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Abstract Liver extracellular matrix (ECM) composition,

topography and biomechanical properties influence cell-

matrix interactions. The ECM presents guiding cues for

hepatocyte phenotype maintenance, differentiation and

proliferation both in vitro and in vivo. Current under-

standing of such cell-guiding cues along with advancement

of techniques for scaffold fabrication has led to evolution

of matrices for liver tissue culture from simple porous

scaffolds to more complex 3D matrices with microarchi-

tecture similar to in vivo. Natural and synthetic polymeric

biomaterials fabricated in different topographies and por-

ous matrices have been used for hepatocyte culture. Het-

erotypic and homotypic cell interactions are necessary for

developing an adult liver as well as an artificial liver. A

high oxygen demand of hepatocytes as well as graded

oxygen distribution in liver is another challenging attribute

of the normal liver architecture that further adds to the

complexity of engineered substrate design. A balanced

interplay of cell-matrix interactions along with cell-cell

interactions and adequate supply of oxygen and nutrient

determines the success of an engineered substrate for liver

cells. Techniques devised to incorporate these features of

hepatic function and mimic liver architecture range from

maintaining liver cells in mm-sized tailor-made scaffolds

to a more bottoms up approach that starts from building the

microscopic subunit of the whole tissue. In this review, we

discuss briefly various biomaterials used for liver tissue

engineering with respect to design parameters such as

scaffold composition and chemistry, biomechanical prop-

erties, topography, cell-cell interactions and oxygenation.
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Hepatocytes

Introduction

Extracellular matrix (ECM) is the interactive foundation in

which cells adhere, proliferate, migrate, differentiate and

interact with other cells [1, 2]. Similar to other organ

systems, liver ECM facilitates these processes by a fine

balance of temporal and spatial distribution of cells and

chemical composition [2, 3]. Furthermore, physical fea-

tures such as topology, pore structure and biomechanical

properties also play a significant role in determining cell

physiology [1, 4, 5]. Hepatocytes are polarized cells, and

this polarity needs to be maintained for optimal cell per-

formance. In vivo liver ECM is known to play an active

role in maintaining cell function and polarity by presenting

a gradient of solid and soluble factors [6].

Thus, a fundamental requirement for in vitro culture of

hepatocytes is a suitable ECM or scaffold that can maintain

the hepatocyte phenotype [3, 7]. Scientists from various

disciplines have come together in an attempt to recreate the

complex cellular architecture of the native liver ECM and

extend liver functionality in vitro to obtain a highly func-

tional artificial liver tissue [8]. Alternative therapies such

as an engineered functional liver support can be helpful in

aiding liver regeneration and extending patient waiting

time for a liver transplant [9]. These alternative models can
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also be instrumental in expediting drug toxicity studies [10,

11] and enhance understanding of normal and diseased

liver physiology [12, 13].

However, rebuilding the liver ECM and microenviron-

ment has some critical challenges. Liver, being a highly

metabolic organ, performs a myriad of functions including

synthesis, detoxification, etc. [8]. This is achieved by

placing the hepatocytes as well the other cells in a complex

milieu, carefully adapted to fulfilling the functional need

[14]. A brief overview of liver basic architecture and ECM

distribution will help clearly define the challenges of

engineering liver microarchitecture.

Basic liver architecture and extracellular matrix

composition

The basic functional unit of liver is the acinus. The acinus

is constituted of radially transversing strings or plates of

parenchymal/hepatocytes and non-parenchymal cells tied

between two central veins and centered on a portal triad. It

is a miniature model of the typical microenvironment and

zonation that exist in liver. The acinus is delineated into

three zones: periportal, midlobular and centrilobular. The

zonation occurs as a consequence of the cellular arrange-

ment along the microvasculature and the direction of blood

flow. Each of these zones specializes in different metabolic

functions as dictated by oxygen tension, presence of the

CYP450 enzymes, matrix chemistry, solute gradients and

gene expression [14].

Hepatocytes are the specialized endothelial cells of liver

that perform a majority of liver functions [15]. Hepatocytes

in the vicinity of sinusoids extend numerous microvilli into

the space of Disse and come into direct contact with blood,

facilitating exchange of nutrients [8]. The non-parenchy-

mal cell population is mainly constituted of liver sinusoidal

endothelial cells (LSECs), Kupffer cells and hepatic stel-

late cells (HSCs) [14, 15]. LSECs line the sinusoids of

liver, which carry blood from the portal vein to central

venule and deliver oxygen to the surrounding parenchyma

[16]. Sinusoids are separated from the hepatic parenchyma

by a protein-rich interface called the space of Disse.

Fenestrae, a characteristic feature of LSECs, act like

hepatic sieves that provide steric regulation of molecular

transport into the parenchyma [17, 18]. A diagrammatic

representation of a liver sinusoid is illustrated in Fig. 1.

