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Abstract
The organic evidence from neuroscience proves that precise spike times are used for information exchange between two 
biological neurons rather than the firing rates. One of the prominent reasons, along with energy and computational effi-
ciency, is that spiking neural networks (SNNs) are getting more attention nowadays. The spiking neurons in SNN mimic the 
biological neuron more than its predecessors. Despite the few efficient supervised learning algorithms for SNN, only some 
investigated the biological properties such as axonal noise, random synaptic delays, spontaneous spike-firing, and random 
switching of the gamma-aminobutyric acid (GABA)-switch. The aforementioned properties are essential for making spiking 
neurons more biologically realistic, which is one of the major strengths of SNN. The GABA switch decides the most crucial 
activity, whether a neuron will be excitatory or inhibitory. This paper proposes a novel and efficient approach to handle 
non-linear patterns using a single leaky-integrate-and-fire (LIF) spiking neuron connected with many noisy synapses with 
random synaptic delays. In addition, the spontaneous firing of a neuron and random switching of signs in synaptic weights 
having equal probability akin to GABA-switch are efficiently implemented. Moreover, a hybrid kernel is proposed as the 
synapse model to cope with the noise properly, which makes the synapse model more efficient. The error-tuning is carried 
out using the elitist floating-point genetic algorithm. Four datasets were used for benchmarking, and experimentally, better 
results were obtained than state-of-the-art methods.
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1  Introduction

There has been a curiosity among artificial intelligence (AI) 
community researchers to mimic the most complex human 
brain artificially for decades. Although it could not reach a 
satisfactory level, the AI community is gradually moving 
towards the goal by developing bio-inspired computational 

systems such as the spiking neural network (SNN). Due to 
the energy-efficiency [1–3], dynamic capability [3], com-
putational-efficiency [4], and biological plausibility [1, 2], 
SNN is grabbing the attention of researchers nowadays. 
Note that the organic evidence from neuroscience proved 
the mechanism of exchanging information between two bio-
logical neurons regarding precise spike-timings [5, 6]. The 
spiking neurons in SNN also use precise spike-timings for 
communication, which are discrete events rather than the 
traditional continuous firing rates (which is still in use with 
the artificial neural network (ANN) [7] which is considered 
as the second generation of ANN). On the other hand, the 
third-generation network SNN [7] is emerging in the neu-
roscience community. It is efficiently implemented in the 
neuromorphic hardware, which consumes less energy to 
carry out complex specific tasks. The neuromorphic chips 
such as Intel Loihi [8], IBM TrueNorth [9] uses SNN as the 
intelligent model.

Mathematically, SNN can be defined as a network 
of a finite set consisting of spiking neurons Sneu , a set 
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Q ⊆ Sneu × Sneu of synapses having connection strength 
Wi,j ∈ IR , each synapse < i, j > ∈ Q has a response function 
�i,j ∶ IR+

→ IR (where IR+ ∶= q ∈ IR+ ∶ q ≥ 0 ), and for 
each Sneu, z ∈ Q there is a threshold function Vth ∶ IR+

→ IR . 
In SNN, the spiking neurons do not fire at every cycle of 
propagation; instead, they fire only when its cell membrane 
potential reaches a finite threshold value [1]. There are two 
types of neurons in SNN, pre-synaptic neurons and post-
synaptic neurons, when the categorisation is done based on 
information propagation. The information sender neuron is 
called the pre-synaptic neuron, and the information receiver 
neuron is called the post-synaptic neuron. Each pre-synaptic 
neuron is connected with its corresponding post-synaptic 
neuron through various synapses. When the input stimuli 
received from pre-synaptic neurons by a post-synaptic neu-
ron changes its cell membrane potential, called the post-syn-
aptic potential (PSP), up to the defined threshold, then the 
neuron fires a spike. Note that after firing a spike, a neuron 
is bound to follow the absolute refractory time to fire another 
spike. During the absolute refractory period, no neuron can 
issue spikes [1]. Initially, the cell membrane remains at rest-
ing potential when there are no input stimuli to receive.

In order to work with the network of spiking neurons, the 
three most crucial parts to be followed are mapping the real-
valued continuous features into the precise spike-timings 
(i.e., information encoding), selecting a neuron model and a 
synapse model, and the error-tuning mechanism to get opti-
mal results. Although many information encoding schemes 
exist, the most popularly used one is the population encod-
ing [10, 11]. Every spiking neuron model such as leaky-
integrate-and-fire (LIF) [12, 13] (an improvisation in the 
dynamics of the integrate-and-fire [14]), Hodgkin-Huxley 
[15], spike response model (SRM) [1, 16], Izhikevich model 
[17], etc., has its own merits and demerits. The neuroscience 
community would like to use a neuron model, which is the 
most biologically plausible, although it is complex or com-
putationally costly. On the other hand, computer engineers 
would like to use a neuron model, which is computationally 
inexpensive, although it is biologically less plausible. How-
ever, there is a need to maintain the proper balance between 
biological plausibility and computational cost for a pattern 
classification problem, which is very challenging.

SNN, being less explored than its ancestor ANN, requires 
a generalised framework, proper implementation of biologi-
cal properties, and a supervised learning algorithm. In addi-
tion, it is also less explored than deep neural networks due 
to the need for efficient learning algorithms. Deep neural 
networks are widely used in the image field, such as image 
forgery detection as discussed in [18]. SNN can also be 
applied for image recognition if an efficient learning mech-
anism exists. Although the few supervised learning algo-
rithms for SNN are both computationally efficient and bio-
logically plausible, none of the algorithms investigates and 

implement all the possible properties of biological neurons, 
such as the presence of axonal noise [19], random synaptic 
delays [20], the spontaneous firing of spikes [21, 22], and 
rightly balanced gamma-aminobutyric acid (GABA)-switch 
[23, 24] together, while tuning the overall network error. The 
axonal noises are present for various reasons, such as other 
neighbouring biological activities. The delay in information 
processing is mainly due to the length of the axon cable con-
nected between the neurons. The spontaneous firing and its 
effect on the spiking activity is discussed in [21] and [22].

