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measured, either spontaneously or evoked by an acoustic 
stimulus, through a highly sensitive microphone located 
in the external auditory canal. In recent years, OAEs have 
received widespread acceptance for various clinical applica-
tions, including identification of cochlear dysfunction, hear-
ing screening, and site of lesion assessment [1–5].

There are pathological (e.g., ototoxicity), non-pathologi-
cal (e.g., age), instrumental, and environmental (e.g., noise 
level) factors that may influence the OAE responses [6–10]. 
However, the impact of body position as a non-pathological 
factor has received less attention. The effects of body posi-
tion on the outcomes of other audiological measurements, 
such as sound localization, hearing thresholds, and middle 
ear measurements, have been well documented [11–15]. 
The proposed mechanism for these alternations in auditory 
function is thought to be an increase in intracranial pressure 
(ICP) level and, consequently, intracochlear pressure (ICoP) 
reflected in the cochlea, leading to increased stiffness in the 
middle ear system through the outward motion of the stapes 
footplate. Therefore, a change in body position and the sub-
sequent changes in ICP could induce concomitant changes 
in the forward transmission of auditory stimuli and back-
ward transmission of ear emissions [16–19].

Introduction

Otoacoustic emissions (OAEs) are by-products of active 
processes in the cochlea and provide a non-invasive 
measure of cochlear amplification. These sounds can be 

  Golshan Mirmomeni
bayat-a@ajums.ac.ir

Arash Bayat
arashbayat2004@yahoo.com

Nader Saki
ahvaz.ent@gmail.com

1 Department of Audiology, School of Rehabilitation Sciences, 
Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 
Iran

2 Hearing Research Center, Ahvaz Jundishapur University of 
Medical Sciences, Ahvaz, Iran

3 Department of Otolaryngology, Head and Neck Surgery, 
Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 
Iran

4 Hearing Research Center, Clinical Sciences Research 
Institute, Ahvaz Jundishapur University of Medical Sciences, 
Ahvaz, Iran

Abstract
Background Otoacoustic Emission (OAE) is frequently recorded in various body positions for infants. However, little is 
available about whether these deviations will produce non-pathological effects on the clinical results. The current study 
assessed body position’s effect on infants’ inner ear function.
Methods Sixty normally hearing infants participated in an analytical cross-sectional study. Distortion-product OAEs 
(DPOAEs) were measured in the supine, side-lying, and upright positions. The DPOAE amplitude and signal-to-noise ratio 
(SNR) were recorded across the 1500 to 6000 Hz range.
Results The mean DPOAE amplitude and SNR values were significantly greater in the upright position than supine and side-
lying positions (p < 0.05). These differences were more pronounced in the 3000 to 6000 Hz range. The effects of gender and 
ear asymmetry on DPOAEs were not statistically significant.
Conclusion Our findings suggested that the upright position could be regarded as the best position for assessing DPOAEs 
in infants.
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OAEs are usually assessed in an upright (e.g., sitting) 
position, but it is not uncommon for OAE testing to be 
conducted with the subject in a supine or even side-lying 
orientation. The latter test positions (i.e., supine and side-
lying) are generally utilized with newborns and infants, or 
patients who cannot be seated upright because of medical 
conditions. The present study was conducted to determine 
the impacts of postural changes on the DPOAEs in infants 
with normal hearing levels.

Materials and Methods

Participants

During an analytical cross-sectional design, 60 infants (32 
boys and 28 girls) were recruited. All selected infants were 
full-term babies (38 weeks of gestational age or older) with 
no risk factors for hearing loss, as identified by the Joint 
Committee on Infant Hearing (2007). All infants were 
required to pass an automated auditory brainstem response 
(AABR) test to be included in the present study. A “pass” 
response in the AABR test is necessary to exclude neonates 
with significant hearing loss, which may influence the inter-
pretation of OAE findings.

The institutional ethics committee reviewed and approved 
the experimental design of the current study. Written paren-
tal consent was obtained before the commencement of the 
assessment.

Procedure

Otoscopy and tympanometry (MADSEN OTOFlex 100, 
GN-Otometrics) assessments were conducted before testing 
OAEs to exclude obstruction of the external auditory canal 
and middle-ear effusion. DPOAE analysis was performed 
using the ERO-SCAN system (MAICO Co., Germany), 
connected to a personal computer. DPOAE responses were 
elicited using a pair of primaries at f2/f1 = 1.2, L1 = 65 dB 
SPL, and L2 = 55 dB SPL. DPOAEs were measured at six 
frequencies, including 1500, 2000, 3000, 4000, 5000, and 
6000 Hz. All participants had an amplitude higher than 

− 5 dB and a signal-to-noise ratio (SNR) higher than 6 dB 
across different frequencies. DPOAE measurement was 
conducted three times for each ear, with the infant in 3 
different positions: “supine”, “upright” (head-raised), and 
“side-lying” (one-sided). These test positions were chosen 
because they are common positions for infants to be placed 
in during testing. The time delay between testing in each 
position was controlled (using a 30-second interval) to sta-
bilize the emissions and avoid any potential order effects 
on the results. After every posture change, the probe was 
reinserted into the external auditory canal to ensure optimal 
testing conditions.