Kupffer cells are specialized macrophages that reside in

liver sinusoids. They have a high phagocytic and endocytic

activity and secrete several cytokines (IL 1, 6, TNF a), all

of which play a critical role in defense, immunity and liver

regeneration [18]. HSCs are also called fat storage cells or

ito cells. They store vitamin A, produce components of

ECM and control sinusoidal contractility. In case of an

injury, activated HSCs secrete cytokines and growth fac-

tors responsible for liver fibrosis and deposition of ECMs,

which contribute to scar formation [19]. Other cell types in

liver include cholangiocytes and hepatic progenitor cells

[14].

Natural ECM of liver consists of collagen (type I–IV),

hyaluronans, laminin, fibronectin and elastin, all of which

are distributed in a graded manner from zone 1–3 in an

acinus [20]. Collagen type I forms the fundamental struc-

ture of the porous scaffold over which other matrix com-

ponents attach. In the acinus, the periportal region is rich in

fibrillar collagen (type I and III), laminins, vimentin, hya-

luronan, and chondroitin sulfate proteoglycan (CS-PG) and

heparin sulfate proteoglycan (HS-PG), with low levels of

sulfation. This chemistry of ECM components transitions

gradually in the space of Disse toward the pericentral

region to a matrix enriched in collagen type IV and VI,

syndecans 1 and 4 and highly sulfated proteoglycan spe-

cifically heparin PG. This gradient of matrix chemistry

interplays synergistically with soluble factors that are

mostly bound to glycosoaminoglycans (GAGs) to modulate

cell behavior [6]. A biphasic response of soluble factors is

mediated by the gradient distribution of sulfated proteo-

glycans, being mitogenic when bound to less sulfated PG

while inducing growth arrest and differentiation when

complexed with highly sulfated PG [2, 11].

Thus, a basic engineered liver construct needs an opti-

mum distribution of ECM components in a gradient fash-

ion so as to modulate hepatocyte functions and facilitate

cell-cell interaction [21]. Heterotypic cell interactions have

been rendered imperative to hepatocyte function in vivo

and have shown favorable response in vitro as well [21].

Additionally, maintaining oxygen gradients and fluid flow

for nutrient transport is mandatory to achieve the goal of

functional liver tissue [22]. In this review, we provide an

analysis of the factors that need to be considered when

designing an artificial matrix for the liver as well as the

biomaterials used in liver tissue engineering.

Designing an artificial liver biomatrix

The underlying importance of the cytoskeletal architecture

has prompted many studies to reproduce hepatic plate-like

architecture by varying substrate structure and chemistry

[23], cell-cell interactions [24] and flow parameters [25,

26]. To re-establish cell polarity, hepatocytes have been

cultured over different 2D and 3D matrix configurations

with varying chemical and biological properties as well as

with other non-parenchymal cells to promote heterotypic

interactions [27]. Providing a 3D matrix with optimal

adhesion ligands on both sides of cells allows for estab-

lishment of cellular polarity [5, 7]. Density of adhesion
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ligands [28] [29], the biomechanical [30], structural and

surface properties [5] of the matrix are postulated to guide

cell behavior under in vitro conditions similar to mecha-

nisms found in vivo [31]. Thus, designing a matrix for

growth of liver tissue in vitro involves several

considerations:

(1) Scaffold architecture: This involves multiple factors

such as

Scaffold chemical composition—natural, synthetic

and hybrid polymers;

Pore structure and porosity;

Biomechanical properties;

Scaffold chemistry—density and distribution of

adhesion ligands

(2) Heterotypic and homotypic cell interactions: cocul-

ture of hepatocytes with different liver cell types or

non-liver cells.

(3) Transport of nutrients and oxygenation: fluid flow

and shear stress.

Biomaterial scaffolding

Different types of polymers have been used for making

artificial matrices for liver reconstruction. These may be

classified in broad categories of natural and synthetic

polymers or a combination of both. These scaffolds have

been molded into different topographies such as films,

coatings, sponges, hydrogels, cryogels, nanofibers, etc. In

addition to these, natural ECM matrices in the form of a

decellularized biomatrix have been employed for culture of

liver cells.

Natural polymers

Collagen is the most abundant component constituting the

ECM in any tissue type and particularly the liver. This

makes collagen the most commonly used biomaterial for

hepatocyte culture. Monolayer culture of hepatocytes over

collagen gels [32] and collagen sandwiches [7] are two of

the most common methods of growing hepatocytes in vitro

and utilizes collagen type I as the base scaffold. It has been

used in other forms such as microspheres, coatings for

scaffolds and 3D matrices. Collagen, being a native protein

found in the body, has many cell-binding motifs, low

antigenicity, and high biocompatibility and biodegradabil-

ity. A disadvantage with collagen as with other natural

polymers is its low mechanical strength and high cost. A

collagen-hepatocyte construct made up of multiple hepatic

units (2,000–4,000 lm/500–1,000 lm diameter/height)

engrafted in the subcutaneous space was shown to have

enhanced vascularization [33].

