
Vol.:(0123456789)

Evolutionary Intelligence (2024) 17:2515–2536
https://doi.org/10.1007/s12065-023-00900-9

RESEARCH PAPER

Gaussian mixture models for training Bayesian convolutional neural
networks

Bakhouya Mostafa1 · Ramchoun Hassan1,2 · Hadda Mohammed1 · Masrour Tawfik1,3

Received: 26 March 2023 / Revised: 6 December 2023 / Accepted: 17 December 2023 / Published online: 25 January 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Bayes by Backprop is a variational inference method based on the reparametrization trick to assure backpropagation in
Bayesian neural networks. Generally, the approximate distributions used in Bayes by backprop method are made unimodal
to facilitate the use of the reparametrization trick. But frequently, the modelling of some tasks requires more sophisticated
distributions. This paper describes the Bayes by Backprop algorithm with a multi-model distribution for training Bayesian
convolutional neural networks. Specifically, we illustrate how to reparameterize the CNN parameters for a Gaussian mixture
model. We then show that the results compare favourably to existing variational algorithms on various classification datasets.
Finally, we illustrate how to use this distribution to estimate epistemic and aleatoric uncertainty.

Keywords Convolution neural network · Variational inference · Bayesian neural network · Parameter estimation · Gaussian
mixture model · Uncertainty

1 Introduction

Deep learning has emerged as an extension and development
of machine learning for providing appropriate solutions to
challenging tasks. Deep learning algorithms have provided
innovative solutions in many fields, including computer
vision, industrial and financial engineering, biomedical
engineering, healthcare, security, etc [22, 23, 28, 52, 56,
63–65]. Nowadays, Convolutional Neural Network (CNN)

is among the most common deep learning models, especially
in pattern recognition and image classification fields due to
its compatibility with image architecture. CNN has shown
outstanding results, especially in large image classification
datasets (Image Net) [2, 43, 51, 59].

1.1 Problem statement

CNN remains limited because it can only provide point esti-
mates of parameters and outcomes. This constraint leads
to decisions being taken with a high degree of certainty,
which can lead to undesirable results, particularly in situa-
tions where decisions require a high degree of caution and
credibility. The drawback arises from the fact that a CNN is
unable to capture model uncertainty; it consistently produces
a result but fails to indicate the reliability or correctness of
that result [34].

1.2 Current status

The Bayesian approach in deep learning algorithms can
be used as an alternative to the deterministic approach to
address this problem. [37]. The Bayesian approach pro-
vides a probabilistic interpretation for deep learning models
that allows the determination of model uncertainty, which

 * Ramchoun Hassan
 h.ramchoun@umi.ac.ma

 Bakhouya Mostafa
 mos.bakhouya@edu.umi.ac.ma

 Hadda Mohammed
 mohamedhdda@gmail.com

 Masrour Tawfik
 t.masrour@ensam.umi.ac.ma

1 Department of Mathematics and Computer Science,
ENSAM-Meknes, Moulay Ismail University of Meknes,
50050 Meknes, Morocco

2 National School of Business and Management, Moulay
Ismail University of Meknes, 50050 Meknes, Morocco

3 Mathematics, Computer Science and Engineering
Department, University of Quebec at Rimouski, Rimouski,
Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-023-00900-9&domain=pdf

2516 Evolutionary Intelligence (2024) 17:2515–2536

increases the credibility of neural network outcomes [1, 14,
32, 45].

A Bayesian Convolutional Neural Network (BCNN) is a
form of artificial neural network in which the CNN parame-
ters are represented as stochastic components of the network.

The BCNN is characterized not only by its capacity to
quantify uncertainty in the network but also by its ability
to discriminate between its two forms, which are epistemic
and aleatoric uncertainty [14, 71]. Nevertheless, applying
the Bayesian method to CNN remains challenging since
it requires the computation of an integral over all possible
values of CNN parameters to determine the posterior dis-
tribution of these models. To overcome this problem, we
can infer this distribution using statistical estimates known
as "approximate inferences" [19, 27, 27, 48, 60, 62]. In this
context, there are many inferential estimation techniques
used in deep learning algorithms, the most notable of which
are Monte Carlo techniques and Variational Inference.

Monte Carlo methods are stochastic estimations that
approximate expectations numerically by randomly gener-
ating samples from probability distributions.

Variational inference is an optimization technique that
provides analytical estimates of the posterior distribution
using another simple distribution [7, 60, 69].

1.3 Research hypothesis

In practical applications [3, 41, 46], posterior distributions
are often complex and require more flexible models for
accurate estimation. Therefore, this paper aims to approxi-
mate the posterior distribution using the Bayes by Backprop
method by employing a multimodal distribution, specifically
a mixture of factorized Gaussian distributions, as the varia-
tional distribution. This involves sampling the convolutional
parameters from a mixture of K fully factorized Gaussian
distributions at each iteration, where K represents the num-
ber of mixture components.

Multimodal distributions perform better than unimodal
distributions in capturing complex patterns and variations
in the posterior distribution.

1.4 The main contributions

The contributions of this paper are summarized as follows:

• We employ the Bayes-Backprop method to train convo-
lutional neural networks (CNNs) by employing a mixture
of factorized Gaussian distributions as the variational
distribution.

• We show that the reparametrization of a GMM involves
reparametrizing each Gaussian component indepen-
dently. This process includes introducing a standard
normal random variable and using it to reparameterize
each component of the GMM.

• We apply our proposed method to train CNNs on vari-
ous datasets. Subsequently, we conduct a comparative
analysis between our approach and previous methods to
evaluate the obtained results.

• We study the estimation of both aleatoric and epistemic
uncertainties using a Gaussian mixture model (GMM)
as the variational distribution. Through the experimen-
tal results, we demonstrate that as training accuracy
increases, uncertainty decreases, resulting in more reli-
able decision-making by the network.

The remaining sections of this paper were ordered as fol-
lows: the second section provided an overview of most of
the research related to this work, while Sect. 3 provided the
background and tools that we will need in this research,
including a description of the BCNN and the most impor-
tant approaches used in it. Section 4 describes our contribu-
tion, which is represented by the application of the Bayes
by backprop technique to train CNNs using mixture models.
Then, in Sect. 5, we show the experimental results of this
method and attempt to compare it to previous works. Finally,
Sect. 6 summarizes this paper.

2 Related works

As previously stated, there are two ways to approximate the
posterior distribution: stochastic estimations and variational
inference methods (Table 1).

Markov chain Monte Carlo (MCMC) methods are one of
the most important stochastic approaches. MCMC methods
provide an approximate unbiased estimator of the true esti-
mator by sampling the posterior distribution according to the
Markov process. MCMC methods can guarantee convergence
to the true estimator with increasing sample size from the pos-
terior, which can be computationally expensive, especially in
BCNN [5, 11, 12, 24, 49]. On the other hand, many approaches
have contributed to developing analytical approximations to
the posterior distribution, especially in deep learning mod-
els. In this context, MacKay (1992) successfully applied the
Laplace approximation to neural networks [42]. The Laplace
approach attempts to estimate the posterior using a Gaussian
distribution whose mean achieves the maximum a posteriori
(MAP) and whose covariance matrix is the inverse of the
Hessian matrix of the cost function used in the MAP esti-
mate around this mean [54]. This approach focuses only on

2517Evolutionary Intelligence (2024) 17:2515–2536

the properties of a single-mode MAP. In the case of multiple
modes, they will produce different distributions, which often
fail to approximate the posterior distribution, particularly in
BCNN. Subsequently, many researchers have developed these
approaches in deep learning models, using mainly variational
inference methods (Hinton and Van Camp (1993) [26], Bar-
ber and Bishop (1998) [4], Graves (2011) [20], Blundell and
al (Bayes by Backprop 2015) [8]. Again, in 2016, Graves
attempted to approximate the gradient estimators for mixture
models by employing the quantile functions as an alternate
transform to the reparameterization trick [21]. In 2019, Kumar
Shridhar applied the Bayes-by-backprop method using a uni-
modal distribution to model convolutional kernels [58].

Expectation Propagation (EP) is another method that
estimates the true posterior by a simpler parametric factor-
ized distribution from the exponential family. EP is based
on minimizing the inverse form of the Kullback–Leibler
(KL) divergence, KL(p//q), rather than the direct form of
KL(q//p) used in variational inference (P.Minka [44]),
(Hernandez-Lobato and P. Adams [25]). Sun et al. recently
proposed "Generalized Expectation Propagation" (GEP)
as an improved form of Expectation Propagation that can
approximate multimodal posterior distributions, particu-
larly in BCNN, by employing a mixture of exponential fam-
ily distributions [61, 70]. Despite the scalability of the EP
approach, the convergence using this method is not always
assured, especially when using mixture models [13, 67]. On
the other hand, Gal proved that training neural networks with
dropout is similar to using a variational inference method
with a Bernoulli distribution by transforming the dropout
noise from the input space to the parameter space in neural
networks (MC Dropout [16, 18]). While the MC Dropout
method is suitable for deep learning models since it reduces
overfitting and does not require as much modeling as other
methods, it is also inflexible and cannot always fully express
model uncertainty [10].

