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Abstract Acute-on-chronic liver failure is a distinct

syndrome characterized by a rapid progression of liver

disease culminating in organ failure and death. The only

definitive treatment is liver transplantation. However, there

is a possible element of reversibility and hepatic regener-

ation if the acute insult can be tided over. Exogenously

administered growth factors may stimulate hepatocytes,

hepatic progenitor cells and bone marrow-derived cells to

supplement hepatic regeneration. The proposed review is

intended to provide an in-depth analysis of the individual

components of hepatic and bone marrow niches and

highlight the growing role of various growth factors in liver

regeneration in health and in liver failure.
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Introduction

Most of the patients referred to a specialized hepatology

center suffer from either decompensation of end-stage

chronic liver disease or an acute deterioration of known or

unknown underlying chronic liver disease. Chronic hepatic

decompensation occurs in end-stage cirrhotic patients with

progression of their underlying liver disease. The pro-

gression of primary liver disease is responsible for chronic

decompensation and is irreversible in the majority of cases.

Acute-on-chronic liver failure (ACLF) results because of

an acute insult from a precipitating factor, and if the liver

can be supported through the crisis, patient can make a

clinical recovery.

ACLF was initially defined by Sen et al. as the devel-

opment of recent onset (\3 months) of a first episode of

liver failure in the form of ascites, jaundice, hepatic

encephalopathy, hepatorenal syndrome, upper gastrointes-

tinal bleeding in patients with diagnosed or undiagnosed

chronic liver disease due to the effects of precipitating

events such as complications of sepsis, ischemia or addi-

tional superimposed liver injury due to alcohol, a hepato-

trophic virus or hepatotoxic drugs [1].

Subsequently, the Asian Pacific Association for the

Study of the Liver consensus defined ACLF as an acute

hepatic insult manifesting as jaundice (serum biliru-

bin C 5 mg/dl) and coagulopathy (INR C 1.5), compli-

cated within 4 weeks by ascites and/or encephalopathy in a

patient with previously diagnosed or undiagnosed chronic

liver disease [2]. Kjaergard et al. [3] reported a mortality of

51 % mainly due to multiorgan failure. Recently, the

EASL–CLIF consortium defined ACLF as an acute

decompensation of cirrhosis in the form of development of

ascites, hepatic encephalopathy, GI hemorrhage or bacte-

rial infections, or a combination of these, associated with at

least two organ failures with one being kidney in the form

of serum creatinine [ 1.5 mg/dl, leading to a high 28-day

mortality of more than 15 % [4]. Wlodzimirow et al. [5]

found 13 different definitions of ACLF in the literature. In

a recent study, Garg et al. [6] suggested that it is the first
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2 weeks that determine the outcome in patients with

ACLF, i.e. before the appearance of organ failure in ACLF.

The need to stress this point in ACLF is to highlight the

potential for reversibility. It is imperative therefore to

identify this therapeutic ‘golden window’ as treatment

strategies developed during this period can change the

course of the illness. New options currently being evalu-

ated include removal of toxic metabolites using liver

dialysis, immune modulation for reducing ongoing necrosis

and stimulating hepatic regeneration, modulation of hepa-

tic regeneration through growth factors and bone marrow

stimulation, and hepatocyte transplantation. The present

review addresses the basics of hepatic regeneration in

health and disease and the potential role of growth factors.