Chitosan has been used as a popular matrix for hepa-

tocyte culture mainly because of its resemblance to gly-

cosaminoglycan. Chitosan scaffolds fabricated as foams,

composites, hydrogels [34], microcarriers [35], membranes

[36], micro- and nanofibers [37, 38] have been used to

maintain hepatocytes in vitro. Chitosan, being a hydro-

philic charged polymer, promotes spheroid formation in

hepatocytes. Hybrid scaffolds of chitosan with collagen or

of alginate with galactosylated chitosan have been used

successfully for hepatocyte culture and spheroid formation

[38].

Alginate-based scaffolds have been used to cultivate or

microencapsulate hepatocytes to generate implantable

constructs. Being a hydrophilic polymer, like chitosan, it

promotes spheroid formation and thus enhances cell-cell

interactions and hepatocyte function. Porous alginate

scaffolds having 90 % porosity and a pore size of 100 lm

are favorable for hepatocyte culture. They promote spher-

oid formation due to low adherence of the cells to the

substrate. Seeding of hepatocytes at a high density

(5.7 9 106 cells/cm3), using centrifugal force, has been

observed to maintain hepatocyte viability and function for

a longer time as compared to static seeding at low cell

density (0.28 9 106 cells/cm3). Compared to synthetic

hydrophobic matrices, cell seeding in hydrophilic porous

matrices like alginate is less time consuming and simple

[39, 40]. Hepatocyte aggregates encapsulated in alginate

Fig. 1 Organization of a liver

sinusoid depicting distribution

and arrangement of various cell

types. The blood flows from the

portal triad toward the central

vein, creating an oxygen

gradient that leads to zonation in

liver. The size of hepatocytes,

sinusoidal lumen diameter and

fenestrae changes from the

periportal to perivenous zone
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hydrogels cultured in a bioreactor and spinner flask for a

period of 1 month were superior to unencapsulated

aggregates in terms of liver functions. These studies show

that use of an appropriate biocompatible ECM for hepa-

tocyte culture influences cellular phenotype and function-

ality. Alginate used in this study was clinical grade and

provided a good, thermostable, semi-permeable ECM [41].

A combination of alginate with galactosylated chitosan

(AL-GC) in porous sponges has been shown to promote

hepatocyte culture better than alginate sponge alone

because of the presence of specific ligands for asialogly-

coprotein receptor (ASGPR) in hepatocytes. Hepatocytes

cultured in AL-GC foams formed large 100-lm aggregates

and expressed connexin-32 and E-cadherin as markers for

cell–cell contact, which was not observed in case of algi-

nate only foams. Furthermore, coculture of hepatocytes

with NIH3T3 fibroblasts in AL-GC foams showed

enhanced liver-specific functions in comparison to alginate

only sponges [42]. Composite scaffolds of collagen/chit-

osan/heparin [43], cross-linked collagen/chitosan [44], etc.,

have also been tested for hepatocyte culture in vitro.

Hyaluronic acid is also a main component of the space

of Disse in liver. In that effect use of hyaluronic acid

containing scaffolds for liver cell culture is a logical option

to explore. Non-woven fabrics of hyaluronic acid esters

were first used by Catapano et al. [45] for the culture of

liver cells [45]. As a further modification, non-woven

fabrics of hyaluronic acid were enriched in components of

ECM by culturing fibroblasts in them and then used for

hepatocyte culture. These ECM-enriched matrices

increased the survival time for hepatocytes from 7 to

14 days in vitro while upon implantation the hepatocytes

formed small aggregates and survived up to day 35 [46].

Synthetic matrices

Synthetic matrices have also been utilized for hepatocyte

culture in vitro, for making implantable scaffolds as well as

drug delivery vehicles [47]. A major advantage of using

synthetic polymers over natural polymers for scaffold

fabrication is the easy control of their physiochemical and

biological properties. Some of the popularly used synthetic

polymers are poly L-lactic acid (PLLA), poly (lactide-co-

glycolide) (PLGA), poly(ethyleneglycol) (PEG) [28] and

stimuli-responsive polymers such as poly(N-isopropylac-

rylamide) [48].

PLLA and PLGA are biodegradable polyesters that have

been used both for hepatocyte culture and hepatocyte

implantation. The biodegradation rate of these polymers

can be modulated based on the ratio of PLLA–PLGA,

crystallinity of the polymer and molecular weight. A

number of studies have been carried out using PLGA and

PLLA scaffolds for hepatocyte culture. However, very

limited success has been achieved using these polymers.