Various supervised learning algorithms to train SNN have 
been developed with the flow of time, although only some of 
the algorithms are satisfactory. The first gradient-based pop-
ular supervised learning algorithm to train SNN is developed 
by Bohte et al. called SpikeProp [10]. It uses the population 
encoding scheme combined with the concept of time-to-first-
spike firing, i.e., in every neuron, the first firing time is more 
important than the latter. The error direction was investi-
gated in SpikeProp by finding the slope. Although SpikeProp 
succeeded to some extent, it fails to prop up synaptic weights 
if a post-synaptic neuron no longer fires a spike after receiv-
ing the input stimuli. To improve the SpikeProp algorithm, 
it was investigated further in [25–30]. However, the main 
problem of SpikeProp being gradient-based learning persists 
that is the stagnation at the local minimum.

Therefore, developing a supervised learning algorithm 
for SNN shifted in a different direction based on the plastic-
ity concept of learning as the biological neuron learns. In 
[31] and [32], the spike time-dependent plasticity (STDP) 
based supervised learning algorithm is proposed. Various 
ways exist where STDP is used as the learning algorithm. 
The STDP approach is examined in [33] considering the 
hardware-friendly approach. In [34], SNN is combined with 
deep learning methods to detect the images of the weather, 
where STDP is used as the learning algorithm. Neverthe-
less, STDP works better in unsupervised learning and is not 
generally considered a fully functional learning algorithm. 
It just changes the sign of synaptic weights based on the pre-
synaptic spike timings. Other supervised algorithms such as 
[11, 35] also use STDP but in a different manner.

Wade et al. [36] proposed the algorithm SWAT that also 
uses STDP for training. However, this algorithm is compu-
tationally costly due to many hidden neurons, making the 
synaptic load very high. On the other hand, some supervised 
learning algorithms such as SEFRON [37] reduce the com-
putational cost and explore the power of spiking neurons by 
using a single spiking neuron to classify non-linear patterns. 
However, from the literature, it is found that the right bal-
ance between biological plausibility and computational cost 
poses a challenging task and is still an unsolved problem. In 
[38–41], the detailed review of different supervised learning 
algorithms developed to train SNN using various approaches 
is discussed lucidly.



Evolutionary Intelligence	

The ability of metaheuristics to work without too much 
mathematical complexity is an advantage of using it to 
optimise synaptic elements of an SNN. Although many 
metaheuristic approaches are proposed for SNN based on 
particle swarm optimisation (PSO), [42], and differential 
evolution (DE) [43], the most efficient and rightly balanced 
metaheuristic-based supervised learning algorithm is pro-
posed in [44] called SpiFoG. The SpiFoG uses the elitist 
floating-point genetic algorithm to optimise error, and the 
synapse model is a combination of excitatory and inhibi-
tory neurons having random synaptic delays, which are also 
fine-tuned along with the synaptic weights efficiently. How-
ever, synaptic load and initialisation of synaptic weights and 
delays of SpiFoG can be further improved to enhance the 
performance. Another metaheuristic-based learning method 
using a single LIF neuron is proposed in [45]. The men-
tionable merit of WOLIF is its ability to learn using only 
readout neurons and its few network parameters in terms 
of synaptic load and input neurons. Note that WOLIF also 
works without hidden layer(s). Although WOLIF has a low 
computational cost, biological plausibility regarding synap-
tic elements is compromised.

This research focuses mainly on biological plausibility 
and makes the synapse model more efficient for classifica-
tion tasks. We propose an efficient synapse model capable 
of dealing with the non-linear pattern efficiently and coping 
with the noise. The population encoding [10] transforms the 
real-valued features into temporal spikes. The weighted pre-
synaptic spikes and the spike time of the only bias neuron 
are passed through the noisy synapse to the single readout 
neuron, the LIF neuron. Also, we introduced a hybrid kernel, 
which is used to cope with the axonal noise. Note that spon-
taneous spike firing activity is also implemented efficiently 
since its implementation does not hamper the overall com-
plexity of the model, as it is also an essential component in 
the biological neuron. Moreover, we implemented a GABA 
switch efficiently, making it more random and having an 
equal probability of sign change. Finally, the error produced 
by the mean squared error (MSE) loss function is fine-tuned 
using a floating-point or real-coded genetic algorithm, which 
uses elitism and hybrid crossover. The single point crosso-
ver and the crossover mechanism discussed in [46] are used 
together to generate newly optimised set-off solutions. The 
uniform mutation technique adds some diversity to the 
search space.

The major contributions include: 

1.	 We propose a more efficient and robust synapse model 
capable of coping with the axonal noise and spontane-
ous spikes. It improves the biological plausibility of a 
spiking neuron.

2.	 We introduced a hybrid kernel to handle noisy inputs 
efficiently without hampering the overall complexity of 

the model since, after using the hybrid kernel, the total 
simulation time did not increase, which is crucial for 
complexity.

3.	 We have efficiently implemented inhibitory and excita-
tory neurons to have the same probability (50%–50%) 
of sign-change using the GABA switch.

2 � Development of pre‑learning phase

The elements of the pre-learning phase include information 
encoding, proper implementation of the GABA switch and 
noisy synapse, and the one-to-one connection of the noisy 
synapses with the LIF readout neuron and its dynamics. 
Here, in this phase, the readout neuron outputs the predicted 
class to be optimized in the learning phase to match the 
desired class.

