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Abstract
Outlier detection has garnered considerable attention in recent years due to its wide-ranging applications across various 
research domains. This surge in interest has led to the development of numerous detection techniques, predominantly based 
on distance or density metrics. A notable limitation of these existing methods is their reliance on parameter adjustments, sig-
nificantly affecting the outcome. Additionally, these methods exhibit intrinsic flaws: distance-based approaches struggle with 
clusters with varying local densities, while density-based methods fail to identify patterns within low-density areas. Moreover, 
most prior techniques are adept at identifying only one kind of outlier—local, global, or group of outliers. Addressing these 
challenges, we introduce the Adaptive Radius Density-Based Outlier Detection (ARDOD) method, which departs from the 
traditional parameter-dependent approach. ARDOD is a novel parameter-free algorithm that dynamically determines the 
necessary parameters based on the data distribution within the feature space. This innovative method demonstrates robust 
performance in detecting all three categories of outliers. The efficacy and superior performance of ARDOD are validated 
through an extensive experimental analysis involving various synthetic and real-world datasets. This analysis showcases 
ARDOD's advantages over seven established methods: Local Outlier Factor (LOF), Angle-Based Outlier Detection (ABOD), 
Robust Distance-Based Outlier Score (RDOS), Directed density ratio Changing Rate-based outlier detection (DCROD), 
Empirical-Cumulative-distribution-based Outlier Detection(ECOD), mean-shift outlier detector(MOD +),and Local–Global 
Outlier Detection (LGOD), underscoring its potential as a versatile tool in outlier detection research.

Keywords Outlier detection · Anomaly detection · Density-based methods · Distance-based methods · Adaptive radius · 
Mass sharing method

1 Introduction

The exponential growth in data collection and information 
processing in recent years underscores the importance of 
advanced analysis techniques in science and technology. 
Despite the abundance of data, certain phenomena remain 
rare and unpredictably deviate from the norm, termed as out-
liers or anomalies [1]. These anomalies, which starkly con-
trast to regular observations, often carry critical information 
valuable for high-level research and applications, highlight-
ing the significance of their detection and analysis. Identify-
ing such anomalies, known as outlier or anomaly detection, 
is a pivotal aspect of data mining, contributing substantially 

to fields like intrusion detection, fraud prevention, crime 
analysis, and traffic management, among others [2].

Outlier detection methods are broadly categorized 
into supervised and unsupervised approaches, focusing 
on identifying data points that deviate significantly from 
most observations [3]. This process is crucial for under-
standing the underlying structure of data and enhancing 
the performance of predictive models by identifying and 
possibly excluding anomalies. In computer science, for 
instance, detecting unusual patterns can signify security 
threats. At the same time, in clustering problems, outli-
ers may be treated as noise, affecting the accuracy of the 
clustering results [4].

The current state of the art in outlier detection has evolved 
to address these challenges through various methodologies, 
including distribution-based, clustering-based, density-
based, and distance-based methods. Each approach offers 
unique advantages and faces specific limitations, such as 
sensitivity to parameter settings or the inherent difficulty in 
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handling multi-dimensional data. Despite these advances, 
the dynamic nature of data and the complexity of modern 
applications necessitate continuous improvement and inno-
vation in outlier detection techniques [4–9].

This study is motivated by the need to refine outlier detec-
tion methods further, aiming to improve their accuracy, effi-
ciency, and applicability across diverse datasets and contexts. 
By proposing a novel unsupervised outlier detection method, 
this research seeks to contribute to the field by offering a solu-
tion that balances sensitivity and specificity, even in challenging 
data scenarios. The following sections will delve into the related 
works [10], present the proposed methodology [11], discuss 
experimental results on synthetic and real-world datasets [12, 
13], and conclude with the implications of the findings [14].

2  Related works

The local outlier factor (LOF) algorithm, one of the pio-
neering methods in outlier detection, utilizes a density-based 
approach leveraging the k-nearest Neighbor (k-NN) algo-
rithm [15]. It computes an outlier score for each object based 
on local reachability density, where a significant discrepancy 
in neighborhood density increases the outlier score. The 
essence of LOF lies in calculating each object's outlier score 
relative to its local clustering structure. However, LOF's effi-
cacy decreases when local distances are not distinct [4]. To 
improve upon LOF, Tang et al. introduced the Connectivity-
based Outlier Factor (COF), which, unlike LOF's reliance on 
Euclidean distance and k-NN for local density estimation, 
employs chaining distance better to gauge an object's den-
sity [16]. COF distinguishes low density from isolativity—
defined as an object's degree of connectivity with others. 
Nevertheless, COF sometimes inaccurately estimates density 
due to its indirect data distribution assumptions [4].

Acknowledging the limitations in density estimation by 
the LOF algorithm, particularly in complex datasets, Gao 
et al. introduced the Robust Kernel-based Local Outlier Fac-
tor (RKOF). This method adapts the kernel and weighted 
neighborhood to refine local density estimation, address-
ing the disadvantages of the LOF algorithm, including its 
dependency on the parameter k for defining the local neigh-
borhood's scale [17].

Papadimitriou et al. proposed the Local Correlation Inte-
gral (LOCI) method to identify groups of outliers rather 
than individual anomalies [18]. LOCI utilizes the Multi-
Granularity Deviation Factor (MDEF), marking objects as 
outliers if their deviation exceeds three times their neighbor's 
MDEF. This method effectively detects outliers amidst local 
density variations, identifying both distant clusters and iso-
lated outliers [4].

