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Abstract
Bayes by Backprop is a variational inference method based on the reparametrization trick to assure backpropagation in 
Bayesian neural networks. Generally, the approximate distributions used in Bayes by backprop method are made unimodal 
to facilitate the use of the reparametrization trick. But frequently, the modelling of some tasks requires more sophisticated 
distributions. This paper describes the Bayes by Backprop algorithm with a multi-model distribution for training Bayesian 
convolutional neural networks. Specifically, we illustrate how to reparameterize the CNN parameters for a Gaussian mixture 
model. We then show that the results compare favourably to existing variational algorithms on various classification datasets. 
Finally, we illustrate how to use this distribution to estimate epistemic and aleatoric uncertainty.

Keywords Convolution neural network · Variational inference · Bayesian neural network · Parameter estimation · Gaussian 
mixture model · Uncertainty

1 Introduction

Deep learning has emerged as an extension and development 
of machine learning for providing appropriate solutions to 
challenging tasks. Deep learning algorithms have provided 
innovative solutions in many fields, including computer 
vision, industrial and financial engineering, biomedical 
engineering, healthcare, security, etc [22, 23, 28, 52, 56, 
63–65]. Nowadays, Convolutional Neural Network (CNN) 

is among the most common deep learning models, especially 
in pattern recognition and image classification fields due to 
its compatibility with image architecture. CNN has shown 
outstanding results, especially in large image classification 
datasets (Image Net) [2, 43, 51, 59].

1.1  Problem statement

CNN remains limited because it can only provide point esti-
mates of parameters and outcomes. This constraint leads 
to decisions being taken with a high degree of certainty, 
which can lead to undesirable results, particularly in situa-
tions where decisions require a high degree of caution and 
credibility. The drawback arises from the fact that a CNN is 
unable to capture model uncertainty; it consistently produces 
a result but fails to indicate the reliability or correctness of 
that result [34].

1.2  Current status

The Bayesian approach in deep learning algorithms can 
be used as an alternative to the deterministic approach to 
address this problem. [37]. The Bayesian approach pro-
vides a probabilistic interpretation for deep learning models 
that allows the determination of model uncertainty, which 
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increases the credibility of neural network outcomes [1, 14, 
32, 45].

A Bayesian Convolutional Neural Network (BCNN) is a 
form of artificial neural network in which the CNN parame-
ters are represented as stochastic components of the network.

The BCNN is characterized not only by its capacity to 
quantify uncertainty in the network but also by its ability 
to discriminate between its two forms, which are epistemic 
and aleatoric uncertainty [14, 71]. Nevertheless, applying 
the Bayesian method to CNN remains challenging since 
it requires the computation of an integral over all possible 
values of CNN parameters to determine the posterior dis-
tribution of these models. To overcome this problem, we 
can infer this distribution using statistical estimates known 
as "approximate inferences" [19, 27, 27, 48, 60, 62]. In this 
context, there are many inferential estimation techniques 
used in deep learning algorithms, the most notable of which 
are Monte Carlo techniques and Variational Inference.

Monte Carlo methods are stochastic estimations that 
approximate expectations numerically by randomly gener-
ating samples from probability distributions.

Variational inference is an optimization technique that 
provides analytical estimates of the posterior distribution 
using another simple distribution [7, 60, 69].

1.3  Research hypothesis

In practical applications [3, 41, 46], posterior distributions 
are often complex and require more flexible models for 
accurate estimation. Therefore, this paper aims to approxi-
mate the posterior distribution using the Bayes by Backprop 
method by employing a multimodal distribution, specifically 
a mixture of factorized Gaussian distributions, as the varia-
tional distribution. This involves sampling the convolutional 
parameters from a mixture of K fully factorized Gaussian 
distributions at each iteration, where K represents the num-
ber of mixture components.

Multimodal distributions perform better than unimodal 
distributions in capturing complex patterns and variations 
in the posterior distribution.

1.4  The main contributions

The contributions of this paper are summarized as follows:

• We employ the Bayes-Backprop method to train convo-
lutional neural networks (CNNs) by employing a mixture 
of factorized Gaussian distributions as the variational 
distribution.

• We show that the reparametrization of a GMM involves 
reparametrizing each Gaussian component indepen-
dently. This process includes introducing a standard 
normal random variable and using it to reparameterize 
each component of the GMM.

• We apply our proposed method to train CNNs on vari-
ous datasets. Subsequently, we conduct a comparative 
analysis between our approach and previous methods to 
evaluate the obtained results.

• We study the estimation of both aleatoric and epistemic 
uncertainties using a Gaussian mixture model (GMM) 
as the variational distribution. Through the experimen-
tal results, we demonstrate that as training accuracy 
increases, uncertainty decreases, resulting in more reli-
able decision-making by the network.

The remaining sections of this paper were ordered as fol-
lows: the second section provided an overview of most of 
the research related to this work, while Sect. 3 provided the 
background and tools that we will need in this research, 
including a description of the BCNN and the most impor-
tant approaches used in it. Section 4 describes our contribu-
tion, which is represented by the application of the Bayes 
by backprop technique to train CNNs using mixture models. 
Then, in Sect. 5, we show the experimental results of this 
method and attempt to compare it to previous works. Finally, 
Sect. 6 summarizes this paper.

2  Related works

As previously stated, there are two ways to approximate the 
posterior distribution: stochastic estimations and variational 
inference methods (Table 1).

Markov chain Monte Carlo (MCMC) methods are one of 
the most important stochastic approaches. MCMC methods 
provide an approximate unbiased estimator of the true esti-
mator by sampling the posterior distribution according to the 
Markov process. MCMC methods can guarantee convergence 
to the true estimator with increasing sample size from the pos-
terior, which can be computationally expensive, especially in 
BCNN [5, 11, 12, 24, 49]. On the other hand, many approaches 
have contributed to developing analytical approximations to 
the posterior distribution, especially in deep learning mod-
els. In this context, MacKay (1992) successfully applied the 
Laplace approximation to neural networks [42]. The Laplace 
approach attempts to estimate the posterior using a Gaussian 
distribution whose mean achieves the maximum a posteriori 
(MAP) and whose covariance matrix is the inverse of the 
Hessian matrix of the cost function used in the MAP esti-
mate around this mean [54]. This approach focuses only on 
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the properties of a single-mode MAP. In the case of multiple 
modes, they will produce different distributions, which often 
fail to approximate the posterior distribution, particularly in 
BCNN. Subsequently, many researchers have developed these 
approaches in deep learning models, using mainly variational 
inference methods (Hinton and Van Camp (1993) [26], Bar-
ber and Bishop (1998) [4], Graves (2011) [20], Blundell and 
al (Bayes by Backprop 2015) [8]. Again, in 2016, Graves 
attempted to approximate the gradient estimators for mixture 
models by employing the quantile functions as an alternate 
transform to the reparameterization trick [21]. In 2019, Kumar 
Shridhar applied the Bayes-by-backprop method using a uni-
modal distribution to model convolutional kernels [58].