2.1 � Encoding of information

The transformation of real-valued continuous features into 
temporal spikes is carried out using the population encoding 
[10] method. According to this method, real-valued continu-
ous features x(P)

M
∈ IR (where M represents the number of 

real-valued continuous features for P number of patterns) 
can be segregated into several discrete temporal values f (P)

F
 

(where F = 1, 2, 3, ...,M ×Men ) with the help of Men over-
lapping Gaussian curves. The response values where a real-
valued continuous feature intersects the Gaussian curves are 
computed from (1).

where l = 1, 2, 3, ...,P , GP
F
 is the response given by the 

Gaussian curves for all P number of patterns, �k is the mean 
value of the k = 1 to Men overlapping Gaussian curves and it 
is computed from (2). The standard deviation of the overlap-
ping Gaussian curves is denoted by � , calculated from (3).

where � amount of overlapping is within the Gaussian 
curves, the value is set to 1.5 for better overlap between 
two curves.

Finally, after getting all response values, x(P)
M

 is converted 
into discrete temporal spikes f (P)

F
 using (4).

(1)GP
F
= exp

(
−

(xl
M
− �k)

2

2�2

)

(2)�k =

(
2k − 3

2

)
×

(
1

Men − 2

)

(3)� =
1

�
×

(
1

Men − 2

)
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where encoding interval ΔT = [0, Tref ] ms and Tref  is the 
upper bound of spike times, i.e., 1 ms.

Figure 1 shows the encoding procedure in case of a real-
valued feature 5 taken from the benchmarked data set WBC. 
It is observed that for the first pattern and first feature of the 
WBC dataset, x(1)

1
 =5 is converted into three discrete tempo-

ral spikes f (1)
1

 =1 ms, f (1)
2

=0.6 ms, f (1)
3

 =0 ms and these are 
the value of pre-synaptic spike time for the first pattern and 
first feature of the WBC data set.

In the case of all binary classification problems used in 
this research, such as WBC, ION, LIV, and PID (discussed 
in Sect. 4), the desired output temporal spikes are coded as 
S
(C1)

des
 = 1 ms for class 1, and S(C2)

des
 = 2 ms for class 2. The 

(4)f
(P)

F
= Tref × [1 − GP

F
]

time step �t is set to 0.1 ms to keep the classes well separated 
from each other.

2.2 � Proposed synapse model

This research emphasises the synapse model because mostly 
unexplored properties such as axonal noise, random synaptic 
delay, spontaneous firing, and GABA-switch behaviour are 
explored using the static synapse model. This section dis-
cusses the impact of the aforementioned biological proper-
ties and the proposed synapse model in detail. The primary 
impact of properties such as axonal noise, random synaptic 
delay, and spontaneous firing upon improving the proposed 
model’s performance is that of mimicking the massive paral-
lel human brain to some extent. Properly using these param-
eters can make a model more robust and inculcate the ability 
to handle highly non-linear data. Figure 2a and b shows the 
behaviour of two kernels K1(t) and K2(t) concerning the total 
simulation time T=2.0 ms at each time step �t having value 
0.1 ms when the kernels mentioned above are multiplied with 
a positive random synaptic weight. The pre-synaptic spike 
times add a constant spontaneous spike time of 0.5 ms. The 
spontaneous spike time is added only when a random number 
r ∈ [0, 1] > 0.5 . The definition of kernel K1(t) and K2(t) is 
given in (5) and (6) respectively. The proposed kernel function 
K2(t) is derived from the radial basis kernel function (RBF) 
[47], where the mean term is neglected. The standard devia-
tion value is replaced with the cell membrane time constant 

x1
(1)

5

0             1

0      0.6  1

0             1

f1
(1)

f2
(1)

f3
(1)

t (ms)

Real-valued 

feature }         Pre-synaptic 

 spike times from the

real valued feature x1
(1)

Fig. 1   Mapping of a continuous real-valued feature x(1)
1

 =5 (taken 
from the WBC data set) into three discrete temporal spikes such as 
f
(1)

1
 =1 ms, f (1)

2
=0.6 ms, f (1)

3
 =0 ms. These are part of pre-synaptic 

spikes

Fig. 2   Behavior of excitatory 
PSPs (positive synaptic weights 
are multiplied with PSPs) 
with a double decaying kernel 
function K1(t) within T=2 ms b 
RBF like kernel function K2(t) 
within T=2 ms c hybrid kernel 
function K(t) = K1(t) + K2(t) 
within the total simulation time 
T=2 ms (d) noisy K(t) (added 
Gaussian noise)
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�mem , termed RBF-like kernel function. The definition of RBF 
kernel is given in (7).

where �mem and �syn are two-time constants called membrane 
time constant and synaptic time constant, respectively. The 
value of �mem is calculated from (8). The function H(t) is the 
Heaviside function given in (9).

where �rbf  is the mean of the distribution, and �rbf  is the 
standard deviation of the distribution.

The kernel K(t) is the addition of kernel K1(t) and kernel 
K2(t) which is shown in the Fig. 2c. It can be observed from 
Fig. 2a and b that the kernel K1(t) is slowly increasing its PSP 
than that of kernel K2(t) . Therefore, K1(t) will give late tempo-
ral spikes as compared to K2(t) , which increases the computa-
tional cost of the LIF neuron since there is a possibility of not 
firing within the value of T. The parameter T is taken as 2 ms 
for all datasets. Note that inputs are not supplied to the kernels 
as they are a demonstration of T. Since the positive synaptic 
weights are multiplied here, the PSPs are rising curve. Now, 
if we observe the kernel K(t), we find that its PSP is increas-
ing faster than that of both the kernels K1(t) and K2(t) which 
will help towards the computational cost. In this case, non-
firing activity within the value of T is much less, and learning 
can also be efficient with early temporal spikes. To make the 
synapse robust against noise, the noisy K(t) kernel shown in 
Fig. 2d is used in this research.