Jin et al. introduced the Influenced Outlierness (INFLO) 
method in 2006. This method focuses on abnormal observation 

detection through a relationship-based density measure. 
INFLO considers both neighbors and reverse neighbors of an 
observation to estimate its relative distribution, aiming to over-
come LOF's spatial representation limitations [19].

The challenge of dimensional curses significantly hampers 
the performance of traditional methods reliant on full-dimen-
sional Euclidean space for distance estimation. Addressing 
this, Kriegel et al. developed the Angle-Based Outlier Detec-
tion (ABOD) method, which identifies outliers using the vari-
ance in angles between dataset observation vectors [20].

In 2014, Ha et al. proposed a novel approach based on 
gravity principles from physics, utilizing the center of gravity 
to denote each observation's geometric stability. Observations 
with a low center of gravity are deemed more stable and likely 
inliers, while those with a high center are considered unstable 
and potential outliers. This method introduces the "instabil-
ity factor," a new benchmark for outlierness measurement 
using the k-NN algorithm [21]. Furthermore, in 2015, they 
developed the Observability Factor (OF), which quantifies the 
degree of an observation's inlierness, suggesting that objects 
with lower OF values are likelier to be outliers [22].

Tang et al. offered a local density-based method (RDOS) 
to estimate an object's density through various means, 
including k-nearest neighbors, reverse nearest neighbors, 
and shared neighbors [13]. Subsequently, Ning et al. aimed 
to refine RDOS by introducing a novel criterion for neigh-
borhood density measurement, presenting the Relative Den-
sity-based Outlier Factor (RDOF) to address density-based 
methods' inability to detect low-density patterns [5].

Zhang et al. proposed a technique to circumvent the need 
for input parameters in cluster-based methods, introduc-
ing a method based on Cluster Outlier Factor and Mutual 
Density (COF). This technique first identifies an optimal 
number of neighbors for each observation using the NOF 
algorithm [23], then calculates mutual density for clustering, 
treating clusters with few patterns as outliers [24]. Wahid 
et al. introduced the Relative Kernel Density-based Outlier 
Score (RKDOS), which employs Weighted Kernel Density 
Estimation (WKDE) with an adaptive kernel size for density 
estimation, using both reverse nearest neighbors and k near-
est neighbors. RKDOS applies a Gaussian kernel function 
for measurement smoothness [25].

2020 Henry et al. unveiled the Local-Gravitation-based 
Method (LGOD) for detecting outliers and boundary points. 
LGOD assesses each sample's local resultant force (LRF) 
applied by neighbors, detecting outliers and boundary samples 
by evaluating variations in LRF. This method asserts that its 
performance is independent of the k parameter value, address-
ing a standard limitation among existing techniques [26]. Add-
ing to the innovative landscape of outlier detection, Jinwook 
Rhyu and his team have developed an automated method that 
significantly enhances data accuracy in biomanufacturing pro-
cesses by using various algorithms to estimate missing data, 
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effectively mitigating the impact of outliers. This method's 
efficacy, highlighted through its application in monoclonal 
antibody production, underscores the potential of matrix com-
pletion methods in resolving complex data patterns supported 
by open-source software for broader applicability [27].

Furthermore, addressing the issue of class imbalance in 
classification tasks, recent advancements in Extreme Learn-
ing Machines (ELMs) have been explored for their poten-
tial in outlier detection across supervised, unsupervised, and 
semi-supervised frameworks, emphasizing the importance 
of methodological diversity in tackling anomalies in fields 
such as intrusion detection and medical diagnosis [28]. 
Additionally, exploring outlier detection within multiple cir-
cular regression models, particularly utilizing multivariate 
eye data, showcases the advancement in statistical methods 
capable of identifying outliers in complex datasets [29].

Lina Zheng, Lijun Chen, and Yini Wang introduced the 
Information Amount-Based Outlier Factor (IAOF), a new unsu-
pervised method that utilizes information quantity to improve 
anomaly detection accuracy in categorical data systems, adding 
to the field's diverse methodological approaches [30].

In 2021, Jiawei Yang, Susanto Rahardja, and Pasi 
Fränti developed a mean-shift-based outlier detection 
method(MOD +). This approach, recalculating data points 
via their k-nearest neighbors, minimizes outlier effects pre-
clustering and has proven more robust and adaptable than 
existing models across various datasets [6].

2022 saw Kangsheng Li and his team propose (DCROD) 
a technique based on the rate of change in directed density 
ratios, offering enhanced detection in complex data scenar-
ios with minimal parameter sensitivity, benefiting sectors 
like network security and healthcare analytics [31].

That same year, Zheng Li, Yue Zhao, Xiyang Hu, Nicola 
Botta, Cezar Ionescu, and George H. Chen presented ECOD, 
a parameter-free method using empirical cumulative distri-
bution functions (ECDF) for outlier identification. ECOD 
stands out for its accuracy, efficiency, and scalability, repre-
senting a leap in unsupervised anomaly detection for large, 
high-dimensional datasets without the need for intricate 
hyperparameter adjustments [32].

3  Proposed methodology

3.1  Problem description

In the initial section, we delineated two principal frame-
works: supervised and unsupervised learning. Subse-
quently, we will elaborate on the various anomalies, 
encompassing local, global, and group of outliers, offering 
an in-depth analysis of each. Moreover, the advantages and 
disadvantages of different techniques employed to identify 
these outliers will be illuminated.