Expectation Propagation (EP) is another method that 
estimates the true posterior by a simpler parametric factor-
ized distribution from the exponential family. EP is based 
on minimizing the inverse form of the Kullback–Leibler 
(KL) divergence, KL(p//q), rather than the direct form of 
KL(q//p) used in variational inference (P.Minka [44]), 
(Hernandez-Lobato and P. Adams [25]). Sun et al. recently 
proposed "Generalized Expectation Propagation" (GEP) 
as an improved form of Expectation Propagation that can 
approximate multimodal posterior distributions, particu-
larly in BCNN, by employing a mixture of exponential fam-
ily distributions [61, 70]. Despite the scalability of the EP 
approach, the convergence using this method is not always 
assured, especially when using mixture models [13, 67]. On 
the other hand, Gal proved that training neural networks with 
dropout is similar to using a variational inference method 
with a Bernoulli distribution by transforming the dropout 
noise from the input space to the parameter space in neural 
networks (MC Dropout [16, 18]). While the MC Dropout 
method is suitable for deep learning models since it reduces 
overfitting and does not require as much modeling as other 
methods, it is also inflexible and cannot always fully express 
model uncertainty [10].

3  Background and preliminaries

3.1  Convolution neural network architecture

Assume we have N input images x = {(x1, x2, ...., xN)} , and 
their labels y = {(y1, y2, ...., yN)} , a standard CNN is a deep 
neural network that defines the output layer as a composition 
of convolution layers that extract the most significant features 
from the images, represented by, c(i) , i = 1, ...,Nc , each c(i) is 
a convolution operation between the input p(i−1) and the filter 
matrix k(i) shifted by the bias b(i)

c
 , followed by an activation 

function, s(i)
c

 , i = 1, ...,Nc , and pooling layers, p(i) , i = 1, ...,Nc , 
( Nc is the number of convolutional layers), each p(i) is a pool-
ing function (which may be average-pooling or maximum-
pooling). Finally, the fully connected layers, which are repre-
sented, after flattening (or vectorization), as a succession of 
hidden layers, h(j) , j = 1, ...,Nl , ( Nl is the number of hidden 
layers), each h(j) is a linear transformation,, accompanied by an 
activation function, s(j)

l
 , j = 1, ...,Nl . The output ŷ of CNN is 

represented as the last layer in the fully connected layers using 
Softmax probability as an activation function.

The parameter models of the CNN are � = {K, bc,�, bl} , 
where K, bc are the kernels and the biases of the convolution 
layers, and � , bl are the weights and the biases of the fully 
connected hidden layers.

The standard CNN works to find a point estimate of the 
probable function f that relates the input x to the output y using 
the parameters models, in other words, it works to obtain a 
point approximation of the model parameters � that fits the 
data-set D = {(x, y)} well.

To achieve this point estimate, the model employs the back-
propagation algorithm to minimize the cost function [9, 38, 
57], which is proportional to maximizing the log-likelihood 
(ML), and occasionally with a regularization component 
included if the maximum a posteriori estimation (MAP) is 
used (See Algorithm 1).

Table 1  Summary of related works

Authors Year Method Model Datasets

Graves et al. [20] 2011 Stochastic variational inference BRNN TIMIT speech corpus
Ritter et al. [54] 2018 Laplace approximation BNN Mnist
Blundell et al. [8] 2015 Bayes by Backprop BNN Mnist
Yarin Gal et al. [16, 18] 2016 Monte Carlo Dropout BCNN Mnist, Cifar10
Kumar et al. [58] 2019 Bayes by Backprop BCNN Mnist, Cifar10, Cifar100
Jing Zhao et al. [70] 2020 Generalized Propagation Expectation BNN (regression), 

BCNN (classifica-
tion)

5 UCI datasets (BNN), Mnist (BCNN)

Pushkar Khairnar et al. [29] 2020 Bayes By Backprop BCNN Breast histopathological images



2518 Evolutionary Intelligence (2024) 17:2515–2536

Algorithm 1  Convolutional Neural Networks: Training 
Procedure

Finally, this algorithm returns a single optimum param-
eter �̂� that minimizes the cost function. For unseen input 
x∗ , CNN uses the optimum parameter �̂� , to estimate their 
prediction.

Where �̂� = {K̂, b̂c, �̂�, b̂l}.
As we have shown, a standard CNN only gives a point 

estimate of the parameters, which works well on a large data 
set, but in some issues, larger quantities of data are not avail-
able. The problem with CNNs is that they quickly overfit 
with small data sets [17], which often results in overconfi-
dent predictions.

3.2  Variational inference

The Bayesian Convolutional Neural Network (BCNN) is 
a CNN trained by using Bayesian statistics, in which all 

(1)�̂� = argmin Loss(y, ŷ)

(2)ŷ∗ = f (x∗, �̂�) = cnn(x∗, �̂�)

parameters of the CNN are treated as stochastic components 
[17, 58].

The initial step in creating a BCNN is to determine the 
feedforward architecture of the CNN. We then apply the 
prior distribution p(�) of the CNN weights � , indicating 
our previous beliefs about the parameters. Next, we define 
the likelihood p(y|x, �) as the independent conditional 
probability of the observed data given specific parameters. 
Generally, the likelihood for CNN models is defined as a 
categorical distribution of the softmax probabilities, as 
shown below:

Where f c(xn, �) = Softmax
(

�(nl )T
c h(nl−1) + b(nl )lc

)

=
exp
(

�
(nl )T
c h(nl−1)+b

(nl )
lc

)

∑C
c′

exp
(

�
(nl )T

c′
h(nl−1)+b

(nl )
l
c′

)

,

and C is the number of output classes.
We can then obtain the posterior distribution of CNN 

parameters given the observed data p(�|x, y) using the Bayes 
theorem as follows:

Deep learning models are made of a huge number of param-
eters, which makes determining the posterior distribution 
p(�|x, y) tricky since computing the evidence term

∫
�
p(y|x, ��

)p(�
�

)d�
� is hard.

