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new instruments, networked instruments and sensing tech-
nologies are applied to the entire manufacturing process, 
new variables are brought to fault detection and diagnosis. 
How to adopt effective fault detection and diagnosis meth-
ods to ensure the stable operation of industrial processes is 
an urgent and challenging problem.

In modern industrial production systems, failures are 
manifested when the monitored parameters of the process 
deviate from the expected range. According to the exist-
ing research, fault detection and diagnosis techniques are 
divided into three categories: model-based methods, knowl-
edge-based methods and data-based methods. However, 
the model- and knowledge-based methods are limited by 
the difficulty of modeling and knowledge accumulation, 
and cannot be applied to dynamic and complex industrial 
production process systems. With the rapid development 
of distributed control, communication technology and data 
collection technology, a large number of observed variables 
in the system can be collected and stored, which promotes 
the research of data-based fault detection and diagnosis 
methods.

The data-based fault detection and diagnosis method 
can perform statistical analysis and feature extraction on 
massive industrial data, and divide the state of the system 

1 Introduction

With the rapid development of modern industry, the degree 
of automation and complexity of industrial production pro-
cess is getting higher and higher. While large-scale indus-
trial processes bring huge economic benefits to the country, 
due to the high coupling and complexity of the system, any 
small disturbance in the system may lead to the paralysis 
of the entire system, resulting in huge economic losses and 
even casualties. Therefore, fault detection and diagnosis 
technology is indispensable for all industrial processes, and 
it is the guarantee that the industrial process can operate 
reliably and safely according to the production plan. How-
ever, complex industrial processes are inherently nonlinear, 
dynamic, multi-modal, multi-period, high-dimensional, 
intermittent and other characteristics, making fault detec-
tion and diagnosis extremely challenging, and traditional 
methods are difficult to adapt to the complexity of actual 
industrial processes. At the same time, as a large number of 
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into normal operation state and fault state, which can be 
regarded as a pattern recognition task. Fault detection is to 
judge whether the system is in the expected normal operat-
ing state and whether the system has abnormal faults, which 
is equivalent to a binary classification task. Fault diagno-
sis is to determine which fault state the system is in when 
a fault occurs, which is equivalent to a multi-classification 
task. Therefore, the research of fault detection and diagnosis 
technology is similar to pattern recognition, which is divided 
into 4 steps: data acquisition, feature extraction, feature 
selection and feature classification. (1) The data acquisition 
step is to collect signals from the process system that may 
affect the process state, including process variables such as 
temperature and flow rate; (2) The feature extraction step is 
to map the collected raw signals into recognizable system 
state information; (3) The feature selection step is to extract 
variables related to state changes; (4) The feature classifica-
tion step is to perform fault detection and diagnosis on the 
features selected in the previous steps through an algorithm. 
In the context of big data, traditional data-based fault detec-
tion and diagnosis methods are widely used. However, these 
methods share some common disadvantages: feature extrac-
tion requires a lot of expert knowledge and signal process-
ing techniques. At the same time, for different tasks, there is 
no unified procedure to complete them. Furthermore, con-
ventional machine learning-based methods are shallow in 
structure and limited in ability to extract high-dimensional 
nonlinear relationships of signals.

With the rapid development of computer technology, 
especially the improvement of computing power, deep 
learning has received more and more attention. Deep learn-
ing originated from the study of artificial neural networks. 
Compared with shallow neural networks, the “depth” of 
deep learning is reflected in the network structure. Deep 
learning can model complex data and mine hidden features 
in data by building deeper structures, scalable hidden units 
and nonlinear activation functions. The learned features are 
usually deepened layer by layer, and high-level features 
are more abstract than low-level features and have stronger 
feature expression capabilities. At present, deep learning is 
widely used in the fields of computer vision [1, 2], natural 
language processing [3, 4] and object detection [5, 6]. In 
the field of fault detection and diagnosis in the industrial 
production process, based on auto encoder (AE), deep belief 
network (DBN), convolutional neural network (CNN) and 
recurrent neural network (recurrent neural network) neural 
networks, RNN) deep learning methods are widely used. 
The advantage of deep learning is that it can automatically 
perform feature engineering, and the whole process does 
not require manual intervention, which reduces the depen-
dence of feature extraction on professional knowledge. In 
addition, the features learned by deep learning models are 

deepened layer by layer, and deeper features perform better 
when used for prediction, detection, and classification tasks. 
Moreover, deep learning can learn in an end-to-end fashion, 
which means that the model is not limited to a specific task, 
so it can be adapted to different tasks by fine-tuning the net-
work structure and parameters. That is, deep learning is easy 
to adapt to new problems and has higher robustness.