For a more concrete understanding, consider a two-
dimensional synthetic dataset as an illustrative example 
(see Fig. 1), which encapsulates all three outlier types. This 
dataset is partitioned into four segments: global outliers, 
local outliers, a group of outliers, and entities resembling 
one another, termed inliers. The inlier group comprises two 
clusters, C1 and C2, characterized by the proximity of their 
members, denoted by the green section. On the other hand, 
the blue points (P1 & P2) are proximal to the inliers but 
possess distinct attributes that classify them as local out-
liers. The red points are significantly distanced from both 
clusters, categorizing them as global outliers. Conversely, 
the purple points represent a small cluster (C3), distanced 
from the inliers yet forming a cluster with a finite number 
of members, hence identified as a group of outliers. Conse-
quently, entities such as C3, P1, P2, P3, and P4 are recog-
nized as outliers. Over recent years, numerous supervised 
and unsupervised methodologies have been developed to 
detect such outliers, broadly categorized into four main 
types: distribution-based, clustering-based, density-based, 
and distance-based methods, each with inherent strengths 
and weaknesses.

• Distribution-based Methods: These methods ascer-
tain an object as an outlier if its distribution signifi-
cantly deviates from a normal distribution. Classified 
into parametric and non-parametric categories, these 
methods face limitations such as the unknown distri-
bution of the dataset under study and their ineffective-
ness in multi-dimensional datasets, rendering them less 
appealing to researchers [4].

• Clustering-based Methods: These methods identify 
outliers by attempting to cluster all samples within 
the dataset. Samples not belonging to any cluster are 
deemed outliers [4]. Despite primarily focusing on 
cluster identification rather than outlier detection, these 
methods have limited efficacy. Moreover, outliers are 
treated as noise in clustering problems, necessitating 
their identification and removal from the dataset.

• Density-based Methods: These methods detect outli-
ers by contrasting the density of an object's neighbor-
hood with that of others. An object is likely considered 
an outlier if there is a substantial discrepancy in density 
compared to its surroundings [5]. This approach is effi-
cient even in datasets comprising multiple clusters of 
varying densities [14]. However, its efficiency mark-
edly decreases in datasets characterized by low-den-
sity patterns, and the effectiveness is contingent upon 
parameter settings, like neighborhood size.

• Distance-based Methods: Primarily, these methods 
detect outliers by evaluating the distances among obser-
vations within the dataset [6]. An observation is pre-
sumed to be an outlier if it is significantly distant from its 
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neighbors. These methods are preferred for their simplic-
ity and rapidity, making them suitable for large datasets. 
Nonetheless, they struggle in datasets featuring multiple 
clusters of diverse densities, typically only identifying 
global outliers [7]. Additionally, the computation of dis-
tances in high-dimensional datasets may necessitate fea-
ture reduction, and selecting optimal parameters remains 
a challenge dependent on the dataset characteristics.

3.2  Motivation and contribution

As outlined in the preceding section, various methods 
for detecting outliers come with their challenges, largely 
dependent on their strategies. Generally, the main limitations 
of prior approaches can be distilled into three key areas:

a) The necessity of parameter setting in current methodolo-
gies poses a common obstacle. Selecting the appropriate 
parameter is intricate and time-consuming, necessitating 
a deep understanding of the data type. Moreover, the 
accuracy of the outcomes heavily relies on this selection, 
where an incorrect choice may result in unsatisfactory 
outcomes. Consequently, identifying a solution to miti-
gate this issue would be significantly beneficial.

b) The second issue concerns the inherent weakness in 
outlier detection strategies, which were predominantly 
observed in previous methodologies. This limitation is 
particularly evident in distance-based and density-based 
methods when confronted with datasets featuring clus-
ters of varying densities and patterns of low density, 

respectively. Thus, methods predicated on these strate-
gies (either distance or density) need to be revised.

c) The third challenge is the previous methods' inability to 
accurately identify all three outlier types: local, global, 
and group outliers. In the experimental section, our pro-
posed method is compared against former approaches 
across these dimensions.

These issues served as the primary motivation behind 
this article. Given that each methodological group has its 
pros and cons, the decision-making process involves a 
compromise, necessitating selecting a method based on the 
user’s understanding of the dataset. Additionally, choos-
ing the correct parameter(s) value poses a challenge, even 
when the method choice is apt. To address these concerns, 
we introduce a novel, reliable, parameter-free technique for 
outlier detection named Adaptive Radius Density-based 
Outlier Detection (ARDOD). ARDOD eliminates the need 
for parameter selection, facilitating a swift and straightfor-
ward application process. Contrary to most existing tech-
niques that implement the k-NN algorithm, our method 
adopts the fixed radius nearest neighbor (FRNN) rule due 
to its heightened sensitivity to the density criterion.

Implementing the FRNN rule and an adaptive radius effec-
tively addresses the traditional weaknesses of density-based 
methods. Furthermore, an automatic radius calculation mecha-
nism, predicated on the sample distribution within the feature 
space, eradicates the issues associated with parameter selection 
and the uncertainty of its optimal value. By leveraging the 
mass-sharing algorithm, we harness the advantages of distance 

Fig. 1  Illustrates the delineation 
of different types of outliers in 
a two-dimensional synthetic 
dataset, with clusters C1 and C2 
representing inliers, P1 and P2 
representing local outliers, P3 
and P4 representing global out-
liers, and cluster C3 represent-
ing a collective of outliers
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and density-based methods simultaneously, enhancing the 
algorithm’s efficacy in handling datasets that pose challenges 
to other density-based methods. Our method’s effectiveness 
and efficiency have been validated through tests on synthetic 
and real-world datasets across various dimensions. In sum-
mary, the contributions of our method are multifaceted:

• We introduced a new density-based outlier detection 
method that not only enhances performance over previ-
ous approaches but also addresses their limitations.

