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Abstract
The term nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of increasingly harmful conditions ranging from 
nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to liver fibrosis and end-stage cirrhosis. NAFLD 
is the currently most common form of chronic liver disease in both adults and children worldwide. As NAFLD evolves 
as a global pandemic alongside the still growing prevalence of metabolic syndrome, obesity, and diabetes, it is inevitable 
to develop effective counterstrategies. Over the last decades, great effort has been dedicated to the understanding of the 
pathogenesis of NAFLD. This includes the development of an array of models for NAFLD, ranging from advanced in vitro 
(primary cells, 3D cultures, biochip, spheroids, organoids) to in vivo rodent models (particularly in mice). Based on these 
approaches novel therapies have been proposed and subsequently evaluated for patients with advanced forms of NAFLD, in 
particular those with NASH and liver fibrosis or cirrhosis. In this review, we delineate the current understanding of disease 
pathophysiology and depict how novel therapeutic strategies aim to exploit these different mechanisms to ameliorate, treat, 
or stop progression of NASH. We also discuss obstacles and chances along the way from basic models to promising clinical 
treatment options.
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Introduction

During the last decade, the prevalence of obesity, type 2 
diabetes, and the metabolic syndrome continued to rise 
dramatically. The hepatic consequences thereof lie within 
the development of a spectrum of diseases summarized as 
nonalcoholic fatty liver disease (NAFLD). NAFLD repre-
sents a continuum of conditions, which start as relatively 
benign—since completely reversible—hepatic steatosis. If 
left undiagnosed and subsequently unopposed it can transi-
tion into nonalcoholic steatohepatitis (NASH), characterized 
by hepatocellular injury, hepatocyte ballooning, inflamma-
tion, and varying degrees of fibrosis [1]. NASH may finally 
result in severe fibrosis and cirrhotic end-stage liver disease 
potentially developing hepatocellular carcinoma (HCC) 
[2, 3]. Meta-analytic data of 729 review articles including 
more than eight million biopsy-confirmed patients revealed 
a global NAFLD prevalence of 25.4% with the highest dis-
ease burden experienced in South America (30.45%) and the 
Middle East (31.79%) and the lowest in Africa (13.48%) [4]. 
Despite Hepatitis B remaining the number one cause of liver 
cirrhosis in the Asia–Pacific region, NAFLD numbers are on 
the rise in this region as well—mainly due to dietary changes 
and urbanization, adapting a western lifestyle [5]. Defini-
tive diagnosis of NASH currently relies on a liver biopsy, 

displaying varying degrees of steatosis, hepatocellular bal-
looning, lobular inflammation, and—according to the stage 
of disease—presence or absence of fibrosis graded by scor-
ing systems [6]. Among these specificities, fibrosis stage is 
the strongest predictor of disease specific mortality in NASH 
[7, 8]. Recent data on long-term outcomes and evaluation of 
the effects of clinical and histologic parameters on disease 
progression in patients with advanced NAFLD revealed that 
patients with NAFLD cirrhosis suffer from predominantly 
liver-related events, whereas those with bridging fibrosis 
develop mainly non-hepatic cancers and vascular events 
[9]. Reflecting the tremendous increase in humans affected 
by NAFLD, it is now the second leading cause of registra-
tion for a liver transplant, and even the leading cause for the 
latter in women in the United States [10]. Currently, there 
are only few specific pharmaceutical strategies available to 
treat NAFLD [11]. During the last decades, basic science 
leapt a huge step forward in deciphering pathophysiologi-
cal processes underlying fibrosis and liver disease. To date, 
the most accepted concept explaining the pathogenesis of 
NAFLD encompasses multiple damaging ‘hits’ [12]. Char-
acterized by the incidence of parallel or sequential events, 
these hits result from multifaceted interactions between fac-
tors in the macro- or micromilieu, genetics, and gut microbi-
ome and involve both intrahepatic and extrahepatic pathways 

Table 1   Proposed ‘druggable’ pathophysiologic targets in NAFLD

ACC​ acetyl-CoA carboxylase, ASK1 apoptosis signal-regulating kinase, CCR​ C–C motif chemokine receptor, FGF fibroblast growth factor, FXR 
farnesoid X receptor, GLP1 glucagon-like peptide 1, LOXL2 Lysyl oxidase homolog 2, NAFLD nonalcoholic fatty liver disease, NASH nonalco-
holic steatohepatitis, PPAR peroxisome proliferator-activated receptor, THRβ thyroid hormone receptor β

Pathway Mechanism of action Compound References

Cell death Antioxidant Vitamin E [20–22, 103]
Pan-caspase inhibition Emricasan [24]
ASK1 inhibition Selonsertib [25, 26]

Metabolism FXR agonism Obeticholic acid
Tropifexor (LJN452)
Cilofexor (GS9674)

[37–39, 94, 104]

PPAR agonism Elafibranor (GFT505)
Lanifibranor (IVA337)
Seladelpar; Saroglitazar

[33, 35, 43, 44, 105–108]

Acetyl-CoA Carboxylase inhibition Firsocostat (GS-0976) [36, 50, 51, 109]
GLP1 agonism Liraglutide

Semaglutide
[32, 46–49]

FGF21 agonism Pegbelfermin (BMS-986036) [45, 110]
MCP2 antagonism MSDC-0602 K [111–114]
THRβ agonism Resmetirom (MGL-3196) [115, 116]

Gut-liver axis FGF19 agonism NGM282 (FGF19) [57–60]
Myofibroblast activation and extra-

cellular protein deposition
LOXL2 inhibition Simtuzumab [63]

Inflammation CCR2/CCR5 inhibition Cenicriviroc [73, 75, 95–98]
Galectin-3 inhibition GR-MD-02 [77]
Inflammasome inhibition SGM-1019 [117]
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[13–15]. These interactions might promote isolated steato-
sis, innate immune activation, inflammation, cell death, or 
fibrosis with progressive liver damage [12]. Many of the 
promising results from rodent studies have fueled hopes 
to implement novel therapeutic approaches and targets in 
humans, too.