Liver regeneration

If we look into the basis of liver injury secondary to dif-

ferent etiologies, vulnerable hepatocytes can undergo

apoptosis via an extrinsic death receptor-mediated pathway

or alternatively intracellular stress can activate the intrinsic

pathway of apoptosis. Both pathways converge on mito-

chondria, and mitochondrial dysfunction is a prerequisite

for hepatocyte apoptosis. Persistent apoptosis is a feature of

chronic liver diseases, and massive apoptosis is a feature of

acute liver failure. Fibrogenesis is stimulated by ongoing

hepatocyte apoptosis, eventually resulting in cirrhosis of

the liver in chronic liver diseases [7]. If we look into the

pathophysiology of ACLF, the systemic inflammatory

response, characterized by a predominantly proinflamma-

tory cytokine profile, may cause the transition from stable

cirrhosis to ACLF. Proinflammatory cytokines are believed

to mediate hepatic inflammation, apoptosis and necrosis of

liver cells, cholestasis and fibrosis. Elevated serum levels

of several cytokines and their receptors, including TNFa,

sTNF-aR1, sTNF-aR2, IL-2, IL-2R, IL-4, IL-6, IL-8, IL-10

and interferon-c, have been described in patients with

ACLF. Cytokines such as TNFa and IL-6 work as a dou-

ble-edged sword. On the one hand, they promote liver

regeneration by inducing acute-phase proteins and hepatic

proliferation and exhibiting antiapoptotic effects; on the

other hand, these cytokines induce hepatic inflammation

and necrosis and involve immunopathogenesis in ACLF.

Many cytokines such as IL-6 and TNFa and growth factors

such as TGFa, EGF and HGF are implicated in different

stages of the regenerative process [8].

In normal adult liver, hepatocytes have a life span of

about 200 days. After partial hepatectomy (PH), prolifer-

ation of the main epithelial compartments (hepatocytes and

cholangiocytes), followed by proliferation of the mesen-

chymal cells [hematopoietic stem cells (HSCs) and endo-

thelial cells] quickly restores the liver. In rodents, the liver

can restore its original volume after two-thirds hepatec-

tomy in approximately 10 days [9].

Stem cells and liver regeneration

Liver regeneration occurs by three different methods [10,

11]. Acute liver injury, for example in the PH model,

results in rapid and effective regeneration with hepatocytes

undergoing mitosis. When normal hepatocyte replication is

impaired (by 2-acetylaminofluorene or retrorsine in animal

models and by alcoholic liver disease or hepatitis C virus

infection, among others, in humans), endogenous hepatic

progenitor cells (HPCs) are activated and participate in the

liver regeneration process.

The presence of HPC activation during chronic liver

disease however is probably a feature of eventual exhaus-

tion of hepatocyte proliferation over many years or decades

[12, 13]. The clinical relevance of the HPC reaction is

implied by its frequency in a wide variety of human liver

diseases including acute liver failure, chronic viral hepa-

titis, alcoholic disease, nonalcoholic fatty liver disease,

immune cholangiopathies and hereditary liver disorders

[14]. Characteristically, the magnitude of HPC activation

corresponds to the severity of liver fibrosis and inflam-

mation [15]. In addition, the more aggressive a hepato-

cellular injury, the higher the proportion of observed HPCs

that resemble intermediate hepatocytes [16].

Stem cells and niches in the liver

The liver contains different cell types with stem cell

properties: hepatocytes, HPCs and hepatic stellate cells

(HepSCs) [17].

HPCs are capable of differentiating toward the biliary

and the hepatocytic lineages and represent the human

counterpart of the oval cells (OC) in murine liver. They are

heterogeneous, consisting of a spectrum of cells ranging

from an immature phenotype to mature cholangiocytes and

intermediate hepatocytes [18, 19].

Adult stem cells maintain their characteristics through-

out their lifetime in a special microenvironment, the so-

called ‘stem cell niche’ [20]. Stem cell niches are com-

posed of microenvironmental cells that nurture stem cells

and enable them to maintain tissue homeostasis [21].

In adult livers, the stem cell niche has been shown to

reside in the most proximal biliary structures, the canals of

Hering [22]. Recent work has shown that stem cells can be

found in the biliary tree [23] and common bile duct [24].

HepSCs possess signaling pathways required for stem cell

functions such as hedgehog and b-catenin-dependent Wnt

signaling [25].

We recently conducted a human study demonstrating the

role of HepSCs in hepatic regeneration in ACLF. This is
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the first such comparative study highlighting the spectrum

of HepSC activation in ACLF [26]. HepSC activation was

found to be significantly more in ACLF and was observed

with decreasing frequency in ACLF, acute hepatitis, cir-

rhosis, chronic hepatitis and normal living donor liver

biopsies, respectively. There was also a significant corre-

lation of HepSCs with HPCs, suggesting their role in liver

regeneration in ACLF (Table 1; Fig. 1) [26].