With the development of deep learning methods, deep 
learning algorithms have gradually replaced traditional 
methods of industrial control data analysis and process-
ing. The multi-task deep learning (MTDL) method based 
on deep learning is also used to solve the classification and 
identification problem of fault detection in the industrial pro-
duction process. Multi-task learning exploits the valuable 
information contained in multiple related tasks to improve 
performance on all related tasks [7]. Therefore, this paper 
proposes an adaptive multi-task deep learning method that 
introduces a multi-label system. Aiming at the problems of 
fuzzy or even loss of feature information extraction in com-
mon pooling algorithms, the proposed method improves the 
adaptive pooling method through the selection of parameters 
to improve the flexibility of feature extraction. To evaluate 
the performance of our method, we compare our method 
with existing work. The test results in the TE process show 
that the adaptive deep learning model proposed in this paper 
can effectively improve the fault detection effect of exist-
ing methods. The designed adaptive pooling algorithm can 
improve the flexibility of feature extraction and improve the 
detection performance of the model.

2 Related work

Data-driven fault detection can be viewed as a single-class 
anomaly detection task. The single-class anomaly detection 
method describes the normal data distribution area through 
statistical analysis, machine learning and other techniques, 
and samples outside this area are considered as abnormal 
data. One type of research chooses traditional machine 
learning methods such as support vector data description 
(SVDD) to achieve fault detection [8–10].

Another type of research uses deep learning methods to 
mine industrial control data for fault detection and diagno-
sis in complex industrial production processes. The pow-
erful feature extraction ability of CNN solves the problem 
of insufficient artificial feature expression ability. Many 
scholars use CNN to study fault detection and diagnosis in 
chemical process. Wu et al. [11] proposed a fault diagnosis 
model based on a deep convolutional neural network, by 
stacking monitoring data of multiple time periods to form an 
input form of time dimension × variable dimension. Similar 
to this idea, CNN-based fault diagnosis methods have been 
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applied to reactive distillation [12, 13], heat pump systems 
[14], and semiconductor manufacturing processes [15]. AE 
is an unsupervised learning algorithm that enables feature 
extraction on data without labels. Since the autoencoder 
(AE) is trained by unsupervised learning, the pure AE-based 
method cannot be applied as a classifier. Feature extraction 
can be performed through AE, and then a classifier such as 
a softmax layer or a Support Vector Machine (SVM) can be 
added after the model to achieve fault detection and diagno-
sis. References [16, 17] input the features extracted by SAE 
to the softmax layer to fine-tune the structural parameters 
in a supervised learning manner to achieve fault detection 
and diagnosis. Aiming at the time-domain and frequency-
domain features of complex chemical processes, Lv [18] 
combined a stacked sparse auto encoder (SSAE) and an 
SVM classifier, and used SSAE to extract the correlation 
between monitoring variables and between samples. The 
temporal correlations are then employed for fault classifi-
cation using the SVM classifier. Guo et al. [19] proposed a 
fault detection and diagnosis method based on SAE, which 
can extract the complete feature representation of incom-
plete data, retain the main features of the data in low-dimen-
sional space, and implement fault diagnosis through SVM 
classifier.

DBN is a probabilistic generation model, which acts like 
an auto-encoder and can perform high-dimensional feature 
representation on the input data in the process of unsuper-
vised learning, and DBN can add a classification layer at 
the end to perform supervised training on the data, which 
implements the classification algorithm. Wang et al. [20] 
optimized the DBN model through the DE algorithm. The 
optimized method has faster training speed, higher accu-
racy and more robustness. Ref. [21] proposed an Extended 
Deep Trust Network (EDBN), which considers the dynamic 
information of the data and combines the original data and 
hidden features to solve the problem that DBNs tend to lose 
valuable information in the original data. Wei et al. [22] 
adopted dropout technology to solve the overfitting problem 
of traditional DBN-based fault diagnosis methods, and the 
fault diagnosis rate of the proposed DBN-dropout method 
was higher than DBN and other deep learning-based meth-
ods. Yu et al. [23] proposed an unstable neuron-based DBN 
(UN-DBN) method, which first uses normal data to train a 
DBN model, and then obtains the result by integrating the 
hidden layers of unstable neurons in some samples Feature 
representations that aid in fault detection. Tang et al. [24] 
proposed a DBN-based Fisher discriminant sparse repre-
sentation method, which outperformed methods such as 
SVM and BP neural network in fault diagnosis performance 
in industrial processes with a large number of monitoring 
variables.