• The principle of limited resources in nature inspired the 
development of the mass-sharing concept.

• The FRNN rule is adopted over the k-NN algorithm 
due to the former’s difficulty in determining the optimal 
number of neighbors, which is heavily dependent on the 
dataset. Additionally, an intuitive approach for determin-
ing the most suitable radius value based on the dataset 
distribution enhances the method’s adaptability.

• By utilizing the mass-sharing concept, we effectively 
navigate the limitations of both density-based and dis-
tance-based methods while simultaneously capitalizing 
on their strengths.

3.3  Description of the proposed method

In recent years, there has been an increasing interest in out-
lier detection methods, primarily focusing on distance-based 
and density-based approaches. While these strategies have 
significantly enhanced performance compared to earlier 
techniques, they have drawbacks. Distance-based methods 
often need help with datasets characterized by varying local 
densities, as illustrated in Fig. 2a. Conversely, density-based 
methods fail to identify low-density patterns frequently 
encountered in real-world scenarios, depicted in Fig. 2b 
[21]. A notable limitation of density-based approaches is 
the necessity to define a neighborhood size explicitly, which 
is crucial because the effectiveness of these methods heavily 
depends on the accuracy of this determination.

Addressing the shortcomings of density-based and dis-
tance-based methods necessitates a novel approach that not 
only facilitates the outcomes of prior techniques but also 
mitigates their inherent weaknesses. A particular challenge 
of density-based methods is the requirement to specify a 
neighborhood size, significantly influencing the results. Tradi-
tional methods leave this decision to the user, often leading to 

suboptimal outcomes due to improper size selection. Moreo-
ver, assigning the same neighborhood size to all samples over-
looks that each sample may have a distinct neighborhood den-
sity, thereby hindering the accurate identification of outliers.

To illustrate, consider a scenario where a uniform radius 
is applied across the dataset. Such an approach would mis-
takenly classify all samples within a less dense cluster as 
outliers, failing to recognize the true outlier (the red star), 
as shown in Fig. 2a. This issue is addressed by introduc-
ing an adaptive radius, which varies depending on the local 
density around each sample. For instance, a sample within a 
sparse cluster (the square) would be assigned a larger adap-
tive radius, encompassing numerous neighboring samples 
and correctly identifying it as part of the cluster. Conversely, 
a sample adjacent to a dense cluster (the star) would have 
a smaller adaptive radius, ensuring no other sample falls 
within its range, thereby accurately labeling it as an outlier.

The proposed method, Adaptive Radius for Outlier Detec-
tion (ARDOD), aims to refine the detection process by 
implementing an adaptive neighborhood size for each sam-
ple, denoted as, within the dataset D , containing n samples 
and targeting m outliers. This adaptive approach begins by 
determining an initial radius r as a fraction ( � ) of the average 
pairwise distance among all samples in D:

Here, xi and xj represent two distinct samples from dataset 
D . Subsequently, ARDOD identifies the nearest neighbor 
for each sample, referred to as Nxi , and calculates an adap-
tive radius ( ARi ) based on the density of samples within a 
hypersphere centered at Nxi:

For samples isolated within their hyperspheres (ni� = 0) , 
the Adaptive Radius ( ARi ) is set to zero. The method then 
determines the number of samples within a hypersphere of 
radius ARi around each sample xi , excluding xi itself. Sam-
ples with no neighboring patterns are considered outliers.

(1)
r =

�

n×(n−1)
×

n
∑

i = 1

i ≠ j

n
∑

j=1

d
�

xi, xj
�

, (� = 0.01)

(2)
ARi =

1

ni
� × (ni

� − 1)
×

ni
�

∑

s = 1

s ≠ t

ni
�

∑

t=1

d(xs, xt)

Fig. 2  An example of a dataset 
with (a) different local densities 
and (b) low-density patterns
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Suppose the initial selection of outliers exceeds the desired 
number ( m ). In that case, the epsilon value is adjusted, and 
the process is repeated until the count of identified outliers 
matches or falls below m . To allocate the remaining outliers, 
ARDOD employs a mass-sharing strategy inspired by fitness 
sharing in evolutionary computing [33], where samples less 
similar to their neighbors are deemed outliers.

The shared mass calculation for each sample, xi , within 
its surrounding hypersphere is as follows:

(3)Shared Mass
�

xi
�

=
1

∑n

j=1
sh
�

xj
�

where

with dij being the Euclidean distance between xi and xj . 
Samples are then ranked by their shared mass, and the ones 
with the highest values are identified as outliers. ARDOD 
finalizes the outlier detection by integrating the results from 
both phases, ensuring a comprehensive and precise identi-
fication process. This methodology is succinctly summa-
rized in Algorithm 1, facilitating its implementation and 
understanding.