Molecular mechanisms of HPC activation

HPCs play a crucial role in hepatic regeneration and liver

remodeling. However, the mechanisms controlling the

HPC response are under intense investigation. In general,

although many of the signals that control liver regeneration

in the normal liver (i.e. via hepatocyte replication) are

involved in HPC-mediated regeneration.

Various signaling cascades are regulating the activation

of HPC by regulating the mitosis, migration and differen-

tiation of HPC. Tumor necrosis factor super-family TNFa
and TNF-like weak inducer of apoptosis (TWEAK) both

play a pivotal role in HPC activation via NF-kb signaling

and regulate the proliferation of HPC [27, 28].

The role of IFN-c in liver regeneration is quite contro-

versial. A recent study has shown that IFN-c inhibits HPC/

oval cell activation in chronic liver damage, which may

inhibit liver regeneration [29]. Other data have also con-

firmed negative regulation of liver regeneration in the

presence of IFN-c [30]. It also induces liver inflammation

and necrosis and contributes to immunopathogenesis. A

variety of cytokines, including IL6, oncostatin M (OSM)

and leukemia inhibitor factor (LIF), act through the gp130

signaling pathway [31]. Following homodimerization,

gp130 activates the Janus kinase/signal transducer and

activator of transcription and extracellular signal-regulated

kinase pathways. STAT3 and its targets are upregulated

during the rodent OC response and during human chronic

liver disease [32, 33].

Aside from TWEAK, gp130 is the only signal demon-

strated to date capable of initiating an OC response alone.

Gp130 is potentially a key element in the activation and

expansion of hepatic HPCs. Both LIF and OSM participate

in a variety of processes including the regulation of growth

and differentiation. The action of LIF is mediated via the

LIF receptor (LIFR), which is composed of LIFR-b and

gp130. Both LIF and LIFR are upregulated during the OC

reaction in the rat [34] and human cirrhotic livers, with

LIFR-b localizing to proliferating CK7? intermediate he-

patobiliary cells [35].

OSM influences extrahepatic progenitor cell activity and

extracellular matrix (ECM) deposition, in addition to

inducing an acute phase response. OSM has been described

to promote the proliferation and differentiation of fetal

hepatoblasts [36] and OCs lines [37], respectively.

There are currently a variety of established markers for

HPCs. They express biliary markers (such as biliary-type

CKs, oval cell marker 6, CK7 and CK19), and a subset of

these cells expresses (fetal) hepatocytic markers (such as a-

fetoprotein, hepPar-1 and albumin), and hematopoietic

markers [such as the receptor for stem cell factor (c-kit),

CD34].

Role of bone marrow: the third component

Bone marrow acts as the third tier of regenerative response.

However, it is not known whether this is synergistic to the

intrahepatic regenerative response or occurs once the

hepatic potential has been exhausted. Bone marrow and

liver share an evolutionary conserved developmental rela-

tionship. In fact, hematopoiesis is well known to occur in

the fetal liver. The bone marrow acts as a reservoir for

multiple stem cell populations, including HSCs, mesen-

chymal stem cells (MSCs), endothelial progenitor cells

(EPCs) and very small embryonic-like cells (VSELs),

which are mobilized at varying degrees into the peripheral

circulation following injury [38, 39] where they are thought

to variably contribute to tissue repair and regeneration

through paracrine effects and inconsistent levels of direct

differentiation [40–42].

Clinically, HSCs have been shown to mobilize from the

bone marrow into the circulation following a variety of

injuries, including myocardial infarction [43], stroke [44],

liver injury [45] and skin burns [46], although their con-

tribution to tissue repair and regeneration is uncertain.

Table 1 The proportion of activated hepatic stellate cells in biopsy—the hepatic stellate cell index (HSCI) (number of HSCs per 1,000

hepatocytes) was significantly higher in ACLF compared to other conditions in all three zones of the hepatocyte lobule on histopathology