3 Background and preliminaries

3.1 Convolution neural network architecture

Assume we have N input images x = {(x1, x2,, xN)} , and
their labels y = {(y1, y2,, yN)} , a standard CNN is a deep
neural network that defines the output layer as a composition
of convolution layers that extract the most significant features
from the images, represented by, c(i) , i = 1, ...,Nc , each c(i) is
a convolution operation between the input p(i−1) and the filter
matrix k(i) shifted by the bias b(i)

c
 , followed by an activation

function, s(i)
c

 , i = 1, ...,Nc , and pooling layers, p(i) , i = 1, ...,Nc ,
(Nc is the number of convolutional layers), each p(i) is a pool-
ing function (which may be average-pooling or maximum-
pooling). Finally, the fully connected layers, which are repre-
sented, after flattening (or vectorization), as a succession of
hidden layers, h(j) , j = 1, ...,Nl , (Nl is the number of hidden
layers), each h(j) is a linear transformation,, accompanied by an
activation function, s(j)

l
 , j = 1, ...,Nl . The output ŷ of CNN is

represented as the last layer in the fully connected layers using
Softmax probability as an activation function.

The parameter models of the CNN are � = {K, bc,�, bl} ,
where K, bc are the kernels and the biases of the convolution
layers, and � , bl are the weights and the biases of the fully
connected hidden layers.

The standard CNN works to find a point estimate of the
probable function f that relates the input x to the output y using
the parameters models, in other words, it works to obtain a
point approximation of the model parameters � that fits the
data-set D = {(x, y)} well.

To achieve this point estimate, the model employs the back-
propagation algorithm to minimize the cost function [9, 38,
57], which is proportional to maximizing the log-likelihood
(ML), and occasionally with a regularization component
included if the maximum a posteriori estimation (MAP) is
used (See Algorithm 1).

Table 1 Summary of related works

Authors Year Method Model Datasets

Graves et al. [20] 2011 Stochastic variational inference BRNN TIMIT speech corpus
Ritter et al. [54] 2018 Laplace approximation BNN Mnist
Blundell et al. [8] 2015 Bayes by Backprop BNN Mnist
Yarin Gal et al. [16, 18] 2016 Monte Carlo Dropout BCNN Mnist, Cifar10
Kumar et al. [58] 2019 Bayes by Backprop BCNN Mnist, Cifar10, Cifar100
Jing Zhao et al. [70] 2020 Generalized Propagation Expectation BNN (regression),

BCNN (classifica-
tion)

5 UCI datasets (BNN), Mnist (BCNN)

Pushkar Khairnar et al. [29] 2020 Bayes By Backprop BCNN Breast histopathological images

2518 Evolutionary Intelligence (2024) 17:2515–2536

Algorithm 1 Convolutional Neural Networks: Training
Procedure

Finally, this algorithm returns a single optimum param-
eter �̂� that minimizes the cost function. For unseen input
x∗ , CNN uses the optimum parameter �̂� , to estimate their
prediction.

Where �̂� = {K̂, b̂c, �̂�, b̂l}.
As we have shown, a standard CNN only gives a point

estimate of the parameters, which works well on a large data
set, but in some issues, larger quantities of data are not avail-
able. The problem with CNNs is that they quickly overfit
with small data sets [17], which often results in overconfi-
dent predictions.

3.2 Variational inference

The Bayesian Convolutional Neural Network (BCNN) is
a CNN trained by using Bayesian statistics, in which all

(1)�̂� = argmin Loss(y, ŷ)

(2)ŷ∗ = f (x∗, �̂�) = cnn(x∗, �̂�)

parameters of the CNN are treated as stochastic components
[17, 58].

The initial step in creating a BCNN is to determine the
feedforward architecture of the CNN. We then apply the
prior distribution p(�) of the CNN weights � , indicating
our previous beliefs about the parameters. Next, we define
the likelihood p(y|x, �) as the independent conditional
probability of the observed data given specific parameters.
Generally, the likelihood for CNN models is defined as a
categorical distribution of the softmax probabilities, as
shown below:

Where f c(xn, �) = Softmax
(

�(nl)T
c h(nl−1) + b(nl)lc

)

=
exp
(

�
(nl)T
c h(nl−1)+b

(nl)
lc

)

∑C
c′

exp
(

�
(nl)T

c′
h(nl−1)+b

(nl)
l
c′

)

,

and C is the number of output classes.
We can then obtain the posterior distribution of CNN

parameters given the observed data p(�|x, y) using the Bayes
theorem as follows:

Deep learning models are made of a huge number of param-
eters, which makes determining the posterior distribution
p(�|x, y) tricky since computing the evidence term

∫
�
p(y|x, ��

)p(�
�

)d�
� is hard.

The Variational Inference (VI) method was developed for
solving an optimization problem to approximate the poste-
rior distribution p(�|x, y) with a simple parametric distribu-
tion q�(�) to overcome this problem [7, 69].

VI looks for an optimal variational parameter �̂� such that
the variational distribution q�̂�(𝜃) is as close as possible to
the true posterior p(�|x, y) based on the Kullback–Leibler
divergence [35], which is expressed as follows:

To compute the KL(q||p), you must first compute the poste-
rior distribution. As a result, the problem still exists. To get
around this, we use the Evidence Lower BOund (ELBO)
function L , which can be obtained from KL(q||p) and the
Bayes Formula as follows:

(3)

p(y|x, �) =
N∏
n=1

p(yn|xn, �) =
N∏
n=1

p(yn|f (xn, �))

=

N∏
n=1

Categorical(f 1(xn, �), ..., f
C(xn, �))

(4)
p(�|x, y) = p(y|x, �)p(�)

p(D)
=

p(y|x, �)p(�)
∫
�
p(y|x, ��

)p(��
)d��

∝ p(y|x, �)p(�)

(5)KL(q�(�)||p(�|x, y)) = ∫�

q�(�) log
(q�(�)

p(�|x, y)
)
d�

2519Evolutionary Intelligence (2024) 17:2515–2536

Where

Minimizing the KL divergence is now equivalent to maxi-
mizing the ELBO function L since the log p(D) is constant
over the variational parameters.

ELBO maximization needs to maximize the first term of
the last equation, which denotes the expected log-likelihood
and minimize the second term, indicating the KL divergence
between q�(�) and p(�) . Generally, the second term serves
as a regularizer [16].

The prediction in BCNN of a new input x∗ is a probabil-
ity distribution p(y∗|x∗,D) , called the predictive distribution
[66]. It is defined by the expectation over the posterior dis-
tribution of the model’s output, as shown below:

Using the variational inference method, the predictive dis-
tribution can be approximated as follows:

Where �̂� are the optimal variational parameters.

3.3 Bayes by backprop

Variational inference is a powerful statistical estimate for
Bayesian inference. However, the stochasticity of the param-
eters prevents back-propagation from working in deep learn-
ing models. To overcome this issue, Blundell et al. proposed
the Bayes-by-backprop algorithm [8]. Bayes by Backprop is
indeed a variational inference technique that looks for the
variational parameters �̂� that minimize the KL divergence
between the posterior distribution p(�|x, y) and the vari-
ational distribution q�(�).

(6)KL(q�(�)||p(�|x, y)) = log p(D) −L(�)

(7)

L(�) = ∫�

q�(�) log p(y|x, �)d�

− ∫�

q�(�) log
(q�(�)
p(�)

)
d�

= Eq�(�)
[log p(y|x, �)] − KL(q�(�)||p(�))

(8)
p(y∗|x∗, x, y) = ∫�

p(y∗|x∗, �)p(�|x, y)d�
= Ep(�|x,y)[p(y∗|x∗, �)]

(9)

p(y∗|x∗, x, y) ≈ ∫𝜃

p(y∗|x∗, 𝜃)q�̂�(𝜃)d𝜃
= Eq�̂�(𝜃)

[p(y∗|x∗, 𝜃)]
= q(y∗|x∗)

Where L(D,�) is the negative ELBO function.
The new aspect of the Bayes-by-backprop algorithm is

to apply the reparametrization trick technique to the model
parameters [30, 31]. The idea is to transform the randomness
of the model parameters, � , which is simulated from a para-
metric distribution q�(�) , to another random variable � , that
follows a non-parametric distribution, q(�) , by reparameter-
izing � as a deterministic and differentiable function of the
variational parameters � and � , g(�, �) such that � = g(�, �) .
Therefore, we may compute the gradients ∇�l(�,�) by
backpropagating via � , which is now non-stochastic (See
Algorithm 2).