The Variational Inference (VI) method was developed for 
solving an optimization problem to approximate the poste-
rior distribution p(�|x, y) with a simple parametric distribu-
tion q�(�) to overcome this problem [7, 69].

VI looks for an optimal variational parameter �̂� such that 
the variational distribution q�̂�(𝜃) is as close as possible to 
the true posterior p(�|x, y) based on the Kullback–Leibler 
divergence [35], which is expressed as follows:

To compute the KL(q||p), you must first compute the poste-
rior distribution. As a result, the problem still exists. To get 
around this, we use the Evidence Lower BOund (ELBO) 
function L  , which can be obtained from KL(q||p) and the 
Bayes Formula as follows:

(3)

p(y|x, �) =
N∏
n=1

p(yn|xn, �) =
N∏
n=1

p(yn|f (xn, �))

=

N∏
n=1

Categorical(f 1(xn, �), ..., f
C(xn, �))

(4)
p(�|x, y) = p(y|x, �)p(�)

p(D)
=

p(y|x, �)p(�)
∫
�
p(y|x, ��

)p(��
)d��

∝ p(y|x, �)p(�)

(5)KL(q�(�)||p(�|x, y)) = ∫�

q�(�) log
( q�(�)

p(�|x, y)
)
d�
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Where

Minimizing the KL divergence is now equivalent to maxi-
mizing the ELBO function L  since the log p(D) is constant 
over the variational parameters.

ELBO maximization needs to maximize the first term of 
the last equation, which denotes the expected log-likelihood 
and minimize the second term, indicating the KL divergence 
between q�(�) and p(�) . Generally, the second term serves 
as a regularizer [16].

The prediction in BCNN of a new input x∗ is a probabil-
ity distribution p(y∗|x∗,D) , called the predictive distribution 
[66]. It is defined by the expectation over the posterior dis-
tribution of the model’s output, as shown below:

Using the variational inference method, the predictive dis-
tribution can be approximated as follows:

Where �̂� are the optimal variational parameters.

3.3  Bayes by backprop

Variational inference is a powerful statistical estimate for 
Bayesian inference. However, the stochasticity of the param-
eters prevents back-propagation from working in deep learn-
ing models. To overcome this issue, Blundell et al. proposed 
the Bayes-by-backprop algorithm [8]. Bayes by Backprop is 
indeed a variational inference technique that looks for the 
variational parameters �̂� that minimize the KL divergence 
between the posterior distribution p(�|x, y) and the vari-
ational distribution q�(�).

(6)KL(q�(�)||p(�|x, y)) = log p(D) −L(�)

(7)

L(�) = ∫�

q�(�) log p(y|x, �)d�

− ∫�

q�(�) log
(q�(�)
p(�)

)
d�

= Eq�(�)
[log p(y|x, �)] − KL(q�(�)||p(�))

(8)
p(y∗|x∗, x, y) = ∫�

p(y∗|x∗, �)p(�|x, y)d�
= Ep(�|x,y)[p(y∗|x∗, �)]

(9)

p(y∗|x∗, x, y) ≈ ∫𝜃

p(y∗|x∗, 𝜃)q�̂�(𝜃)d𝜃
= Eq�̂�(𝜃)

[p(y∗|x∗, 𝜃)]
= q(y∗|x∗)

Where L(D,�) is the negative ELBO function.
The new aspect of the Bayes-by-backprop algorithm is 

to apply the reparametrization trick technique to the model 
parameters [30, 31]. The idea is to transform the randomness 
of the model parameters, � , which is simulated from a para-
metric distribution q�(�) , to another random variable � , that 
follows a non-parametric distribution, q(�) , by reparameter-
izing � as a deterministic and differentiable function of the 
variational parameters � and � , g(�, �) such that � = g(�, �) . 
Therefore, we may compute the gradients ∇�l(�,�) by 
backpropagating via � , which is now non-stochastic (See 
Algorithm 2).

As a result, Blundell et  al. [8] proposed that if 
q�(�)d� = q(�)d� , and for a differentiable function l(�,�) , 
we get:

Where ��
��

=
�g(�,�)

��
 in the last expression. For more details 

about the last formula, see [8].
As �

��
L(D,�) is also hard to compute, we can use Monte 

Carlo sampling to estimate it. Using the reparameterization 
trick, we first sample � from the non-parametric distribution 
q(�) and then apply the deterministic function g, such that 
� = g(�, �) ∼ q�(�).

As a result, we can approximate �
��
L(D,�) as follows:

(10)

�̂� = argmin
𝜙

KL(q𝜙(𝜃)||p(𝜃|x, y))

= argmin
𝜙

KL(q𝜙(𝜃)||p(𝜃)) − Eq𝜙(𝜃)
[log p(y|x, 𝜃)]

= argmin
𝜙 ∫𝜃

q𝜙(𝜃)
(
log q𝜙(𝜃)− log p(𝜃)− log p(y|x, 𝜃)

)

�����������������������������������������������������
l(𝜃,𝜙)

d𝜃

�����������������������������������������������������������������������
L

(D,𝜙)

(11)

�

��
L(D,�) =

�

��
Eq�(Θ)

[
l(�,�)

]

= Eq(�)

[�l(�,�)
��

��

��
+

�l(�,�)

��

]

(12)

𝜕

𝜕𝜙
L(D,𝜙) ≈

𝜕

𝜕𝜙
L̂(𝜃,𝜙)

=
1

T

T∑
t=1

[𝜕l(g(𝜙, 𝜖(t)),𝜙)
𝜕𝜃(t)

𝜕g(𝜙, 𝜖(t))

𝜕𝜙

+
𝜕l(g(𝜙, 𝜖(t)),𝜙)

𝜕𝜙

]
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Where l(g(�, �(t)),�) = log q�(g(�, �(t))) − log p(g(�, �(t))) − log p(y|x, g(�, �(t))) , 
�(t) ∼ q(�) , T is the number of samples, and 𝜕

𝜕𝜙
L̂(𝜃,𝜙) is an 

u n b i a s e d  e s t i m a t o r  o f 
𝜕

𝜕𝜙
L(D,𝜙)(Eq(𝜖)

[
𝜕

𝜕𝜙
L̂(𝜃,𝜙)

]
=

𝜕

𝜕𝜙
L(D,𝜙)).