The above studies demonstrate the powerful adaptive 
feature extraction and classification capabilities of deep 
learning in solving industrial control data fault detection 
and analysis tasks. However, these studies are all used under 
the single-label system to diagnose single-target faults. In 
the context of big data, the single-label system not only 
separates the connection between different faults in indus-
trial production process scenarios, but also makes it difficult 
to completely describe a wide variety of status information 
such as fault location, type, and degree.

3 Adaptive deep learning method

Deep learning can automate feature engineering without 
human intervention. In addition, deep learning is easier to 
adapt to new problems and more robust. However, existing 
methods are often limited to single-label systems for fault 
diagnosis. In order to improve the accuracy of fault detec-
tion in industrial production process systems, this paper pro-
poses an adaptive multi-task deep learning fault detection 
model, which can analyze and process industrial control 
big data to ensure the safe and reliable operation of indus-
trial processes. The detection model mainly consists of two 
parts, namely the generator and the discriminator, where 
the generator consists of a feature extractor and a feature 
synthesizer, as shown in Fig. 1. Input data should be for-
matted as two-dimensional data. For feature extraction, an 
improved adaptive pooling method is proposed to improve 
the flexibility of feature extraction. And a Siamese neural 
network is designed to evaluate the local spatial distribu-
tion through an adaptive reweighting module and using the 
class label information with different confidence levels. At 
the same time, the discriminative MTDL algorithm is used 
in the discriminator to fully consider the local information 
of the sample. The structure of discriminative MTDL can 
be seen in the top module of Fig. 1. The first three con-
volutional layers in the discriminative MTDL network are 
shared layers, and the last three layers are coarse-grained 
layers and fine-grained layers.

3.1 Discriminative multi-task deep learning

Based on the discriminative MTDL method, this paper uses 
an adaptive reweighting module to discriminate with soft-
max loss to obtain local spatial distribution information 
from samples. In order to combine class label information 
and constraint loss, a Siamese neural network with two loss 
functions is designed, namely discriminative softmax loss 
and contrastive loss. The specific functions of these two 
loss functions are: (1) discriminative softmax loss, which 
uses class label information and local spatial distribution 
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module ωk
 improves the classification performance by pro-

viding specific local distribution information.

3.2 Adaptive reweighting

To evaluate the local spatial distribution of samples more 
effectively, an adaptive reweighting module is introduced 
in this paper. In order to design the adaptive reweighting 
module ωk

, high-level representations are considered to 
characterize samples of the same class, instead of samples 
of different classes. Therefore, pCON(xi, xj)  can be defined 
as follows:

pCON (xi, xj) =
∑

xj∈Nk(xi)

max(k − d (xi) , d(xi, xj ))

max(k − d (xi) , d(xi, xi)

where: Nk (xi) is the set of k nearest neighbors of xi , and 
max(k − d (xi) , d(xi, xj ))  is the reachable distance from xi  
to xj . That is, if xi  and xj  are close enough, the reachable 
distance is k − d (xi); if xi  is far from xj , the reachable 
distance is d(xi, xj).

Since pCON(xi, xj)  is a probabilistic algorithm, the 
adaptive weighting module ωk

 can be defined as:

ωk = G

(
T∑

t=1

pCON(xi, xj)

)

Where: T represents the number of iterations, G represents 
the transformation of the local Gaussian statistic, which can 
be used to scale the probability value. Discriminant MTDL 
iterations cannot have complex procedures. But can con-
verge to similar results with sufficiently long iterations.

information of samples; (2) contrast loss, which helps to 
effectively prevent overfitting problems. Given a dataset X 
consisting of N samples from M  different classes, the dis-
criminative softmax loss can be expressed as

Sloss (xi, θ, yi) = −
M∑

t=1

1 {yi == t} logp̂t = −logp̂yi = −log
eθ

T
yi
xi

∑M
t=1 e

θTyi
xi

In the formula: xi  represents the network output corre-
sponding to the training sample xi . 1 {yi == t}  is the indi-
cator function, if yi == t  is true, the result is 1, otherwise 
the result is 0. θ is the parameter of the network layer; θt  is 
the weight of the t-th network output, t = 1, …, M. p̂yi  is the 
predicted probability.

