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Abstract
An ultrasound (US) examination is a common noninvasive technique widely applied for diagnosis of a variety of diseases. 
Based on the rapid development of US equipment, many US images have been accumulated and are now available and ready 
for the preparation of a database for the development of computer-aided US diagnosis with deep learning technology. On the 
contrary, because of the unique characteristics of the US image, there could be some issues that need to be resolved for the 
establishment of computer-aided diagnosis (CAD) system in this field. For example, compared to the other modalities, the 
quality of a US image is, currently, highly operator dependent; the conditions of examination should also directly affect the 
quality of US images. So far, these factors have hampered the application of deep learning-based technology in the field of 
US diagnosis. However, the development of CAD and US technologies will contribute to an increase in diagnostic quality, 
facilitate the development of remote medicine, and reduce the costs in the national health care through the early diagnosis of 
diseases. From this point of view, it may have a large enough potential to induce a paradigm shift in the field of US imaging 
and diagnosis of liver diseases.
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Introduction

Ultrasonography (US) is a common and widespread modal-
ity in the screening and diagnosis of many diseases because 
of its noninvasiveness and convenience [1–3]. However, for 
operators, extensive experience of US examination should 
be required for the accurate diagnosis of the lesions because 
of the necessity of real-time recognition of abnormal lesions 
during examinations [4, 5].

A lack of specialists for US imagining and diagnosis is 
an urgent medical matter that needs to be solved. Recently, 
in addition to conventional machine learning, sophisticated 
deep learning technology is becoming available in this field. 
From this point of view, development of computer-aided 
detection and diagnosis will be an attractive solution for the 

US diagnosis, especially in underpopulated areas with insuf-
ficient medical services. Based on these backgrounds, sev-
eral reports that applied machine learning technology for the 
diagnosis of diseases have been published [6–8]. However, 
because of the specific nature of US diagnosis, there are still 
several issues that need to be resolved for the application 
of computer-aided diagnosis (CAD) in this field [9]. In this 
review, we evaluate the current performance of CAD for 
liver lesions based on the previous publications, and discuss 
the advantages and problems to be solved for future estab-
lishment of deep learning-based CAD system as a screening 
tool for US examination of liver disease.

Advance in computer‑aided diagnosis for medical 
imaging

Recently, several studies reported the impact of CAD using 
deep learning algorithm for medical imaging. Gulshan et al. 
[10] reported the performance of deep convolutional neu-
ral networks (CNNs) for automated detection of diabetic 
retinopathy and diabetic macular edema using a dataset of 
128,175 photo images of retinal fundus. The performance 
of algorithm showed an area under the receiver operating 
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curve (AUC) of 0.991, indicating that the use of this algo-
rithm could show a positive impact on improved care and 
outcomes. Another study reported the diagnostic assess-
ment of deep learning algorithms for detecting lymph node 
metastases of breast cancer through the training of whole 
slide image with and without nodal metastasis [11]. Report-
edly, the performance was comparable with that of an expert 
pathologist without time constraints. In the field of derma-
tology, deep learning using a dataset of 129,450 clinical 
images of skin lesions by CNNs achieved performance on 
par with expert dermatologists for classifying skin cancers 
[12]. On the other hand, creating large dataset of medical 
image sometimes requires many skilled people and much 
time. From this point of view, efficacy of transfer learning 
algorithm was also reported for identifying the common 
treatable blinding retinal disease and pediatric pneumonia 
using smaller dataset of optical coherence tomography and 
chest X-ray images, respectively [13].