Algorithm 2  Bayes by Backprop Algorithm [8]

3.4  Gaussian mixture model

A Gaussian Mixture Model (GMM) is a probability distri-
bution defined as a linear convex combination of Gaussian 
distributions [13, 53]. Therefore, we can express a GMM 
composed of a K-component Gaussian density as follows:

Where � is a D-dimensional vector, {�k, k = 1, 2, ...,K} 
are the mixture weights that satisfy the con-
s t r a i n t  t h a t  

∑K

k=1
𝜋k = 1,with 0 < 𝜋k < 1 ,  a n d 

{N(�|�k,Σk), k = 1, 2, ...,K} are the components distribu-
tions. Each component is a multivariate Gaussian distribu-
tion of the following form:

(13)p�(�) =

K∑
k=1

�kN(�|�k,Σk)

(14)

N(�|�k,Σk) =
1

(2�)d∕2|Σk|1∕2
exp

(
−

1

2
(� − �k)

TΣ−1
k
(� − �k)

)

Where �k is a d-dimensional mean vector, Σk
 is a d ×d-dimen-

sional covariance matrix of the corresponding Gaussian dis-
tribution. � = {(�k,�k = {�k,Σk}), k = 1, 2, ...,K}

represents the full parameters of the Gaussian mixture 
model p�(�).

For various theoretical and computational reasons, the 
Gaussian distribution is the most preferred unimodal dis-
tribution in real-world modelling. However, some chal-
lenging applications, such as image classification, require 
more sophisticated distributions to model them.

As a result, using a unimodal model in this situation is 
frequently ineffective [53],

[13]. To solve this issue, we can represent these appli-
cations using a GMM, which is a combination of several 
unimodal Gaussian distributions that can provide more 
statistical information about the problem than single-mode 
distributions.

4  Bayes by backprop using mixture models

A mixture model is a powerful tool that may be used in 
variational inference as an approximated posterior distri-
bution. However, reparameterizing the parameters of mix-
ture models is challenging since they combine component 
distributions using discrete-categorical variables

k ∼ Cat({�k}
K
k=1

) . To address this problem, Roeder et al. 
propose that the expectation over the mixture model be 
computed by taking the sum of the mixture weights out-
side the expectation and then sampling equally from each 
component distribution, [47, 55].

As a result, if each component distribution is reparam-
eterizable, we may reparameterize the mixture models.

Let q�(�) =
∑K

k=1
�kq�k

(�) as a mixture distribution 
made up of K component distributions q�k

(�) , combined 
by K mixture weights {�k, k = 1, 2, ...,K}.

I f  q�k
(�k)d�k = q(�k)d�k  ,  and  �k = g(�k, �k) ,  fo r 

k = 1, 2, ...,K  , with g is a differentiable function, we can 
approximate the expectation Eq�(�)

[f (�)] , as follows:

Where �(t)
k

∼ q(�k) , and T is the number of samples.
Proof:

(15)

Eq�(�)

[
f (�)

]
=

K∑
k=1

�kEq(�k)

[
f (g(�k, �k))

]

≈

K∑
k=1

�k

T

T∑
t=1

f (g(�k, �
(t)

k
))
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With �(t)
k

∼ q(�k) , for k = {1, 2, ...,K}.
The latter expression is the result of applying Monte 

Carlo sampling to each component distribution q(�k) , tak-
ing into account the independence of �k , resulting from the 
independence of parameters �k , for k = {1, 2, ...,K}.

Furthermore, using this approximation, we obtain an 
unbiased estimator as shown below:

Instead of sampling a discrete random variable
k ∼ Cat({�k}

K
k=1

) and then sampling � from the associ-
ated component distribution q�k

(�) , the approach described 
above takes samples from each component distribu-
tion equally and then combines them using the mixture 

Eq�(�)

[
f (�)

]
= ∫�

K∑
k=1

�kq�k
(�)f (�)d�

=

K∑
k=1

�k ∫�

q�k
(�)f (�)d�

=

K∑
k=1

�k ∫�k

q�k
(�k)f (�k)d�k

(Linearity of integral)

=

K∑
k=1

�k ∫�k

q(�k)f (g(�k, �k))d�k

Reparameterization the parameters of each

component distribution as �k = g(�k, �k)

=

K∑
k=1

�kEq(�k)
[f (g(�k, �k))]

≈

K∑
k=1

�k

T

T∑
t=1

f (g(�k, �
(t)

k
))

◻

E∏K

k=1
q(�k)

� K�
k=1

�k

T

T�
t=1

f (g(�k, �
(t)

k
))
�

=

K�
k=1

�kEq(�k)

�
1

T

T�
t=1

f (g(�k, �
(t)

k
))
�

=

K�
k=1

�k

T

T�
t=1

Eq(�k)

�
f (g(�k, �

(t)

k
))
�

=

K�
k=1

�kEq(�k)

�
f (g(�k, �k))

�

=

K�
k=1

�kEq�k
(�k)

�
f (�k)

�

= Eq�(�)

�
f (�)

�

weights. Although the last method is more computation-
ally expensive than the first since it requires K-implemen-
tations of the function f to obtain one Monte Carlo esti-
mate of the expectation

Eq�(�)
[f (�)] , it allows us to reparameterize the parame-

ters of the mixture model and also gives a differentiable 
estimate (See Fig. 2), which is not available in the first 
approach [15, 40].

Therefore, if all conditions are satisfied, we can apply 
the Bayes by Backprop method to the differentiable and 
continuous function l (Eq. 10), using a mixture model as 
an approximate distribution (Algorithm 3), as illustrated 
below:

for j = 1, 2, ...,K ∶

Where q�(�) =
∑K

k=1
�kq�k

(�) is a mixture model,
l(�,�) = log q�(�) − log p(�) − log p(y|x, �) , and
q�k

(�k)d�k = q(�k)d�k , for k = 1, 2, ...,K.

