-tumor liver tissues, indicating that some non-tumor 
clones with integrations might have already significantly 
expanded before an HCC grew out (Fig. 2c). Nevertheless, 
it was regrettable that corresponding plasma samples were 
not available to compare the abundance of HBV DNA frag-
ments in the circulation with that in liver tissue. However, 
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investigation of the patients enrolled in Stage IV revealed 
that HBV integration events identified in HCC but not in 
those detected in non-tumor liver tissues had correspondent 
counter-part fragments detected in plasma (Fig. 3b). Circu-
lating cfDNA in plasma is most likely released from dying or 
circulating tumor cells and less likely from injured adjacent 
tissue. Thus, one would expect that less DNA is released 
from non-HCC liver tissue compared to liver tumor tissue.

According to the paired viral breakpoints we detected, the 
sequences of the integrated viral segments for viral pattern 
I and II were assembled (Fig. 6d). It was considered that a 
majority of viral pattern I events (81.2%, 112/138) preserved 
the ORF of the large surface protein, and 14 of the remaining 
26 events had an intact ORF of the middle surface protein. 
All these integrations would of course also encode for the 
small envelop protein S and have the potential to secrete 
HBsAg. These observations support the suggestion that inte-
grated HBV DNA provides significant additional capacity 
for HBsAg production besides HBV cccDNA, and represents 
a challenge to reduce HBsAg production [15, 21]. Particu-
larly, our patients with low HBV DNA levels (< 250 IU/
ml) had HBsAg levels significantly positively correlated to 
the amount of integrations detected (Fig. 3d), suggesting 
the contribution of viral integrations to serological HBsAg. 
Recently, Tan et al. demonstrated the first attempt to target 
integrated viral proteins as neoantigens in immune therapies 
for liver cancer [16], and our study explored the feasibility of 
a noninvasive method to identify the candidate integrations 
for this kind of therapy, which will be a promising compan-
ion diagnostic test in the future.

Conclusion

The present data provide evidence that the integration pat-
terns varied among individual patients. Diverse patterns 
and different percentages of different integration sites in the 
same individual imply distinct HBV antigen expression pat-
terns, which are expected to impact therapeutic responses 
to HBV treatment or efforts targeting tumor cells express-
ing viral proteins. The HBV integration detected in the 
plasma cfDNA pool may potentially become a new plasma 
biomarker that could complement present biomarkers to 
monitor HBV related to liver disease stage, including liver 
tumor occurrence. However, future prospective studies with 
a larger sample size are required to validate our findings.
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