Statistical Analysis

Statistical analyses were conducted utilizing SPSS v.21.0. 
Numerical variables were expressed as mean, and standard 
deviation (SD), and categorical variables were expressed as 
numbers or percentages. A multivariate analysis of variance 
(ANOVA) was carried out to investigate the impact of body 
position on DPOAE parameters (SNR and amplitude) at 
each of the f2 frequencies. When Mauchly’s Sphericity test 
indicated sphericity violations, the Greenhouse-Geisser cor-
rection was used. Furthermore, a Tukey post-hoc test was 
used for pairwise comparisons when initial analysis showed 
a significant main effect. A p-value of < 0.05 was considered 
statistically significant.

Results

The mean age of the participants was 4.32 (± 3.24) months. 
For analysis of DPOAE parameters, a three-way ANOVA 
was conducted with the within-subject variables of body 
position (three levels: side-lying, supine, and upright) 
and frequency (five levels: 1500, 2000, 3000, 4000, and 
6000 Hz) and between-subjects variable of gender (two lev-
els: girls and boys).

Table 1 shows the mean DPOAE amplitudes across dif-
ferent test positions. For the main outcome parameters, the 
ANOVA test exhibited a significant main effect for body 
position (p < 0.001) and frequency (p = 0.032) but not for 

Table 1 DPOAE amplitude as a function of f2 frequency for different body positions
F2 Supine Upright Side-lying p-value

Mean SD Mean SD Mean SD
1500 Hz 5.85 4.43 6.79 4.38 7.72 5.70 0.073
2000 Hz 6.06 4.95 6.39 3.47 6.98 3.68 0.085
3000 Hz 5.61 3.79 10.75 4.02 7.53 6.01 > 0.001
4000 Hz 4.28 2.65 9.28 4.45 5.89 4.36 > 0.001
5000 Hz 3.43 4.56 5.79 2.80 4.34 3.21 > 0.001
6000 Hz 2.48 3.11 4.72 3.38 4.05 4.64 0.014
DPOAE: Distortion-product otoacoustic emission
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body position × frequency interaction effect (p = 0.651). 
Post-hoc comparisons of DPOAE amplitudes across differ-
ent positions indicated that DPOAEs were generally higher 
when infants tested in the head-raised (upright) position. 
This effect was insignificant for the f2 test frequencies of 
1500 and 2000 Hz. The interaction effects between body 
position and gender, and between frequency and gender 
were not statistically significant (p > 0.05).

Table 2 shows the mean DPOAE SNR values across 
three different body positions. The ANOVA demonstrated 
a significant main effect for body position (p < 0.001) and 
frequency (p < 0.001) but not for body position × frequency 
(p = 0.153). Post-hoc comparisons of SNR values in differ-
ent body positions exhibited that mean SNRs were gener-
ally higher in upright than supine and side-lying positions. 
This effect was more pronounced for the f2 test frequencies 
of 3000 and 4000 Hz. Furthermore, the effects of gender on 
DPOAE SNR in different positions did not reach a statisti-
cally significant level (p > 0.05).

Discussion

The main objective of our study was to assess postural 
changes’ effects on cochlear function using DPOAEs in full-
term infants with normal hearing sensitivity. Our findings 
showed that the non-pathological factor of body position 
significantly affected the DPOAEs.

Analysis of the DPOAE amplitude demonstrated that the 
largest and smallest amplitudes were recorded in the upright 
and side-lying positions, respectively. We found that the 
influence of body position was not uniform across the f2 fre-
quency range. The DPOAE amplitudes were higher in the 
mid frequencies (1500 and 2000 Hz). Our results also indi-
cated that the mean SNR values were significantly greater 
in the supine orientation than in side-lying and upright posi-
tions for the mid frequencies 1500 and 2000 Hz.

Our findings suggest that infants produced stronger emis-
sions in upright position than the other test positions. Buki 
et al. [20] studied the effects of postural changes on tran-
sient-evoked OAEs (TEOAEs). Their results exhibited that 

following a downward posture change, the TEOAE phase 
may increase, and the TEOAE amplitude may decrease, 
especially for frequency regions below 2000 Hz. They 
proposed OAEs as a non-invasive approach for monitor-
ing alternations in intracranial pressure through stapes dis-
placements. In another study, de Kleine et al. [21] showed 
that the amplitude, width, and frequency of the spontaneous 
OAE (SOAE) spectrum changed in positive and negative 
directions in response to positional changes (from upright 
to a recumbent head-down orientation), with these changes 
being most obvious at frequencies less than 2000 Hz.

The inner ear fluid is connected to the CSF via the 
endolymphatic duct. Therefore, changes in pressure of the 
cerebrospinal fluid in the subarachnoid produce changes in 
hydrostatic ICoP. As the elevations in ICP lead to elevations 
in the ICoP level, at least two different mechanisms have 
been proposed to explain OAE alternations following pos-
tural changes. Firstly, the ICoP may alter cochlear responses 
by acting directly on the sensory cells. Secondly, the ICoP 
may change the stiffness of the middle ear annular ligament 
that connects the ossicular chain (i.e., stapes) to the oval 
window of the inner ear [16, 22–24].

According to our results, the most prominent alternations 
on DPOAEs occurred at mid frequencies (≤ 2000 Hz). His-
tological findings have also demonstrated that the cochlear 
aqueduct is rather narrow (about 0.1 mm) and is filled with 
loose connective tissue, and is thus probably to transmit 
low- and mid-frequency waves from the CSF to cochlear 
compartments.

Conclusion

The present study revealed that the non-pathological factor 
of body position significantly influences cochlear function. 
Our findings support this notion that testing neonates in an 
upright orientation may produce stronger emissions, espe-
cially in the mid-frequency range.
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