Since �

��j

L(�,D) is also computationally intricate, we 
can estimate it using Eq. 15, as follows:

for j = 1, 2, ...,K ∶

Where �(t)
k

∼ q(�k) for t = 1, 2, ..., T  , and k = 1, 2, ...,K,

l(g(�k, �(t)),�) = log
(

∑K
i=1 �iq�i

(g(�k, �
(t)
k ))

)

− log p(g(�k, �
(t)
k )) − log p(y|x, g(�k, �

(t)
k )) , and

�

��j

L(D,�) =
�

��j

L(D, (�1, ..,�j, ..,�K))

=
�

��j

Eq�(�)

[
l(�,�)

]

=
�

��j

K∑
k=1

�kEq�k
(�)

[
l(�,�)

]

=
�

��j

K∑
k=1

�kEq(�k)

[
l(g(�k, �k),�)

]

=

K∑
k=1

�kEq(�k)

[�l(g(�k, �k),�)

��k

�g(�k, �k)

��j

+
�l(g(�k, �k),�)

��j

]

(16)

𝜕

𝜕𝜙j

L(D,𝜙) ≈
𝜕

𝜕𝜙j

L̂(�,�)

=
1

T

K∑
k=1

T∑
t=1

𝜋k
𝜕l(𝜃

(t)

k
,𝜙)

𝜕𝜃
(t)

k

𝜕g(𝜙k, 𝜉
(t)

k
)

𝜕𝜙j

+
1

T

K∑
k=1

T∑
t=1

𝜋k
𝜕l(g(𝜙k, 𝜉

(t)

k
),𝜙)

𝜕𝜙j
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𝜕

𝜕𝜙j

L̂(𝜃,𝜙) is an unbiased estimator of �

��j

L(D,�) . 
�
E∏K

k=1
q(𝜉k)

�
𝜕

𝜕𝜙j

L̂(𝜃,𝜙)
�
=

𝜕

𝜕𝜙j

L(D,𝜙) , for j = 1, 2, ...,K
)
.

Algorithm 3  Bayes by Backprop using mixture model

4.1  Bayesian convolution neural network with GMM

In this section, we will try to apply the Bayes By Backprop 
method to convolutional neural networks using a Gaussian 
mixture model (BBGMM) as an approximate distribution 
of the true posterior, and we will show how to construct, 
train, and evaluate BCNN using this distribution.

A convolutional neural network is a deep learning 
model characterized by two basic steps. First, we extract 
the most significant features of inputs using kernels in con-
volutional layers, and second, we classify the inputs using 
fully connected layers and a softmax function in the output 
layer (See Fig. 1).

As a result, the CNN parameters are expressed as fol-
l o w s :  � = {F, bc,�, bl}  ,  w h e r e 
F = {{fhi,p,wi,p,ci,p

}
Nc,pi
i,p=1

}, bc = {{bci}
i=Nc

i=1
} are the kernels and 

the biases of the convolutional layers, and � = {{Wj}
j=Nl

j=1
} , 

bl = {{blj}
j=Nl

j=1
} are the weights and the biases of the fully 

connected layers.
Following the Bayesian approach, these parameters are 

represented as stochastic kernels in the convolution layers 
and as stochastic matrices in the fully connected layers. 
Before seeing the data, the Bayes by Backprop algorithm, 
like the other variational inference methods, requires set-
ting a prior distribution for all CNN parameters p(�) = 
p(F, bc,�, bl) as prior beliefs about the possible parameters 
that fit the data. After seeing the data D = {(x, y)} , we have 
to determine the model’s probability p(y|x, �) (the likeli-
hood) for the outputs y = {(y1, y2, ...., yN)} given the inputs 
x = {(x1, x2, ...., xN)} ∈ R

HxWxCxN and parameters
� = {F, bc,�, bl}.
Then, we use a mixture of K fully-factorized normal 

distributions (i.e., with diagonal covariances) as a vari-
ational distribution of the CNN parameters, as shown 
below:

∗

=

=

=

Flatten

Pooling

Pooling

Input

Convolutional kernels Features maps Fully connected layers

Output∗

=

=

=

Flatten

Pooling

Pooling

Input

Convolutional kernels Features maps Fully connected layers

Output

Fig. 1  Bayesian convolution neural network
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Where

Nc is the number of convolutional layers, pi, hi,wi , and ci 
represent, respectively, the number, width, height, and the 
channels number of kernels in the ith convolutional layer, Nl 
is the number of fully connected layers, Lj , and Lj+1 denote 
the number of neurons in the jth and the j + 1th layers, 
respectively.

The Gaussian distribution N(�|�, �2) can be reparam-
eterized to the unit Gaussian N(�|0, I) by using a differ-
ential transform of the parameters expressed as follows: 
𝜃 = 𝜇 + 𝜎 ⊙ 𝜖 , where ⊙ is an element wise product, and 
� is a free-noise parameter of the unit Gaussian. To pre-
vent receiving negative values for � , we can rewrite them 
as follows: � = log(1 + exp(�)) . As a result, we can repa-
rameterize the parameters of the Gaussian mixture model 
by reparameterizing them over each Gaussian distribution 
component (See Fig. 2), as shown below:

for k = 1, ...,K.

(17)

q�k (�) =
K
∑

k=1
�kq�k (F, bc,�, bl)

=
K
∑

k=1
�k q�kF

(F)q�kbc
(bc)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Convolution−layers

q�k� (�)q�kbl
(bl)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fully−Connected−layers

q�kF

(F) =

Nc,pi,hi,wi,ci∏
i,p,h,w,c=1

N
(
fi,p,h,w,c|�kfi,p,h,w,c

, �2
kfi,p,h,w

)

q�kbc

(bc) =

Nc,pi∏
i,p=1

N
(
bci,p|�kbci,p

, �2
kbci,p

)

q�k�
(�) =

Nl,Lj,Lj+1∏
j,m,n=1

N
(
wj,m,n|�kwj,m,n

, �2
kwj,m,n

)

q�kbl

(bl) =

Nl,Lj+1∏
j,n=1

N
(
blj,n|�kblj,n

, �2
kblj,n

)

With �k ∼ N(�|0, I) , and �k = {(�k, �k)}.
This allows applying the Bayes by backprop algorithm 

using GMM to deep neural networks, including CNNs (see 
Algorithm 4), as follows:

for j = 1, ...,K.

Where, �(t)
k

∼ N(�k|0, I) , for k = 1, ...,K , and t = 1, ..., T ,

(18)𝜃k = g(𝜙k, 𝜖k) = 𝜇k + log(1 + exp(𝜎k))⊙ 𝜖k

(19)

𝜕

𝜕𝜙j
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Fig. 2  Reparameterization trick 
on GMM using K Gaussian 
Components
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and l(�k ,�) = log
(

∑K
i=1 �iN(�k|�i, �2

i )
)

− log p(�k) − log p(y|x, �k)
.

Algorithm 4  Training BCNN using Gaussian mixture 
model (BBGMM)

Having obtained the optimal variational distribu-
tion, we can use it to estimate the predictive distribution 
p(y∗|x∗,D) for an unseen data input x∗ using the observed 
data D = {(x, y)} , as follows:

Since classification tasks have a discrete nature, the predic-
tive distribution is estimated by an average of discrete func-
tions, which are frequently categorical probabilities.