As a result, Blundell et al. [8] proposed that if
q�(�)d� = q(�)d� , and for a differentiable function l(�,�) ,
we get:

Where ��
��

=
�g(�,�)

��
 in the last expression. For more details

about the last formula, see [8].
As �

��
L(D,�) is also hard to compute, we can use Monte

Carlo sampling to estimate it. Using the reparameterization
trick, we first sample � from the non-parametric distribution
q(�) and then apply the deterministic function g, such that
� = g(�, �) ∼ q�(�).

As a result, we can approximate �
��
L(D,�) as follows:

(10)

�̂� = argmin
𝜙

KL(q𝜙(𝜃)||p(𝜃|x, y))

= argmin
𝜙

KL(q𝜙(𝜃)||p(𝜃)) − Eq𝜙(𝜃)
[log p(y|x, 𝜃)]

= argmin
𝜙 ∫𝜃

q𝜙(𝜃)
(
log q𝜙(𝜃)− log p(𝜃)− log p(y|x, 𝜃)

)

���
l(𝜃,𝜙)

d𝜃

���
L

(D,𝜙)

(11)

�

��
L(D,�) =

�

��
Eq�(Θ)

[
l(�,�)

]

= Eq(�)

[�l(�,�)
��

��

��
+

�l(�,�)

��

]

(12)

𝜕

𝜕𝜙
L(D,𝜙) ≈

𝜕

𝜕𝜙
L̂(𝜃,𝜙)

=
1

T

T∑
t=1

[𝜕l(g(𝜙, 𝜖(t)),𝜙)
𝜕𝜃(t)

𝜕g(𝜙, 𝜖(t))

𝜕𝜙

+
𝜕l(g(𝜙, 𝜖(t)),𝜙)

𝜕𝜙

]

2520 Evolutionary Intelligence (2024) 17:2515–2536

Where l(g(�, �(t)),�) = log q�(g(�, �(t))) − log p(g(�, �(t))) − log p(y|x, g(�, �(t))) ,
�(t) ∼ q(�) , T is the number of samples, and 𝜕

𝜕𝜙
L̂(𝜃,𝜙) is an

u n b i a s e d e s t i m a t o r o f
𝜕

𝜕𝜙
L(D,𝜙)(Eq(𝜖)

[
𝜕

𝜕𝜙
L̂(𝜃,𝜙)

]
=

𝜕

𝜕𝜙
L(D,𝜙)).

Algorithm 2 Bayes by Backprop Algorithm [8]

3.4 Gaussian mixture model

A Gaussian Mixture Model (GMM) is a probability distri-
bution defined as a linear convex combination of Gaussian
distributions [13, 53]. Therefore, we can express a GMM
composed of a K-component Gaussian density as follows:

Where � is a D-dimensional vector, {�k, k = 1, 2, ...,K}
are the mixture weights that satisfy the con-
s t r a i n t t h a t

∑K

k=1
𝜋k = 1,with 0 < 𝜋k < 1 , a n d

{N(�|�k,Σk), k = 1, 2, ...,K} are the components distribu-
tions. Each component is a multivariate Gaussian distribu-
tion of the following form:

(13)p�(�) =

K∑
k=1

�kN(�|�k,Σk)

(14)

N(�|�k,Σk) =
1

(2�)d∕2|Σk|1∕2
exp

(
−

1

2
(� − �k)

TΣ−1
k
(� − �k)

)

Where �k is a d-dimensional mean vector, Σk
 is a d ×d-dimen-

sional covariance matrix of the corresponding Gaussian dis-
tribution. � = {(�k,�k = {�k,Σk}), k = 1, 2, ...,K}

represents the full parameters of the Gaussian mixture
model p�(�).

For various theoretical and computational reasons, the
Gaussian distribution is the most preferred unimodal dis-
tribution in real-world modelling. However, some chal-
lenging applications, such as image classification, require
more sophisticated distributions to model them.

As a result, using a unimodal model in this situation is
frequently ineffective [53],

[13]. To solve this issue, we can represent these appli-
cations using a GMM, which is a combination of several
unimodal Gaussian distributions that can provide more
statistical information about the problem than single-mode
distributions.

4 Bayes by backprop using mixture models

A mixture model is a powerful tool that may be used in
variational inference as an approximated posterior distri-
bution. However, reparameterizing the parameters of mix-
ture models is challenging since they combine component
distributions using discrete-categorical variables

k ∼ Cat({�k}
K
k=1

) . To address this problem, Roeder et al.
propose that the expectation over the mixture model be
computed by taking the sum of the mixture weights out-
side the expectation and then sampling equally from each
component distribution, [47, 55].

As a result, if each component distribution is reparam-
eterizable, we may reparameterize the mixture models.

Let q�(�) =
∑K

k=1
�kq�k

(�) as a mixture distribution
made up of K component distributions q�k

(�) , combined
by K mixture weights {�k, k = 1, 2, ...,K}.

I f q�k
(�k)d�k = q(�k)d�k , and �k = g(�k, �k) , fo r

k = 1, 2, ...,K , with g is a differentiable function, we can
approximate the expectation Eq�(�)

[f (�)] , as follows:

Where �(t)
k

∼ q(�k) , and T is the number of samples.
Proof:

(15)

Eq�(�)

[
f (�)

]
=

K∑
k=1

�kEq(�k)

[
f (g(�k, �k))

]

≈

K∑
k=1

�k

T

T∑
t=1

f (g(�k, �
(t)

k
))

2521Evolutionary Intelligence (2024) 17:2515–2536

With �(t)
k

∼ q(�k) , for k = {1, 2, ...,K}.
The latter expression is the result of applying Monte

Carlo sampling to each component distribution q(�k) , tak-
ing into account the independence of �k , resulting from the
independence of parameters �k , for k = {1, 2, ...,K}.

Furthermore, using this approximation, we obtain an
unbiased estimator as shown below:

Instead of sampling a discrete random variable
k ∼ Cat({�k}

K
k=1

) and then sampling � from the associ-
ated component distribution q�k

(�) , the approach described
above takes samples from each component distribu-
tion equally and then combines them using the mixture

Eq�(�)

[
f (�)

]
= ∫�

K∑
k=1

�kq�k
(�)f (�)d�

=

K∑
k=1

�k ∫�

q�k
(�)f (�)d�

=

K∑
k=1

�k ∫�k

q�k
(�k)f (�k)d�k

(Linearity of integral)

=

K∑
k=1

�k ∫�k

q(�k)f (g(�k, �k))d�k

Reparameterization the parameters of each

component distribution as �k = g(�k, �k)

=

K∑
k=1

�kEq(�k)
[f (g(�k, �k))]

≈

K∑
k=1

�k

T

T∑
t=1

f (g(�k, �
(t)

k
))

◻

E∏K

k=1
q(�k)

� K�
k=1

�k

T

T�
t=1

f (g(�k, �
(t)

k
))
�

=

K�
k=1

�kEq(�k)

�
1

T

T�
t=1

f (g(�k, �
(t)

k
))
�

=

K�
k=1

�k

T

T�
t=1

Eq(�k)

�
f (g(�k, �

(t)

k
))
�

=

K�
k=1

�kEq(�k)

�
f (g(�k, �k))

�

=

K�
k=1

�kEq�k
(�k)

�
f (�k)

�

= Eq�(�)

�
f (�)

�

weights. Although the last method is more computation-
ally expensive than the first since it requires K-implemen-
tations of the function f to obtain one Monte Carlo esti-
mate of the expectation

Eq�(�)
[f (�)] , it allows us to reparameterize the parame-

ters of the mixture model and also gives a differentiable
estimate (See Fig. 2), which is not available in the first
approach [15, 40].

Therefore, if all conditions are satisfied, we can apply
the Bayes by Backprop method to the differentiable and
continuous function l (Eq. 10), using a mixture model as
an approximate distribution (Algorithm 3), as illustrated
below:

for j = 1, 2, ...,K ∶

Where q�(�) =
∑K

k=1
�kq�k

(�) is a mixture model,
l(�,�) = log q�(�) − log p(�) − log p(y|x, �) , and
q�k

(�k)d�k = q(�k)d�k , for k = 1, 2, ...,K.