Proportion of activated HSCs by

a-SMA immunochemistry

ACLF Acute

hepatitis

Cirrhosis Chronic

hepatitis

Normal LDLT

donors

p value

HSCs/1,000 hepatocytes 231 ± 91 147 ± 77 73 ± 35 66 ± 30 25 ± 10 \0.0001

Zone 1 HSCs (%) 58 ± 12 42 ± 17 31 ± 17 18 ± 10 8 ± 4 \0.0001

Zone 2 HSCs (%) 44 ± 14 25 ± 14 17 ± 11 11 ± 6 7 ± 4 \0.0001

Zone 3 HSCs (%) 50 ± 14 39 ± 17 23 ± 13 15 ± 9 8 ± 4 \0.0001

The activated HSCs were measured by degree of expression of a smooth muscle actin (SMA) immunohistochemistry [25]

S516 Hepatol Int (2014) 8 (Suppl 2):S514–S525

123



Petersen et al. [47] for the first time showed that HSC can

contribute to liver regeneration in the adult organism

in vivo. They showed OC and hepatocyte chimerism in

cross-strain or cross-sex bone marrow or whole liver

transplantation and proposed the possibility of bone mar-

row-to-hepatocyte transdifferentiation. Lagasse et al. [48]

used a mouse strain (fumaryl aceto-acetate hydrolase

knockout) with an inherited liver disease (corresponding to

human tyrosinemia type 1) that is fatal if not treated by

supportive drugs. These mice could be definitively cured

by HSC transplantation, demonstrating that functioning

mature hepatocytes can result from this transplant proce-

dure. Corresponding observations were reported by Theise

et al. [49] and others in the human system, in which rare

male hepatocytes were demonstrated in female recipients

of male bone marrow transplants and in male recipients of

female whole-organ liver transplants. Closer scrutiny of the

data demonstrated that cell fusion rather than transdiffer-

entiation appears to be responsible for liver regeneration in

their model [49–53].

EPCs are mobilized in response to ischemic injury [54]

and contribute to neovascularization in small animal

models through a combination of direct cellular differen-

tiation and indirect production of cytokines and growth

factors (VEGF, SDF-1 and IGF-1) to promote the migra-

tion of mature endothelial cells and resident progenitor

cells [55, 56]. Hematopoietic EPCs secrete high levels of

cytokines, including VEGF, IL-8, HGF and granulocyte-

colony stimulating factor (G-CSF), and are thought to

contribute to vascular repair mainly through paracrine

mechanisms [57, 58], but subsets of these cells have shown

the ability to directly incorporate into the endothelium [59,

60]. Nonhematopoietic EPCs exhibit low levels of cytokine

production and are thought to contribute to vascular repair

mainly through the direct formation of vessels [61].

MSCs are multipotent, nonhematopoietic stromal cells

that can be isolated from various adult organs and tissues,

including bone marrow [62]. Sachetti et al. [63] found that

self-renewing osteoprogenitors in human BM, able to

generate bone and stroma and organize a hematopoietic

microenvironment in vivo, are CD146high (a melanoma-

associated cell adhesion molecule). These CD146? cells

are located in the subendothelial layer of BM sinusoids and

represent adventitial reticular cells, a subpopulation of

pericytes. As pericytes are found in nearly every other

organ, it has been hypothesized that all MSCs found in

different tissues are also derived from the pericyte fraction

in vessels. MSCs are capable of differentiating into various

mesenchymal lineages in vitro, including bone, muscle,

cartilage and fat [62], as well as forming cells from other

germ layers, such as dermatocytes and neuron-like cells

[64, 65]. Mobilized BM–MSCs home to sites of injury

where they are thought to contribute to tissue repair and

regeneration mainly through paracrine support of injured

cells (HGF, EGF, VEGF, sFRP-4) [66, 67] and regulation

of ECM remodeling [68, 69], immune response (IL-1

antagonism, IL-10) [70] and local progenitor cell prolif-

eration and differentiation [71]. Recent studies showed the

beneficial effects of bone marrow mesenchymal stem cell

transplantation in liver failure caused by hepatitis B with

improved survival, reduction in MELD scores and no

untoward side effects [72, 73].