The noise added with the kernel K(t) is the Gaussian noise 
having mean 0 and standard deviation 1. The PSP values 
increasing capability of the noisy K(t) is slightly lower than 
that of K(t).

Note that because of the positive synaptic weight, the pre-
synaptic neuron, in this case, is excitatory. The value of �mem 
used in (6) is calculated as given in the (8).

where Rmem is the cell membrane resistance, and Cmem is the 
capacitance of the cell membrane. The values of Rmem , and 
Cmem are set to 100 MΩ , and 0.11 pF respectively. Hence, 
the value of �mem becomes 1.1 ms (from (8)). The value of 
�syn is kept at half of the �mem , i.e., 0.55 ms.

(5)K1(t) =

[
exp

(
−

t

�mem

)
− exp

(
−

t

�syn

)]
H(t)

(6)K2(t) =

[
exp

(
−

t2

2�2
mem

)]
H(t)

(7)Krbf (t) =

[
exp

(
−
(t − �rbf )

2

2�2

rbf

)]

(8)�mem = Rmem × Cmem

Fig. 3a, b, c, and d shows the behaviour of the same kernel 
functions as discussed earlier in Fig. 2 but multiplied with 
a negative random synaptic weight. It can be observed here 
that the PSPs are decaying since negative synaptic weight is 
multiplied by the PSPs. However, kernel K(t) attains lower 
negative values compared to K1(t) and K2(t) which makes 
K(t) more computationally efficient. Note that because of 
the negative synaptic weight, the pre-synaptic neuron, in 
this case, is inhibitory. We allowed 50% inhibitory and 50% 
excitatory pre-synaptic neurons.

The presence of synaptic delays and the axonal noise can 
affect the actual predicted spike times poorly collected from 
the output of the readout LIF neuron, illustrated in Fig. 4. It 
can be observed that the spike Spre having spike time 0.1 ms 
is passed through the weighted noisy synapse before feeding 
as the input to the LIF neuron, which is supposed to fire at 
0.7 ms that, is the predicted spike time Sout . However, due to 
the synaptic delay and noise, there is a possibility of Sout to 
fire too early ( S(a)out=0.4 ms), early ( S(b)out = 0.6 ms), late ( S(c)out = 
0.8 ms), or too late ( S(d)out = 1 ms). The scenario where hybrid 
kernel K(t) plays a crucial role in maintaining a trade-off 
between axonal noise and synaptic delay. Finally, synaptic 
current Isyn(t) at time t is calculated from (10) using the noisy 
hybrid kernel K(t).

where Wi is the synaptic weight of the ith synapse (the values 
of W are within the interval [-1, 1] for uniform distribution 
U ), and S(i)

pre
 is the combined input which is defined in (11) 

for a single pattern. The definition of the kernel K(t − S(i)
pre
) 

is given in (12).

where tdel, anoise, and Ispon are the synaptic delay time, axonal 
noise, and spontaneous spike firing time, respectively. The 
Ispon value is 0.5 ms. The values of tdel , and anoise are within 
the interval [0, 1] for both uniform distribution U , and nor-
mal distribution N respectively, including the values 0 and 1.

where K1(t) and K2(t) are the double decaying kernel func-
tion and RBF-like kernel, respectively.

The predicted spikes from the LIF neuron can be charac-
terized using (13). The whole implementation procedure is 
summarized with the help of a block diagram given in Fig. 5.

(9)H(t) =

{
1, if t > 0

0, otherwise

(10)Isyn(t) =

F∑

i=1

Wi × K(t − S(i)
pre
)

(11)Spre = (fF + tdel + anoise + Ispon)

(12)K(t) = K1(t) + K2(t)

(13)Sout =
{
t|Vmem(t) ≥ Vth

}
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2.3 � Dynamics of the readout neuron

The responsibility of this step is to produce the predicted 
spikes after getting the input current Isyn(t) at time t from 
the synapse model. In this research, the computationally 
most straightforward LIF neuron is used. An electrical RC 
circuit generally describes the properties of the cell mem-
brane of a LIF neuron. For the only post-synaptic neuron 
j, the electrical activity that changes the PSP of the neuron 
upon getting the input stimuli from a pre-synaptic neuron 
i is given in (14).

where j = 1 (since single LIF neuron is used), V (j)
mem(t − 1) 

is the PSP of the cell membrane of neuron j at time (t − 1) . 
From (14), the change in PSP at time t is calculated, and the 
final value of the PSP for neuron j is given by (15).

(14)�mem
�V

(j)
mem(t)

�t
= −V (j)

mem
(t − 1) + Isyn(t) × Rmem

(15)V (j)
mem

(t) = V (j)
mem

(t − 1) + �V (j)
mem

(t)

Fig. 3   Behavior of inhibitory 
PSPs (negative synaptic weights 
are multiplied with PSPs) with 
the same kernel functions as in 
Fig. 2a, b, c, and d

Fig. 4   Effect on actual spike 
times (late firing and early fir-
ing) due to synaptic delays and 
axonal noise Spre Sout

0.1   0.4       0.6   0.7  0.8          1

Sout(d)Sout(a) Sout(c)Sout(b)
Late

Too late

Early

Too early

t (ms)

LIF neuron

Noisy hybrid

kernel

Weighted noisy 

hybrid kernel

Noisy synapse
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When V (j)
mem(t) reaches a threshold value Vth , neuron j fires a 

spike at time t and the recorded firing time is the spike time 
generated by neuron j. The Vth value is 1 mV. Since it is 
found from the literature that the first temporal spike always 
carries the most relevant information than the lateral spikes 
in biological neurons [48], we neglected the lateral spike 
times. We did not use the absolute refractory period.