Since �

��j

L(�,D) is also computationally intricate, we
can estimate it using Eq. 15, as follows:

for j = 1, 2, ...,K ∶

Where �(t)
k

∼ q(�k) for t = 1, 2, ..., T , and k = 1, 2, ...,K,

l(g(�k, �(t)),�) = log
(

∑K
i=1 �iq�i

(g(�k, �
(t)
k))

)

− log p(g(�k, �
(t)
k)) − log p(y|x, g(�k, �

(t)
k)) , and

�

��j

L(D,�) =
�

��j

L(D, (�1, ..,�j, ..,�K))

=
�

��j

Eq�(�)

[
l(�,�)

]

=
�

��j

K∑
k=1

�kEq�k
(�)

[
l(�,�)

]

=
�

��j

K∑
k=1

�kEq(�k)

[
l(g(�k, �k),�)

]

=

K∑
k=1

�kEq(�k)

[�l(g(�k, �k),�)

��k

�g(�k, �k)

��j

+
�l(g(�k, �k),�)

��j

]

(16)

𝜕

𝜕𝜙j

L(D,𝜙) ≈
𝜕

𝜕𝜙j

L̂(�,�)

=
1

T

K∑
k=1

T∑
t=1

𝜋k
𝜕l(𝜃

(t)

k
,𝜙)

𝜕𝜃
(t)

k

𝜕g(𝜙k, 𝜉
(t)

k
)

𝜕𝜙j

+
1

T

K∑
k=1

T∑
t=1

𝜋k
𝜕l(g(𝜙k, 𝜉

(t)

k
),𝜙)

𝜕𝜙j

2522 Evolutionary Intelligence (2024) 17:2515–2536

𝜕

𝜕𝜙j

L̂(𝜃,𝜙) is an unbiased estimator of �

��j

L(D,�) .
�
E∏K

k=1
q(𝜉k)

�
𝜕

𝜕𝜙j

L̂(𝜃,𝜙)
�
=

𝜕

𝜕𝜙j

L(D,𝜙) , for j = 1, 2, ...,K
)
.

Algorithm 3 Bayes by Backprop using mixture model

4.1 Bayesian convolution neural network with GMM

In this section, we will try to apply the Bayes By Backprop
method to convolutional neural networks using a Gaussian
mixture model (BBGMM) as an approximate distribution
of the true posterior, and we will show how to construct,
train, and evaluate BCNN using this distribution.

A convolutional neural network is a deep learning
model characterized by two basic steps. First, we extract
the most significant features of inputs using kernels in con-
volutional layers, and second, we classify the inputs using
fully connected layers and a softmax function in the output
layer (See Fig. 1).

As a result, the CNN parameters are expressed as fol-
l o w s : � = {F, bc,�, bl} , w h e r e
F = {{fhi,p,wi,p,ci,p

}
Nc,pi
i,p=1

}, bc = {{bci}
i=Nc

i=1
} are the kernels and

the biases of the convolutional layers, and � = {{Wj}
j=Nl

j=1
} ,

bl = {{blj}
j=Nl

j=1
} are the weights and the biases of the fully

connected layers.
Following the Bayesian approach, these parameters are

represented as stochastic kernels in the convolution layers
and as stochastic matrices in the fully connected layers.
Before seeing the data, the Bayes by Backprop algorithm,
like the other variational inference methods, requires set-
ting a prior distribution for all CNN parameters p(�) =
p(F, bc,�, bl) as prior beliefs about the possible parameters
that fit the data. After seeing the data D = {(x, y)} , we have
to determine the model’s probability p(y|x, �) (the likeli-
hood) for the outputs y = {(y1, y2,, yN)} given the inputs
x = {(x1, x2,, xN)} ∈ R

HxWxCxN and parameters
� = {F, bc,�, bl}.
Then, we use a mixture of K fully-factorized normal

distributions (i.e., with diagonal covariances) as a vari-
ational distribution of the CNN parameters, as shown
below:

∗

=

=

=

Flatten

Pooling

Pooling

Input

Convolutional kernels Features maps Fully connected layers

Output∗

=

=

=

Flatten

Pooling

Pooling

Input

Convolutional kernels Features maps Fully connected layers

Output

Fig. 1 Bayesian convolution neural network

2523Evolutionary Intelligence (2024) 17:2515–2536

Where

Nc is the number of convolutional layers, pi, hi,wi , and ci
represent, respectively, the number, width, height, and the
channels number of kernels in the ith convolutional layer, Nl
is the number of fully connected layers, Lj , and Lj+1 denote
the number of neurons in the jth and the j + 1th layers,
respectively.

The Gaussian distribution N(�|�, �2) can be reparam-
eterized to the unit Gaussian N(�|0, I) by using a differ-
ential transform of the parameters expressed as follows:
𝜃 = 𝜇 + 𝜎 ⊙ 𝜖 , where ⊙ is an element wise product, and
� is a free-noise parameter of the unit Gaussian. To pre-
vent receiving negative values for � , we can rewrite them
as follows: � = log(1 + exp(�)) . As a result, we can repa-
rameterize the parameters of the Gaussian mixture model
by reparameterizing them over each Gaussian distribution
component (See Fig. 2), as shown below:

for k = 1, ...,K.

(17)

q�k (�) =
K
∑

k=1
�kq�k (F, bc,�, bl)

=
K
∑

k=1
�k q�kF

(F)q�kbc
(bc)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Convolution−layers

q�k� (�)q�kbl
(bl)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fully−Connected−layers

q�kF

(F) =

Nc,pi,hi,wi,ci∏
i,p,h,w,c=1

N
(
fi,p,h,w,c|�kfi,p,h,w,c

, �2
kfi,p,h,w

)

q�kbc

(bc) =

Nc,pi∏
i,p=1

N
(
bci,p|�kbci,p

, �2
kbci,p

)

q�k�
(�) =

Nl,Lj,Lj+1∏
j,m,n=1

N
(
wj,m,n|�kwj,m,n

, �2
kwj,m,n

)

q�kbl

(bl) =

Nl,Lj+1∏
j,n=1

N
(
blj,n|�kblj,n

, �2
kblj,n

)

With �k ∼ N(�|0, I) , and �k = {(�k, �k)}.
This allows applying the Bayes by backprop algorithm

using GMM to deep neural networks, including CNNs (see
Algorithm 4), as follows:

for j = 1, ...,K.

Where, �(t)
k

∼ N(�k|0, I) , for k = 1, ...,K , and t = 1, ..., T ,

(18)𝜃k = g(𝜙k, 𝜖k) = 𝜇k + log(1 + exp(𝜎k))⊙ 𝜖k

(19)

𝜕

𝜕𝜙j

L(D,𝜙) =

K�
k=1

𝜋kEN(𝜖k�0,I)
�𝜕l(��,�)

𝜕𝜃k

𝜕g(𝜙k, 𝜖k)

𝜕𝜙j

+
𝜕l(g(𝜙k, 𝜖k),𝜙)

𝜕𝜙j

�

≈
1

T

T�
t=1

K�
k=1

𝜋k

�𝜕l(𝜃(t)
k
,𝜙)

𝜕𝜃
(t)

k

𝜕g(𝜙k, 𝜖
(t)

k
)

𝜕𝜙j

+
𝜕l(g(𝜙k, 𝜖

(t)

k
),𝜙)

𝜕𝜙j

�

=
𝜕

𝜕𝜙j

L̂(𝜃,𝜙)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝜇j

L(D,𝜙) ≈
1

T

T�
t=1

� K�
k=1

𝜋k
𝜕l(g(𝜙k, 𝜖

(t)

k
),𝜙)

𝜕𝜇j

+ 𝜋j

𝜕l(𝜃
(t)

j
,𝜙)

𝜕𝜃
(t)

j

�

=
𝜕

𝜕𝜇j

L̂(�,�)

𝜕

𝜕𝜎j
L(D,𝜙) ≈

1

T

T�
t=1

� K�
k=1

𝜋k
𝜕l(g(𝜙k, 𝜖

(t)

k
),𝜙)

𝜕𝜎j

+ 𝜋j

𝜕l(𝜃
(t)

j
,𝜙)

𝜕𝜃
(t)

j

𝜖
(t)

j

1 + exp(−𝜎j)

�

=
𝜕

𝜕𝜎j
L̂(𝜃,𝜙)

Fig. 2 Reparameterization trick
on GMM using K Gaussian
Components

2524 Evolutionary Intelligence (2024) 17:2515–2536

and l(�k ,�) = log
(

∑K
i=1 �iN(�k|�i, �2

i)
)

− log p(�k) − log p(y|x, �k)
.

Algorithm 4 Training BCNN using Gaussian mixture
model (BBGMM)

Having obtained the optimal variational distribu-
tion, we can use it to estimate the predictive distribution
p(y∗|x∗,D) for an unseen data input x∗ using the observed
data D = {(x, y)} , as follows:

Since classification tasks have a discrete nature, the predic-
tive distribution is estimated by an average of discrete func-
tions, which are frequently categorical probabilities.

With 𝜃(t)
k

∼ N(𝜃|�̂�k, �̂�
2
k
) , for t = 1, 2, ..., T , and

k = 1, 2, ...,K , f (x∗, �(t)
k
) is the output function of CNN,

f c(x∗, �
(t)

k
) = p(y∗

c
= 1|f (x∗, �(t)

k
)) with

∑C

c=1
f c(x∗, �

(t)

k
) = 1 ,

and C is the number of classes in the output layer.