In this review, we outline the current understanding of 
pathomechanisms involved in NAFLD development, poten-
tial therapeutic targets in their wake, and highlight the status 
quo of drug development and NAFLD treatment. Particular 
emphasis lies on lessons learned from currently running 
and recently completed phase 3 clinical trials for promising 
compounds to avoid past pitfalls and enhance future NAFLD 
trials and therapy development.

Key findings from basic models 
with therapeutic implications

Due to the rising impact of steatosis-related liver disease 
worldwide, much effort has been put into uncovering path-
omechanisms with the clear aim to find new therapeutic 
points of action in NAFLD. Current most promising tar-
gets include cell death and metabolic pathways, inflamma-
tory mechanisms, the interplay between gut and liver, and 
directly inhibiting fibrogenic myofibroblast activation and 
extracellular matrix deposition (Table 1). Inherently, these 
approaches focused on pathomechanisms in the liver, while 
(largely) neglecting systemic consequences of the associated 
metabolic alterations (e.g. cardiovascular or renal diseases, 
extrahepatic malignancies), a major contributor of NAFLD-
associated morbidity and mortality.

Cell death

In the past years, a correlation between the extent of liver 
cell death and the degree of fibrosis became evident, des-
ignating more advanced stages of NAFLD [16]. While the 
ability of the liver to eliminate dysfunctional cells is essen-
tial to prevent an excessive inflammatory milieu leading to 
further tissue destruction and carcinogenic transformation, 
processes of cell death themselves were shown to trigger 
fibrosis [17]. Extensive studies on cell death pathways 
uncovered a more diverse landscape off the beaten track of 
regulated cell death (apoptosis) and autolysis of damaged tis-
sue (necrosis). Basic cellular and molecular biology research 
revealed the existence of regulated forms of necrosis, such as 
necroptosis, pyroptosis, ferroptosis, and autophagy-induced 
cell death—pathways which can be partially modulated 
by metabolic signals [18]. In the liver, different cell types 
contribute to a pro- or antifibrotic milieu. While inhibiting 
the death of hepatocytes seems to stop fibrosis, apoptosis 
of hepatic stellate cells (HSC) might be essential for the 

reversal of fibrosis, supporting the concept of cell-type 
specific therapeutic agents [17, 19]. A long known agent 
to dampen the effects of cell damage on the surrounding 
healthy tissue in the liver is α-tocopherol, vitamin E [20]. Its 
properties as an antioxidant are thought to alleviate oxidative 
stress during fulminant cell death and have been studied in a 
large randomized placebo controlled phase three trial against 
pioglitazone, the PIVENS study [21, 22]. Indeed, vitamin E 
proved superior to placebo in reducing hepatic steatosis and 
inflammation [21]. Nonetheless, concerns about long-term 
risks of vitamin E (e.g. hemorrhagic stroke, bladder cancer) 
prevented its broad long-term use in NAFLD [23].

A more specific treatment option is implied by inhibiting 
the common trunk of the extrinsic and intrinsic pathways 
of apoptosis, which is carried out by enzymes termed cas-
pases. The pan-caspase inhibitor emricasan was successfully 
administered in a mouse model of NASH, leading to the 
reduction of inflammation and fibrosis against placebo [24]. 
A subsequent randomized controlled phase 2 trial admin-
istering emricasan vs. placebo in NASH patients showed 
significant reduction of alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) levels in the serum of 
patients who received emricasan [24]. However, emricasan 
failed to improve fibrosis in a recent phase 2 clinical trial in 
NASH patients with fibrosis (ENCORE-NF, ClinicalTrials.
gov identifier NCT02686762).

A third promising target in modulating cell death to 
ameliorate or halt NASH is inhibiting the apoptosis signal-
regulating kinase (ASK) 1. ASK1 activates intracellular 
signaling cascades leading to apoptosis. Inhibition of ASK1 
subsequently leads to reduced apoptosis rates and amelio-
ration of hepatic steatosis in diabetic obese mice [25, 26]. 
After promising data from a phase 2 trial (ClinicalTrials.gov 
identifier NCT02466516) with a signal on fibrosis reduc-
tion, the ASK1 inhibitor selonsertib was recently investi-
gated in two large phase 3 trials, subdivided by the severity 
of NASH (NASH-fibrosis, STELLAR 3, ClinicalTrials.gov 
identifier NCT03053050; and compensated NASH cirrhosis, 
STELLAR 4, ClinicalTrials.gov identifier NCT03053063) 
[27]. Both trials failed to reach the primary endpoint in the 
interim analysis after 48 weeks [28, 29].