Under physiologic conditions, bone marrow stem cells

are thought to be maintained within their niche through

Fig. 1 The a smooth muscle actin (a SMA) immunohistochemistry

to show activated HSCs. The proportion of expression was maximum

in ACLF (panel a), followed by chronic viral hepatitis (panel b) and

minimal expression in acute hepatitis (panel c) [25]
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tightly controlled interactions of chemokines, cytokines

and growth factors with cellular receptors, as well as

through the presence of specific adhesion and ECM mol-

ecules [74]. Following injury, there is evidence that cyto-

kine release by vascular endothelium and activated

platelets, combined with local upregulation of growth

factors, alters this homeostasis by providing a signal gra-

dient for bone marrow stem cell mobilization and homing

[75–77]. SDF-1/CXCR4, nitric oxide, Jagged/Notch inter-

actions and monocyte chemoattractant protein-1 (MCP-1)/

CCR2 interactions are the various mechanisms thought to

play an important role in this. Growth factors, such as

VEGF and G-CSF, may also contribute to bone marrow

stem cell mobilization and recruitment following injury, as

exogenous administration of G-CSF and VEGF has been

shown to enhance the mobilization of specific stem cell

populations and promote neovascularization and tissue

regeneration within ischemic or traumatic injury models

[78–80] (Fig. 2).

Potential of growth factors in hepatic regeneration

Despite this endogenous stem cell recruitment, the inability

of most adult tissue to regenerate following injury suggests

that these mechanisms are easily overwhelmed. This is

largely because of the complexity of liver regeneration,

which is governed by a synergistic interplay between a

multitude of factors, namely the number of viable hepa-

tocytes in the injured liver, the hepatic microenvironment

or the ‘‘niche’’ with its intrinsic HPCs and their dynamic

interactions with the nonparenchymal cells (HepSCs,

sinusoidal endothelial cells and Kupffer cells), the

inflammatory cytokine milieu and, last but not the least, the

BM with its progenitors. Therapies attempting to augment

bone marrow stem cell involvement have shown the ability

to mitigate injury and enhance the regenerative capacity of

adult tissue in a variety of preclinical models.

Mechanistically, these approaches can be divided into

two main categories: enhancement of the endogenous stem

cell response and augmentation of cell-based therapies.

Enhancing a patient’s endogenous stem cell response fol-

lowing injury is clinically appealing because of the elimi-

nation of time and costs associated with cell harvest,

ex vivo processing and transplantation. A variety of com-

pounds have shown the ability to mobilize bone marrow-

derived HSCs, MSCs, EPCs and VSELs [81, 82]. G-CSF

decreases SDF-1 levels in the bone marrow [83]. Systemic

administration of G-CSF has been shown to mobilize

HSCs, EPCs and BM–MSCs and to improve outcomes in

models of brain, liver and blood vessel injury [84–86].

Similarly, systemic administration of agents targeting the

PI3K–Akt pathway, for example erythropoietin (EPO), an

important mediator of cell survival and upstream modifier

of eNOS, has been shown to mobilize EPCs and enhance

their in vivo regenerative role [87–89]. Oh et al. [90]

showed that treatment of adult bone marrow with hepato-

cyte growth factor could induce albumin and alpha feto-

protein expression via c-met and concluded that adult rat

bone marrow contains a hepatic progenitor population. A

meta-analysis of 21 trials involving 5,902 patients showed

that use of recombinant human hepatocyte growth factor

led to a significant reduction in overall mortality in ACLF

with no serious adverse events [91]. Another intriguing

protein recombinant ‘augmenter of liver regeneration’ was

found to enhance hepatocyte proliferation by causing NF-

jB activation, elevating polyamine levels by increasing the

expression of c-Myc, ornithine decarboxylase and S-aden-

osylmethionine decarboxylase in the hepatocytes [92].

Fig. 2 Immunological basis of liver injury in ACLF. There is

immunological (dis)balance in the form of reduced dendritic cells

(DCs), monocyte anergy, increased CD8 cytoxicity, increased TH17

and consequent proinflammatory cytokines namely IFNr, TNFa and

IL-17, culminating in parenchymal dysfunction of ACLF. By addition

of GCSF, there is recruitment of DCs, polymorphonuclear neutrophils

(PMNLs), bone marrow-derived macrophages (BMMs) and improved

monocyte function with consequent reduction in proinflammatory

cytokines
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Even though a scarcity of data remains in the exact

mechanism and contribution of each of these factors, the

encouraging data that have emerged for the multifaceted

action of growth factors in modulating the BM and the

hepatic progenitor cell response by in vivo modulations

from various trials in the recent past are a proof of concept

and provide an impetus for actively exploring growth

factors in the therapeutic armamentarium of patients with

liver failure.