The goal of discriminative MTDL is to exploit discrimina-
tive information from training samples. Therefore, an adap-
tive reweighting module ωk

 is proposed to add local spatial 
distribution information to the proposed Siamese neural 
network. Additionally, a reweighting module that assigns 
weights to each sample based on the confidence between 
pairs of samples can both minimize the distance between 
similar samples and maximize the distance between differ-
ent samples. Then the discriminative softmax loss function 
of this method is defined as:

SL (xi, xj, φ1, φ2, yi, yj) =

N∑

i,j,k

ωk(Sloss
(
xi, φ1, yi

)
+ Sloss(xj, φ2, yj ))

where: xi  and xj  are the network outputs corresponding 
to the training samples xi  and xj . yi  and yj  are the class 
labels corresponding to xi  and xj . φ1  and φ2  are the param-
eters of the two softmax losses. The adaptive reweighting 

Fig. 1 The Overall Workflow of 
Our Method
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kernel are fixed during the training of the convolutional 
neural network. Also, there is no way to select appropri-
ate parameters based on training samples and changes that 
occur during training. Therefore, this method will cause 
problems such as unclear feature information extracted and 
missing important feature information, and it is still not the 
best method [25].

It can imitate the autonomous learning ability of the 
human brain, which is the most important feature of artifi-
cial neural networks. Among them, the human brain mainly 
completes the process of autonomous learning by receiving 
external information through reading and listening. Simi-
larly, the artificial neural network also has a learning pro-
cess, which is a process of training the obtained sample set, 
and can also be understood as a search process for complex 
functional relationships. If the functional formula defined 
by the neural network can satisfy the training sample set, 
it means that the network model training is completed. On 
the contrary, the network model parameters are adjusted 
accordingly, and the process does not stop until the defined 
functional relationship can satisfy the training sample set 
[26].

Due to its own characteristics, the artificial neural net-
work can continuously supervised training in a large number 
of training sets, so that the characteristics of the parameters 
can be modified many times, and finally it can be applied 
in various scenarios, and can perform automatic training. 
Adaptive dynamic correction of the convolution kernel 
parameters.

3.3.3 Implementation method

Based on the adaptive pooling algorithm, this paper 
improves it and proposes an adaptive improved pooling 
algorithm. The main steps of the algorithm are: (1) Initialize 
the parameters in the pooling, that is, initialize the convo-
lution kernel parameter γ; (2) During training, the pooling 
value is obtained after the convolution operation; (3) During 
training iterations, the parameter γ is updated by adopting 
gradient descent; (4) After multiple iterations and optimiza-
tion of parameters, the adaptive pooling operation is finally 
completed. The process of the adaptive pooling algorithm is 
as follows: the first stage: the industrial control data is used 
as input, and after the mapping relationship of the discrimi-
native MTDL, the predicted value of the fault category is 
finally output.

Stage 2: Calculate the difference between the two using 
a loss function based on the predicted value and the actual 
value obtained before. Among them, the two loss functions 
SVMLoss and SoftmaxLoss are the two most widely used 
functions in the training process of discriminative MTDL. 
This article uses SoftmaxLoss. Its expression is as follows:

3.3 Adaptive pooling algorithm

3.3.1 Disadvantages of common pooling algorithms

Since the difference between different types of pooling algo-
rithms only depends on the selected convolution kernel, the 
pooling algorithm is usually regarded as a convolution oper-
ation, and the feature matrix S after the pooling operation is:

S =
c∑

i=1,j=1

γijxij

In the formula: γij  is the parameter of the convolution ker-
nel. If it is an average pooling algorithm, take γij = 1

c2, and 
c is the size and step size of the pooling domain. If it is 
maximum pooling, then set the maximum eigenvalue. The 
parameter is 1, and the others are set to 0.