Metabolism

As NAFLD is triggered by the excessive supply of nutri-
ents, which dysbalances the metabolic situation, it seemed 
an apparent idea to target the aberrant hepatic fatty acid and 
glucose metabolism to prevent exuberant storage of fatty 
acids and generation of a profibrotic milieu. Key mecha-
nisms in the altered metabolism in NAFLD include an 
excess of fatty acids, which leads to local oxidative bursts 
and endoplasmic reticulum stress, enormous triglyceride 
accumulation in hepatocytes, causing disturbances in the 
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function of mitochondria and autophagy, and lipolysis trig-
gered by insulin resistance [30]. In the past years, a panoply 
of potentially modifiable metabolic pathways was uncovered 
by the use of basic models. These include targets such as 
the family of peroxisome proliferator-activated receptors 
(PPARs), the nuclear receptor FXR (farnesoid X receptor), 
liver-derived metabolic signaling via the fibroblast growth 
factor (FGF) 21, inhibiting the key enzyme of fatty acid 
synthesis, acetyl-CoA carboxylase (ACC) and applying 
already accredited agonists of glucagon-like peptide (GLP) 
1 [31–36].

6α-ethyl-chenodeoxycholic acid, better known as obet-
icholic acid (OCA), a synthetic variant of the natural bile 
acid chenode oxycholic acid, is FXR ligand, which showed 
the ability to reduce insulin resistance, protects against stea-
tosis, and ameliorates liver fibrosis in rodents [37–39]. OCA 
is already approved as the second-line therapy for patients 
with primary biliary cholangitis and inadequate response 
to ursodeoxycholic acid [40]. It successfully completed a 
phase 2b trial in NASH patients, improving fibrosis in the 
OCA group vs. placebo (FLINT, ClinicalTrials.gov identifier 
NCT01265498) [41] and is currently investigated in a large 
phase 3 trial in NASH patients with either fibrosis (REGEN-
ERATE, ClinicalTrials.gov identifier NCT02548351) or 
with compensated cirrhosis due to NASH (REVERSE, Clin-
icalTrials.gov identifier NCT03439254) [42]. In this phase 3 
trial, OCA resulted in significantly more patients achieving 
a ≥ 1 stage improvement in fibrosis by histological analysis 
after 72 weeks compared with placebo. Long-term results 
of this trial are still pending.

Various substances targeting different subtypes of PPARs 
are currently under preclinical and clinical investigation. 
Elafibranor (also known as GFT505), a dual PPARα/δ 
agonist, reduced steatosis, inflammation and fibrosis in 
a variety of murine models of NAFLD [43]. In the phase 
2b GOLDEN-505 study (ClinicalTrials.gov identifier 
NCT01694849), elafibranor demonstrated the ability to 
induce resolution of NASH without worsening of fibrosis 
in a subgroup of patients [44]. Patients with biopsy-proven 
NASH are currently recruited in a phase 3 trial to further 
evaluate elafibranor in a larger cohort (RESOLVE-IT, Clin-
icalTrials.gov identifier NCT02704403). Other promising 
PPAR agonists are evaluated in randomized controlled phase 
2 trials in NASH patients and include saroglitazar, a dual 
PPARα/γ agonist (EVIDENCES-IV, ClinicalTrials.gov iden-
tifier NCT03061721) and lanifibranor, a PPARα/γ/δ agonist 
(NATIVE, ClinicalTrials.gov identifier NCT03008070).

Pegbelfermin, a polyethylene glycol-conjugated 
(PEGylated) FGF21 analogue, is currently evaluated in rand-
omized controlled phase 2b clinical trial with either patients 
with NASH fibrosis (FALCON1, ClinicalTrials.gov identi-
fier NCT03486899) or NASH cirrhosis (FALCON2, Clini-
calTrials.gov identifier NCT03486912) after successfully 

passing a 2a trial, wherein it significantly reduced liver fat 
content compared to placebo in NASH patients [45]. More 
compounds aiming to target the deranged metabolism in 
NAFLD include GLP1-analoga liraglutide and semaglutide 
[46–49]. Liraglutide was successfully evaluated in a rand-
omized, placebo-controlled phase 2 study (LEAN, Clinical-
Trials.gov identifier NCT01237119) by meeting the primary 
endpoint, which was defined as histological resolution of 
NASH [32]. Another promising target in NAFLD is Acetyl-
CoA Carboxylase (ACC), an important enzyme in fatty acid 
metabolism and de novo lipogenesis in the liver. The ACC-
inhibitor firsocostat (also known as GS-0976) was able to 
reduce hepatic steatosis, improve glucose-stimulated insulin 
secretion, and limit de novo lipogenesis in both rat models 
of NAFLD and humans in an open-label phase 2 study [50, 
51]. This compound is currently under clinical evaluation as 
part of a combination therapy with selonsertib, semaglutide, 
and cilofexor in phase 2 studies.