Most of the studies were done more than a decade ago, and

evidence of recent investigations is rare. Mostly composite

PLGA–PLA scaffolds or scaffolds with some surface

modifications have been used. PLGA foams have been

shown to perform equivalent to a collagen sandwich cul-

ture of hepatocytes, while the foams coated with gelatin or

collagen show a decrease in function [49, 50]. Hepatocyte

culture in foams made of PLA, gelatin, polyurethane and

calcium alginate have been shown to have a liver-specific

function. Combination of PLGA scaffolds with hydrophilic

polymers such as poly(vinylalcohol) (PVA) has been

shown to improve hepatocyte seeding. A composite PLLA-

PLGA scaffold coated with PVA supported long-term

engraftment of hepatocytes after transplantation in the

mesentery in a rodent injury model [51]. Recently, a PLLA

nanofibrous scaffold coated with collagen type 1 was used

for primary hepatocyte culture. The results demonstrated

the effect of surface topography on hepatocyte function and

adhesion, with the nanofibrous scaffold being superior to

the non-porous PLLA collagen-coated scaffold [52].

PLLA–PLGA-based scaffolds have been utilized as a

matrix in flow bioreactor configurations and have been

shown to promote spheroid formation of human and rat

hepatocytes. Such precultured rat hepatocytes, when

transplanted on a PLLA scaffold, had less initial cell loss

and regained 100 % cell mass in 6 months when implanted

into pockets of mesenteric leaves in syngenic rats [53]. A

liver organoid tissue was constructed in a bioreactor over a

polylactic acid fabric by combining collagen fibrils, fibro-

blasts and HepG2 cells. The construct, on implantation into

mice, showed repopulation with oval or spherical hepato-

cytes and engraftment with surrounding tissue. A con-

densed collagen fibril network was formed holding a dense

network of hepatocytes in the presence of fibroblasts. Such

constructs could be useful in studying cell-cell interactions

and the role of various cytokines and growth factors [54].

Despite the obvious advantage of hepatocyte culture,

PLGA scaffolds suffer from an inherent disadvantage of

acidic environments within the scaffold, resulting from

their degradation products that initiate peptide degradation,

stimulate inflammation and result in poor tissue

engraftment.

PEG is a widely used hydrophilic, biocompatible polymer

used for tissue engineering applications. A two-dimensional

micropatterned system composed of a-lactosyl PLA and

PEG brushes (patterned over glass substrate 20 9 20 mm2)

has been used for culturing heterospheroids of primary

hepatocytes and bovine endothelial cells. The system

maintained hepatocyte phenotype and liver-specific func-

tions for a month. The heterospheroids had a diameter of

100 lm, and the polymer brushes were 100 lm apart. This

PLA–PEG substrate can be modified by changing surface
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and chemical properties to modulate cell behavior [55].

Recently, the substrate has been used for culturing hepatic

cells and making implantable constructs. Bipotential mouse

embryonic liver cells (BMELs) encapsulated within a PEG

hydrogel were able to differentiate into hepatic lineage, and

their gene expressions could be modulated by siRNA.

Coculture of hepatocytes within the PEG hydrogel improved

the viability of the cells because of stabilization of cell-cell

interactions. Photopolymerizable PEG hydrogels have been

used for generating a network of hepatocytes and fibroblasts

arranged in a defined network. The same system has been

used for generating an array of BMELs. The system is

advantageous as it allows reasonable control over cell ori-

entation by a combination of photopatterning and dielec-

trophoretic patterning methods [56].

Poly(caprolactone) (PCL) [57] has been used for cul-

turing hepatic cells. Being a hydrophobic polymer, cell

seeding is difficult. Methods have been adopted to improve

the seeding efficiency in such synthetic scaffolds. Seeding

can be facilitated by using avidin-biotin binding, which has

a very strong Kd (Kd = 10-15) as compared to integrin-

fibronectin (10-6) and integrin-laminin (10-9). Such a

system has been tested in both small 3D PLLA (0.1 cm3)

scaffolds and large PCL constructs of 500 cm3 made using

selective laser sintering (SLS). In PCL scaffolds with

customized 3D branching and a joining flow-channel net-

work, the technique of avidin-biotin binding when com-

bined with centrifugal force greatly enhances cell

attachment. However, the seeding density and level of liver

specific functions in the larger PCL scaffolds were lower

than those of the smaller PLLA scaffolds, which could be

due to the limited oxygen supply.

Elastin-like polypeptides (ELPs) conjugated to posi-

tively charged polyelectrolytes have been shown to pro-

mote spheroid formation and enhanced hepatocyte function

under in vitro conditions. Furthermore, alternating multi-

layers of ELP and polyelectrolytes have shown potential as

substrates for hepatocyte culture [58].

Finally, temperature-responsive surfaces made using

poly(NiPAAm) have been used to generate scaffold-free

hepatic cell sheets. The hepatic cell sheets could be com-

posed of only hepatocytes or contain a patterned coculture

of hepatocyte and non-parenchymal cells [59, 60].

Implantation of 2D constructs in the subcutaneous space in

mice has shown formation of 2D liver tissue, which is

viable up to 200 days. A stratified 3D structure can be

obtained by combining multiple such hepatocyte cell sheets

in vivo [59].

