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Abstract Alcoholic steatosis, instead of being innocuous,

plays a critical role in liver inflammation and fibrogenesis.

The severity of fatty liver is governed by the concerted

balance between lipid transport, synthesis, and degradation.

Whereas scavenger receptor class B, type I (SR-B1) is

critical for reverse cholesterol uptake by the liver, peroxi-

some proliferator-activated receptor-gamma (PPARc)

coactivator-1a and -b (PGC1a and PGC1b) are critical for

lipid degradation and synthesis, respectively. Because

betaine is a lipotropic agent, we have evaluated its effects

on alcoholic steatosis. Betaine effectively prevented

chronic alcohol-mediated (i) impaired SR-B1 glycosyla-

tion, plasma membrane localization, and consequent

impaired cholesterol transport; and (ii) up regulation of

PGC-1b, sterol regulatory element-binding protein 1c and

downstream lipogenic genes with concomitant increased

liver cholesterol, triglycerides and hepatic lipid score.

Similarly, because of its anti-inflammatory and anti-fibrotic

effects in other organs, we evaluated the protective effects

of thymosin b4 (Tb4) against carbon tetrachloride (CCl4)-

induced hepatotoxicity in rat. Tb4 prevented CCl4-induced

(i) necrosis, inflammatory infiltration and up-regulation of

a1(2)collagen, alpha-smooth muscle actin (a-SMA),

platelet derived growth factor beta (PDGF-b) receptor and

fibronectin mRNA expression; (ii) down-regulation of

adipogenic gene, PPARc and the up-regulation of epige-

netic repressor gene, methyl CpG binding protein 2

(MeCP2) mRNA levels, suggesting that the anti-fibrogenic

actions of Tb4 involve the prevention of trans-differentia-

tion of quiescent hepatic stellate cells into myo-fibroblasts

largely by up-regulating PPARc and by down-regulating

MeCP2 genes. We therefore conclude that betaine and Tb4

can effectively protect against alcoholic hepatosteatosis

and hepatic fibrogenesis, respectively.
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Introduction

Hepatic steatosis, inflammation and fibrogenesis

Since hepatotoxins lead to major liver injury, the authors

wish to address the following key questions on the current

status of (i) How chronic alcohol exposure manifests

hepatosteatosis, and how does dietary betaine prevent this

alcoholic liver pathology?, and (ii) How does carbon tet-

rachloride exposure lead to hepatic fibrogenesis and how

thymosin-b4 (Tb4), a small mammalian peptide produced

by thymus gland, protects against this injury. Thus, the

present review summarizes our ongoing and published

It is important to point out that results of our ongoing investigations

on the potential benefits of betaine in preventing alcoholic

hepatosteatosis are not described in detail in this review article

because a complete manuscript of this investigation is in the process

of being published in the American Journal of Pathology. Since our

article has not yet been published the Editorial Office of this journal is

unable to grant permission to reproduce some of the actual figures

pertaining to these results. Therefore, we have highlighted the salient

findings of this portion of our ongoing study in the present review.
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studies [1] with special emphasis on the therapeutic

potentials of these two natural compounds, namely, beta-

ine, a lipotropic nutrient, and Tb4 for the treatment of liver

injury.

Hepatosteatosis

Numerous studies have established that chronic alcohol

exposure leads to: (i) increased adipose fat mobilization

into the liver due to increased adipose lipoprotein lipase

[2], (ii) increased fat synthesis due to up-regulation of

lipogenic genes via PGC-1b and SREBP1c [3, 4], (iii)

decreased fat oxidation due to down-regulation of fatty

acid oxidation genes via PGC-1a and PPARa [3, 4] and

(iv) impaired synthesis of apolipoprotein B and VLDL

secretion [5], the major lipoprotein for the export of hepatic

lipids to peripheral tissues. Significantly, PPARa and

SREBP1c are tightly controlled by two transcription

coactivators, PGC-1a and PGC-1b, respectively [6–8].

Silence regulator gene (SIRT) inactivates PGC-1a by

deacetylation, whereas histone acetyltransferases (HAT)

activate PGC-1a by acetylation [9], which in concert with

PPARa increases fatty acid oxidation. On the contrary,

SREBP1c is stabilized by HAT by acetylation and desta-

bilized by SIRT by deacetylation. Dietary saturated fat up-

regulates PGC-1b and SREBP1c, which coactivates LXR

families of transcription factors causing increased lipo-

genesis, lipid transport and VLDL secretion [10].