Gut–liver axis

Conjointly working together in nutrient uptake, gut and liver 
are often referred to as an anatomical and functional unit—
the ‘gut–liver axis’. Mixed among the nutrients reaching the 
liver via the portal vein are many signals, including hor-
mones, growth factors and chemokines, from the intestinal 
tract. In return, the liver is able to secrete different soluble 
messengers, such as bile acids or IgA, via the bile into the 
intestine [52]. Several studies in animal models have illus-
trated the impact of the intestinal mucus layer, the presence 
of toll-like receptors (e.g. TLR4), and the composition of 
the intestinal microbiome on fibrotic responses in the liver 
[53–55]. Respecting the complexity of the gut microbiome 
and its regulation [56], it seems to need thought-out concepts 
on how to intervene in favor of resolving NAFLD, e.g. tar-
geting fibroblast growth factors (FGF) promoting beneficial 
metabolic effects [30]. One of these might be NGM282, an 
engineered FGF19 analogue, demonstrating the ability to 
resolve steatohepatitis, liver fibrosis, and inflammation in 
mice [57, 58]. It has been evaluated in phase 2 randomized, 
placebo-controlled clinical trials, showing significant reduc-
tion of liver fat content vs. placebo and signals of histologi-
cal improvement [59, 60].

Myofibroblast activation and extracellular protein 
deposition

Targeting liver fibrosis right at the origin of extracellular 
matrix production seems an elegant approach to halt or 
reverse fibrogenesis along the transition from steatosis to 
cirrhosis. Hepatic stellate cells (HSC) form the center of 
interest in this pathogenesis, since they represent the main 
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source of collagen-producing myofibroblasts in liver fibrosis 
after being transdifferentiated from their resting phenotype 
[61]. HSC transdifferentiation, however, involves a num-
ber of complex intra- and extracellular signals provided by 
chemokines, macrophages, surrounding hepatocytes, cell 
metabolism, and has been extensively studied over the years 
[19, 62]. A key mechanism to achieve extracellular colla-
gen accumulation involves the collagen-crosslinking enzyme 
lysyl oxidase-like (LOXL) 2. Simtuzumab is a monoclonal 
antibody binding to LOXL2, whereby it blocks fibrogenesis 
by crosslinking collagen fibers [63]. The results of inhibiting 
the LOXL2 with a monoclonal antibody in animal models of 
fibrotic and cancerous diseases bore legitimate excitement 
that this strategy might be effective in human fibrotic disease 
as well, inhibiting profibrotic pathways and even resulting in 
reversal of fibrosis in mice [64, 65]. However, clinical trials 
in humans aiming to treat idiopathic pulmonary fibrosis and 
liver fibrosis with simtuzumab failed to reproduce the strong 
effects observed in the rodent models [66, 67].

Inflammation

Hepatic inflammatory pathways are involved in all of the 
aforementioned pathomechanisms leading to liver fibro-
sis and cirrhosis. Upon cell damage, stressed hepato-
cytes, Kupffer cells, HSCs, and endothelial cells release 
chemokines guiding inflammatory cells, e.g. monocytes, 
dendritic cells, neutrophil granulocytes, and lymphocytes 
to the site of inflammation [68]. Monocyte subsets attracted 
by the C–C chemokine receptor type 2 (CCR2) seem to play 
a key role in setting up and maintaining the inflammatory 
environment [69–71]. CCR2 binds to its ligand, the C–C 
chemokine ligand type 2 (CCL2, also known as monocyte 
chemoattractant protein-1 or MCP-1). Several studies in 
experimental animal models have shown that steatohepa-
titis, liver fibrosis, and insulin resistance can be dampened 
by targeting and inhibiting either CCR2 or its ligand CCL2 
[72–75].

Another immunologic target is the vascular adhesion 
protein (VAP) 1, which on the one hand regulates oxida-
tive stress and inflammatory signaling, and on the other 
hand recruits lymphocytes to the site of inflammation [76]. 
By blocking VAP-1 liver fibrosis could be ameliorated in 
rodent models [76]. Furthermore, the molecule Galectin-3 
was identified as an important player in liver fibrosis, since 
it is upregulated in inflammatory monocytes. Its inhibition 
proved significant reduction of fibrosis in experimental rat 
models [77].

Such anti-inflammatory targets are the aim of clinically 
investigated anti-NASH agents, the dual CCR2/CCR5 inhib-
itor cenicriviroc, the VAP-1 (AOC3) inhibitor BI-1467335 
(formerly known as PXS-4728A) and the Galectin-3 
inhibitor GR-MD-02 [75, 77, 78]. Cenicriviroc is currently 

evaluated in a large phase 3 clinical trial, the AURORA 
study (ClinicalTrials.gov identifier NCT03028740).

Common preclinical models in NAFLD 
research

The wide range of proposed ‘druggable’ disease mechanisms 
in NAFLD is a reflection of intense basic research. As a 
fundament, a plethora of in vitro and in vivo models have 
been developed to study various aspects of NASH. Larger 
animal models, such as the Ossabaw pig model of NASH, 
are logistically difficult in handling, expensive, and still 
unable to model a human NASH macro- and micromilieu 
[79]. Thus, in vivo modeling strategies almost exclusively 
rely on rodents. To realistically mimic human NAFLD, 
models for the evaluation of novel therapeutic compounds 
should display a phenotype as close to human disease as 
possible. Ideally, preclinical models in NAFLD should, 
therefore, develop obesity, insulin resistance, dyslipidemia, 
and the proinflammatory milieu of steatohepatitis when fed 
a specific high caloric diet, possibly in conjunction with 
hepatotoxins. Liver pathology should include macrovesicu-
lar steatosis, lobular inflammation, hepatocellular balloon-
ing, and hepatic fibrosis, the histopathological hallmarks of 
NASH in humans. The development of a histopathological 
NAFLD score in rodents aimed to simplify the translatabil-
ity into humans [80]. On the cellular and molecular level, 
the activation of key cellular pathways for fibrosis, de novo 
lipogenesis, the occurrence of oxidative stress, apoptosis, 
and the unfolded protein response should prove similar to 
the human one. Finally, transcriptomic and metabolomic 
analyses should confirm a similar molecular signature in 
human disease and in the model throughout different stages 
of NAFLD.