Hybrid scaffolds

Hybrid scaffolds made up of thiolated heparin and PEG

have been used for hepatocyte encapsulation and have been

shown to maintain hepatocyte function for up to 20 days.

Heparin is a natural component of the liver biomatrix and

sequesters various growth ligands. Thus, heparin-based

scaffolds are suitable for inclusion of growth factors in

implantable scaffolds. These hybrid scaffolds were modi-

fied to include immobilized hepatocyte growth factor

(HGF), which enhanced the hepatocyte function and sur-

vival within the hydrogel [61]. A summary of the various

biomaterials used for hepatic tissue engineering is pre-

sented in Table 1.

Decellularized liver biomatrix

A further advancement in the field of scaffold fabrication

for tissue engineering is use of decellularized matrix

derived from native organs of cadaveric donors. A distinct

advantage of decellularized matrix is its intact natural ECM

composition, native vasculature/architecture and function

allowing efficient recellularization [62], thus using a nat-

ural cellular platform to grow cells. Uygun et al. [63] first

reported the creation of a transplantable liver graft by re-

cellularizing a decellularized liver biomatrix with

200 million rat hepatocytes. The recellularized graft sup-

ported liver-like functions with an efficiency comparable to

normal liver in vitro. The graft could be successfully

transplanted in vivo in rats [63]. Furthermore, culture of

human hepatocytes in porcine-derived decellularized

matrix and coculture of hepatocytes and LSECs in decell-

ularized matrices have been done successfully. Although

this was by far one of most successful attempts to culture

liver cells in vitro, transplanted grafts can only survive for

a period of 2–8 h mainly because of clotting initiation due

to exposed collagen. Thus, further improvisations are

sought to adapt these matrices in clinical settings [64].

Scaffold chemistry

Role of adhesion ligands Although synthetic polymers

offer several advantages, they lack cell-binding moieties.

Apart from the exact ECM composition, an important

parameter controlling the balance between the maintenance

of the differentiation state and proliferation rate of hepa-

tocytes is the density of ECM components. Low ECM

component densities promote the differentiated state of

hepatocytes along with spheroid formation, whereas high

densities promote cell adherence and proliferation [31]. In

order to optimize hepatocyte–matrix interactions, various

ECM ligands have been incorporated in the polymer sys-

tems making up the scaffold. Coating of natural polymers

over synthetic scaffolds, non-specific adsorption of growth

factors, conjugation of sugar residues (lactose, glucose,

heparin, galactose), cell adhesive sequences (integrin

binding RGD), etc., are some of the examples of presenting
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Table 1 Polymers and matrix geometry used for fabrication of scaffolds for liver tissue engineering

Material

composition

Matrix geometry Advantage Disadvantage

PVA Film coating [100] Inert hydrophilic matrix, preserved

functions of cryopreserved hepatocytes

Lacks any cell binding motif

PLGA 3D printed flow channels [101]

foams [49, 50], collagen-coated

nanoporous scaffold [102]

Biocompatible and biodegradability can

be modulated by change in ratio of

PLLA:PLGA; conducive environment

for stem cell differentiation

Acidic degradation product, initiate

peptide degradation and inflammation

PLLA 0.3 % collagen-coated nanoporous

[52]

Maintained hepatic function for a period

of 2–4 weeks, promote MSC

differentiation to hepatocyte

PLLA or PLGA

coated with

PVA

Porous scaffold [51] Improved seeding due to hydrophilic

coating

Polydimethyl-

sulfoxide

Membrane in microfabricated

devices [98, 103, 104]

Oxygen permissible membrane, allow

high cell seeding density

Highly hydrophobic thus can absorb

biomolecules and reticulated PDMS

might come into circulation. Permeable

to water vapors thus can cause complete

water evaporation and drying of devices

Polyurethane Foam [105] Easy chemical and mechanical

modification, can be made

biodegradable, facilitate mouse ES

culture at high density and

differentiation into hepatic lineage in

BAL device

Degradation products are toxic

Polycaprolactone Porous scaffold [57], nanofibers

[106]

Inert, biocompatible and biodegradable Highly hydrophobic thus uniform seeding

of cells is difficult. Slow degradation

rate

Polyethylene

glycol

Hydrogels [107] microfabricated

brushes [55], hydrogel

microspheres for modular

assembly [108]

microencapsulation [28]

Hydrophilic, resistant to protein

adsorption, amenable to chemical

modification especially diacrylate

facilitated crosslinking, addition of

bioactive ligand, and modulation of

polymer molecular weightt, can be

polymerized in presence of cells

Poly(N-

isopropyl-

acrylamide)

Grafted polymer chains [48] Cell sheets can be obtained by

modulation of surface properties via

temperature

Becomes inelastic at physiological

temperature

Polyethylene-

terpthalate

Films coated with ECM

components [67] conjugation of

galactose, RGD ligands [66]