With 𝜃(t)
k

∼ N(𝜃|�̂�k, �̂�
2
k
) , for t = 1, 2, ..., T  , and

k = 1, 2, ...,K , f (x∗, �(t)
k
) is the output function of CNN, 

f c(x∗, �
(t)

k
) = p(y∗

c
= 1|f (x∗, �(t)

k
)) with 

∑C

c=1
f c(x∗, �

(t)

k
) = 1 , 

and C is the number of classes in the output layer.

4.2  Uncertainty in CNN with GMM

Uncertainty estimation in deep neural networks is crucial 
for decision-making, especially in tasks that require a high 
degree of credibility and reliability. Generally, there are two 
types of uncertainty: aleatoric uncertainty and epistemic 
uncertainty. Aleatoric uncertainty is an irreducible quantity 
resulting from the noise generated by the data collection 
method. Regarding epistemic uncertainty, it results from 
model predictions when there is little observed data, but it 
can be reduced if more data are available. In general, Bayes-
ian techniques provide an effective framework for estimating 
uncertainties by computing the variance of the predictive 
distribution over the variational posterior, as shown below:

For a review of the last formula’s proof, see: [36].

(20)

p(y∗|x∗, x, y) ≈ ∫ q�̂�(𝜃)p(y
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As seen in the last formula, the variance of the predic-
tive distribution is the sum of the aleatoric and epistemic 
uncertainty. Despite this, calculating these two uncertainties 
remains difficult due to the intractability of the integrals in 
the last formula. To solve this problem, we can combine 
the approach described earlier in Sect. 1 (Eq. 15) with the 
method proposed by Kwon in [36] to estimate the uncer-
tainty using a GMM, as illustrated below:

Where, q�̂�(𝜃) =
∑K

k=1
𝜋kN(𝜃��̂�k, �̂�

2
k
),

p̄ =
∑K

k=1
𝜋k

1

T

∑T

t=1
p̂
(t)

k
 , p̂(t)

k
= f (x∗, 𝜃

(t)

k
) is the output 

function of CNN, and 𝜃(t)
k

∼ N(𝜃|�̂�k, �̂�
2
k
).

5  Experiments

In this section, we will apply the LeNet-5 network (as 
described in Appendix C, Table 9) to the MNIST and Fash-
ion MNIST datasets. Additionally, we will use the CNN 
model defined in Appendix C (Table 10) for the CIFAR-10 
and SVHN datasets (as specified in Appendix A, Table 8). 
To approximate the posterior distribution, we will employ 
the GMM as the variational distribution (BBGMM).

5.1  Experimental setup

Implementing the BCNN requires first defining the prior 
distribution of all CNN parameters. In this regard, we have 
adopted a fully factorized Gaussian distribution with a zero 
mean and a prior standard deviation �� > � as a prior distri-
bution of the parameters, as shown below:

Where P is the number of all CNN parameters.

(23)
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���������������������������������������������
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(24)p(�) = p(F, bc,�, bl) =

P∏
i=1

N(�i|0, �2
0
)

(25)log p(�) = log p(F, bc,�, bl) =

P∑
i=1

log
(
N(�i|0, �2

0
)
)

After executing the CNN-feedforward on the dataset, we 
compute the log-likelihood as follows:

Where C is the number of classes in the output layer (C = 
10 for all datasets).

Computing log p(D|�) gets difficult when dealing with a 
huge dataset (N is large). To address this issue, the mini-
batch optimization technique has demonstrated its effi-
ciency in training time by randomly dividing the training 
data D into small partitions of equal size D1, ...,DS and 
using them to train the model at each epoch.

Where log p(D��) = ∑S

s=1
log p(Ds��) , Ds = {(xsn , ysn )}

M
n=1

 , 
S is the number of partitions, and M is the size of each 
partition.

Next, we define the variational distribution that approx-
imates the posterior distribution of parameters. In our 
situation, we considered it as a mixture of two factorized 
Gaussian distributions, as shown below:

Where 0 < 𝜋 < 1 is the mixture weight considered as a 
hyperparameter.

Finally, we can approximate the cost function of this 
model as follows:
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where �(t)
1

∼ N(�1|0, I) , and �(t)
2

∼ N(�2|0, I) , for t = 
1,...,T.

5.2  Results and analysis

This section provides an assessment of the performance of 
BBGMM method described in Algorithm 4 compared to 
existing methods (Frequentist approach, BBGaussian [58], 
and MC Dropout [18]) in classification tasks using MNIST, 
Fashion MNIST, CIFAR-10, and SVHN datasets (Appendix 
A, Table 6). We then evaluate the uncertainties associated 
with our proposed method for these datasets.

5.2.1  Datasets (Appendix A, Table 6)

We evaluate our method using the following datasets: 1. 
MNIST: This well-established benchmark dataset comprises 
grayscale images representing handwritten digits. It contains 
70,000 samples, each image sized at 1 × 28 × 28 pixels. The 
dataset is strategically partitioned into training (50,000 sam-
ples), validation (10,000 samples), and test (10,000 samples) 
sets, facilitating essential aspects of model training, hyper-
parameter tuning, and performance evaluation.

2. Fashion MNIST: An alternative to MNIST, this 
dataset shifts focus to fashion products. Sharing structural 
similarities with MNIST, it encompasses 70,000 grayscale 
images of fashion items, each sized at 1 × 28 × 28 pixels. 
Like MNIST, it is partitioned into training, validation, and 
test sets, comprising 50,000, 10,000, and 10,000 samples, 
respectively.

3. CIFAR-10: Representing a more intricate challenge 
than MNIST and Fashion MNIST, CIFAR-10 consists of 
60,000 color images, each with dimensions of 3 × 32 × 32 . 
The dataset covers ten distinct object categories and is is 
split into training (40,000 samples), validation (10,000 
samples), and test (10,000 samples) sets to support effec-
tive model development and evaluation.

4. SVHN: Focused on digit recognition within real-
world images, the SVHN dataset captures house numbers 
from street views. Comprising 73,257 color images sized 
at 3 × 32 × 32 pixels. This dataset includes a range of digits 
from 0 to 9. The dataset is partitioned into training (53,257 
samples), validation (20,000 samples), and test (26,032 sam-
ples) sets, enabling a comprehensive assessment of model 
performance.

5.2.2  Results on MNIST and fashion MNIST

Table 2 compares the training, validation, and test accuracies 
(in percent) of LeNet-5 on the MNIST and Fashion MNIST 
datasets, evaluating our method against frequentist, MC 
dropout, and BBGaussian models.