To date, none of the widespread used in vivo NASH mod-
els meets all these criteria constraining NAFLD researchers 
to focus on investigating certain aspects of the disease in the 
most suitable model for their specific hypothesis (Fig. 1). 
There is consensus that no single “perfect model” provides 
optimal insight into the efficacy of interventions across all 
mechanisms of action. Therefore, the joint workshop by the 
European and the American Association of the Study of the 
Liver (EASL & AASLD) recommended the rational use of 
models that best reflect the pathogenic aspect targeted by a 
new compound as the most appropriate approach [81].

Mimicking the natural etiology of NAFLD resulting from 
overnutrition and a predominantly sedentary lifestyle, a good 
part of in vivo NASH models follows the concept of diet-
induced obesity (DIO). Virtually any mouse strain can be 
fed a high-caloric, high fat (HF), high cholesterol (HC), high 
fructose (HF), or western diet (WD) to induce a steatotic 
phenotype. The phenotype, however, is strain dependent, e.g. 
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C57Bl/6 mice are more susceptible to high fat diets than 
BALB/c mice [82]. Moreover, the composition of dietary 
lipids not only differentially affects the phenotype of NASH 
in mice, but also shapes the transcriptome of inflammatory 
cells such as Kupffer cells and infiltrating macrophages [83].

A main disadvantage of pure DIO models for the study of 
NASH pathogenesis is the low rate of fibrogenesis induced 
in these animals. To circumvent this, specific nutrient-defi-
cient diets have been applied either alone or in combina-
tion with obesity-inducing diets, including the methionine 
and choline deficient diet (MCD) or a variant thereof, the 
choline deficient L-amino acid defined (CDAA) diet. Fur-
ther models comprise chemically and mechanically induced 
liver damage, mono- and polygenetic models of NAFLD, 
and models combining multiple strategies to achieve more 
complete NASH pathology in accordance with the multiple 
hit hypothesis. Three recent reviews by Hansen et al., San-
thekadur et al. and Febbraio et al. provide an in-depth over-
view of current preclinical modeling in NAFLD research 
[84–86]. Important and widely used NAFLD models are 
summarized in Table 2, alongside an overview of current 
and recent compounds in advanced clinical trials that had 
recently been evaluated in the respective model(s).

Alternatives to murine models include in vitro studies 
with cell cultures or human tissue samples (e.g. liver biopsies 
or liver slices). While 2D single cultures (on plastic dishes) 
are considered very artificial, 3D cultures of primary cells, 
biochip-based culture systems, hepatic spheroids and orga-
noids allow a better assessment of cellular stress responses. 
Recently, advances were made in the ex vivo development 
of human tissue and in generating functional organoids 
from induced pluripotent stem cells (iPSC). For instance, 
an artificial liver system on a chip could be generated using 
either freshly isolated primary mouse hepatocytes, stellate 
cells, sinusoidal endothelium, and Kupffer cells or respective 
cell-lines [87, 88]. Furthermore, disease modeling could be 
implemented in human-derived ex vivo models, as shown 
in an organoid steatohepatitis model created from human 
stem cells [89]. The hope with these approaches lies within 
the creation of conditions closer to human (patho-)physiol-
ogy and in gaining independence from animal-based mod-
eling. Nonetheless, some aspects of the pathophysiology of 
NAFLD (e.g. recruitment of and interaction with inflam-
matory cells from the circulation, impact of gut-derived or 
microbial signals, impact of NAFLD on extrahepatic organs) 
will be inherently difficult to model in an ex vivo system.

NASH Fibrosis

Dietary models
HFD
WD
MCD

Genetic models
ob/ob
db/db
foz/foz

Chemical models
STZ
DEN
CCl4
TAA

Mechanical model
BDL

Metabolic phenotype Fibrotic phenotype

+ +/ /

ALIOS/AMLN
DIAMOND

FATZO + HFD
CDAA-HFD

Combined approach

+

+

STAM

Fig. 1   Selection of appropriate in  vivo models for non-alcoholic 
steatohepatitis (NASH). Selected mouse models of non-alcoholic 
fatty liver disease (NAFLD) are displayed that either reflect predomi-
nantly metabolic or fibrotic characteristics of NAFLD. Combined 
approaches have been developed to better mimic the phenotypic 
spectrum of human NAFLD in mice. ALIOS, American Lifestyle-
Induced Obesity Syndrome; AMLN, Amylin liver NASH model; 
BDL, bile duct ligation; CCl4, carbon tetrachloride; CDAA-HFD, 
choline deficient L-amino acid-defined, high-fat diet; db/db, diabetic/
diabetic, resulting in leptin receptor deficiency; DEN, diethylnitrosa-

mine; DIAMOND mouse, diet-induced animal model of non-alco-
holic fatty liver disease C57BL/6  J x 129S1/SvImJ (B6/129 mice) 
fed with WD + soluble glucose and fructose; FATZO, C57BL/6  J x 
AKR/J mice fed HFD and FD; FD, fructose diet; foz/foz, ‘fat Aus-
sie’ mice, ALMS1 (Alström syndrome 1) deficiency; HFD, high fat 
diet; MCD, methionine and choline deficient diet; NAFLD, nonalco-
holic fatty liver disease; NASH, nonalcoholic steatohepatitis; ob/ob, 
obese/obese, results in leptin deficiency; STAM, Stelic model NASH, 
STZ + HFD; STZ, streptozotocin; TAA, thioacetamide; WD, western 
diet
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Pitfalls in clinical studies