Inert surface easily modified with

bioactive ligand, oxygen permeable,

used in drug screening platforms and

BAL devices

Absence of cell adhesion ligand, non-

biodegradable

Polyacrylamide Inverted colloid crystal hydrogel

[109]

Generates spheroid of controlled size and

high yield

Non-biodegradable

Elastin-like

polypeptides

Polyelectrolyte multilayer [58] Precise control over scaffold

composition, biodegradable,

biologically relevant functionalization,

stimuli responsive

Not cell adhesive needs functionalization

Natural polymers

Chitosan Hydrogel [34], porous scaffold,

membrane [36], microfibers [37],

nanofibers [38], microcarrier [35]

Resemble glycosoaminoglycans, promote

spheroid formation Rat hepatocytes

form immobile, 3D, flat aggregates on

nanofibrous matrix and exhibit superior

cell bioactivity with higher levels of

liver specificity

Low mechanical strength, may be

immunogenic

Fibrin gels Hydrogel [110] Hydrolytically degradable, coculture of

human fetal liver cells and endothelial

cells promote vascularization

Rapid degradation, low mechanical

strength, immunogenic
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appropriate ECM ligands to the hepatocytes. Of these,

RGD and galactose conjugation have been most widely

explored because of their potential to modulate hepato-

cellular adhesion. Adhesion of such ligands to synthetic

substrates lacking cell adhesion ligands allows fine control

over cell adhesion behavior and provides an opportunity to

study these interactions. Sandwich culture of hepatocytes

in a synthetic matrix composed of polyethyleneterpthalate

Fig. 2 Scanning electron micrograph (SEM) of cell morphology on

different substrata after 5 days of culture; a collagen-coated PET;

b RGD conjugated to PET; c galactose-conjugated PET; d RGD and

galactose (1:500) conjugated to PET; e RGD and galctose (1:1,000)

conjugated to PET. This illustrates the importance of the nature of

adhesion ligands and their density distribution affecting cell behavior

(reproduced with permission from [66])

Table 1 continued

Material

composition

Matrix geometry Advantage Disadvantage

Heparin Hydrogel [61] Natural, biocompatible, bioactive binds

to growth factors suitable for

implantable constructs

Low mechanical strength which can be

modulated by incorporation of PEG

Matrigel Coatings, films, gels [27, 111, 112] Promotes spheroidal geometry and high

expression of liver specific functions

Composition varies greatly

Self-

assembling

peptide

Nanofiber [113] Promotes spheroid formation and

Collagen Dried films, gels [43, 114], sponges,

foams [81]

Ample cell binding motif, native to liver,

low antigenicity

Low mechanical strength and expensive

Alginate Microencapsulation [115] porous

hydrogel, microfluidic channels

[88]

Hydrophilic, promotes spheroid

formation, good for

microencapsulation, cell seeding, is

easy and less time consuming

Hydrophilic thus low adherence, may be

immunogenic

Hyaluronic

acid

Sponges [116], hydrogels [117],

non-woven fabrics [45, 46]

Natural component of liver matrix, good

substrate for coculture of hepatocytes,

biocompatible

Low mechanical strength, highly viscous,

difficult to work, fast tissue clearance

Native ECM Decellularized biomatrix [62, 63] Intact functional and structural

components of native liver biomatrix

promotes efficient cell function in vitro

Transplanted graft survival time is

2–8 days, initiates clotting in vivo due

to exposed collagen
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modified with GRGDS for the top layer and galactosylated

PET for the bottom layer has been shown to maintain

hepatocyte function for 14 days and to be superior to

conventional collagen sandwich culture [65]. Futhermore,

a PET surface modified with both adhesion ligands RGD

and galactose has been shown to promote formation of

spheroids when the ratio of RGD:galactose is 1:1,000 [66],

while at a ratio of 1:1 a monolayer is formed [29] (Fig. 2).

Similar enhancement has also been shown in RGD-conju-

gated PLLA scaffolds [67].

Galactosylated matrices for liver tissue engineer-

ing Asialoglycoprotein receptors (ASGPR) have been

identified on the surface of hepatocytes [68]. Incorporation

of galactose as a hepatocyte-attaching moiety to poly-

acrylamide gels was first tested as a technique to attach

liver cells via receptor-mediated mechanism [69]. Lactose

monohydrate, lactobionic acid, aminohexyl–D galactopy-

ranoside, 1-amino-1-deoxy-b-D-galactose and 1-amino-1-

deoxy-b-D-lactose have been used to introduce galactose

ligands [70]. Dissacharide terminal b-galactose and mo-

noscahrride terminal galactose moieties have higher affin-

ity for hepatocytes than a-galactose of disaccharide [71].