Scavenger receptor class B, type I (SR-B1)

It is well known that the liver is the major site for plasma

HDL cholesteryl ester uptake and degradation into bile

acids [11]. Cholesterol uptake by the liver is crucial for

maintaining cholesterol homeostasis in peripheral tissues

of mammals as exemplified by early onset of atheroscle-

rosis in familial hypercholesterolemia [12] and Tangier

disease [13]. HDL levels are inversely correlated with

incidence of atherosclerosis partly because of the ability of

HDL to return extra hepatic cholesterol to the liver for

conversion into bile acids and secretion into bile in a

process termed reverse cholesterol transport [14]. In this

process, SR-B1 plays the major role in the direct uptake of

HDL cholesterol by the liver [15]. To a limited extent,

HDL2 cholesterol can be taken by the liver via the ApoB/E

receptor or be transferred to apolipoprotein B containing

particles via cholesteryl ester transfer protein (CETP) and

subsequent uptake by the LDL receptor (LDLR).

SR-B1 is an approximately 82 kDa membrane glyco-

protein belonging to the CD36 family of transmembrane

proteins [16]. SR-B1 mediates the cellular uptake of HDL-

derived cholesterol and cholesteryl ester in excess of the

uptake of HDL-derived apolipoproteins such as ApoA1 and

ApoA2 in a process called ‘‘selective uptake’’ [16, 17]. The

importance of SR-B1 in the uptake of HDL cholesterol and

the antiatherogenic role of SR-B1 has been studied in SR-

B1 deficient mouse models [18, 19]. An elegant study [20]

using SR-B1 knockout mice showed that SR-B1 is the sole

molecule mediating the selective uptake of cholesterol

esters from HDL by the liver. Using an in vivo model, van

der Velde et al. [21] have confirmed the central role of SR-

B1 in reverse cholesterol transport (RCT). Our ongoing

finding is that ethanol-mediated decrease in sphingomyelin

(SM) composition of HDL [22] may also influence the

function of SR-B1.

Betaine, a potent lipotropic nutrient, plays an important

role in reducing fatty liver [23]. Therefore, it is reasonable

that betaine may prevent the deleterious effects of heavy

alcohol and high omega-3 polyunsaturated fatty acids (x-3

PUFA) on SR-B1, plasma lipids and hepatic lipid metab-

olizing pathway and lipid homeostasis by altering hepatic

GSH and reactive oxygen species (ROS) (Fig. 1).

In view of the above, we have explored the possible

action of a chronic heavy alcohol/high PUFA diet and the

protective role of betaine on (i) hepatic SR-B1 expression,

and relative glycosylation rate, and (ii) the expression of

various lipogenic genes and hepatic lipid status.

Inflammation and fibrogenesis

Liver injury, regardless of its origin, typically induces

hepatocyte necrosis and apoptosis. Necrosis engages clas-

sic inflammatory and fibrogenic signals [24]. Liver damage

can be caused by viral infection, auto-immune disorders,

ischemia, and several xenobiotics, including drugs, alcohol

or toxins [25]. Carbon tetra-chloride (CCl4)-induced acute

liver injury model is widely used to investigate the mech-

anisms of liver damage and regeneration [26]. Treatment

with CCl4, a known hepatotoxin, stimulates experimental

acute liver failure through free radical-mediated wide

peroxide injuries [26]. This treatment is accompanied by

extensive necrosis and inflammation [27]. Even though

during acute liver damage there is no fibrosis, there is

activation of hepatic stellate cells (HSC) [28, 29]. HSC are

the main fibrogenic cells of the injured liver. In their nor-

mal (quiescent) stage they mainly produce an extracellular

matrix (ECM) present in basement membranes such as type

IV collagen [30]. They store vitamin A and triglycerides

and express regulators of the adipocyte phenotype such as

peroxisome proliferator-activated receptor (PPARc), sterol

regulatory element binding-protein1 (SREBP-1c) and

methyl-CpG binding protein 2 (MeCP2) among others [31,

32]. In the fibrotic liver, HSC undergo trans-differentiation

from lipid-storing pericytes to myofibroblastic cells. This

activation requires coordinated changes in activity of sev-

eral growth factors such as the platelet-derived growth
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Fig. 1 As shown, the vast majority of ethanol is oxidized to

acetaldehyde by the hepatocytes of the liver. On the other hand,

ethanol-induced cytochrome P4502E1 (CYP2E1) mediated oxidation

of ethanol also produces a state of oxidative stress by generating

reactive oxygen species (ROS) within the cells that is responsible for

the progression of alcoholic fatty liver and liver disease. Chronic

ethanol can also activate Kupffer cells to induce TNFa leading to the

generation of more ROS in the hepatocytes. One of the key

metabolites generated due to oxidative stress is a,b-unsaturated

aldehyde, 4-hydroxy-2-nonenal (HNE) that may be more harmful

than ROS because it has a longer half-life and can easily diffuse into

cellular membranes. Thus, ethanol/ROS mediated down regulation of

ST6Gal1 markedly represses SRB1 glycosylation, its cholesterol

transport function, as well as depletes liver GSH, the natural

intracellular antioxidant. In contrast, betaine, by virtue of its

lipotropic property, restores phosphatidyl choline synthesis, and

intracellular GSH that attenuates the deleterious effects of ROS

Fig. 2 HSC are perisinusoidal cells of the liver that store vitamin A

and undergo phenotypic trans-differentiation characterized as ‘‘myo-

fibroblastic activation’’ during liver fibrogenesis. Activated HSC lose

the vitamin A stores and express cytokine receptors like PDGF-b
receptor. Moreover, they acquire a contractile cytoskeleton and