In response to the encouraging results from studies in 
numerous preclinical NAFLD models and, of course, driven 
by commercial interests, a range of clinical trials in humans 
was initiated. Table 3 summarizes important recently con-
ducted and now running phase 3 studies in patients with 
NAFLD. To maintain inter-study comparability and address 
challenges in the field of drug development for NAFLD, the 
Center for Drug Evaluation and Research (CDER) of the 
Food and Drug Administration (FDA) in the United States 
Department of Health and Sciences published a draft guid-
ance for the industry [90]. A similar reflection paper has 
been released by the European Medicines Agency (EMA) 
[91]. These documents provide a voluntarily applicable 
framework with recommendations on the specifications of 
patient cohorts including enrollment criteria, trial design, 
efficacy endpoints, and safety considerations. Currently, 

there are seven ongoing phase 3 trials in NASH, six of them 
testing recently developed, NASH-specific compounds 
(refer to Table 3). The scientific associations for hepatology 
in Europe and the US, EASL and AASLD, have provided 
evidence-based recommendations on clinical trial endpoints 
in NASH as well [81].

Selonsertib—ASK1 inhibition

Before entering the clinical trial phase, the ASK1 inhibi-
tor GS-4997 (selonsertib) was successfully tested in a DIO 
rodent model of NASH, namely that C57Bl/6 mice were fed 
a diet high in fructose, cholesterol, and fat content [92]. The 
resulting NASH phenotype including steatohepatitis, fibrosis 
and an altered hepatic lipid and bile acid metabolism was 
successfully ameliorated by selonsertib [92]. Subsequently, 
selonsertib was investigated in 72 NASH patients with 
grade 2–3 fibrosis in a randomized, multicenter, open-label 

Table 3   Selected active and recently completed phase 3 studies in NAFLD

ASK1 apoptosis signal-regulating kinase 1, CCR​ C–C motif chemokine receptor, FXR farnesoid X receptor, MPC2 mitochondrial pyruvate car-
rier 2, n number of patients, NASH nonalcoholic steatohepatitis, PPAR peroxisome proliferator-activated receptor, SGLT2 sodium-dependent glu-
cose transport protein 2, THRβ thyroid hormone receptor β, trials are displayed as accessed on clinicaltrials.gov on 9th July 2019 without clinical 
trials involving pediatric cohorts and dietary supplements

Trial name Phase (status) Compound Mechanism Sponsor Patient char-
acteristics

n Trial identifier Comple-
tion date 
(expected)

References

REGENER-
ATE

3 (recruited) Obeticholic 
acid

FXR agonism Intercept NASH 
fibrosis

2370 NCT02548351 (10/2022) [42]

REVERSE 3 (recruiting) Obeticholic 
acid

FXR agonism Intercept Compensated 
NASH cir-
rhosis

540 NCT03439254 (10/2022) –

STELLAR 3 3 (completed) Selonsertib ASK1 inhibi-
tion

Gilead NASH fibro-
sis (F3)

880 NCT03053050 06/2019 [27, 28]

STELLAR 4 3 (completed) Selonsertib ASK1 inhibi-
tion

Gilead Compensated 
NASH cir-
rhosis (F4)

883 NCT03053063 04/2019 [27, 29]

RESOLVE-
IT

3 (recruiting) Elafibranor PPARα/δ 
agonism

Genfit Biopsy-
proven 
NASH

2000 NCT02704403 (12/2021) –

AURORA 3 (recruiting) Cenicriviroc CCR2/CCR5 
antagonism

Allergan NASH fibro-
sis (F2-3)

2000 NCT03028740 (10/2021) –

MAESTRO-
NASH

3 (recruiting) Resmetirom THRβ ago-
nism

Madrigal Biopsy-
proven 
NASH 
fibrosis 
(F1-3)

2000 NCT03900429 (03/2024) –

MMON-
ARCh

3 (not yet 
recruiting)