Galactose ligand density and orientation have both been

shown to influence hepatocyte attachment and function

[70]. Since then, several synthetic polymers such as poly-

styrene [72], poly(ethylene oxide) [73], PLGA [74], PET

[75], polyvinylidene difluoride (PVDF) [76] and polyami-

doamine dendrimers [77] have been modified with galact-

ose and have been shown to enhance hepatocyte survival,

spheroid formation and function.

Mechanical stiffness There is increasing evidence that

matrix biomechanical properties govern cell behavior.

These signals are transduced by matrices to the cells by

means of the cell adhesion ligands and cytoskeleton. Such

gradients of mechanical stiffness are also found in native

liver ECM. The ECM in the vicinity of hepatocytes and

endothelial cells is soft, while that in the vicinity of HSCS

and cholangiocytes is more rigid [78]. As an exemplifica-

tion of mechanically controlled cell response, hepatic stem

cells differentiate into hepatocytes on soft surfaces while

cholangiocytes are seen on rigid surfaces [11]. However,

few studies have been conducted to study the effect of

material stiffness on hepatocyte maintenance. The results

of the studies are rather contradictory and vary depending

upon the parameters and stiffness range examined. Hepa-

tocytes cultured on polyelectrolyte multilayers (PEMs) had

decreasing albumin production with increasing stiffness of

the PEM [30]. However, another study exploring the effect

of graded mechanical compliance of polyacrylamide gels

on hepatocyte function found an increase in hepatocyte

function with an increase in hydrogel stiffness [79]. In a

recent study, hepatocytes cultured on thiolated heparin and

PEG gel with mechanical stiffness between 10 and 110 kPa

had five times higher levels of albumin on softer gels

compared to a stiffer heparin gel [80]. A change in matrix

rigidity is also seen under several pathological conditions.

However, little is known about the effect of this change on

cell performance. Many more insightful studies are

required to understand the relationship of mechanical

stiffness and hepatocyte response. These would also be

helpful in developing models of diseased liver and under-

standing the pathophysiology of disease development and

progression.

Scaffold porosity and pore structure A crucial factor

involved in designing an appropriate liver matrix is the

pore architecture. One of the earlier studies elucidating the

importance of pore size on hepatocyte culture involved the

use of porous collagen sponges of subcellular (10 lm),

cellular (18 lm) and supercellular (82 lm) pore sizes to

study the impact of pore size on hepatocyte morphology

and function. In this study, it was observed that hepatocytes

cultured in subcellular and cellular ranges were more

restricted to the surface and had limited degrees of cell-cell

contact, whereas those cultured in the supercellular range

had more spread out configurations and infiltrated into the

pores [81]. This study was crucial in establishing the effect

of pore size on the cellular spreading and cytoskeletal

organization of cells. In another study, alginate scaffolds

fabricated using the freeze-drying method was used to

study the effect of pore structure on hepatocyte culture.

Hepatocytes took up a round morphology in isotropic,

spherical pores, but lined the pores in scaffolds where the

pores were elongated in shape [82].

In this respect, our group has been extensively studying

the use of cryogels as potential matrices for liver tissue

engineering. Cryogels are polymeric matrices synthesized

at sub-zero temperatures from the monomeric or polymeric

precursors that belong to any gel-forming system. Typi-

cally, cryogels have been classified as supermacroporous

gels, primarily because of their unique feature of an

interconnected porous network, with a broad range of

porosity ranging anywhere between 1.0 and 100 lm. It is

this unique feature of cryogels that makes them a promis-

ing biomaterial in the area of tissue engineering. Our group

has explored the use of cryogels for various different types

of tissues such as bone [83], cartilage [84] and neural tissue

[85] with many promising results. Currently, we are

studying the use of the cryogel matrices poly(N-isopro-

pylacrylamide)-chitosan, poly(acrylonitrile)-chitosan and

poly(acrylamide)-chitosan for use in liver tissue engineer-

ing (Fig. 3). Pore interconnectivity is a unique and attrac-

tive feature of cryogel matrices, increasing the overall

surface area-to-volume ratio of the gel and allowing
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unhindered convectional transport of solutes, contrary to

the diffusion of solutes in conventional hydrogel systems.

Coculturing of different liver cell types on scaf-

folds Introduced by Langenbach et al. [86] in 1979, where

primary hepatocytes were cultured on top of a feeder layer

of fibroblasts, and further elucidated by Guguen-Guillouzo

et al. [87] wherein hepatocytes were mixed with epithelial

cells in culture, the role of cell-cell interactions in the

hepatocyte phenotype has been actively pursued. Coculture

of hepatocytes with different nonparenchymal cells (SECs,

Kupffer cells, stellate cells) and nonhepatic cell types

(epithelial cells and fibroblasts) has been shown to have a

positive effect on maintenance of cell life in vitro [24].