express a-SMA, which are the markers of HSC trans-differentiation.

They also show the down-regulation of the adipogenic PPARc and

up-regulation of its transcriptional repressor MeCP2. The activated

myofibroblasts then, migrate and proliferate to the site of injury and

form a fibrous scar. In addition, they also deposit ECM proteins such

as collagen I, III, IV and fibronectin
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factor (PDGF) and the transforming growth factor b1

(TGFb1) [28, 33]. Specifically, PDGF is the most potent

proliferative cytokine acting on HSC [33]. Activated HSC

show significant alterations at gene expression, where

expression of PPARc and SREBP-1c is down regulated

[34], while expression of MeCP2 is up-regulated [32]. HSC

lose the retinoid-binding proteins and their vitamin A

stores [35]. The activated HSC are proliferative, proin-

flammatory and fibrogenic with induced ability to synthe-

size and deposit large amounts of ECM proteins [29, 30]

(Fig. 2). Also, activated HSC overexpress genes that confer

the myofibroblastic phenotype such as collagens I and III,

fibronectin and the de novo synthesis of a-smooth muscle

actin [29, 30, 35]. Thus, a better understanding of the

mechanism underlying HSC transdifferentiation is a piv-

otal step towards identification of molecular targets to

develop new liver damage therapeutic treatments.

Thymosin b4 (Tb4) is a 43 amino acid polypeptide that

was initially isolated from calf thymus [36]. It is a com-

ponent of a family of approximately 15 members with a

highly conserved amino acid sequence [37]. Interestingly,

Tb4 prevents inflammation and fibrosis, promoting healing

in the eye, skin and heart [38–41]. In the eye, it promotes

corneal re-epithelization after skin injury. It also inhibits

the strong inflammatory component that occurs after injury

with NaOH [37, 38]. Overall, it prevents inflammation by

blocking the secretion of inflammatory cytokines and

suppressing the activation of NFjB [42]. In the heart, it

prevents the formation of scar tissue after a myocardial

infarction by enhancing the survival of myocardial tissue

and endothelial cells, thus sustaining cardiac function and

preventing scar formation [40, 41]. Recently, it was shown

that Tb4 inhibits the appearance of myofibroblast (Mybs)

in a model system of wound healing [43]. Our previous

studies have revealed that rat HSC clones derived from

cirrhotic rat liver express Tb4 [44]; moreover, the addition

of Tb4 to HSC/Mybs cultures inhibits PDGF-b receptor

expression and prevents binding of AKT to actin and its

phosphorylation by PDK1 and mTOR [45]. Based on these

findings, we believe Tb4 could have therapeutic properties

to prevent liver injury. Therefore, we have investigated the

potential of Tb4 to inhibit liver damage induced with CCl4
in an in vivo model.

Results and discussion

Betaine and hepatosteatosis

The present review summarizes our ongoing investigation

(full manuscript being published in The American Journal

of Pathology 2014) demonstrating that chronic ethanol

exposure markedly increased liver cholesterol and

triglycerides with a concomitant 260 % (p \ 0.01) increase

in hepatic lipid score that was significantly blunted by

betaine. Furthermore, chronic ethanol markedly inhibited

the relative glycosylation of SR-B1 with a concomitant

impaired hepatic cholesterol uptake that was alleviated by

betaine. Since chronic ethanol is known to cause increased

ROS [46], especially in the presence of high polyunsatu-

rated fat, the possible mechanism of this protective action

of betaine seems to be due to its ability to restore the

hepatic intracellular antioxidant, GSH, that is markedly

decreased by chronic alcohol, which could induce apop-

tosis in liver due to stressed mitochondria and endoplasmic

reticulum. Again, the fact that betaine treatment essentially

corrects these defects suggests that membrane integrity of

mitochondria was essentially restored by betaine treatment.