Current status of computer‑aided US diagnosis 
for liver lesions

Compared to the image diagnosis using dataset of other 
photo images, US images are more heterogeneous for the 
CAD in terms of their image parameters, setting of equip-
ment, and condition of examination [14–18]. To date, sev-
eral studies have shown the effectiveness of machine learn-
ing for the diagnosis of focal liver lesions by a B-mode 
ultrasound image (Table 1). For example, Hwang et al. 
[19] tried to extract textural features of focal lesions such 
as cysts, hemangiomas, and malignant lesions for the diag-
nosis of a liver tumor; they demonstrated high diagnostic 
accuracy among all focal liver lesion groups. Contrast-
enhanced US (CEUS) was also applied for more accu-
rate diagnosis of liver tumors [20, 21]. Kondo et al. [22] 
reported the automatic classification of benign tumors, 

Table 1   Performance for detection and diagnosis of focal lesions based on the machine learning using liver image of ultrasonography

CEUS contrast-enhanced ultrasonography, ANN artificial neural network, HCC hepatocellular carcinoma, SVM support vector machine, SWE 
shear wave elastography

Modality Approach Target disease: number of the cases Performance References

CEUS ANN HCC: 41
Liver metastasis
Hypervascular: 20
Hypovascular: 12
Hemangioma: 16
Focal fatty change: 23

Accuracy: 94.45%
Sensitivity: 93.2%
Specificity: 89.7%

[20]

B-mode SVM Normal liver: 15
Liver cirrhosis: 16
HCC: 25

Accuracy: 88.8% [17]

B-mode SVM HCC: 27
Metastatic carcinoma: 27

Overall accuracy: 91.6%
Sensitivity:
90% for HCC
93.3% for metastatic carcinoma

[18]

B-mode Feed-forward neural network Cyst; 29
Hemangioma: 37
Malignant tumor: 33

Cyst vs. hemangioma
accuracy: 99.7%
Cyst vs. malignant accuracy: 98.7%
Hemangioma vs. malignant accuracy: 96.1%

[19]

CEUS SVM Benign tumor: 30
Malignant tumor: 22

Accuracy: 90.3%
Sensitivity: 93.1%
Specificity: 86.9%

[21]

B-mode Sparse autoencoder Normal liver: 16
Cyst: 44
Hemangioma: 18
HCC: 30

Accuracy: 90.5%
Sensitivity: 91.6%
Specificity: 88.5%

[38]

CEUS SVM Benign tumor, HCC, or Metastatic 
carcinoma: 98

Benign vs. malignant
Accuracy: 91.8%
Sensitivity: 94.0% Specificity: 87.1%
Benign vs. HCC vs. metastatic carcinoma
Accuracy: 85.7%
Sensitivity: 84.4% Specificity: 87.7%

[22]

CEUS Deep canonical correlation 
analysis + multiple kernel 
learning

Benign tumor: 46
Malignant tumor: 47

Accuracy: 90.41%
Sensitivity: 93.56%
Specificity: 86.89%

[23]
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hepatocellular carcinoma, and metastatic tumors using 
machine learning of the CEUS image. They used a con-
trast agent, Sonazoid, and found that sensitivity, speci-
ficity, and accuracy that distinguish malignant lesions 
from benign were 94.0%, 87.1%, and 91.8%, respectively. 
Another report applied a multiple kernel learning-based 
framework, achieving accuracy of more than 90% for the 
different diagnosis of benign and malignant liver tumors 
using CEUS images [23]. Although, some studies applied 
neural network for CAD of focal liver lesions, their accu-
racies are similar to those by support vector machine, 
probably because of the limited size of training cohort. 
However, it is expected that development of deep neural 
network-based CAD using larger dataset should help to 
achieve more accurate and refined US diagnosis of focal 
liver diseases, such as that reported in CAD for retinopathy 
and skin lesions [10, 12].

Further, application of CAD for diffuse liver lesions has 
also been reported (Table 2). It is also known that machine 
learning is useful for the discrimination of fatty liver disease 
(FLD) from normal liver [24–26]. These studies constructed 
the computer-aided diagnostic software for detecting FLD 
using a B-mode US image. More importantly, Acharya et al. 

[27] reported an algorithm to discriminate automatically the 
normal, FLD, and cirrhosis US image using a neural network 
classifier with an accuracy of 97.33%, specificity of 100% 
and sensitivity of 96%. Because a subset of FLD might pro-
gress to liver cirrhosis, such discrimination is informative 
in the clinical setting.