If there are two different cases for the given pooling 
domain. For example, in the first case, the feature value of 
a region is Y, and the feature value of its adjacent parts is 0. 
Obviously, the feature information at Y is the most dense. 
Therefore, if the average pooling is used to process it at this 
time, the feature information will be greatly weakened. Sim-
ilarly, if the eigenvalues   of four adjacent locations in a cer-
tain area are 0, Y1, Y2, and Y3, respectively. If the feature 
information of Y1, Y2 and the correlation between Y1, Y2, 
and Y3 are directly ignored, and the maximum value Y3 is 
selected by the maximum pooling algorithm, a large amount 
of important feature information will be lost, which is not 
worth the loss. Therefore, whether the maximum pooling 
algorithm or the average pooling algorithm is used to aggre-
gate the features of the pooling domain, it will weaken the 
representation of its global features.

In order to prevent the above problems from happening 
as much as possible, we try to use a random pooling algo-
rithm, and after thinking about the correlation between Y1, 
Y2, and Y3, the final eigenvalues   are selected according 
to the calculated probability values. However, the feature 
information in the final eigenvalues   is not complete. It does 
not include all the feature information in Y1, Y2, Y3, and 
there are missing. And in the pooling layer, the eigenvalues   
obtained by pooling also need to be input into the neural 
network of the lower layer for calculation. It can be seen 
that the random pooling algorithm still has the problem of 
information loss, and cannot completely solve the problem 
in the second case above.

3.3.2 The principle of adaptive pooling algorithm

From the above analysis, we know that for the traditional 
pooling algorithm, the parameter values of the convolution 
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this case. Collect the data under normal working conditions 
and 20 faults in the TE process, and divide it into a training 
sample set and a test sample set. The training sample set 
contains 13,480 samples under normal working conditions 
and 480 samples under each fault. The test sample set con-
tains 960 normal samples and 960 fault samples each. The 
fault samples are all in the fault state from the 161st sample. 
The process monitors 41 variables, so the training sample 
set forms a 23,080 × 41 matrix and the test sample set forms 
a 20,160 × 41 matrix.

The experimental model for discriminative MTDL con-
sists of 4 convolutional layers, a fully connected layer and 
a softmax layer, where each convolutional layer is followed 
by a max pooling layer and a local response normalization 
layer. The features extracted from the fully connected layer 
will be input into the softmax layer for classification. In the 
experiment, the initial network learning rate is set to 0.05. 
Regarding the fault detection performance of the proposed 
method, the fault detection rate (FDR) is mainly used here to 
evaluate, and its specific calculation formula is as follows:

FDR =
Totalnumberofsamplesdetected

Totalnumberofsamplesoffault
× 100%

4.2 Comparative experimental results

The performance of our method is evaluated by compar-
ing it with several popular fault detection schemes. The 
methods involved in the comparison are: SVDD method, 
BP neural network, Attentive Dense CNN [28], and deep 
model without Adaptive Pooling Algorithms (MTDL with-
out APA). The experimental results are shown in Fig. 2. 
The experimental results are displayed in a bar graph, 
and each group represents the experimental results of one 
method. In each set of results, the first bar shows the average 
fault detection rate for the 20 faults selected in this paper. 
Because the detection results of FDR vary greatly among 
different fault types. The figure also shows the FDR for two 
fault types, corresponding to the 1st fault and the 19th fault, 
respectively. From the perspective of average FDR, the 
SVDD algorithm works the worst. BP-NN is significantly 
improved on the basis of SVDD, which indicates that deep 
learning algorithms have advantages in processing industrial 
control data. The MTDL without APA method has a 4.07% 
lower FDR than the Attentive Dense CNN method. But 
after adding adaptive pooling algorithm, the performance 
of our method exceeds that of Attentive Dense CNN. This 
shows that the adaptive module can improve the detection 
performance of the whole model. For the FDR of fault type 
1, all methods can achieve good detection results, and the 
FDR exceeds 97%. However, for fault type 19, the FDR of 

Sloss = − 1

m




m∑

i=1

k∑

j=1

1{yi = j}log eθ
T
j x

(i)

∑k
l=1 e

θTl x
(i)



 +
λ

2

k∑

i=1

k∑

j=0

θ2ij

Among them, the final predicted value is recorded as y; θ  
represents the weight between neurons; the indicative func-
tion is represented by l {} , if the expression in {}  is true, it 
takes 1, otherwise it takes 0; the weight decay term is repre-
sented by the second term in the formula.