(4)sh
(

xj
)

=

{

1 −

(

dij

r

)

ifdij < r,

0 otherwise,
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4  Numerical experiments

This section demonstrates the superiority and effectiveness 
of the proposed method through a comprehensive analysis 
conducted on sixteen datasets. These datasets include ten 
real-world and six synthetic datasets with two dimensions. 
To evaluate the proposed method's stability and perfor-
mance, we compared it with seven well-known unsupervised 
outlier detection methods: LOF [15], ABOD [20], DCROD 
[31], ECOD [32], MOD + [6], RDOS [13], and LGOD [26]. 
Table 1 presents the datasets' characteristics, listing each 
dataset's name, dimensions, size, and the number of outliers 
identified.

The evaluation of these methods was carried out directly 
on the entire dataset, without any preprocessing steps. The 
computational experiments were conducted using an Intel 
Core i7 2670QM processor with a 2.20 GHz clock speed 
and 8 GB of DDR3 RAM, running on Microsoft Windows 
10 and utilizing the MATLAB environment for processing.

4.1  Datasets

This section provides an overview of the datasets utilized 
to evaluate the proposed method across various testing sce-
narios. The selection of two-dimensional synthetic datasets 
aims to address common challenges in outlier detection, 
specifically varying cluster densities and the presence of 
low-density patterns. These conditions are prevalent obsta-
cles in the field, necessitating datasets encompassing a range 
of cluster densities and sample sizes. Additionally, numer-
ous studies have previously employed the chosen datasets, 

offering a basis for comparing and validating our method's 
effectiveness [22, 26, 31, 34].

Synthetic 1 and Synthetic 2 datasets are mainly designed 
to highlight issues related to cluster density, a known weak-
ness of distance-based outlier detection methods. Con-
versely, density-based approaches demonstrate improved 
performance with these datasets. While Synthetic 2 presents 
similar challenges to Synthetic 1, it introduces a higher level 
of complexity. The Synthetic 3 dataset is characterized by 
a spiral-shaped cluster amidst uniformly distributed outli-
ers, presenting a distinct scenario for outlier detection. In 
comparison, Synthetic four offers increased complexity over 
Synthetic 3.

Further diversifying our dataset collection, Synthetic 5 
incorporates a sine curve perturbed by Gaussian noise, intro-
ducing variability in data distribution. Synthetic six features 
three nested rectangles that partition the space into distinct 
regions, each with thin sides. This setup highlights the chal-
lenge of detecting low-density patterns, a significant hurdle 
for density-based detection methods.

Expanding our evaluation to real-world contexts, we 
selected ten datasets from the UCI repository ("http:// www. 
archi ve. ics. uci. edu/ ml/"). These datasets have been previ-
ously utilized in outlier detection research, facilitating a 
comprehensive assessment of our proposed method's real-
world applicability.

Table 1 provides a detailed summary of each dataset, 
including the number of samples, outliers, and dimensions. 
Figure 3 illustrates the selection and characteristics of the 
two-dimensional synthetic datasets, ensuring a thorough 
examination of the proposed method's performance across 
a spectrum of testing environments.

Table 1  Description of used 
datasets

Dataset Name Dimensions Number of 
samples

Number of 
Outliers

Number of 
Classes

Percentage of 
Outliers (%)

Synthetic 1 2 1039 41 4 3.80
Synthetic 2 2 1641 45 3 2.67
Synthetic 3 2 1037 37 1 3.45
Synthetic 4 2 2259 159 1 6.58
Synthetic 5 2 1034 36 1 3.36
Synthetic 6 2 1242 50 3 3.87
Breast 33 198 47 2 19.18
Breast diagnostic 30 569 212 2 27.14
Diabetes 8 768 268 2 25.87
Glass 9 214 9 5 4.04
Lymphography 18 148 6 2 3.90
Musk 166 3062 97 3 3.07
Pima 8 768 268 2 25.87
Satellite 36 6435 2036 6 24.03
Vowels 12 1456 50 3 3.32
WPBC 33 198 47 2 19.18

http://www.archive.ics.uci.edu/ml/
http://www.archive.ics.uci.edu/ml/
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4.2  Metrics

To assess the performance of the proposed method, we 
employ various metrics, including the Precision, G-Mean, 
execution time and statistical tests.

• Precision: Precision is a metric used to evaluate the 
accuracy of a model's true predictions. It is beneficial 
in scenarios with a high cost of false positives. Preci-
sion calculates the ratio of true positive predictions to the 
total number of positive predictions made by the model, 
including both true positives and false positives. The for-
mula for precision is given by:

(5)Precision =
TP

TP + FP
=

The number of outliers that are correctly predicted

Total number of outliers

Fig. 3  Two-dimension synthetic 
datasets
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This metric does not take into account the true negatives 
and is, therefore, particularly useful in situations where the 
focus is on the relevance of the positive predictions [35].

• G-Mean: The G-Mean, or Geometric Mean, is a metric 
that evaluates a model's performance by equally weigh-
ing its sensitivity and specificity. This metric is particu-
larly advantageous when dealing with imbalanced class 
distributions or when the importance of sensitivity and 
specificity is equivalent. The G-Mean is calculated as the 
square root of the product of sensitivity and specificity, 
ensuring that both metrics have an equal impact on the 
final score. The formula for the G-Mean is:

This measure harmonizes the balance between sensitivity 
and specificity, providing a singular metric to thoroughly 
gauge a model's effectiveness.