Figure 6a and b shows the tracing of two different PSPs. 
In Fig. 6a, a spike is fired at 2 ms, which is the predicted 
spike time (it used the trained weights and delays) in the case 
of the WBC data set for a single pattern. It is found that this 
2 ms is precisely the desired spike time for that pattern in 
the WBC data set. On the other hand, in Fig. 6b, the tracing 
of PSP is shown using untrained weights and delays here 
spiking happens at 0.1 ms, which is to be trained efficiently 
to reach close to either 1 ms or 2 ms (since these two are the 
desired spike times for the WBC data set).

2.4 � Neuronal connections

The design and organization of the synapses, along with 
the readout neuron, are described in this section. Figure 7 
(a) shows the feed-forward (direction of the input stimuli 
towards the readout neuron is only in the forward fashion) 
single layer SNN (the only layer for the feeding of the input 

stimuli to the readout neuron). The pre-synaptic spike times 
of the first pattern of a data set f (1)

1
, ..., f

(1)

F−2
, f

(1)

F−1
, f

(1)

F
, are 

calculated from the population encoding in the information 
encoding phase. Note that f (1)

0
 in the architecture represents 

the bias neurons spike, which is assigned to 0 ms. The bias 
spike helps the initial starting when most spikes are lateral.

Although this architecture is proposed for classifying 
the non-linear patterns, no hidden layer(s) and no hidden 
neuron(s) exist. The exciting part is that it is possible only 
with the SNN.

When an excitatory neuron excites the PSP, it is called the 
excitatory post-synaptic potential (EPSP). When an inhibi-
tory neuron inhibits the PSP, it is called inhibitory post-
synaptic potential (IPSP). In Fig. 7b, the EPSP and IPSP are 
shown along with the positive and negative synaptic weights 
W1 and W2 respectively.

Also, it is observed that there is no actual processing at 
the pre-synaptic neurons since the task of these neurons is 
to pass the inputs to the readout neuron. The actual informa-
tion processing is only in the readout neuron. The synaptic 
delays can affect the pre-synaptic spikes and sometimes the 
spontaneous firing of spikes, as shown in Fig. 7b. In Fig. 7c, 
the activity inside the sub-threshold regime is shown where 

Polulation

 encoding

Kernel1

Kernel2

+

Noisy synapse

Real-valued

   features

Pre-synaptic

 spike times
LIF neuron

Weighted

input stimuli

 Predicted 

spike times
Loss function

   Desired 

spike times

Error

Learning phasePre-Learning phase

Updated tunned population

Elitist floating point GA

   Initial population

(Weights and delays)

Fig. 5   Block diagram illustrating the phases involved in the pre-learn-
ing and the learning phase. The pre-learning phase is responsible for 
yielding the untrained predicted temporal spikes for the classification 

of non-linear patterns, and the learning phase tunes the erroneous 
predicted temporal spikes to improve the performance of the model

Fig. 6   Tracing of two different 
PSP curves for a single pattern 
of the WBC data set using a the 
trained synaptic weights and 
delays, b untrained synaptic 
weights and delays. The spik-
ing happens in a at 2 ms, i.e., 
considered as the fine-tuned 
predicted spike time and in b 
at 0.1 ms, i.e., to be trained to 
reach close to 1 ms or 2 ms
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S
(1)

out is found to be the first predicted spike time produced 
from the LIF neuron when the Vmem reaches the Vth.

3 � Learning of synaptic elements

In this phase of the classification task, the primary goal is to 
minimise the error produced while comparing the predicted 
and desired outputs. We have selected the metaheuristic 
approach for the optimisation task as it is among the most 
efficient, effective, and robust approaches. The metaheuristic 
used in this research is based on the concept of the evolution-
ary method, i.e., the genetic algorithm (GA) [49]. The reason 

for using GA over other optimization techniques is that it is 
simple to implement, and there is no need for any complex 
derivative information. Moreover, it has excellent parallel 
capabilities. The version of GA used is the floating-point GA 
or the real-coded GA, which can be directly utilised on the 
real floating-point numbers without mapping to binary num-
bers as in binary GA [46]. We have used the elitist selection 
method, the hybrid crossover method in [44], and the uniform 
mutation method [50, 51]. The elitism [52] process is used 
to retain and pass the best chromosomes to the next genera-
tion for better production of chromosomes in the next genera-
tion. The selection method, which does not use elitism, uses a 
crossover rate compared with a randomly generated number. 
The crossover operation is performed if the generated random 
number exceeds the crossover rate. However, here we have 
used elitist selection to retain a set of best chromosomes Ch(i)

best
 

or solutions of the current generation i to be used in the next 
generation (i + 1) . Thus, the set of best chromosomes is always 
preserved if the chromosomes generated in generation (i + 1) 
have lower fitness than that of its ancestors. We have used 20% 
elitism on the total number of population N. In this case, the 
objective function depends on synaptic weights W and delays 
tdel indirectly, which is the fitness value of the chromosomes 
defined in (16).

where Cfit(W, tdel) is the function to be maximised. From 
(16), it is observed that to maximise Cfit(W, tdel) , we have 
to minimise the MSE. GA does the maximisation task by 
default, although we can change the objective function to 
perform the minimisation task. The definition of MSE is 
given in the (17).

where S(i)
des

 is the desired output spike, which is then labelled 
outputs in the case of a supervised learning paradigm.

We have used 20% elitism on the total number of popula-
tion N to retain a set of best chromosomes Ch(i)

best
 or solutions 

of the current generation i to be used in the next generation 
(i + 1) . Thus, the set of best chromosomes is always preserved 
if the chromosomes generated in generation (i + 1) have lower 
fitness than that of its ancestors.

In the hybrid crossover as used in [44], the first crossover 
method is given in (18) and (19) [46].