Effect on bone marrow and liver regeneration

Over the last decade, the importance of BM stem cell

activation during liver disease has become apparent.

CD34?- and CD133? cells appear to be upregulated fol-

lowing liver resection or in diseased liver [93, 94]. BM-

derived stem cells have been shown to differentiate into

hepatocyte-like cells in vitro and in vivo [95].

A potential approach to improve BMC engraftment to

the damaged liver could be their mobilization by using

cytokine administration. G-CSF therapy has been widely

studied in bone marrow transplant recipients and in the

oncologic population [96]. In a study by Gaia et al. [97],

BMC mobilization by G-CSF was observed in patients with

severe liver cirrhosis. Spahr et al. [98] have reported that

G-CSF mobilizes CD34? cells, increases HGF and indu-

ces HPCs to proliferate within 7 days of administration in

patients with alcoholic steatohepatitis.

The seminal work by Garg et al. has shown that use of

G-CSF in ACLF was associated with 69 % survival com-

pared to 29 % in the placebo group. It was the first ran-

domized controlled trial that demonstrated a significant

benefit from the use of G-CSF in the form of recruitment of

CD34? bone marrow stem cells leading to liver regener-

ation and affecting the outcome in the form of improved

survival [99]. Another recently published double-blind

randomized controlled trial by Duan et al. [100] showed

that G-CSF therapy improved survival in patients associ-

ated with hepatitis B-related ACLF by increased neutrophil

and more importantly CD34? cell counts in the peripheral

circulation.

EPO regulates red blood cell production by binding to

its cell surface receptor, EPO-R, expressed on erythroid

progenitor cells. Although EPO was originally believed to

be an erythroid-specific hematopoietic cytokine, for over a

decade, a substantial body of scientific evidence has

accumulated to demonstrate that the biological effects of

EPO are not limited to erythron [101]. In a study by

Schmeding et al., rats undergoing 70–90 % hepatectomy

received an intraportal venous administration of rEPO prior

to resection or s/c injection for 3 days postoperatively.

Regeneration capacity was studied by histology, immuno-

histochemistry (Ki-67, PCNA) and angiogenesis measured

by VEGF and HIF. It was demonstrated that the 10-day

survival rate increased significantly [102]. In a study by

Greif et al., rats undergoing 70 % hepatectomy received an

intraperitoneal injection of saline or rEPO (4 U/kg) 30 min

prior to resection. In the EPO group, the mitotic index, Ki-

67, vWF and PIPK signaling were higher on day 2 post

surgery, suggestive of liver regeneration [103]. Ben Ari

et al. recently investigated the effect of recombinant human

EPO administration in acute liver failure induced by D-

galactosamine/lipopolysaccharide in mice. They found that

90 % of mice with FHF survived for 24 h after rhEPO

compared to the control group in which there was 100 %

mortality. EPO caused a significant decrease in TNF-a and

IL-1b (both serum and intrahepatic) associated with a

decrease in NF-kB and JNK expression in mice with FHF

compared to those not treated [104] (Fig. 3).

Fig. 3 Growth factors such as GCSF and EPO act on both liver and

bone marrow to recruit hematopoietic stem cells (HSCs), mesenchy-

mal stem cells (MSCs), hepatic progenitor cells (HPCs), dendritic

cells (DCs), bone marrow-derived macrophages (BMMs), endothelial

progenitor cells (EPCs) and very small embryonic-like cells (VSELs)

and hence augment liver regeneration
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Effect on dendritic cells and liver regeneration

Dendritic cells (DCs) are a heterogeneous group of pro-

fessional bone-marrow derived antigen-presenting cells

required to process and present antigen to the naı̈ve T cells

for activation and expansion of antigen-specific T cells

[105]. DCs are rare, ubiquitously distributed leukocytes,

derived from CD34? hematopoietic stem cells. In normal

liver, they are restricted largely to the perivenular region,

portal space and beneath the Glisson capsule, with a few

cells scattered throughout the parenchyma.