Coculture of hepatocytes with fibroblasts has shown bene-

ficial effects in 3D scaffolds [42]. A recent study by Yam-

ada et al. [88] extended the use of coculture configuration of

hepatocytes with Swiss 3T3 cells to a three-dimensional

platform. Swiss 3T3 cells and hepatocytes suspended in a

sodium-alginate solution were introduced into a micro-flu-

idic channel to synthesize hydrogel fibers that contained

hepatocytes at the center sandwiched between layers of 3T3

cells. The fibers closely mimicked hepatic cords found in

liver lobules in vivo and maintained expression of hepato-

cyte-specific genes over a 90-day period.

Inspite of the success in maintaining the hepatocyte

phenotype by coculture with fibroblasts and nonparenchy-

mal cells, these systems are unable to recapitulate all the

features of hepatocyte function. Moreover, there are reports

indicating that coculturing does lead to the loss of certain

key hepatic functions such as certain cytochrome P450

isoforms [11]; hence, there is a need to look into other

hemodynamic, microenvironmental factors to maintain a

near in vivo-like condition for maintenance of hepatocyte

culture.

In a recent report, coculture of hepatic endoderm cells

(derived from human iPS cells) and human umbilical vein

endothelial cells and human mesenchymal stem cells in a

2D configuration led to tissue self-organization into 3D

liver buds in 72 h. The gene expression profiles in the

in vitro liver buds were similar to liver buds derived from

human fetal liver cells. Implantation of the in vitro-gen-

erated liver buds led to formation of highly vascularized

and functional liver tissue [89]. Such potential approaches

can overcome some of the limitations of classical coculture

strategies. Moreover, it demonstrates the potential of iPS

cells as a cell source for generating functional tissue.

Oxygenation in scaffolds Hepatocytes are high-oxygen-

demanding cells, and various techniques have been

designed to ensure a homogeneous and constant supply of

oxygen to hepatocyte biomatrices in vitro. For this purpose,

several perfusion bioreactors have been designed that

augment the oxygen supply, increase cell survival, promote

cell-cell interactions and mimic the in vivo hepatic envi-

ronment. Dissolved oxygen in medium is insufficient to

fulfill the requirements of hepatocyte culture (in vivo

oxygen supply = 2,000 nmol/ml; in vitro dissolved oxygen

\200 nmol/ml) [22]. Culture of hepatocytes under high

oxygen tension is shown to be beneficial in numerous

studies [16, 90]. To meet the high oxygen demand of

hepatocytes, various strategies have been devised, such as

use of hemoglobin-based oxygen carriers (bovine RBCs)

[91], incorporation of synthetic oxygen carriers such as

perfluorocarbons (PF) [92], use of the oxygen-permeable

PDMS membranes [93] or use of fluoropolymer

Fig. 3 Scanning electron micrograph image of a poly(N-isopropyl-

acrylamide)-chitosan cryogel matrix showing the overall morphology

and interconnected porous network within the matrix; b HepG2 cells

(hepatocarcinoma cell line) on poly(N-isopropylacrylamide)-chitosan

cryogel matrix
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membranes [94] in microfluidic devices. An important

parameter controlling the oxygen supply is fluid flow,

which also mediates shear stress. Thus, an optimum bal-

ance between oxygen supply and shear stress is necessary,

which is controlled by the fluid flow rate. It has been

demonstrated that shear stress above 5 dyn/cm2 greatly

affects some of the liver-related functions, while others are

not affected as much until shear stress reaches around

10 dyn/cm2 [95]. Many strategies have been employed to

reduce shear stress while maintaining the oxygen tension.

These include incorporation of microgrooves in the flat

plate bioreactor [96], use of circular inlets/outlets to ensure

homogeneous distribution of stress [97], use of separate

oxygen supply chambers so that lower flow rates can be

used for medium supply [98] and use of a 3D porous

framework that allows for spontaneous reorganization into

multicellular layers that have higher resistance to shear

stress than large spheroids [99].

Conclusion

The field of tissue engineering has progressed significantly

recently with concomitant advancement of the techniques

and understanding of cellular phenomena. This has also

benefited the field of liver tissue development, though the

ultimate goal has not been achieved. Hepatocyte culture

longevity has been extended up to months with minimal

proliferation in vitro. Methods to cultivate cells have

evolved from simple suspension or monolayer culture to

more complex micropatterned and microfluidic culture.

Although the culture life span has increased, many

metabolic functions are not maintained as in in vivo con-

ditions. Proliferation of hepatocytes in vitro is still up to a

very minimal level, and building up the required cell mass

remains an unmet challenge. Progress has been made in

understanding the role of oxygen in hepatic cell cultures.

However, finding an optimum solution for presenting an

oxygen gradient is in progress. Though a lot of progressive

work has been carried out in the area of scaffold design for

liver tissue engineering, there is still scope for more designs

to be explored that can mimic the existing native liver ECM

as closely as possible. With continuous progress in under-

standing cell behavior and contributions from diverse fields,

that there will be further progress in the field is unequivocal.
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