Overall, the table shows comparable results between the 
models. On MNIST, the frequentist model obtained the 
highest training accuracy of 99.97% compared with the other 
models, with a test accuracy of 98.54%.

On the other hand, our model achieved a training accu-
racy of 99.87% and a test accuracy of 98.85%. For Fashion 
MNIST, our model outperformed the others with a test accu-
racy of 89.02%, indicating that the BBGMM model is more 
accurate and reliable on Fashion MNIST test data.

Figs. 3 and 4 display the evolution of validation accu-
racy during LeNet-5 training on the MNIST and Fashion 
MNIST datasets, comparing previous approaches with our 
model. Notably, the validation accuracy curves for all mod-
els show comparable performance, but with a preference for 
the BBGMM model (blue lines).

Table  3 compares the training and validation errors 
obtained by training the LeNet-5 network on the MNIST 
and Fashion MNIST datasets using the BBGaussian and 
BBGMM models. The results indicate that our proposed 
model achieves lower training and validation errors than 
the BBGaussian model for both datasets. This suggests that 
incorporating a mixture model (GMM) within the Bayes by 

Table 2  Comparison of 
accuracies between Frequentist, 
MC dropout, BB-Gaussian, 
and BBGMM models on the 
MNIST, and Fashion MNIST 
datasets

Bold shows the results that is more significant

Datasets Models Accuracies

Training accu-
racy %

Validation accu-
racy %

Test accuracy %

MNIST Frequentist LeNet-5 99.97 98.68 98.54
MC dropout LeNet-5 99.13 98.46 98.50
BB Gaussian LeNet-5 99.83 98.73 98.67
BBGMM LeNet-5 99.87 98.87 98.85

Fashion-MNIST Frequentist LeNet-5 90.91 89.82 88.66
MC dropout LeNet-5 90.20 89.88 88.65
BB Gaussian LeNet-5 90.11 89.96 88.58
BBGMM LeNet-5 90.77 90.33 89.02
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Fig. 3  Comparison of validation 
accuracies on MNIST

Fig. 4  Comparison of validation 
accuracies Fashion MNIST
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Backprop method for training CNN on the MNIST and Fash-
ion MNIST datasets yields improved performance than using 
a single mode distribution, such as the Gaussian distribution.

5.2.3  Results on CIFAR‑10 and SVHN

In this section, we have used a CNN network consisting of 
three blocks similar to the VGG blocks and two fully con-
nected layers. Each block consists of two convolutional lay-
ers followed by max-pooling, and we adopted ReLu as an 
activation function (see Appendix C (Table 10)).

Table 4 presents a comparison of accuracies between the 
previous models (Frequentist, MC dropout, BB-Gaussian) 
and the BBGMM method, using the CNN model described 
in Appendix C (Table 10), on the CIFAR-10 and SVHN 
datasets. Table 4 shows that our method performed better 

than other models. For the CIFAR-10 dataset, after 100 
epochs, our BBGMM model achieved the highest test accu-
racy of 80.60%, with a corresponding training accuracy of 
83.76%. On the other hand, the MC dropout model achieved 
a test accuracy of 79.52% and a training accuracy of 81.08%. 
As for the BBGaussian method, it yielded a lower test accu-
racy of 78.68%. For the SVHN dataset, our BBGMM model 
achieved the highest test accuracy of 94.53%, outperforming 
the frequentist, MC dropout, and BBGaussian models, which 
achieved test accuracies of 93.21%, 93.16%, and 93.36%, 
respectively.

Figs. 5 and 6 illustrate the evolution of validation accura-
cies during CNN training on the CIFAR-10 and SVHN data-
sets, respectively. Generally, the results show comparable 
performance on the two datasets, with a slight improvement 
observed for our BGMM method, as indicated by the blue 
lines in the figures.

Fig. 7 shows the progression of validation error during 
CNN training on the CIFAR-10 and SVHN datasets using 
two different variational distributions: the Bayes by Back-
prop method with a single Gaussian distribution (BBGauss-
ian, orange lines) and the same method with a mixture model 
of two Gaussian distributions (BBGMM, bleu lines). The 
figure indicates that both methods converge as training pro-
gresses on both datasets. However, it is worth noting that 
the BBGMM model consistently achieves a lower valida-
tion error than the BBGaussian model. This lower valida-
tion error indicates that the BBGMM method performs 
more accurately on the validation set than the BBGaussian 
method.

Fig. 8 displays the evolution of the probability density of 
a weight taken from the last layer of the CNN over training 
iterations. The weight is sampled from the two Gaussian 
distributions employed in the mixture for classifying the 
CIFAR-10 images. Figure 9 shows that during the first ten 
training epochs, the weight density appears unimodal due 
to the proximity of the means of the two Gaussian distribu-
tions used.

However, as the training progresses, the density is trans-
formed into a bimodal distribution, with each mode cor-
responding to a different mean. This observation highlights 
the power of approximating the posterior distribution for 
this case using a mixture of Gaussian distributions rather 
than adopting an unimodal distribution such as the Gauss-
ian distribution.

Figures 9, and 10 depict the convergence of standard 
deviations �� and �� for the Gaussian mixture distribution 
represented in Fig. 8. It is noticed in Fig. 9 that the stand-
ard deviations of each component of the binary mixture 
of Gaussian distributions decrease over epochs, indicat-
ing that the uncertainty of the model reduces as more new 
data is received. Thus, the model gets more reliable with its 
training.

Table 3  Comparison of errors on the MNIST, and Fashion MNIST 
datasets

Bold shows the results that is more significant

Datasets Models Accuracies

Training error % Validation error

MNIST BB Gaussian 2.53034 2.59654
BBGMM 1.06146 1.11173

Fashion MNIST BB Gaussian 1.92743 1.94768
BBGMM 0.89286 0.90135

Table 4  Comparison of accuracies between Frequentist, MC dropout, 
BB-Gaussian, and BBGMM models on CIFAR-10, and SVHN data-
sets

Datasets Models Accuracies

Training 
accuracy 
%

Validation 
accuracy %

Test accuracy 
%

CIFAR-10 Frequentist 
CNN

84.20 78.82 79.52

MC dropout 
CNN

81.08 79.46 79.52

BB Gaussian 
CNN

81.49 77.23 78.68

BBGMM 
CNN

83.76 79.86 80.60

SVHN Frequentist 
CNN

93.88 92.12 93.21

MC dropout 
CNN

92.42 92.20 93.16

BB Gaussian 
CNN

93.71 92.53 93.36

BBGMM 
CNN

94.70 93.36 94.53
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Fig. 5  Comparison of validation 
accuracies on CIFAR 10