MSDC-
0602 K

MPC2 inhibi-
tor

Cirius Biopsy-
proven 
NASH

3600 NCT03970031 (12/2021) –

DEAN 3 (recruiting) Dapagliflozin SGLT2 
antagonism

Nanfang 
Hospital of 
Southern 
Medical 
University, 
China

Biopsy-
proven 
NASH

100 NCT03723252 (11/2021) –
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phase 2 trial [93]. It was initially designed to assign patients 
randomly 2:2:1:1:1 into groups treated with either 6 mg or 
18 mg selonsertib, a combination of either 6 mg or 18 mg 
selonsertib and 125 mg of the LOXL2 inhibitor simtuzumab 
or simtuzumab alone. After simtuzumab was proven inef-
ficient in another clinical trial, treatment groups of simtu-
zumab and selonsertib were pooled. Treatment outcome 
was verified by liver biopsy, magnetic resonance elastog-
raphy of the liver and noninvasive markers of liver injury 
after 24 weeks of treatment. Patients treated with selon-
sertib showed an improvement in fibrosis associated with a 
decreased liver collagen content and reduced inflammation 
upon biopsy; findings which were mirrored in the magnetic 
elastography after treatment with selonsertib that showed 
reduction of liver stiffness [93]. However, the patient cohort 
in this study was small, the interval between baseline and 
end-of-treatment biopsy was short (24 weeks), and differ-
ences did not reach statistical significance. Nonetheless, the 
positive signals from this ‘pilot trial’ led to the initiation 
of two large phase 3 trials in either NASH patients with 
bridging fibrosis (STELLAR-3) or cirrhotic NASH patients 
(STELLAR-4). In February and April 2019, respectively, 
Gilead confirmed termination of first the STELLAR-4 and 
2 months later the STELLAR-3 trial after selonsertib failed 
to reach the interim analysis endpoint of improving fibrosis 
by at least one stage without the worsening of NASH in 
the respective cohorts [28, 29]. However, selonsertib is still 
part of a phase 2b trial investigating a triple combination 
therapy with the ACC inhibitor firsocostat and the FXR ago-
nist cilofexor in NASH patients with fibrosis and compen-
sated cirrhosis (ATLAS trial, ClinicalTrials.gov identifier 
NCT03449446).

Obeticholic acid—FXR agonism

The synthetic bile acid obeticholic acid (OCA) was shown 
to reduce pathogenic features in various rodent models of 
NASH. It first proved halting of hepatic steatosis alongside 
amelioration of insulin resistance and altered lipid metabo-
lism in leptin receptor mutated Zucker fa/fa rats [38]. Four 
years later, a different laboratory showed OCA to signifi-
cantly reduce portal hypertension in two different cirrhotic 
rat models [39].

Encouraged by these positive effects, OCA entered the 
clinical trial phase and is now evaluated in phase 3 trials in 
patients with NASH fibrosis (REGENERATE) and those 
with compensated NASH cirrhosis (REVERSE). In the 
randomized, multicenter, double-blind, placebo-controlled, 
parallel group phase 2 FLINT study, 283 patients with non-
cirrhotic, liver biopsy proven NASH were enrolled and 
received either OCA or placebo during a 72 weeks timespan 
[41]. The overall results of the FLINT study were highly 

positive as all components of the NAFLD activity score 
(hepatocellular ballooning, lobular inflammation, and stea-
tosis) as well as fibrosis improved in the OCA group vs. 
placebo [41]. However, adverse effects in the OCA groups 
included 23% of patients complaining of pruritus. In addi-
tion, an increase in serum cholesterol levels was seen in 
OCA-treated patients as compared to those receiving pla-
cebo, which can be managed by adding a statin or dose-
adjusting an existing statin therapy. The clinical relevance of 
the LDL increase on OCA regarding cardiovascular events 
or cardiovascular mortality is currently unclear. A possible 
explanation for increased serum cholesterol levels lies within 
the mechanism of action of the FXR receptor. Activation of 
this receptor leads to a blockade in the conversion of cho-
lesterol to bile acids and might thus lead to cholesterol accu-
mulation [41]. These findings will need further assessment 
during the above mentioned phase 3 trials. Both REGEN-
ERATE and REVERSE studies are currently ongoing. In 
patients with non-cirrhotic NASH (REGENERATE), sig-
nificantly more patients on OCA displayed fibrosis improve-
ment by ≥ 1 stage without worsening of NASH compared to 
placebo after 72 weeks of treatment, while the alternative 
primary endpoint (NASH resolution without worsening of 
fibrosis) was not met. Pruritus was reported in up to 51% of 
patients exposed to the highest dose of OCA (25 mg daily), 
and LDL increase occurred in 17% of OCA-exposed patients 
(7% in placebo). OCA is already approved as a second-line 
treatment option for primary biliary cholangitis in the US as 
well as in Europe [94].

Cenicriviroc—CCR2/CCR5 antagonism

The efficacy of inhibiting macrophage infiltration and HSC 
activation as mediated by the dual CCR2/CCR5 antagonist 
cenicriviroc in NASH was investigated and proven exten-
sively in a large number of different rodent models in dif-
ferent independent laboratories. These models include 
chemically induced liver injury by thioacetamide (TAA), 
acetaminophen, and carbon tetrachloride (CCl4), combined 
chemically and dietary induced NASH via streptozotocin 
(STZ) and HFD, cholestatic fibrosis after bile duct ligation, 
and dietary models fed with WD or MCD (see Table 2 for 
details) [73, 75, 95–98]. Cenicriviroc successfully reduced 
monocyte recruitment to the inflammation site, effectively 
reduced liver fibrosis, and was able to significantly reduce 
the NAFLD activity score in the investigated NASH models 
[75]. Cenicriviroc has recently been evaluated in a rand-
omized, double-blind, placebo-controlled, multinational 
phase 2b study in 289 patients with noncirrhotic NASH and 
fibrosis stages 1–3, the CENTAUR trial [99]. After 1 year 
into the study, cenicriviroc demonstrated a significant reduc-
tion of fibrosis stage against placebo without the worsening 
of steatohepatitis by histology. An analysis after 2 years into 
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the study confirmed reduction of fibrosis stage in the cenic-
riviroc group vs. placebo in patients treated for 1 year, but 
no additional benefit for a longer treatment period for this 
endpoint [100]. A phase 3 trial, the AURORA study with 
planned enrollment of 2000 fibrotic NASH patients is cur-
rently running and awaits first results in 2021.