In each training iteration, the parameters of the network 
model are appropriately adjusted based on the obtained loss 
value, so that the parameters of the loss function can be 
minimized, so that the predicted result can be closer to the 
actual value.

The third stage: Based on the loss function, the gradient 
descent method is used to update the pooling parameter γ to 
obtain the optimal parameter, that is, to find the minimum 
value of the loss function. The expression is as follows:

γn+1 = γn − εn · ∇f (γn)

Among them, the step size and learning rate are represented 
by ε ; the loss function is denoted as f () . The parameter 
values of the final pooling algorithm can be obtained after 
many iterations and updates, as well as continuous conver-
gence to the extreme value of the loss function.

4 Experimental evaluations

4.1 Experimental settings

In this section, the proposed method is validated using an 
industrial process system in the chemical industry. In this 
section, the standard test industrial process Tennessee 
Eastman (TE) system is chosen to verify the performance 
of the proposed method. The TE system is derived from a 
real chemical industrial process [27] and mainly consists of 
five operating units: reactor, condenser, recycle compres-
sor, separator and stripper. Reactants A, B, C, D and E enter 
the reactor to undergo an irreversible exothermic reaction, 
and the outlet product is cooled by a condenser and then 
enters a separator. The separated light component materi-
als are returned to the reactor through the compressor, and 
the heavy component liquid of the separator flows into the 
stripper, and finally products G, H and by-product F are 
obtained. At present, the system has become a benchmark 
system for testing control and diagnostic methods, and has 
been widely used in many studies.

In the simulated data, a total of 41 observed variables are 
monitored, including 22 continuous process variables and 
19 component variables. The TE process also includes 21 
preset faults, and the first 20 faults are used for monitoring in 
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the model trained in this paper can be applied to the test data 
set, and there is no overfitting on the training data set.

4.4 Findings and further analysis

In this Section, the experimental results are further ana-
lyzed. Section 4.1 compares the average fault detection rate 
of the method in this paper and the Discriminant MTDL 
method that does not use the adaptive pooling algorithm on 
the data set. It can be seen from the experimental results that 
after introducing the adaptive pooling algorithm proposed 
in this paper, the system has increased the fault detection 
rate by 5.34%. In order to further evaluate the improve-
ment of experimental performance by introducing the adap-
tive pooling algorithm, Fig. 4 shows the detection results 
of this method on different error types when the adaptive 
pooling algorithm is used or not. An obvious result is that 
the fault detection rate increases in all detection categories 

SVDD and BP-NN is below 30%. The FDR of our method 
in fault type 19 is more than 3% lower than that of the Atten-
tive Dense CNN method. Although the method proposed in 
this paper is not optimal for some fault types, the method in 
this paper still has the best performance among the methods 
involved in the comparison.

4.3 Experimental results over number of iterations

The Fig. 3 shows the accuracy of our method on fault 1 as a 
function of the number of iterations. Among them, the solid 
line represents the iteration results on the training dataset, 
and the dotted line represents the iteration results on the test 
dataset. It can be seen that the iteration of the method in this 
paper is relatively fast, and the detection rate can exceed 
99% in 150 iterations, and gradually converge. Although the 
experimental results on the test dataset fluctuate, they all 
maintain a detection rate of more than 99%. This shows that 

Fig. 3 Fault Detection Rates of 
Fault#1 on Training and Testing 
Datasets Over Iterations

 

Fig. 2 Experimental Results on 
FDR of the Compared Methods
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reweighting module. At the same time, the improved adap-
tive pooling method is used to dynamically adjust the opti-
mization parameters to improve the recognition accuracy. 
The test results in the TE process show that the adaptive 
deep learning model proposed in this paper can effectively 
improve the fault detection effect of existing methods. The 
designed adaptive pooling algorithm can improve the flex-
ibility of feature extraction and improve the detection per-
formance of the model. Although the method proposed in 
this paper shows good performance on the test data, there 
are still some issues worthy of further study. In the future, 
the following aspects will be considered: how to improve 
the deep network structure to further improve the accuracy 
of fault detection; In addition, the detection strategy needs 
to be optimized for specific types of faults to reduce the 
false negative rate.
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