For the diagnosis of liver cirrhosis, some studies applied 
liver stiffness by transient elastography for the algorithm of 
artificial neural networks and showed high diagnostic per-
formance for the diagnosis of cirrhosis, portal hypertension, 
and esophageal varices [28, 29]. Other studies focused on the 
parameters of the B-mode image and the Doppler method, 
such as liver parenchyma, thickness of spleen, hepatic vein 
waveform and damping index, and hepatic artery pulsatile 
index, for the grading of liver fibrosis [30]. However, the 
number of images from previous machine learning trials 
is still small (< 1000 images); a larger US image database 
with reliable supervised data should be constructed for the 
development of a solid CAD algorithm. On the other hand, 
some reports also showed the efficacy of deep leaning algo-
rithm for diffuse liver disease, such as detecting FLD using 
B-mode images [31], and staging of liver fibrosis using the 
share wave elastography images [32]. Interestingly, accuracy 

Table 2   Performance for detection and diagnosis of diffuse lesions based on the machine learning using liver image of ultrasonography

SVM support vector machine, PNN probabilistic neural network, FCN fully connected network, CNN convolutional neural network, SWE shear 
wave elastography, ELM extreme learning machine, DL deep learning

Modality Approach Target disease: number of the cases Performance References

B-mode Differential evolution feature 
selection + SVM

Normal: 12
Fatty liver
Mild: 4
Moderate: 14
Severe: 13

Accuracy: 84.9% [24]

B-mode PNN NORMAL: 50
Fatty liver disease and cirrhosis: 50

Accuracy: 97.3%
Sensitivity: 100%
Specificity: 96.0%

[27]

B-mode VGGNet + FCN Normal liver: 79
Fibrosis-early stage: 89
Fibrosis-advanced stage: 111

Accuracy: 93.9%
Sensitivity: 88.6%
Specificity: 97.1%

[39]

B-mode CNN + SVM Normal liver: 44
Liver cirrhosis: 47

Accuracy: 86.9% [40]

SWE SVM Normal liver: 56
Chronic liver disease: 70

Accuracy: 87.3%
Sensitivity: 93.5%
Specificity: 81.2%

[29]

B-mode (dog) CNN + transfer learning Degenerative liver: 32
Non-degenerative liver: 16

Sensitivity: 100%
Specificity: 82.8%

[33]

B-mode SVM, ELM, CNN Normal: 27
Fatty liver: 36

Accuracy:
82% for SVM
92% for ELM
100% for DL

[31]

SWE CNN Fibrosis stage
F0-1: 65
F2: 109
F3: 126
F4: 98

AUC​
0.97 for F4
0.98 for > F3
085 for > F2

[32]



419Hepatology International (2019) 13:416–421	

1 3

for detecting FLD is 100% by deep leaning algorithm; higher 
than that by conventional machine learning [31]. Deep learn-
ing-based CAD also showed detailed classification of liver 
fibrosis [32]. Using the dataset of US images from dog liv-
ers, Banzato et al. [33] developed a deep learning-based US 
image diagnosis for detecting degenerative hepatic disease. 
They also used transfer learning, and reported the high sen-
sitivity and specificity for diagnostic accuracy compared to 
those by cytology and serum biochemical markers. There-
fore, it is conceivable that deep learning using larger dataset 
should be a powerful tool for detecting diffuse liver lesions.

Future perspectives for the development 
of computer‑aided US diagnosis applicable 
for clinical practice

US is a common and noninvasive imaging modality and, 
therefore, applicable for the diagnosis of many diseases 
in a wide range of organs including digestive, reproduc-
tive, urogenital, and endocrine organs, and the circulatory 
system. It is also a useful medical device for screening 
diseases because of its handiness. In addition, the develop-
ment of new technology in the field of US diagnosis, such 
as US elastography, Doppler US, and CEUS, allows us to 

apply US imaging for detailed examination of abnormal 
lesions. Therefore, a large number of images with solid 
supervised data may be collectable for constructing a data-
base essential for deep learning.