DC dysfunction has been shown to play a major role in

hepatitis B-related ACLF [106]. Restoration of the myeloid

dendritic cell population improved the survival of ACLF

patients receiving methylprednisolone therapy [107].

Growth factors help in recruitment of DCs in the liver. The

cytokines fms-like tyrosine kinase 3 ligand (Flt3L) and GM-

CSF mobilize DCs from bone marrow. GM-CSF is not only

involved in the recruitment of DCs, but also in the generation

of DCs from progenitor cells and monocytes. A study has

shown increased liver DC numbers by Flt3L administration

accelerated liver regeneration [108]. Other data have also

confirmed increased number of liver DCs after PH, regulat-

ing the local immune response by inducing antiinflammatory

IL-10 gene transcription and downregulation of proinflam-

matory gene IFN-c, thus inducing hepatocyte proliferation

and ultimately liver regeneration [109].

We have also shown lower frequencies of intrahepatic

myeloid DCs and plasmacytoid DCs in nonsurvivors

compared to survivors of ACLF. G-CSF enhanced the

recruitment of plasmacytoid DCs, myeloid DCs and sub-

sets of T cells including CD3, CD4 and CD8 cells and

subsequently improved survival in these patients [110].

These data suggest that liver DCs may play a role in local

immune regulation to support liver regeneration (Fig. 4).

Effect on macrophages and liver regeneration

The growth factors such as G-CSF and EPO modulate the

synthesis of more specific cell types, mainly macrophages

or monocytes. On the basis of previous studies in rat and

mice models, it was observed that BM precursors differ-

entiate into macrophages under the control of colony-

stimulating factor-1 (CSF-1) via its receptor (CSF-1R).

CSF-1 also regulates macrophage proliferation, viability

and phenotypic fate [111].

In vitro studies by Thomas et al. showed that 7-day

treatment of CSF-1 generated and accumulated macro-

phages in BM. Bone marrow macrophages (BMMs) pos-

sessed the characteristics of macrophage cell surface

markers F4/80 and CD11b and markers of other leukocyte

populations such as monocytes; T and B cells were not

present in significant numbers [112].

Previous studies demonstrated that bone marrow-derived

macrophages caused the recruitment of matrix metallopro-

teinase protein (MMP)-producing host cells into the hepatic

scar [113]. MCP-1 and macrophage inflammatory protein 1a
(MIP-1a) are members of the CC chemokine subfamily that

bind to the CCR2 and CCR1/5 receptors of monocytes,

respectively. These interactions contribute to the navigation

of monocytes into target tissues during their maturation into

macrophages. A recent study performed on a rat model

showed that circulating monocytes have been exploited as

an important progenitor cell resource for hepatocytes in vitro

and are instrumental in the removal of fibrosis. In this study,

CD14? monocytes in peripheral blood stem cells contribute

to hepatocyte regeneration and ECM remodeling in rat liver

cirrhosis much more than CD14- cells and might offer a

therapeutic alternative for patients with liver cirrhosis [114].

Monocytes produce IL-6 cytokine, which helps in liver

regeneration.

Fig. 4 G-CSF leads to recruitment of myeloid dendritic cells (mDCs)

and plasmacytoid dendritic cells (pDCs) with consequent improved T

cell function and immune regulation
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The delivery of MCP-1 and MIP-1a-expressing BMMs

to injured mice caused upregulation of hepatic MCP-1 and

MIP-1a and the recruitment of endogenous macrophages.

These macrophages produced MMP-13, whose actions

include the degradation of fibrillar collagens and gelatin as

well, and activation of other MMPs (such as MMP-9),

hence contributing to liver regeneration. Also in recipient

livers, BMMs expressed high antiinflammatory (IL-10),

antifibrotic (MMP-13), proregenerative (TWEAK) and

chemotactic (MCP-1, MIP-1a, MIP-2) mediators. Upon

cessation of chronic liver injury, endogenous macrophages

mediate hepatic scar remodeling through local MMP

expression. The activities and expression of MMP

increased while tissue inhibitor of metalloproteinase

(TIMP)-1 expression was significantly reduced in mono-

cyte-transplanted livers [112].

The improved liver function following BMM therapy is

multifactorial. There is a less fibrotic cellular milieu, a

proregenerative stimulus to LPCs, and elevated levels of

cytokines such as CSF-1, VEGF and IGF-1 that are

involved in reparative processes during tissue injury.