(16)Cfit

(
W, tdel

)
=

1

1 +MSE

(17)MSE =
1

P

P∑

i=1

(
S
(i)
out − S

(i)

des

)2

(18)Ch
(g+1)

1
= Ch

(g)

1
− r1 ×

(
Ch

(g)

1
− Ch

(g)

2

)

(19)Ch
(g+1)

2
= Ch

(g)

2
+ r2 ×

(
Ch

(g)

1
− Ch

(g)

2

)
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Fig. 7   a Architecture of the proposed model where inputs to the 
LIF neuron is coming from the first pattern of F pre-synaptic neu-
rons such as f (1)

0
, f

(1)

1
, ..., f

(1)

F
 through the connected (one-to-one) noisy 

synapse b The synaptic connections of two different types of pre-
synaptic neurons, one is excitatory (produces EPSP) and the other is 
inhibitory (produces IPSP) c The activity in the sub-threshold regime 
where S(1)out is the first predicted output spike time for the first input 
pattern
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where Ch(g+1)
1

 and Ch(g+1)
2

 are the generated first and second 
chromosomes of (g + 1)th generation from its ancestors Ch(g)

1
 

and Ch(g)
2

 respectively. The value of r1 and r2 are two random 
numbers within the open interval (0,  1). The second crosso-
ver method is the single-point crossover method. We have 
selected the median of genes position as the crossover point 
and interchanged the genes of all chromosomes between 
the first and second half of the crossover point. The hybrid 
crossover method improves the convergence rate while 
searching for the optimal solutions in the search space.

For adding diversity to the search space, we have used uni-
form mutation [50, 51]. The rate of mutation is set to 0.1. The 
definition of uniform mutation is given in (20).

(20)Chmut = lb + r3 × (ub − lb)

where Chmut is the mutated chromosomes, lb is the lower 
bound, and ub is the upper bound of the genes value, and r3 
is a random number within the open interval (0,  1).

3.1 � Algorithms for learning

The Algorithm 1 shows the steps followed while training the 
proposed model. The mechanism of PSP updating and receiv-
ing input stimuli from the noisy synapses by the receptor or 
the readout neuron is given in the Algorithm 2. Algorithm 3 is 
the synapse model implemented using the Heaviside function.

Algorithm 1   Learning-Parameters 
(
f
(P)

F
, S

(P)

des

)
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Algorithm 2   Evaluate-Fitness 
(
tdel, f

(P)

F
, S

(P)

des
,W, anoise, Ispon

)

Algorithm 3   Synapse-Model (t)

4 � Results and discussion

We have used four binary datasets for benchmarking. The 
description of these datasets, along with the other details, 
are discussed in the following subsections.

4.1 � Wisconsins breast cancer (WBC) dataset

The objective of the WBC [53] data set is to classify whether a 
person has breast cancer (Malignant) or not (Benign). The data 
set consists of 699 patterns, with 16 missing features for some 
patterns. We have removed the missing values to get a total 
number of 683 patterns. The Benign class has 444 patterns out 
of 683, and the Malignant class has 239 patterns. The 9 real-
valued continuous features are transformed into 28 presynaptic 
input temporal spikes ( 9 × 3 + 1 = 28 where 3 is the number 
of encoding neurons and 1 is the number of bias neurons). The 
desired output spikes are encoded as 1 ms represents the Benign 
class, and 2 ms represents the Malignant class.

4.1.1 � Ionosphere (ION) dataset

The radar data was acquired for the ION dataset [54]. The 
dataset is used to identify whether the condition of the 

ionosphere is Good or Bad. A collection of radar data is 
collected through an antenna to classify the condition of the 
ionosphere, whether it is in Good (Class 1) or Bad (Class 
2) condition. There are 351 samples, each with 33 attributes 
representing features. Of 351 samples, 225 samples belong 
to the Good class, and 126 belong to the Bad class. The 33 
features are converted into 33×3+1=100 presynaptic input 
spikes (3 encoding neurons and 1 bias neuron).

4.1.2 � Liver disorder (LIV) dataset

There are a total of 345 samples, each sample having 6 
attributes that describe the features of the samples [55]. The 
first 5 variables in the LIV dataset are all blood tests known 
to be sensitive to liver diseases caused by excessive alcohol 
intake. The dataset is for the classification of the condition 
of a liver into two classes, namely Healthy (Class 1) and 
Unhealthy (Class 2). The Healthy class has 145 samples, and 
the Unhealthy class has 200 samples. There are 6 ×3+1=19 
(3 encoding neurons and 1 bias neuron) presynaptic input 
spikes.
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4.1.3 � Pima Indian diabetes (PID) dataset

Based on specific diagnostic parameters included in the 
PID dataset [56], it is used to diagnose whether a patient is 
Diabetic (Class 1) or Non-diabetic (Class 1). There are 768 
samples, of which 500 are for Diabetic class, 268 forNon-
diabetic class. The 8 real-valued features represent the infor-
mation about the disease. A total of 8 ×3+1=25 presynaptic 
spikes are there in the network topology.

4.2 � Performance metrics

The Precision, Recall, F1 Score, and AUC experimental 
results are presented in Table 1 for WBC, ION, LIV, and 
PID datasets. The whole experiment is tested for 10 trials for 
each size of N. The value of N = 60 shows the best results 
compared to the others.

The training phase of any classification model is the criti-
cal and crucial phase where a model learns from the given 
example patterns. The more a model learns, the more pre-
cisely the model can perform in testing. Since we found the 
value of N = 60 to be the best, tracing the convergence while 
training the patterns for the data sets WBC and ION is also 
presented for N = 60 in Fig. 8a and b.

In Fig. 8a, which is for the WBC data set, it is observed 
that the convergence curve does not vary so much for 

approximately 20 generations. The primary exploration of 
the search space happens with those 20 generations search-
ing for the best results.