Elafibranor—PPAR agonism

The dual PPARα/δ agonist elafibranor showed positive 
effects on liver inflammation, steatosis, and serum liver 
enzymes in three different rodent models of NASH: WD-
fed human apolipoprotein E2 transgenic mice, MCDD-fed 
db/db mice, and CCl4-induced fibrosis [43]. Consequently, 
elafibranor was assessed in a phase 2b multicenter, rand-
omized placebo-controlled trial, the GOLDEN-505 study 
[44]. In the initial intention-to-treat cohort, the predefined 
primary endpoint was not met, however, after modification 
a post hoc analysis confirmed NASH resolution without 
fibrosis worsening in the elafibranor group for patients with 
‘active’ disease (defined by a histological activity score) 
[44]. A clinical phase 3 trial in 2000 NASH patients is cur-
rently running (RESOLVE-IT), and initial results are being 
expected in 2020.

Discrepancy between preclinical models 
and clinical reality: potential reasons

Several of the recently conducted phase 2 and 3 trials in 
NASH failed to reproduce the promising antifibrotic or 
NASH-resolving effects clearly observed in rodent models. 
Reasons for these differences are likely manifold. First, no 
model can ever test compounds in the original physiological 
environment of heterogeneous human patient populations. 
In fact, experiments in mice usually try to reduce variabil-
ity (heterogeneity) by controlling for potential confounders 
(e.g., same genetic background, oftentimes only male mice, 
same microbiota by cohousing, same calorie/food intake). 
This aspect may become even more relevant if mechanisms 
are not fully translatable between two different species. It 
is likely that mechanisms of disease are divergent in mice 
and men, just as differences in the steatogenesis of different 
diets affect various mouse strains to a varying degree [82]. 
Following this argumentation, there might be differences in 
drug biodistribution, target engagement or efficacy in mice 
and humans that influence susceptibility to treatment with 
certain drugs. Furthermore, none of the available NASH 
models used for preclinical trials satisfactorily represents all 
the human disease characteristics from the macroscopic to 
the molecular level. This irrevocably leads to an insufficient 
disease modeling and potentially biased translatability of 
drug effects seen in these models into the human system. 

Moreover, only few NAFLD models reflect associated extra-
hepatic diseases (such as atherosclerosis, obesity or insulin 
resistance; see Table 2). In addition, a higher heterogeneity 
in men concerning genetics, the gut microbiota, sex, and 
present comorbidities leads to further complications. It 
is, therefore, of the highest interest to generate preclinical 
models that model human physiology the closet possible to 
ameliorate the outcome of clinical trials in NAFLD drug 
development.

Clinical development of new drugs 
for NAFLD: What can we learn from basic 
models?

Well-conducted animal studies can provide important infor-
mation on efficacy, safety and the mechanism of action of a 
certain compound for clinical development. Solid preclini-
cal data are required before moving into human studies. To 
effectively test novel drug candidates, it is essential to know 
(and understand) the preclinical tools and choose wisely 
among the (partially insufficiently characterized) models 
available. In some cases, it appears reasonable to have the 
targeted pathway rather than all aspects of NAFLD pathol-
ogy represented in a mouse model [81]. The above discussed 
compounds selonsertib, OCA, elafibranor, and cenicriviroc 
were all preclinically evaluated in at least two different 
murine NASH models. This robustness of findings in at 
least two different model systems is needed, and might be 
improved by reproducing the results in independent labora-
tories before entering the clinical trial phase. Following this 
approach, the effect of different microbiota, strains, and han-
dling can be addressed, further supporting the translational 
relevance of findings from animal models before proceeding 
into clinical trials.

Conclusion and perspectives

Preclinical models of NAFLD have contributed enormously 
to unravel the complexity of NAFLD pathophysiology. Fur-
thermore, they have led to the development, implementation, 
and clinical investigation of promising treatment strategies in 
NASH and NAFLD. To benefit from this valuable resource 
and subsequently be able to utilize it, it is of crucial impor-
tance to know about the advantages and drawbacks of pre-
clinical models. Several clinical trials, as discussed above, 
have unfortunately taught us that what works in mice does 
not necessarily work for humans. Improving NAFLD diag-
nostics—potentially rendered non-invasive and enhanced 
by the help of deep learning methods [101], choosing the 
right model, and conducting clear cut clinical trials may 
pave the way towards successful drug development to treat 
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NASH. Eventually, in the light of the dramatically increasing 
prevalence of NAFLD, it is important to remember the roots 
of and the risk factors leading to NASH, as establishment 
of a healthy lifestyle as well as effective treatment and the 
prevention of metabolic disorders such as type 2 diabetes, 
dyslipidemia, and obesity withdraw the fertile ground for 
NAFLD to flourish. However, as 95% of 7013 patients in a 
US NAFLD cohort were unaware of suffering from a liver 
disease, it is also imminent to increase the awareness of 
NAFLD and implement patient education programs [102].
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