4.2 Uncertainty in CNN with GMM

Uncertainty estimation in deep neural networks is crucial
for decision-making, especially in tasks that require a high
degree of credibility and reliability. Generally, there are two
types of uncertainty: aleatoric uncertainty and epistemic
uncertainty. Aleatoric uncertainty is an irreducible quantity
resulting from the noise generated by the data collection
method. Regarding epistemic uncertainty, it results from
model predictions when there is little observed data, but it
can be reduced if more data are available. In general, Bayes-
ian techniques provide an effective framework for estimating
uncertainties by computing the variance of the predictive
distribution over the variational posterior, as shown below:

For a review of the last formula’s proof, see: [36].

(20)

p(y∗|x∗, x, y) ≈ ∫ q�̂�(𝜃)p(y
∗|x∗, 𝜃)d𝜃

= ∫
(K∑

k=1

𝜋kN(𝜃|�̂�k, �̂�
2
k
)
)
p(y∗|x∗, 𝜃)d𝜃

≈
1

T

T∑
t=1

K∑
k=1

𝜋kp(y
∗|x∗, 𝜃(t)

k
)

= q(y∗|x∗)

(21)

p(y∗|x∗, x, y) ≈ 1

T

T∑
t=1

K∑
k=1

�kp(y
∗|x∗, �(t)

k
)

=
1

T

T∑
t=1

K∑
k=1

�kCat(y
∗|f (x∗, �(t)

k
))

=
1

T

T∑
t=1

K∑
k=1

�k

C∏
c=1

f c(x∗, �
(t)

k
)y

∗
c

(22)

V��̂ (�)[�(�∗|�∗, �, �)]= E��̂ (�)[�∗�∗
�] − E��̂ (�)[�∗]E�� (�)[�∗]�

= ∫�

[

����
(

E�(�∗ |�∗ ,�)[�∗]
)

− E�(�∗ |�∗ ,�)[�∗]E�(�∗ |�∗ ,�)[�∗]�
]

��̂(�)��
⏟⏞⏞⏞⏟⏞⏞⏞⏟

��������−����������

+∫�

(

E�(�∗ |�∗ ,�)[�∗] − E��̂ (�)[�∗]
)(

E�(�∗ |�∗ ,�)[�∗] − E��̂ (�)[�∗]
)�

��̂(�)��
⏟⏞⏞⏟⏞⏞⏟

��	����−����������

2525Evolutionary Intelligence (2024) 17:2515–2536

As seen in the last formula, the variance of the predic-
tive distribution is the sum of the aleatoric and epistemic
uncertainty. Despite this, calculating these two uncertainties
remains difficult due to the intractability of the integrals in
the last formula. To solve this problem, we can combine
the approach described earlier in Sect. 1 (Eq. 15) with the
method proposed by Kwon in [36] to estimate the uncer-
tainty using a GMM, as illustrated below:

Where, q�̂�(𝜃) =
∑K

k=1
𝜋kN(𝜃��̂�k, �̂�

2
k
),

p̄ =
∑K

k=1
𝜋k

1

T

∑T

t=1
p̂
(t)

k
 , p̂(t)

k
= f (x∗, 𝜃

(t)

k
) is the output

function of CNN, and 𝜃(t)
k

∼ N(𝜃|�̂�k, �̂�
2
k
).

5 Experiments

In this section, we will apply the LeNet-5 network (as
described in Appendix C, Table 9) to the MNIST and Fash-
ion MNIST datasets. Additionally, we will use the CNN
model defined in Appendix C (Table 10) for the CIFAR-10
and SVHN datasets (as specified in Appendix A, Table 8).
To approximate the posterior distribution, we will employ
the GMM as the variational distribution (BBGMM).

5.1 Experimental setup

Implementing the BCNN requires first defining the prior
distribution of all CNN parameters. In this regard, we have
adopted a fully factorized Gaussian distribution with a zero
mean and a prior standard deviation �� > � as a prior distri-
bution of the parameters, as shown below:

Where P is the number of all CNN parameters.

(23)

Vq�̂�(𝜃)
[p(y∗|x∗, x, y)] ≈ 1

T

T∑
t=1

K∑
k=1

𝜋k

[
diag(p̂

(t)

k
) − p̂

(t)

k
p̂
(t)T

k

]

���
Aleatoric−Uncertainty

+
1

T

T∑
t=1

K∑
k=1

𝜋k(p̂
(t)

k
− p̄)(p̂

(t)

k
− p̄)T

���
Epistemic−Uncertainty

(24)p(�) = p(F, bc,�, bl) =

P∏
i=1

N(�i|0, �2
0
)

(25)log p(�) = log p(F, bc,�, bl) =

P∑
i=1

log
(
N(�i|0, �2

0
)
)

After executing the CNN-feedforward on the dataset, we
compute the log-likelihood as follows:

Where C is the number of classes in the output layer (C =
10 for all datasets).

Computing log p(D|�) gets difficult when dealing with a
huge dataset (N is large). To address this issue, the mini-
batch optimization technique has demonstrated its effi-
ciency in training time by randomly dividing the training
data D into small partitions of equal size D1, ...,DS and
using them to train the model at each epoch.

Where log p(D��) = ∑S

s=1
log p(Ds��) , Ds = {(xsn , ysn)}

M
n=1

 ,
S is the number of partitions, and M is the size of each
partition.

Next, we define the variational distribution that approx-
imates the posterior distribution of parameters. In our
situation, we considered it as a mixture of two factorized
Gaussian distributions, as shown below:

Where 0 < 𝜋 < 1 is the mixture weight considered as a
hyperparameter.

Finally, we can approximate the cost function of this
model as follows:

Where 𝜃(t)
1

= 𝜇1 + 𝜎1 ⊙ 𝜖
(t)

1
 , and 𝜃(t)

2
= 𝜇2 + 𝜎2 ⊙ 𝜖

(t)

2
,

(26)

log p(D|�) = log p(D|cnn(x, �))

=

N∑
n=1

log p(yn|cnn(xn, �))

=

N∑
n=1

logCat(cnn1(xn, �), ..., cnn
C(xn, �))

log p(Ds|�) =
M∑
n=1

log p(ysn |xsn , �)

(27)

q�(�) = �N(�|�1, �
2
1
) + (1 − �)N(�|�2, �

2
2
)

= �

P∏
i=1

N(�i|�1i
, �2

1i
) + (1 − �)

P∏
i=1

N(�i|�2i
, �2

2i
)

(28)

log q�(�) = log
(
�

P∏
i=1

N(�i|�1i
, �2

1i
) + (1 − �)

P∏
i=1

N(�i|�2i
, �2

2i
)
)

(29)

L(D,𝜙) ≈ L̂MB(𝜃,𝜙)

=
1

T

T∑
t=1

[
𝜋
(
log q𝜙(𝜃

(t)

1
) − log p(𝜃

(t)

1
) −

N

M

M∑
n=1

log p(yns |xsn , 𝜃(t)1)
)

+ (1 − 𝜋)
(
log q𝜙(𝜃

(t)

2
) − log p(𝜃

(t)

2
) −

N

M

M∑
n=1

log p(ysn |xsn , 𝜃(t)2)
)]

2526 Evolutionary Intelligence (2024) 17:2515–2536

where �(t)
1

∼ N(�1|0, I) , and �(t)
2

∼ N(�2|0, I) , for t =
1,...,T.

5.2 Results and analysis

This section provides an assessment of the performance of
BBGMM method described in Algorithm 4 compared to
existing methods (Frequentist approach, BBGaussian [58],
and MC Dropout [18]) in classification tasks using MNIST,
Fashion MNIST, CIFAR-10, and SVHN datasets (Appendix
A, Table 6). We then evaluate the uncertainties associated
with our proposed method for these datasets.

5.2.1 Datasets (Appendix A, Table 6)

We evaluate our method using the following datasets: 1.
MNIST: This well-established benchmark dataset comprises
grayscale images representing handwritten digits. It contains
70,000 samples, each image sized at 1 × 28 × 28 pixels. The
dataset is strategically partitioned into training (50,000 sam-
ples), validation (10,000 samples), and test (10,000 samples)
sets, facilitating essential aspects of model training, hyper-
parameter tuning, and performance evaluation.

2. Fashion MNIST: An alternative to MNIST, this
dataset shifts focus to fashion products. Sharing structural
similarities with MNIST, it encompasses 70,000 grayscale
images of fashion items, each sized at 1 × 28 × 28 pixels.
Like MNIST, it is partitioned into training, validation, and
test sets, comprising 50,000, 10,000, and 10,000 samples,
respectively.

3. CIFAR-10: Representing a more intricate challenge
than MNIST and Fashion MNIST, CIFAR-10 consists of
60,000 color images, each with dimensions of 3 × 32 × 32 .
The dataset covers ten distinct object categories and is is
split into training (40,000 samples), validation (10,000
samples), and test (10,000 samples) sets to support effec-
tive model development and evaluation.

4. SVHN: Focused on digit recognition within real-
world images, the SVHN dataset captures house numbers
from street views. Comprising 73,257 color images sized
at 3 × 32 × 32 pixels. This dataset includes a range of digits
from 0 to 9. The dataset is partitioned into training (53,257
samples), validation (20,000 samples), and test (26,032 sam-
ples) sets, enabling a comprehensive assessment of model
performance.