On the other hand, in Fig. 8b, which is for the ION data 
set, it is found that, in this case, the primary exploration 
of the search space is within the first 100 generations. The 
training for all the data sets was carried out for 1000 gen-
erations, but only 100 generations are shown in the training 
curves for better clarity.

The training curve, along with the exploration for the 
dataset LIV and PID, is shown in Fig. 9a and b, respectively.

4.3 � Sensitivity analysis of parameters

In this section, a sensitivity analysis of the critical parameters 
such as synaptic delay ( tdel ) distribution, axonal noise level 
( anoise ), GABA switch probability ( Pr(GABA switch)) upon 
the overall performance of the proposed model is conducted. 
All the datasets used for bench-marking are analysed in terms 
of accuracy to observe the impact of the aforementioned 
parameters. It is observed from Table 2, that the performance 
of the model improved when the values of the synaptic delay 
are drawn from the uniform distribution within the range [0, 
1], axonal noise is from normal distribution within the range 
[0, 1], and GABA-switch probability is 50% as compared to 
the other values. 

4.4 � Performance comparison

Table 3 shows the performance comparison of our proposed 
model for the WBC, ION, LIV, and PID datasets, respectively, 
with the state-of-the-art methods. The value of synaptic load 
is represented by Lsyn , and the value of computational cost is 
represented by Ccost . The definition of Lsyn , and Ccost is given 
in (21) and (23) respectively.

(21)Lsyn = Nin ×Nhid +Nhid ×Nout

Table 1   Experimental results for the datasets WBC, ION, LIV, and 
PID

Dataset Class Precision Recall F1 Score AUC​

WBC Benign 0.96 0.98 0.97 0.95
Malignant 0.97 0.93 0.95

ION Good 0.80 0.91 0.85 0.73
Bad 0.74 0.55 0.63

LIV Healthy 0.48 0.57 0.52 0.54
Unhealthy 0.60 0.52 0.56

PID Diabetic 0.50 0.72 0.59 0.66
Non-Diabetic 0.79 0.60 0.68

Fig. 8   a Accuracy curve (Train-
ing) showing the convergence 
to the optimum value of the 
Training Accuracy with the 
generation for the WBC data 
set b Accuracy curve (Training) 
showing the convergence to the 
optimum value of the Training 
Accuracy with the generation 
for the ION data set
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where Nin is the number of input neurons, Nhid is the num-
ber of hidden neurons, and Nout is the number of output 
neuron(s).

Thus Nin ×Nhid represents the total number of synaptic 
connections between Nin and Nhid . Similarly Nhid ×Nout 
represents the total number of synaptic connections between 
Nhid and Nout . Since we did not use any hidden layer(s) as 
well as hidden neuron(s) (21) reduces to (22) in our case.

The drastic reduction in the value of Lsyn is visible from (22). 
Moreover, we have used a ratio given in (23) to analyse and 
compare the computational cost.

where a total number of generations is denoted by G, to 
which the training is performed. From the (23), it is found 

(22)Lsyn = Nin ×Nout

(23)Ccost =
Men × G × T

�t

that when the values of Men , G, and T increase, the value of 
Ccost also increases.

However, our objective is to attain the lower value of 
Ccost since the lower value of Ccost indicates a model com-
putationally more efficient. On the other hand, increasing 
�t decreases Ccost , but we found that increasing the value of 
�t more than 0.1 ms affects training the model (inaccurate 
training happens). When our proposed model’s Ccost value 
is compared with the state-of-the-art, it outperforms all. For 
the WBC data set, the value of Lsyn , and Ccost for the pro-
posed model is found to be 28, and 5.6 × 105 respectively; 
those are the best results out there in Table 3. WOLIF shows 
better Ccost , which is 2.8 × 105 (since WOLIF runs for only 
500 iterations). However, WOLIF has lower accuracy and 
is biologically less plausible than the proposed model in the 
case of the binary WBC dataset.

The topology and test accuracy values for SpikeProp, 
SWAT, OSNN, and SRESN in the case of ION, LIV, and 
PID dataset as mentioned in Table 3 were taken from [37], 
where these models were experimented on the aforemen-
tioned datasets. For the ION dataset, the value of Lsyn , and 
Ccost for the proposed model is found to be 100 and 2.0 × 
106 respectively; those are also the best results compared 
to the others except WOLIF which has 1.0 × 106 . However, 
biological properties such as axonal noise and spontaneous 
firing are not considered in WOLIF. The testing accuracy 
for the proposed model is much better than others for the 
ION data set, which is 93.0±0.6%. The value of Lsyn is 19, 
which is very good and also equal to WOLIF [45]. For the 
LIV dataset, the test accuracy value is 88.9±0.1%, which 
is much better than any other algorithm given in Table 3. 
For the PID dataset, the test accuracy value is 90.4±0.2%, 
which is much better than any other algorithm given in 
Table 3. Also, the value of Lsyn is 25, which is much better 
than other algorithms and equal to WOLIF [45].

Fig. 9   a Accuracy curve (Train-
ing) showing the convergence 
to the optimum value of the 
Training Accuracy with the 
generation for the LIV data set 
b Accuracy curve (Training) 
showing the convergence to the 
optimum value of the Training 
Accuracy with the generation 
for the PID data set

Table 2   Sensitivity analysis to evaluate the impact of various param-
eters such as synaptic delay ( tdel ) distribution, axonal noise level 
( anoise ), GABA switch probability upon accuracy

Bold values indicate the best results

Synaptic delay ( tdel) Axonal 
noise 
( anoise)

Pr(GABA 
switch)

Dataset Accuracy

U[0, 1] N[0, 1] 0.5 WBC 98.4
ION 93.0
LIV 88.9
PID 90.4

U[1, 2] N[1, 2] 0.2 WBC 95.8
ION 91.2
LIV 88.7
PID 89.8

U[-1, 1] N[-1, 1] 0.8 WBC 95.9
ION 89.1
LIV 88.4
PID 89.7
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5 � Conclusion