• Time: Evaluating each algorithm's performance also 
includes assessing the average time required to detect 
outliers. This metric provides valuable insights into the 
detection process's efficiency and speed, illustrating 
each method's practicality in real-world applications. By 
measuring the time taken for outlier detection, we can 
compare the computational demands of different algo-
rithms, highlighting those that offer a balance between 
accuracy and speed. This aspect is crucial for applica-
tions where processing time is a limiting factor, ensur-
ing that the chosen method delivers prompt and reliable 
results.

• Statistical Tests: A statistical test is a methodological 
process utilized for making inferences or decisions about 
the properties of a population based on sample data. 
These tests are essential tools in the realm of statistical 
analysis, employed to assess the validity of hypotheses 
concerning population parameters. They play a pivotal 
role in determining whether observed data deviates sig-
nificantly from what is expected under the null hypoth-
esis, hence facilitating evidence-based conclusions. 
Within this framework, two notable tests are:

• The Friedman Test: This serves as a non-parametric 
counterpart to the one-way ANOVA with repeated meas-
ures, designed for identifying differences across multiple 
treatment attempts. Its applicability shines in instances 
where the normality assumption, a prerequisite for para-
metric tests, is not met. The Friedman test analyzes ordi-
nal or non-normal interval data, offering a robust mech-
anism for exploring the impacts of varying conditions 
devoid of the stringent presuppositions associated with 
parametric statistics. This makes it an indispensable tool 

(6)G −Mean =
√

Sensitivity × Specificity

in areas where data often skews from normal distribution 
patterns [36].

• The Wilcoxon Test: This encompasses the Wilcoxon 
rank-sum test and the Wilcoxon signed-rank test, posi-
tioned as non-parametric alternatives to the unpaired and 
paired t-tests, respectively. It is employed to compare two 
sample sets to ascertain if their population mean ranks 
significantly differ. This test is particularly beneficial for 
examining small sample sizes or data that fails to adhere 
to a normal distribution. By enabling hypothesis test-
ing without the rigid normality criteria, the Wilcoxon 
test stands out as a fundamental analytical instrument 
for researchers working with non-parametric data across 
various scientific fields [37].

4.3  Numerical results

As delineated in Section 3, it has been observed that all the 
methods under comparison, with the exception of the pro-
posed method, depend on the parameter k. To shed light on 
the significance of this parameter, the performance metrics 
of two specific methods, namely RDOS [13] and LGOD 
[26], were analyzed across varying k values (20, 50, and 
100), as depicted in Fig. 4. The rationale behind the selec-
tion of these particular k values is grounded in the guidance 
provided by several sources [21–23, 25]. It becomes evident 
that the choice of k exerts a considerable influence on the 
algorithms' effectiveness, thereby affecting the overall effi-
ciency of the detection methodologies.

Distinctively, the proposed method, which does not rely 
on any parameter, maintains a uniform p erformance under 
diverse conditions. In stark contrast to the methods com-
pared, the performance of the proposed method remains 
unaffected by changes in k ; consequently, metrics such as 
Precision, G-mean, and execution time were assessed across 
a broad k value spectrum ranging from 5 to 100. Figure 5 
showcases a comparison of the Precision metric of the pro-
posed method against that of seven other methodologies 
across 16 datasets for k values within the 5 to 100 range, 
thereby illustrating the proposed method's superior stability 
attributed to its non-parametric nature.

Figure 5 presents the precision of eight methods under 
comparison, including the proposed method, across a range 
of k values from 5 to 100. For datasets such as Synthetic 1 
through Synthetic 6, all methods initially demonstrate simi-
lar detection performance at lower k values. Nonetheless, 
as the value of k increases, the superiority of the proposed 
method becomes increasingly apparent. Specifically, in the 
cases of Synthetic 4 and Synthetic 6, the ABOD G-mean 
decreases less than that of other methods with rising k val-
ues, indicating a nuanced variation in performance.

Furthermore, the analysis of the Glass, Musk, Pima, and 
Satellite datasets unequivocally illustrates that the proposed 
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method outperforms the existing techniques by a significant 
margin. This suggests a robust adaptability and efficiency of 
the proposed method across a variety of data types.

In contrast, for the Breast, Diabetes, Lymphography, 
and WPBC datasets, while the compared methods gener-
ally exhibit similar performances, the proposed method, 

distinguished by its parameter-free nature, demonstrates 
enhanced stability. This characteristic suggests its potential 
for consistent application without the need for intricate param-
eter tuning.

Particularly in the Breast Diagnostic Dataset, the 
MOD + method exhibits substantial improvements as the 

Fig. 4  Outlier detection results of two recently proposed methods (RDOS and LGOD) at varying k values (left: k = 20, middle: k = 50, right: 
k = 100) on Synthetic two and Synthetic 6 Datasets
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k value progresses from 5 to 100; despite some k values 
favoring the performance of certain methods, the proposed 
method consistently emerges as more efficient on average. 
This indicates its capability to maintain a high level of preci-
sion across a broad range of conditions.

Conversely, in the Vowels Dataset, the proposed method 
does not exhibit strong performance, with ABOD showcas-
ing the highest precision among all the methods compared. 
This highlights the potential for specific methods to outper-
form others under certain dataset conditions.

Overall, the absence of parameter adjustment in the proposed 
method not only ensures better consistency across all compared 
methods but also leads to the best or at least comparable perfor-
mance in most of the datasets examined. This underscores the 
proposed method's versatility and its ability to provide reliable 
and stable outcomes across diverse analytical scenarios.