5.2.2 Results on MNIST and fashion MNIST

Table 2 compares the training, validation, and test accuracies
(in percent) of LeNet-5 on the MNIST and Fashion MNIST
datasets, evaluating our method against frequentist, MC
dropout, and BBGaussian models.

Overall, the table shows comparable results between the
models. On MNIST, the frequentist model obtained the
highest training accuracy of 99.97% compared with the other
models, with a test accuracy of 98.54%.

On the other hand, our model achieved a training accu-
racy of 99.87% and a test accuracy of 98.85%. For Fashion
MNIST, our model outperformed the others with a test accu-
racy of 89.02%, indicating that the BBGMM model is more
accurate and reliable on Fashion MNIST test data.

Figs. 3 and 4 display the evolution of validation accu-
racy during LeNet-5 training on the MNIST and Fashion
MNIST datasets, comparing previous approaches with our
model. Notably, the validation accuracy curves for all mod-
els show comparable performance, but with a preference for
the BBGMM model (blue lines).

Table 3 compares the training and validation errors
obtained by training the LeNet-5 network on the MNIST
and Fashion MNIST datasets using the BBGaussian and
BBGMM models. The results indicate that our proposed
model achieves lower training and validation errors than
the BBGaussian model for both datasets. This suggests that
incorporating a mixture model (GMM) within the Bayes by

Table 2 Comparison of
accuracies between Frequentist,
MC dropout, BB-Gaussian,
and BBGMM models on the
MNIST, and Fashion MNIST
datasets

Bold shows the results that is more significant

Datasets Models Accuracies

Training accu-
racy %

Validation accu-
racy %

Test accuracy %

MNIST Frequentist LeNet-5 99.97 98.68 98.54
MC dropout LeNet-5 99.13 98.46 98.50
BB Gaussian LeNet-5 99.83 98.73 98.67
BBGMM LeNet-5 99.87 98.87 98.85

Fashion-MNIST Frequentist LeNet-5 90.91 89.82 88.66
MC dropout LeNet-5 90.20 89.88 88.65
BB Gaussian LeNet-5 90.11 89.96 88.58
BBGMM LeNet-5 90.77 90.33 89.02

2527Evolutionary Intelligence (2024) 17:2515–2536

Fig. 3 Comparison of validation
accuracies on MNIST

Fig. 4 Comparison of validation
accuracies Fashion MNIST

2528 Evolutionary Intelligence (2024) 17:2515–2536

Backprop method for training CNN on the MNIST and Fash-
ion MNIST datasets yields improved performance than using
a single mode distribution, such as the Gaussian distribution.

5.2.3 Results on CIFAR‑10 and SVHN

In this section, we have used a CNN network consisting of
three blocks similar to the VGG blocks and two fully con-
nected layers. Each block consists of two convolutional lay-
ers followed by max-pooling, and we adopted ReLu as an
activation function (see Appendix C (Table 10)).

Table 4 presents a comparison of accuracies between the
previous models (Frequentist, MC dropout, BB-Gaussian)
and the BBGMM method, using the CNN model described
in Appendix C (Table 10), on the CIFAR-10 and SVHN
datasets. Table 4 shows that our method performed better

than other models. For the CIFAR-10 dataset, after 100
epochs, our BBGMM model achieved the highest test accu-
racy of 80.60%, with a corresponding training accuracy of
83.76%. On the other hand, the MC dropout model achieved
a test accuracy of 79.52% and a training accuracy of 81.08%.
As for the BBGaussian method, it yielded a lower test accu-
racy of 78.68%. For the SVHN dataset, our BBGMM model
achieved the highest test accuracy of 94.53%, outperforming
the frequentist, MC dropout, and BBGaussian models, which
achieved test accuracies of 93.21%, 93.16%, and 93.36%,
respectively.

Figs. 5 and 6 illustrate the evolution of validation accura-
cies during CNN training on the CIFAR-10 and SVHN data-
sets, respectively. Generally, the results show comparable
performance on the two datasets, with a slight improvement
observed for our BGMM method, as indicated by the blue
lines in the figures.

Fig. 7 shows the progression of validation error during
CNN training on the CIFAR-10 and SVHN datasets using
two different variational distributions: the Bayes by Back-
prop method with a single Gaussian distribution (BBGauss-
ian, orange lines) and the same method with a mixture model
of two Gaussian distributions (BBGMM, bleu lines). The
figure indicates that both methods converge as training pro-
gresses on both datasets. However, it is worth noting that
the BBGMM model consistently achieves a lower valida-
tion error than the BBGaussian model. This lower valida-
tion error indicates that the BBGMM method performs
more accurately on the validation set than the BBGaussian
method.

Fig. 8 displays the evolution of the probability density of
a weight taken from the last layer of the CNN over training
iterations. The weight is sampled from the two Gaussian
distributions employed in the mixture for classifying the
CIFAR-10 images. Figure 9 shows that during the first ten
training epochs, the weight density appears unimodal due
to the proximity of the means of the two Gaussian distribu-
tions used.

However, as the training progresses, the density is trans-
formed into a bimodal distribution, with each mode cor-
responding to a different mean. This observation highlights
the power of approximating the posterior distribution for
this case using a mixture of Gaussian distributions rather
than adopting an unimodal distribution such as the Gauss-
ian distribution.

Figures 9, and 10 depict the convergence of standard
deviations �� and �� for the Gaussian mixture distribution
represented in Fig. 8. It is noticed in Fig. 9 that the stand-
ard deviations of each component of the binary mixture
of Gaussian distributions decrease over epochs, indicat-
ing that the uncertainty of the model reduces as more new
data is received. Thus, the model gets more reliable with its
training.

Table 3 Comparison of errors on the MNIST, and Fashion MNIST
datasets

Bold shows the results that is more significant

Datasets Models Accuracies

Training error % Validation error

MNIST BB Gaussian 2.53034 2.59654
BBGMM 1.06146 1.11173

Fashion MNIST BB Gaussian 1.92743 1.94768
BBGMM 0.89286 0.90135

Table 4 Comparison of accuracies between Frequentist, MC dropout,
BB-Gaussian, and BBGMM models on CIFAR-10, and SVHN data-
sets

Datasets Models Accuracies

Training
accuracy
%

Validation
accuracy %

Test accuracy
%

CIFAR-10 Frequentist
CNN

84.20 78.82 79.52

MC dropout
CNN

81.08 79.46 79.52

BB Gaussian
CNN

81.49 77.23 78.68

BBGMM
CNN

83.76 79.86 80.60

SVHN Frequentist
CNN

93.88 92.12 93.21

MC dropout
CNN

92.42 92.20 93.16

BB Gaussian
CNN

93.71 92.53 93.36

BBGMM
CNN

94.70 93.36 94.53

2529Evolutionary Intelligence (2024) 17:2515–2536

Fig. 5 Comparison of validation
accuracies on CIFAR 10

Fig. 6 Comparison of validation
accuracies on SVHN

2530 Evolutionary Intelligence (2024) 17:2515–2536

5.2.4 Uncertainty estimation

Figure 11 shows the BBGMM model prediction for two
randomly selected images in the test set from the MNIST
and Fashion-MNIST datasets and estimates the BBGMM
model uncertainties using Eq. 23 for these two images. It
illustrates that the BBGMM model can predict the clas-
sification of the picture extracted from MNIST, but with
a percentage of aleatoric uncertainty owing to the noise

in this image. However, the BBGMM model failed to cor-
rectly classify the picture taken from Fashion-MNIST
since it differed from the MNIST dataset used during
training, which explains the significant value of epistemic
uncertainty in this image. Also, it shows a significant value
of aleatoric uncertainty in the last image due to the noise
present in this image.

Fig. 7 Comparison of validation losses on CIFAR-10, and SVHN

Fig. 8 Probability density
evolution

2531Evolutionary Intelligence (2024) 17:2515–2536

Table 5 compares the average epistemic and aleato-
ric uncertainties for the BBGMM model applied to the
MNIST, Fashion MNIST, CIFAR-10 and SVHN datasets
using the LeNet-5 network. The results indicate that the
aleatoric uncertainty of CIFAR-10 is over thirty times

higher than that of MNIST, while the epistemic uncer-
tainty of CIFAR-10 is more than thirteen times greater
than that of MNIST. The variations in aleatoric and epis-
temic uncertainty between all datasets can be attributed to
the performance of the LeNet5-BBGMM model on each
specific dataset. In other words, the model’s accuracy

Fig. 9 Standard deviation (�
1
)

evolution

Fig. 10 Standard deviation (�
2
)

evolution

2532 Evolutionary Intelligence (2024) 17:2515–2536

on the test data directly affects its reliability, with lower
uncertainty values indicating higher reliability.