Firstly, for the development of computer-aided or arti-
ficial intelligence (AI)-aided US diagnosis, deep learning 
for disease screening, which can detect the pathological 
findings and distinguish them from the physiological 
image, should be required. Secondly, a function for the 
differential diagnosis of the lesion is also needed (Fig. 1). 
Because there is a complex normal architecture consisting 
of vessels and the bile duct in the liver with anatomical 
anomalies, the pattern of still images in each segment of 
the liver that are restricted by the position and direction 
of the probe should be unified among operators to dis-
tinguish pathological abnormalities from normal struc-
tures [34]. In addition, for the development of deep lean-
ing algorithm for different diagnoses of hepatic lesions, 
supervised image data, where specific lesions and defini-
tive diagnoses are linked, should be essential. After the 
learning of still image data and the diagnosis process of 
the disease, a database of movie images taken in the uni-
fied order throughout the entire part of the liver needs to 
be constructed. Video images of Doppler US and CEUS 

Fig. 1   Workflow for the development of deep learning-based diag-
nosis system in ultrasonography. The application of deep learn-
ing technology for ultrasonography (US) image diagnosis consists 
of two steps. Firstly, deep learning using supervised images data 
of pathological lesions is required. At this point, recognition of the 
lesions is performed by the operators. This step aims at achieving 
accurate diagnosis through deep learning; both focal (such as liver 
cancer and benign tumors) and diffuse liver lesions (such as fatty 
liver and liver cirrhosis) are required using still image (including 
B-mode and elastography-based images), and movie image (B-mode, 

contract-enhanced US, and color Doppler images). Secondly, for 
the development of deep learning-based screening system, a data-
base that includes normal liver images and artifact images needs to 
be constructed. In this step, computer (or artificial intelligence: AI) 
is required to detect pathological lesions. The segments and detailed 
portion, where the lesions exist, also need to be determined. For this 
purpose, position of normal structure consists of many vessels and 
ducts should be recognized by AI; still and movie images database 
should be analyzed. Fusing these technologies will facilitate the next-
generation AI-equipped US
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are also optical materials in the development of a robust 
AI algorithm for diagnosis.

Current issues in the development 
of computer‑aided diagnosis on ultrasonography 
in liver disease

Because of the unique characteristics of the US image, there 
could be some issues that need to be resolved for the devel-
opment of CAD system. For example, compared to the other 
images, the quality of the US image is, currently, highly 
operator dependent in terms of detection and specification 
of the lesions. In addition, differences in the software and 
design of imaging systems among the machines, models, 
and vendors could also affect the image display. The unique 
function of US, such as image parameters including gain, 
sensitivity time control, and mechanical index, could also 
lead to the difference in image quality. Therefore, the exami-
nation condition should directly affect the differences in US 
images.

On the other hand, a recent report showed the efficacy of 
deep learning and transfer learning for detecting liver lesion, 
regardless of the difference of their US image parameters 
[33]. However, although some studies applied deep neu-
ral network algorithm for developing CAD system of US 
images, the cohort size is still too small to achieve an enough 
performance of deep learning (Tables 1, 2). Therefore, con-
structing a big database for deep learning-based CAD sys-
tem should be essential, which could overcome the hetero-
geneity of imaging for computer-aided US image diagnosis. 
In addition, US images may be preferably linked to image 
parameters unique to each US examination. Further analyses 
should be conducted to clarify these matters.

In addition, as mentioned, complex normal liver architec-
tures have also made the application of AI-based technology 
difficult for US diagnosis; the procedure of US examination 
needs to be unified among the operators for the construction 
of a well-qualified database of US images. From this point of 
view, several projects are currently ongoing that overcome 
the heterogeneity of US images and help to develop the 
operator-friendly system of computer-aided US diagnosis in 
the field of liver diseases. As AI-aided US diagnosis should 
have the potential for the management of liver disease, such 
as detecting early response to cancer treatment, which is 
difficult for conventional methods [35–37], its development 
is rapidly expanding in many fields, including the diagnosis 
of liver diseases [38–40].
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