This paper mainly explores the synapse model of a spiking 
neuron and the learning method from the example pat-
terns efficiently and effectively, which is experimentally 
proven. Using the noisy synapse is biologically realistic 
and provides robustness to the model. The handling of 
noise is a challenging task that is efficiently implemented 
with the proposed model. When the biological proper-
ties of neurons come into the picture, the first and most 
important thing is managing the excitatory and inhibitory 
neurons properly; otherwise, there is always a tendency 

of not-firing spikes even after the increase in the total 
simulation time. In a biological neuron, the GABA switch 
manages this phenomenon. However, computationally, it 
is less explored since most of the SNN deals with either 
all excitatory or some small portion of inhibitory neurons 
with the remaining excitatory neurons. However, the sign-
changing phenomenon is random in the biological neuron. 
Therefore, we have provided a 50–50 chance for the neu-
rons to be either excitatory or inhibitory and appropri-
ately trained, which converges to the optimum solutions. 
Convergence is the criterion that is hard to achieve when 
a mixture of excitatory and inhibitory neurons is used, 
so most SNN models prefer to use something other than 

Table 3   Performance 
comparison of the proposed 
model with the state-of-the-art 
algorithms

Bold values indicate the best results

Dataset Model Topology Lsyn �t T Accuracy(%) Ccost

WBC SpikeProp [10] 55:15:2 855 0.01 50 97.0±0.6 6.4 × 109

SWAT [36] 54:702:2 39,312 – – 96.7±2.3 –
OSNN [11] 54:(10–16):2 560–896 – – 90.4±1.8 –
SRESN [35] 54:(5–8) 270–432 – – 94.0±2.6 –
SEFRON [37] 55:1 55 0.01 4 96.4±0.7 2.2 × 106

Evolutionary SNN [43] – – – – 95.9±0.8 –
SpiFoG [44] 37:12:1 456 1 20 96.8±0.8 9.1 × 106

WOLIF [45] 28:1 28 0.1 2 97.0±0.2 2.8 × 105

Proposed 28:1 28 0.1 2 98.4±0.3 5.6 × 105

ION SpikeProp [10] 199:25:2 5025 0.01 4 86.5±7.2 6.0 × 109

SWAT [36] 198:2574:2 514,800 – – 90.0±2.3 –
OSNN [11] 198:(4–11):2 800–2200 – – 76.6±4.8 –
SRESN [35] 198:(6–13) 1188–2574 – – 79.3±3.0 –
SEFRON [37] 199:1 199 0.01 4 88.9±1.7 8.0 × 106

Evolutionary SNN [43] – – – – 90.2±0.0 –
WOLIF [45] 100:1 100 0.1 2 90.6±1.4 1 × 106

Proposed 100:1 100 0.1 2 93.0±0.6 2.0 × 106

LIV SpikeProp [10] 37:15:2 585 0.01 4 65.1±4.7 7.0 × 108

SWAT [36] 36:468:2 17,784 – – 60.9±3.2 –
OSNN [11] 36:(4–7):2 152–266 – – 56.7±1.8 –
SRESN [35] 36:(5–8) 180–288 – – 57.4±1.1 –
SEFRON [37] 37:1 37 0.01 4 67.7±1.3 1.5 × 106

Evolutionary SNN [43] – – – – 67.2±0.0 –
WOLIF [45] 19:1 19 0.1 2 80.3±0.2 1.9 × 105

Proposed 19:1 19 0.1 2 88.9±0.1 3.8 × 105

PID SpikeProp [10] 49:20:2 1020 0.01 4 76.2±1.8 1.2 × 109

SWAT [36] 48:624:2 31,200 – – 72.1±1.8 –
OSNN [11] 48:(8–18):2 400–900 – – 63.5±3.0 –
SRESN [35] 48:(6–12) 288–576 – – 66.1±1.4 –
SEFRON [37] 49:1 49 0.01 4 74.0±1.2 2.0 × 106

Evolutionary SNN [43] – – – – 73.9±0.0 –
WOLIF [45] 25:1 25 0.1 2 83.3±0.7 2.5 × 105

Proposed 25:1 25 0.1 2 90.4±0.2 5.0 × 105
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it. Another attractive property of the biological neuron is 
its spontaneous firing activity, also used in our proposed 
model. This activity of spontaneous firing is much less 
explored in the case of the SNN. In our model, this prop-
erty and the aforementioned properties are considered and 
experimentally proven to have better results than state-of-
the-art, keeping the computational cost as minimal as pos-
sible (due to the absence of hidden layer(s)) and biological 
plausibility as high as possible.

Moreover, a kernel function by neglecting the mean 
term of RBF kernel and replacing the standard deviation 
with �mem is added with a double-decaying kernel function 
to handle the noise properly. Due to the noise, a distortion 
happens while exchanging information between a pre and 
post-synaptic neuron. There is a need for kernel function, 
which can rapidly increase the PSP of a post-synaptic neu-
ron. It helps keep the total simulation time value as small 
as possible, which is advantageous towards the computa-
tional cost. Finally, it can be summarized that the proposed 
model outperforms all other aforementioned methods in 
terms of accuracy, Lsyn , and Ccost for all data sets used for 
benchmarking.

It is possible to extend this work by allowing multi-
ple spikes to fire from the readout LIF neuron. However, 
multiple spike firing activity demands an increase in total 
simulation time, which is computationally costly. As men-
tioned, the architecture will be explored in future work 
to cope with the classification problems where multiple 
spikes are necessary, as in time-series analysis. Due to 
properties such as robustness to noise, computationally 
inexpensive, and biological plausibility, this model can 
easily experiment with the time-series data where noise 
is a devil factor.
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