5.3 Training time complexity

The training time of the BGMM for CNNs can be estimated
as the training time required for a Bayesian CNN with a sin-
gle Gaussian distribution having a similar structure, multi-
plied by K, where K represents the number of components in
the mixture. It is important to note that this approach can be
computationally expensive, especially for high-dimensional
models like CNNs. However, the advantage of the BGMM
lies in its ability to reparameterize the Gaussian mixture,
providing differentiable estimates. This, in turn, leads to a
reduction in the variance of the gradients for our objective

Fig. 11 The image on the top left is an image of number 4 taken from
the test set for MNIST. The image on the top right is an image of a
dress (class 3) taken from the test set for Fashion-MNIST. The bot-
tom left image shows the percentage of epistemic uncertainty for the
BBGMM model predictions of the previous two pictures, where a
high value of epistemic uncertainty appears between classes 1 and 8
for the image taken from Fashion-Mnist, as it is completely different
from the MNIST set, but it has a high similarity between it and both
numbers 1 and 8, so the BBGMM model predicts uncertain outputs

for this image between these two classes. The picture at the bottom
right presents the proportion of aleatoric uncertainty for the BBGMM
model predictions in the previous two images, where varying values
of this uncertainty appear between the two images resulting from the
noise in these two images. For example, we can explain the appear-
ance of aleatoric uncertainty between the numbers 4 and 9 for the
image taken from MNIST by the presence of a significant similarity
between these numbers in this image

Table 5 Uncertainty estimation

Datasets Aleatoric uncertainty Epistemic uncertainty

MNIST 0.001229 0.000307
Fashion MNIST 0.01394 0.0004003
CIFAR-10 0.037939 0.004080
SVHN 0.012833 0.037308

2533Evolutionary Intelligence (2024) 17:2515–2536

function, resulting in more accurate and reliable predictions
compared to other models.

6 Conclusion and discussion

The BBGMM model can be viewed as an extension of the
Bayes by Backprop method for mixture models (Gaussian
mixture model) to approximate the posterior distribution for
convolutional neural networks. We followed how to reparam-
eterize the mixture model if all of its components are repara-
metrizable, which is available in Gaussian mixture models. We
then tried to estimate the aleatoric and epistemic uncertainties
of mixture models for classification tasks.

Next, the experimental results showed that the BBGMM
model performed well compared to the other methods, as it
achieved significant test accuracy over all datasets.

We also saw that the BBGMM model increased the credi-
bility of convolutional neural network outcomes by quantify-
ing uncertainty in network weights from the mixture model.

Although the BBGMM method has produced positive
results, it is crucial to note that the extent of these results is
currently insufficient. This implies that while the BBGMM
method is promising, there is still considerable potential to
improve it to achieve more substantial and robust results. The
second problem is that the BBGMM method doubles the num-
ber of parameters that vary as a function of the number of
components in the mixture, which increases the complexity
of the model and makes it inflexible or difficult to apply in
practical applications, particularly when the number of mixture
components increases.

This motivates us to improve the BBGMM model and
discover complementary solutions to reduce the model’s
complexity.

Appendix A: Datasets

See Table 6.

Appendix B: Hyperparameters

See Tables 7, 8.

Table 6 Datasets informations Informations Datasets

MNIST [39] Fashion MNIST [68] CIFAR-10 [33] SVHN [50]

Content Handwritten digits images Fashion products Objects pictures Digits images
Number 70000 70000 60000 73257
Type Grayscale images Grayscale images Colour images Colour images
Size 1 × 28 × 28 1 × 28 × 28 3 × 32 × 32 3 × 32 × 32

Class 10 10 10 10
Train set 50000 50000 40000 53257
Validation set 10000 10000 10000 20000
Test set 10000 10000 10000 26032

Table 7 Hyperparameters using for MNIST and Fashion MNIST

Hyperameters Value

Epochs 100
Batch_size 128
Sample train 2
Sample test 10
Loss Cross-Entropy
Optimizer Adam
Learning rate 0.00015
Prior std �

0
0.1

Mixture weight � 0.5

Table 8 Hyperparameters using for CIFAR-10 and SVHN

Hyperameters Value

Epochs 100
Batch_size 128
Sample train 2
Sample test 10
Loss Cross-Entropy
Optimizer Adam
Learning rate 0.001
Prior std �

0
0.1

Mixture weight � 0.5

2534 Evolutionary Intelligence (2024) 17:2515–2536

Appendix C: CNN architectures

See Tables 9, 10.

Data availibility Datasets analyzed during the current study are avail-
able in the UCI machine learning repository.

Declarations

Conflict of interest The authors declare that they have no conflicts of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

 1. Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L,
Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR et al
(2021) A review of uncertainty quantification in deep learning:
techniques, applications and challenges. Inf Fusion 76:243–297

 2. Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a
convolutional neural network. In: 2017 international conference
on engineering and technology (ICET). IEEE, pp 1–6

 3. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-
Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L
(2021) Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. J Big Data 8:1–74

 4. Barber D, Bishop CM (1998) Ensemble learning in Bayesian neu-
ral networks. Nato ASI Ser F Comput Syst Sci 168:215–238

 5. Bardenet R, Doucet A, Holmes C (2017) On Markov chain monte
Carlo methods for tall data. J Mach Learn Res 18(1):1515–1557

 6. Bishop CM et al (1995) Neural networks for pattern recognition.
Oxford University Press, Oxford

 7. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational infer-
ence: a review for statisticians. J Am Stat Assoc 112(518):859–877

 8. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015)
Weight uncertainty in neural network. In: International confer-
ence on machine learning. PMLR, pp 1613–1622

 9. Boué L (2018) Deep learning for pedestrians: backpropagation in
CNNS. arXiv preprint arXiv: 1811. 11987

 10. Chan A, Alaa A, Qian Z, Van Der Schaar M (2020) Unlabelled
data improves Bayesian uncertainty calibration under covariate
shift. In: International conference on machine learning. PMLR,
pp 1392–1402

 11. Chandra R, Chen R, Simmons J (2023) Bayesian neural networks
via MCMC: a python-based tutorial. arXiv preprint arXiv: 2304.
02595

 12. Chib S, Greenberg E (1995) Understanding the metropolis-hast-
ings algorithm. Am Stat 49(4):327–335

 13. Christopher M (2006) Pattern recognition and machine learning.
Springer, New York

 14. Depeweg S, Hernandez-Lobato J-M, Doshi-Velez F, Udluft S
(2018) Decomposition of uncertainty in bayesian deep learning
for efficient and risk-sensitive learning. In: International confer-
ence on machine learning. PMLR, pp 1184–1193

 15. Figurnov M, Mohamed S, Mnih A (2018) Implicit reparameteri-
zation gradients. In: Advances in neural information processing
systems, vol 31

 16. Gal Y. Uncertainty in deep learning
 17. Gal Y, Ghahramani Z (2015) Bayesian convolutional neural net-

works with Bernoulli approximate variational inference. arXiv
preprint arXiv: 1506. 02158

 18. Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approxima-
tion: representing model uncertainty in deep learning. In: Inter-
national conference on machine learning. PMLR, pp 1050–1059

 19. Goan E, Fookes C (2020) Bayesian neural networks: an introduc-
tion and survey. In: Case studies in applied Bayesian data science.
Springer, pp 45–87

 20. Graves A (2011) Practical variational inference for neural net-
works. In: Advances in neural information processing systems,
vol 24

 21. Graves A (2016) Stochastic backpropagation through mixture
density distributions. arXiv preprint arXiv: 1607. 05690

Table 9 LeNet-5

Layers Layer type Layer size Stride Padding Activation
function

1 Convolution 5 × 5 × 6 1 2 Tanh
2 Max pooling 2 × 2 2 0
3 Convolution 5 × 5 × 16 1 0 Tanh
4 Max pooling 2 × 2 2 0
5 Fully con-

nected
400 × 120 Tanh

6 Fully con-
nected

120 × 84 Tanh

7 Fully con-
nected

84 × 10 Softmax

Table 10 CNN architecture

Layers Layer type Layer size Stride Padding Activation
function

1 Convolution 3 × 3 × 16 1 Same ReLu
2 Convolution 3 × 3 × 16 1 Same ReLu
3 Max pooling 2 × 2 2 0
4 Convolution 3 × 3 × 32 1 Same ReLu
5 Convolution 3 × 3 × 32 1 Same ReLu
6 Max pooling 2 × 2 2 0
7 Convolution 3 × 3 × 64 1 Same ReLu
8 Convolution 3 × 3 × 64 1 Same ReLu
9 Max pooling 2 × 2 2 0
10 Fully con-

nected
1024 × 64 ReLu

11 Fully con-
nected

64 × 10 Softmax

http://arxiv.org/abs/1811.11987
http://arxiv.org/abs/2304.02595
http://arxiv.org/abs/2304.02595
http://arxiv.org/abs/1506.02158
http://arxiv.org/abs/1607.05690