Table 2 provides a detailed comparison of the precision 
of the proposed method against that of other methodolo-
gies over a range of k values from 5 to 100. Additionally, 
it outlines the average precision and the ranking of each 
method based on their performance. It is noteworthy that 
the proposed method secures the highest precision in 16 out 

of the 8 methods evaluated, which may suggest a typo and 
possibly intends to compare the proposed method across 16 
datasets or scenarios. The proposed method distinguishes 
itself by achieving first place with an overall average preci-
sion of 64.35%, surpassing the method in second place by a 
significant margin of 11%.

This demonstrates not only the effectiveness of the pro-
posed method in achieving high precision across a broad spec-
trum of k values but also its superiority over other evaluated 
methods in terms of consistent performance. The substantial 
lead in average precision emphasizes the robustness and reli-
ability of the proposed method, suggesting it as a preferable 
choice for applications requiring precise anomaly detection or 
similar tasks. The comparative analysis, underscored by the 
method's leading position and its significant outperformance 
of competitors, highlights its potential to serve as a benchmark 
for future methodological developments in the field.

Table 3 meticulously assesses the speed of performance 
by cataloging the average duration required by each algo-
rithm to identify outliers across 16 distinct datasets, with 
k values varying from 5 to 100. The ECOD (Cumulative-
distribution-based Outlier Detection) method stands out 

Fig. 5  Detection performance 
(G-Mean) of all eight methods
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as the fastest among the evaluated techniques. This nota-
ble rapidity is primarily attributed to the fact that it does 
not rely on the KNN (K-Nearest Neighbors) algorithm, 
which is a significant factor contributing to its superior 
speed compared to other methods. However, as indicated 
in Table 2, this advantage in speed comes at the expense of 
precision. The data suggests a clear trade-off between the 
method's velocity and its accuracy, highlighting an area 
of potential compromise for researchers and practitioners 
considering the ECOD method for outlier detection.

The evaluation of outlier detection methodologies 
across all 16 datasets, with k ranging from 5 to 100, reveals 
the efficiency of various algorithms in terms of their time 
consumption. Among these methods, the ARDOD tech-
nique stands out for its commendable performance, occu-
pying the 5th rank with an average time consumption of 
7.4 s. This positions ARDOD significantly well in com-
parison to its counterparts, particularly highlighting its 
superiority over the RDOS and LGOD methods, which are 
slower, with times of 36.6 and 28.1 s respectively.

ARDOD not only showcases a faster performance but 
also excels in accuracy, a testament to its sophisticated 
design that optimizes both speed and precision without 
the need for parameter adjustments. This dual advantage 
of speed and accuracy emphasizes ARDOD's effectiveness 
and efficiency, making it an attractive option for applica-
tions that demand rapid and accurate outlier detection.

The Friedman test results in Table 4, elucidate a com-
parative analysis of algorithmic performance, with ARDOD 
demonstrating superior efficacy, attaining the lowest aver-
age rank of 2.7188. ABOB and DCROD algorithms exhibit 
parity in performance, sharing an average rank of 3.6562, 
indicative of moderate efficacy. Conversely, ECOD is dis-
cerned as the least effective, with the highest average rank 
of 6.4375. The rankings are statistically significant, as evi-
denced by a Friedman statistic of 24.973958 and a notably 
low p-value of 0.000767, affirming the reliability of the per-
formance differentiation among the evaluated algorithms.

The non-parametric Wilcoxon test was employed for 
enhanced precision in test analysis. This test conducted 

Fig. 5  (continued)
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pairwise comparisons between our method and alternative 
approaches, determining both the magnitude and direction of 
any differences observed. A p-value below the threshold of α 
(commonly set at 0.05) indicates the rejection of methodologi-
cal equivalence, thereby underscoring a significant disparity. 
The direction of this disparity is reflected in the relationship 
between R^ + and R^-. According to the Pr criteria presented 
in Table 5, our method, in all instances, demonstrated statis-
tically significant superiority over the comparative methods, 
with ARDOD outperforming each alternative as evidenced by 
the results.

In summary, the proposed method consistently outper-
forms other techniques in various scenarios, overcoming 
the limitations typically associated with distance-based 
and density-based methods. Its parameter-free nature not 
only facilitates stable performance but also simplifies 
usage, distinguishing it as a superior choice for outlier 
detection across both synthetic and real-world datasets.

5  Challenges and future directions 
of ARDOD

5.1  Recognizing the boundaries

While ARDOD represents a significant advancement in 
outlier detection methodology, we acknowledge certain 
limitations inherent to our approach:

1. Data Dependency: The effectiveness of ARDOD is 
contingent upon the underlying data distribution. In sce-
narios where the data is extremely sparse or highly uni-
form, the adaptability of the radius might be less effec-
tive, potentially impacting outlier detection performance.

2. Computational Complexity: The adaptive nature of the 
radius calculation and mass-sharing algorithm can lead 
to increased computational demands compared to sim-
pler methods, especially as the size of the dataset grows.