Furthermore, our results on the action of chronic ethanol

on the hepatic lipid metabolic signaling pathways clearly

showed that, whereas chronic ethanol up-regulated PGC-

1b, SREBP1c and the downstream lipogenic genes, it

down-regulated PGC-1a and downstream lipid oxidizing

genes resulting in impaired hepatic lipid oxidation. Sig-

nificantly, dietary betaine supplementation markedly

reversed the effects of chronic ethanol on these lipid sig-

naling pathways. These mechanistic findings point out that

the possible mechanisms of action of betaine in protecting

against alcoholic hepatosteatosis involve its ability to not

only prevent chronic alcohol-mediated up-regulation of

PGC-1b and lipogenic genes, but also the restoration of

PGC-1a and lipid oxidizing genes resulting in near-normal

hepatic lipid score found in betaine-supplemented chronic

ethanol-fed animals in spite of feeding a very high PUFA

fat diet.

Thymosin b4, inflammation and fibrogenesis

Acute and chronic liver diseases constitute a global con-

cern. At present, there is no approved therapy to treat these

diseases even in the developed world. Therefore, intensive

research in finding effective therapeutic agents is highly

relevant. CCl4 mediated liver injury is probably the most

reproducible model for screening various potentially ben-

eficial compounds for their hepatoprotective activity. Even

a single dose CCl4 exposure can lead rapidly to a severe

hepatic necrosis, steatosis and portal inflammation [47, 48].

We are pleased to reproduce the pertinent figures describ-

ing the results of this portion of this review thanks to the

kind permission from the editorial office of our recent

publication on the anti-fibrogenic actions of Tb4 [1]. Thus,

we show that Tb4 preserved the hepatocellular membrane

and suppressed CCl4-induced liver injury by the reduction

of the infiltration of inflammatory cells, necrosis and

microvascular steatosis observed during histological ana-

lysis (Fig. 3). We further showed that Tb4 prevented
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CCl4,-induced activation of HSC. It is well known that

upon liver injury, HSC proliferate and differentiate into

myofibroblast-like cells. The activated HSC undergo con-

tinuous proliferation and express activation markers such

as a-SMA and produce large amounts of ECM proteins,

including type I collagen [29, 30]. One of the key events in

the activation of HSC is the expression of the PDGF-b
receptor [33]. We clearly showed that Tb4 effectively

blocked CCl4-induced up-regulation of a-SMA, PDGF-b

receptor and collagen type I expression showing thereby it

prevented the activation of HSC and consequent liver

injury. Moreover, Tb4 also inhibits the CCl4-induced

down-regulation of PPARc and the up-regulation of

MeCP2 mRNA levels, indicating that the mechanism of

action of Tb4 in reducing liver damage may be through the

inactivation of HSC (Fig. 4). We also demonstrated in vitro

that Tb4 prevented HSC/Mybs transdifferentiation, prolif-

eration and migration [45].

Fig. 3 Hematoxylin and eosin

staining of liver sections from

a rats treated with CCl4 with or

without Tb4 at a and b 0, c–

f 24, and g and h 48 h,

respectively. Panels c and

e show the presence of portal

inflammation, centrizonal

necrosis and distortion of liver

around portal triads, vacuole

generation and microvascular

steatosis, 24 h after CCl4
treatment. As shown in panels

d and f, Tb4 prevented

histological changes in CCl4-

treated rat livers
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Conclusions

Based on our ongoing and published studies [1] on the

possible protective actions of betaine and Tb4 on liver

injury caused by hepatotoxins such as ethanol and carbon

tetrachloride, we draw the following conclusions: (1)

chronic alcohol leads to impaired cholesterol homeostasis

in the liver resulting in hepatosteatosis. The possible

mechanisms of action of alcohol involve the (i) impaired

cholesterol uptake by the liver due to decreased relative

glycosylation and localization on the liver plasma mem-

brane of the mature SR-B1, the key liver receptor for

reverse-cholesterol uptake from plasma HDL, (ii) up-reg-

ulation of PGC-1b, SREBP1c and downstream lipogenic

genes, and (iii) down-regulation of SIRT1, PGC-1a and

downstream lipid oxidation pathway genes and fatty acid

oxidation. (2) Betaine counteracts the above actions of

ethanol, presumably by quenching the ROS by restoring

reduced GSH, the endogenous antioxidant and lipogenic

and lipid oxidizing signaling genes, and thus prevents

hepatosteatosis as well as maintains normal reverse-cho-

lesterol transport. (3) Carbon tetrachloride markedly causes

hepatic fibrogenesis in vivo by activating hepatic stellate

cells essentially by down-regulating adipogenic transcrip-

tion factor PPARc expression and up-regulating the epi-

genetic repressor, MeCP2. Additionally, Tb4 also seems to

exert anti-inflammatory actions. Thus, we suggest that

betaine and Tb4 can effectively protect against alcoholic

hepatosteatosis and hepatic fibrogenesis, respectively.
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