2535Evolutionary Intelligence (2024) 17:2515–2536

 22. Greenspan H, Van Ginneken B, Summers RM (2016) Guest edi-
torial deep learning in medical imaging: overview and future
promise of an exciting new technique. IEEE Trans Med Imaging
35(5):1153–1159

 23. Guo W, Mu D, Xu J, Su P, Wang G, Xing X (2018) Lemna:
explaining deep learning based security applications. In: Pro-
ceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pp 364–379

 24. Hastings WK (1970) Monte Carlo sampling methods using
Markov chains and their applications

 25. Hernández-Lobato JM, Adams R (2015) Probabilistic back-
propagation for scalable learning of Bayesian neural networks.
In: International conference on machine learning. PMLR, pp
1861–1869

 26. Hinton G, van Camp D (1993) Keeping neural networks simple
by minimising the description length of weights. In: Proceed-
ings of COLT-93, pp 5–13

 27. Jospin LV, Laga H, Boussaid F, Buntine W, Bennamoun M
(2022) Hands-on Bayesian neural networks-a tutorial for deep
learning users. IEEE Comput Intell Mag 17(2):29–48

 28. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications
in medical image analysis. IEEE Access 6:9375–9389

 29. Khairnar P, Thiagarajan P, Ghosh S (2020) A modified Bayes-
ian convolutional neural network for breast histopathology image
classification and uncertainty quantification

 30. Kingma DP, Welling M (2019) An introduction to variational
autoencoders. arXiv preprint arXiv: 1906. 02691

 31. Kingma DP, Salimans T, Welling M (2015) Variational dropout
and the local reparameterization trick. Adv Neural Inf Process
Syst 28:2575–2583

 32. Kristiadi A, Hein M, Hennig P (2020) Being Bayesian, even just a
bit, fixes overconfidence in Relu networks. In: International con-
ference on machine learning, pp 5436–5446. PMLR

 33. Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of
features from tiny images

 34. Krzywinski M, Altman N (2013) Importance of being uncertain.
Nat Methods 10(9):809–811

 35. Kullback S, Leibler RA (1951) On information and sufficiency.
Ann Math Stat 22(1):79–86

 36. Kwon Y, Won J-H, Kim BJ, Paik MC (2018) Uncertainty quanti-
fication using Bayesian neural networks in classification: applica-
tion to ischemic stroke lesion segmentation

 37. Lampinen J, Vehtari A (2001) Bayesian approach for neural net-
works-review and case studies. Neural Netw 14(3):257–274

 38. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hub-
bard W, Jackel LD (1989) Backpropagation applied to handwritten
zip code recognition. Neural Comput 1(4):541–551

 39. LeCun Y, Cortes C, Burges C (2010) Mnist handwritten digit
database

 40. Lee W, Yu H, Yang H (2018) Reparameterization gradient for
non-differentiable models. In: Advances in neural information
processing systems, vol 31

 41. Li Z, Liu F, Yang W, Peng S, Zhou J (2021) A survey of convolu-
tional neural networks: analysis, applications, and prospects. IEEE
Trans Neural Netw Learn Syst

 42. MacKay DJ (1992) A practical Bayesian framework for back-
propagation networks. Neural Comput 4(3):448–472

 43. Meena G, Mohbey KK, Kumar S, Lokesh K (2023) A hybrid deep
learning approach for detecting sentiment polarities and knowl-
edge graph representation on monkeypox tweets. Decision Anal
J 7:100243

 44. Minka TP (2013) Expectation propagation for approximate Bayes-
ian inference. arXiv preprint arXiv: 1301. 2294

 45. Mitros J, Mac Namee B (2019) On the validity of Bayesian neural
networks for uncertainty estimation. arXiv preprint arXiv: 1912.
01530

 46. Mohbey KK, Meena G, Kumar S, Lokesh K (2023) A CNN-
LSTM-based hybrid deep learning approach for sentiment analysis
on Monkeypox tweets. New Gener Comput 1–19

 47. Morningstar W, Vikram S, Ham C, Gallagher A, Dillon J (2021)
Automatic differentiation variational inference with mixtures. In:
International conference on artificial intelligence and statistics.
PMLR, pp 3250–3258

 48. Mostafa B, Hassan R, Mohammed H, Tawfik M (2023) A review
of variational inference for Bayesian neural network. In: Interna-
tional conference on artificial intelligence & industrial applica-
tions, pp 231–243. Springer

 49. Neal RM et al (2011) MCMC using Hamiltonian dynamics. Hand-
book of Markov chain monte Carlo 2(11):2

 50. Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011)
Reading digits in natural images with unsupervised feature
learning

 51. O’Shea K, Nash R (2015) An introduction to convolutional neural
networks. arXiv preprint arXiv: 1511. 08458

 52. Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on
point sets for 3D classification and segmentation. In: Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion, pp 652–660

 53. Reynolds DA (2009) Gaussian mixture models. Encyclopedia
Biomet 741:659–663

 54. Ritter H, Botev A, Barber D (2018) A scalable Laplace approxi-
mation for neural networks. In: 6th international conference on
learning representations, ICLR 2018-conference track proceed-
ings, vol 6

 55. Roeder G, Wu Y, Duvenaud DK (2017) Sticking the landing: sim-
ple, lower-variance gradient estimators for variational inference.
In: Advances in neural information processing systems, vol 30

 56. Roy A, Sun J, Mahoney R, Alonzi L, Adams S, Beling P (2018)
Deep learning detecting fraud in credit card transactions. In: 2018
Systems and information engineering design symposium (SIEDS).
IEEE, pp 129–134

 57. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning repre-
sentations by back-propagating errors. Nature 323(6088):533–536

 58. Shridhar K, Laumann F, Liwicki M (2019) A comprehensive
guide to Bayesian convolutional neural network with variational
inference. arXiv preprint arXiv: 1901. 02731

 59. Simonyan K, Zisserman A (2014) Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:
1409. 1556

 60. Sun S (2013) A review of deterministic approximate inference
techniques for Bayesian machine learning. Neural Comput Appl
23(7):2039–2050

 61. Sun S, He S (2019) Generalizing expectation propagation with
mixtures of exponential family distributions and an application
to Bayesian logistic regression. Neurocomputing 337:180–190

 62. Titterington D (2004) Bayesian methods for neural networks and
related models. Stat Sci 128–139

 63. Tobore I, Li J, Yuhang L, Al-Handarish Y, Kandwal A, Nie Z,
Wang L et al (2019) Deep learning intervention for health care
challenges: some biomedical domain considerations. JMIR
Mhealth Uhealth 7(8):e11966

 64. Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning
for smart manufacturing: methods and applications. J Manuf Syst
48:144–156

 65. Wang Y-H, Su W-H (2022) Convolutional neural networks in
computer vision for grain crop phenotyping: a review. Agronomy
12(11):2659

 66. Wilson AG, Izmailov P (2020) Bayesian deep learning and a
probabilistic perspective of generalization. arXiv preprint arXiv:
2002. 08791

 67. Winn J, Bishop CM, Jaakkola T (2005) Variational message pass-
ing. J Mach Learn Res 6(4)

http://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1301.2294
http://arxiv.org/abs/1912.01530
http://arxiv.org/abs/1912.01530
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1901.02731
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2002.08791
http://arxiv.org/abs/2002.08791

2536 Evolutionary Intelligence (2024) 17:2515–2536

 68. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv pre-
print arXiv: 1708. 07747

 69. Zhang C, Bütepage J, Kjellström H, Mandt S (2018) Advances
in variational inference. IEEE Trans Pattern Anal Mach Intell
41(8):2008–2026

 70. Zhao J, Liu X, He S, Sun S (2020) Probabilistic inference of
Bayesian neural networks with generalized expectation propaga-
tion. Neurocomputing 412:392–398

 71. Zhou X, Liu H, Pourpanah F, Zeng T, Wang X (2022) A survey
on epistemic (model) uncertainty in supervised learning: recent
advances and applications. Neurocomputing 489:449–465

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1708.07747

	Gaussian mixture models for training Bayesian convolutional neural networks
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Current status
	1.3 Research hypothesis
	1.4 The main contributions

	2 Related works
	3 Background and preliminaries
	3.1 Convolution neural network architecture
	3.2 Variational inference
	3.3 Bayes by backprop
	3.4 Gaussian mixture model

	4 Bayes by backprop using mixture models
	4.1 Bayesian convolution neural network with GMM
	4.2 Uncertainty in CNN with GMM

	5 Experiments
	5.1 Experimental setup
	5.2 Results and analysis
	5.2.1 Datasets (Appendix A, Table 6)
	5.2.2 Results on MNIST and fashion MNIST
	5.2.3 Results on CIFAR-10 and SVHN
	5.2.4 Uncertainty estimation

	5.3 Training time complexity

	6 Conclusion and discussion
	Appendix A: Datasets
	Appendix B: Hyperparameters
	Appendix C: CNN architectures
	References