Table 2  Detection performance 
(average precision) of eight 
methods (k in The Range of 5 
to 100)

Dataset Name ABOD DCROD ECOD LGOD LOF MOD + RDOS ARDOD

Synthetic 1 83.41 78.78 70.73 68.54 83.78 27.68 83.41 90.00
Synthetic 2 45.00 68.22 6.67 30.33 73.78 8.22 66.78 91.11
Synthetic 3 75.54 73.92 21.62 64.46 60.95 13.51 71.62 83.78
Synthetic 4 80.85 66.76 48.43 58.46 55.00 37.20 54.40 83.65
Synthetic 5 87.92 85.69 0.00 83.61 53.33 18.61 83.47 91.67
Synthetic 6 89.40 57.90 50.00 59.90 42.00 11.00 54.30 92.00
Breast 17.66 17.87 12.77 17.66 19.15 21.17 18.51 17.02
Breast diagnostic 61.34 55.68 46.70 60.87 39.95 72.59 48.33 58.49
Diabetes 54.42 51.10 45.52 51.96 47.84 56.04 50.06 50.37
Glass 11.11 11.11 11.11 11.11 15.00 2.78 11.67 22.22
Lymphography 65.00 86.67 83.33 72.50 67.50 40.00 75.00 83.33
Musk 1.75 24.28 49.48 32.68 1.75 0.88 9.54 98.97
Pima 48.99 51.10 45.52 48.64 44.51 53.69 45.32 52.99
Satellite 50.17 46.96 44.94 51.18 39.11 49.88 42.51 63.02
Vowels 57.60 47.50 18.00 42.00 35.20 42.40 43.90 34.00
WPBC 17.66 17.87 12.77 17.66 19.15 21.17 18.51 17.02
Average 52.99 52.59 35.47 48.22 43.62 29.80 48.58 64.35
Rank 2 3 7 5 6 8 4 1

Table 3  Average time-
consumption of eight methods 
on all 16 datasets (k in The 
Range of 5 to 100)

# ABOD DCROD ECOD LGOD LOF MOD + RDOS ARDOD

Time (Sec) 138.1 1.3 0.05 28.1 0.4 2.6 36.6 7.4
Rank 8 3 1 6 2 4 7 5

Table 4  Average ranking of 
Friedman test

ABOD DCROD ECOD LGOD LOF MOD + RDOS ARDOD

3.6562 3.6562 6.4375 4.4688 5.2188 5.1875 4.6562 2.7188
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3. Domain-specific Adaptations: While ARDOD is 
designed to be versatile, its performance can benefit 
from domain-specific adaptations, such as fine-tuning 
the ε parameter or integrating additional features rel-
evant to the specific application context.

5.2  Expanding the horizon of ARDOD

While the ARDOD method has demonstrated promising 
results in outlier detection across various datasets, its evo-
lution presents numerous opportunities for further research 
and improvement. We envision the following areas as poten-
tial avenues for future work:

a) Scalability to High-dimensional Data: Although 
ARDOD shows superior performance in the current 
settings, its scalability and efficiency in handling high-
dimensional datasets could be further investigated. 
The adaptation of the algorithm to effectively manage 
the "curse of dimensionality" will be a critical area of 
research. Techniques such as dimensionality reduc-
tion or feature selection could be incorporated into the 
ARDOD framework to enhance its applicability to com-
plex datasets.

b) Real-time Outlier Detection: The development of a 
real-time variant of ARDOD could significantly impact 
fields requiring immediate anomaly detection, such as 
cybersecurity, financial fraud detection, and real-time 
monitoring systems. Future work will explore modifica-
tions to the algorithm that reduce computational com-
plexity and allow for incremental learning from stream-
ing data.

c) Integration with Supervised Learning Models: The 
current implementation of ARDOD is unsupervised. 
An interesting extension could involve its integration 
with supervised learning models to leverage labeled 
data, potentially improving the detection of outliers in 
semi-supervised or fully supervised settings. This hybrid 

approach could refine the algorithm's sensitivity to sub-
tle anomalies.

d) Adaptation to Distributed Computing Environments: 
With the exponential growth of data, the need for dis-
tributed computing solutions has become more pro-
nounced. Adapting ARDOD to work efficiently within 
distributed computing frameworks, such as Apache 
Hadoop or Spark, could address scalability issues and 
enhance its suitability for big data applications.

e) Deep Learning-based Enhancements: Incorporating 
deep learning techniques to automate the feature learn-
ing process in ARDOD could provide a significant boost 
in performance, especially in datasets where relevant 
features for outlier detection are not readily apparent. 
Convolutional neural networks (CNNs) or autoencoders 
could be used to extract meaningful features automati-
cally, which could then be fed into the ARDOD algo-
rithm for outlier detection.

By pursuing these directions, we aim to refine and 
extend the ARDOD method, further contributing to the 
field of outlier detection. We believe that addressing these 
future work areas will not only enhance the robustness and 
applicability of ARDOD but also open new avenues for 
research and innovation in anomaly detection.

6  Conclusion

This paper proposes a new outlier detection technique 
called adaptive radius density-based outlier detection 
(ARDOD) based on the fitness-sharing concept. The pro-
posed method is parameter-free and capable of detecting 
all kinds of outliers, including local, global, and group of 
outliers. The ARDOD takes advantage of both distance 
and density concepts to deal with the weaknesses of the 
previous methods. Also, no need for parameter adjust-
ment makes the proposed method a suitable option for 
any given dataset. Moreover, unlike density-based and 
distance-based methods, the ARDOD works fine with 
datasets with different clusters' densities and low-density 
patterns. The proposed method is compared with five pre-
vious techniques, including LOF, ABOD, INS, RDOS, and 
LGOD, on six synthetic datasets. Also, we employed the 
proposed method on ten real-world datasets. The results of 
both artificial and real-world datasets show the superiority 
and effectiveness of the proposed method.
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