Immune dysfunction modulates hepatic regeneration

in ACLF

In an important contribution, Wasmuth et al. [115] showed

that in patients with ACLF or sepsis, there was a severe

reduction in TNF-a production and HLA-DR expression

compared to patients with compensated cirrhosis indicating a

sepsis-like immune paralysis state or dysfunction in ACLF.

There is indeed a state of immune disequilibrium with more

systemic inflammatory response syndrome (SIRS) as shown

by increased levels of proinflammatory cytokines (IL-6,

TNF-a) and less compensatory antiinflammatory syndrome

(CARS) with reduced HLA-DR expression on monocytes.

Subsequently, Katoonizadeh et al. showed that ACLF

patients are prone to infections, which lead to high short-term

mortality. They showed that early markers of SIRS and

ductular bilirubinostasis predicted poor outcome in ACLF

[116]. In another elegant study by Mookerjee et al., they

showed that although patients with alcoholic hepatitis as an

acute insult to cirrhosis had peripheral neutrophilia, they

were still susceptible to infections. This was because there

Fig. 5 ACLF is a state of

‘sepsis-like immune paralysis’

culminating in organ

dysfunction and death. Use of

GCSF has shown to act in this

therapeutic golden window and

prevent organ failure
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was neutrophil dysfunction in the form of a neutrophil resting

oxidative burst greater than or equal to 55 % and reduced

phagocytic capacity of lower than 42 % due to persistent

endotoxemia [117]. Jalan et al. [118] described the concept

of PIRO (predisposition ? injury ? response ? Organ

failure). It is therefore of paramount importance to identify

patients in the therapeutic golden window, probably defined

as the stage between inflammatory response and prior to

onset of organ failure. Therapeutic administration of G-CSF

can enhance the immune function and restore the balance of

SIRS and CARS (Fig. 5). As shown in the study by Garg

et al. [99], patients with ACLF treated with G-CSF had

reduced incidence of sepsis and consequently improved

survival.

Future perspectives

ACLF is a distinct syndrome with rapid progression with

high short-term mortality, however with a potential of

reversibility. The concept of in vivo hepatic regeneration

seems more practical and applicable. In properly selected

patients, judicious use of growth factors with proper

monitoring could become a potential new therapeutic

option in patients with ongoing liver failure, such as ACLF.

Of course, the therapy has to be used prior to onset of

sepsis and organ failure so as to explore the potential of the

liver and bone marrow for hepatic regeneration.
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Vidacek D, Siewert E, et al. Patients with acute on chronic liver

failure display ‘sepsis like’ immune paralysis. J Hepatol

2005;42:195–201

116. Katoonizadeh A, Laleman W, Versylpe C, Wilmer A, Maleux

G, Roskams T, et al. Early features of acute-on-chronic alco-

holic liver failure: a prospective cohort study. Gut 2010;59:

1561–1569

117. Mookerjee RP, Stadlbauer V, Lidder S, Wright GA, Hodges SJ,

Davies NA, et al. Neutrophil dysfunction in alcoholic hepatitis

superimposed on cirrhosis is reversible and predicts the out-

come. Hepatology 2007;46(3):831–840

118. Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-

Tsao G, et al. Acute-on-chronic liver failure review. J Hepatol

2012;57(6):1336–1348

Hepatol Int (2014) 8 (Suppl 2):S514–S525 S525

123

http://dx.doi.org/10.1111/liv.12415
http://dx.doi.org/10.1111/liv.12415

	Growth factors enhance liver regeneration in acute-on-chronic liver failure
	Abstract
	Introduction
	Liver regeneration
	Stem cells and liver regeneration
	Stem cells and niches in the liver
	Molecular mechanisms of HPC activation
	Role of bone marrow: the third component
	Potential of growth factors in hepatic regeneration
	Effect on bone marrow and liver regeneration
	Effect on dendritic cells and liver regeneration
	Effect on macrophages and liver regeneration
	Immune dysfunction modulates hepatic regeneration in ACLF

	Future perspectives
	Compliance with ethical requirements and Conflict of interest
	References