Fig. 6  Comparison of validation 
accuracies on SVHN
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5.2.4  Uncertainty estimation

Figure 11 shows the BBGMM model prediction for two 
randomly selected images in the test set from the MNIST 
and Fashion-MNIST datasets and estimates the BBGMM 
model uncertainties using Eq. 23 for these two images. It 
illustrates that the BBGMM model can predict the clas-
sification of the picture extracted from MNIST, but with 
a percentage of aleatoric uncertainty owing to the noise 

in this image. However, the BBGMM model failed to cor-
rectly classify the picture taken from Fashion-MNIST 
since it differed from the MNIST dataset used during 
training, which explains the significant value of epistemic 
uncertainty in this image. Also, it shows a significant value 
of aleatoric uncertainty in the last image due to the noise 
present in this image.

Fig. 7  Comparison of validation losses on CIFAR-10, and SVHN

Fig. 8  Probability density 
evolution
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Table 5 compares the average epistemic and aleato-
ric uncertainties for the BBGMM model applied to the 
MNIST, Fashion MNIST, CIFAR-10 and SVHN datasets 
using the LeNet-5 network. The results indicate that the 
aleatoric uncertainty of CIFAR-10 is over thirty times 

higher than that of MNIST, while the epistemic uncer-
tainty of CIFAR-10 is more than thirteen times greater 
than that of MNIST. The variations in aleatoric and epis-
temic uncertainty between all datasets can be attributed to 
the performance of the LeNet5-BBGMM model on each 
specific dataset. In other words, the model’s accuracy 

Fig. 9  Standard deviation ( �
1
 ) 

evolution

Fig. 10  Standard deviation ( �
2
 ) 

evolution
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on the test data directly affects its reliability, with lower 
uncertainty values indicating higher reliability.

5.3  Training time complexity

The training time of the BGMM for CNNs can be estimated 
as the training time required for a Bayesian CNN with a sin-
gle Gaussian distribution having a similar structure, multi-
plied by K, where K represents the number of components in 
the mixture. It is important to note that this approach can be 
computationally expensive, especially for high-dimensional 
models like CNNs. However, the advantage of the BGMM 
lies in its ability to reparameterize the Gaussian mixture, 
providing differentiable estimates. This, in turn, leads to a 
reduction in the variance of the gradients for our objective 

Fig. 11  The image on the top left is an image of number 4 taken from 
the test set for MNIST. The image on the top right is an image of a 
dress (class 3) taken from the test set for Fashion-MNIST. The bot-
tom left image shows the percentage of epistemic uncertainty for the 
BBGMM model predictions of the previous two pictures, where a 
high value of epistemic uncertainty appears between classes 1 and 8 
for the image taken from Fashion-Mnist, as it is completely different 
from the MNIST set, but it has a high similarity between it and both 
numbers 1 and 8, so the BBGMM model predicts uncertain outputs 

for this image between these two classes. The picture at the bottom 
right presents the proportion of aleatoric uncertainty for the BBGMM 
model predictions in the previous two images, where varying values 
of this uncertainty appear between the two images resulting from the 
noise in these two images. For example, we can explain the appear-
ance of aleatoric uncertainty between the numbers 4 and 9 for the 
image taken from MNIST by the presence of a significant similarity 
between these numbers in this image

Table 5  Uncertainty estimation

Datasets Aleatoric uncertainty Epistemic uncertainty

MNIST 0.001229 0.000307
Fashion MNIST 0.01394 0.0004003
CIFAR-10 0.037939 0.004080
SVHN 0.012833 0.037308
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function, resulting in more accurate and reliable predictions 
compared to other models.

6  Conclusion and discussion

The BBGMM model can be viewed as an extension of the 
Bayes by Backprop method for mixture models (Gaussian 
mixture model) to approximate the posterior distribution for 
convolutional neural networks. We followed how to reparam-
eterize the mixture model if all of its components are repara-
metrizable, which is available in Gaussian mixture models. We 
then tried to estimate the aleatoric and epistemic uncertainties 
of mixture models for classification tasks.

Next, the experimental results showed that the BBGMM 
model performed well compared to the other methods, as it 
achieved significant test accuracy over all datasets.

We also saw that the BBGMM model increased the credi-
bility of convolutional neural network outcomes by quantify-
ing uncertainty in network weights from the mixture model.

Although the BBGMM method has produced positive 
results, it is crucial to note that the extent of these results is 
currently insufficient. This implies that while the BBGMM 
method is promising, there is still considerable potential to 
improve it to achieve more substantial and robust results. The 
second problem is that the BBGMM method doubles the num-
ber of parameters that vary as a function of the number of 
components in the mixture, which increases the complexity 
of the model and makes it inflexible or difficult to apply in 
practical applications, particularly when the number of mixture 
components increases.

This motivates us to improve the BBGMM model and 
discover complementary solutions to reduce the model’s 
complexity.

Appendix A: Datasets

See Table 6.

Appendix B: Hyperparameters

See Tables 7, 8.

Table 6  Datasets informations Informations Datasets

MNIST [39] Fashion MNIST [68] CIFAR-10 [33] SVHN [50]

Content Handwritten digits images Fashion products Objects pictures Digits images
Number 70000 70000 60000 73257
Type Grayscale images Grayscale images Colour images Colour images
Size 1 × 28 × 28 1 × 28 × 28 3 × 32 × 32 3 × 32 × 32

Class 10 10 10 10
Train set 50000 50000 40000 53257
Validation set 10000 10000 10000 20000
Test set 10000 10000 10000 26032

Table 7  Hyperparameters using for MNIST and Fashion MNIST

Hyperameters Value

Epochs 100
Batch_size 128
Sample train 2
Sample test 10
Loss Cross-Entropy
Optimizer Adam
Learning rate 0.00015
Prior std �

0
0.1

Mixture weight � 0.5

Table 8  Hyperparameters using for CIFAR-10 and SVHN

Hyperameters Value

Epochs 100
Batch_size 128
Sample train 2
Sample test 10
Loss Cross-Entropy
Optimizer Adam
Learning rate 0.001
Prior std �

0
0.1

Mixture weight � 0.5
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Appendix C: CNN architectures

See Tables 9, 10.

Data availibility Datasets analyzed during the current study are avail-
able in the UCI machine learning repository.
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