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Abstract
Based on the alternative theorem, global optimality conditions for nonlinear programming problems to be discussed in this 
article. Firstly, on the basis of the research of optimality conditions for polynomial optimization problems, the paper consid-
ers nonlinear programming over constrains which are not real polynomial functions. And then necessary global optimality 
conditions for nonlinear programming problems with non-polynomial constraints functions are proposed and sufficient 
global optimality conditions for polynomial objective function programming problems with non-polynomial constraints 
functions are developed by using the alternative theorem. Finally, necessary and sufficient global optimality conditions for 
0–1 quadratic programming problems are presented.

Keywords Global optimization · Alternative theorem · 0–1 quadratic programming

1 Introduction

1.1  Motivation

Theories and methods of optimization originated in various 
fields such as military, economics, management, and engi-
neering technology. After World War II, the application of 
optimization theory and methods was transferred from mili-
tary to civilian use, and optimization methods and theories 
of engineering technology and modern management were 
proposed. Since Dantzing proposed the simplex method to 
solve general linear programming problems in 1947, optimi-
zation became an independent discipline. When the steepest 
descent method, the conjugate gradient method, the New-
ton method and the quasi-Newton method were proposed 

after the 1850s, nonlinear programming has been greatly 
developed. Up to now, the theoretical research of various 
optimization problems such as linear programming, non-
linear programming, integer programming, semi-definite 
programming, stochastic programming, multi-objective 
programming, etc. has developed rapidly. With the rapid 
development of informatization and artificial intelligence, 
the computational experiments of these optimization prob-
lems have gained greater development space. As more and 
more problems are solved and people’s needs are getting 
higher, global optimization has become a new branch of the 
optimization discipline, and more and more studies have 
been done. Global optimization is to solve the global optimal 
solution of the programming problem or to prove the non-
existence of the global optimal solution. This involves the 
study of optimality conditions, because the point that does 
not meet the necessary condition must not be the optimal 
solution, and the point that meets the sufficient condition 
must be the optimal point, plus a good algorithm without a 
well termination criterion which is the optimality condition 
that can be verified may also be in vain. Therefore, optimal-
ity conditions are an indispensable part of the optimization 
theory. So, the global optimality condition is a theoretical 
knowledge that needs to be developed urgently.
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1.2  Literature review

The research on optimality conditions starts from two 
aspects: local and global. The study of local optimality 
conditions is very mature with the development of non-
linear programming. The KKT condition first proposed 
by Kuhn and Tucker et al. [1] in 1951 is a local optimal-
ity condition for continuous optimization problems. The 
research on global optimality conditions is currently only 
for some special structure optimization problems. It is dif-
ficult to obtain global optimality conditions that are easy to 
verify for general optimization problems. For constrained 
optimization problems, Yang [2], Pinar [3] respectively 
gave global optimality conditions for convex programming 
problems. Wu [4], Alexanders [5] respectively has made 
some progress in the characterization of the global opti-
mal solution of several special non-convex programming 
problems. And Wu [4] used the theory of abstract convex 
analysis to give the sufficient global optimality condition 
for the weakly convex minimum problem with inequality 
constraints. In 2006, Schichl [6] proposed that in the study 
of optimality conditions, they generally rely on qualita-
tive conditions (smooth, linear, convex, etc.) and technical 
conditions which describe the type of problem, that is, 
constraint qualification. Wu, Jeyakumar and Rubinov [7] 
established the lagrangian function to give the sufficient 
global optimality condition for the non-convex quadratic 
programming problem with quadratic equality and ine-
quality constraints. Jeyakumar, Srisatkunarajah and Huy 
[8] discussed non-convex continuous optimization prob-
lems with equality and inequality constraints, and gave 
Kuhn-Tucker sufficient global optimality conditions for 
such problems. In Beck’s article [9], for the non-convex 
quadratic programming problem with bivariate constraints, 
Beck established a sufficient condition for the feasible 
solution of the problem to be the global optimal solu-
tion, and obtained the necessary condition for the global 
optimal solution. There are many other scholars paying a 
great deal of attention on global optimality conditions for 
those polynomial optimization problems, Bienstock [10], 
David [11], Qi [12], Jeyakumar [13]. And for 0-1 quadratic 
programming problems, professor Chen and Zhang [14] 
used the relationship between 0–1 quadratic programming 
and integer quadratic programming to get the necessary 
global optimality condition and sufficient global optimality 
condition for integer quadratic programming with linear 
inequality constraints, Fang [15] also studied optimality 
conditions and gave the canonical dual approach to solve 
0–1 quadratic programming problems, and Hsia [16]. For 
other multi-objective optimization problems, some schol-
ars study optimality conditions, as Wang [17], Jean-Pierre 
[18], Perkki [19]. In the literature [20], Jeyakumar and Li 

further deepened the theory of Schichl [6] to propose nec-
essary global optimality conditions under the optimization 
problem of nonlinear objective function and polynomial 
constraints, and put forward a concept to convert the opti-
mality condition of the polynomial optimization problem 
proposed by Schichl [6].

1.3  Proposed approaches

The polynomial transformation theorem of Schichl [6], i.e. 
alternative theorem, is a key tool to develop global optimal-
ity conditions in the polynomial optimization. In the para-
graph above, some scholars used the alternative theorem 
to discuss the global optimality condition. However, the 
existing results are limited to some special cases such as the 
objective function and the constraint function to be polyno-
mial functions. This paper further deepens the study, and 
discusses global optimality conditions for general nonlinear 
programming problems through the alternative theorem. By 
using the polynomial transformation theorem which from 
Schichl [6] and Marshall [21] together with a polynomial 
construction, necessary global optimality conditions for 
nonlinear programming problems with non-polynomial con-
straints functions and sufficient global optimality conditions 
for polynomial objective function programming problems 
with non-polynomial constraints functions can be developed. 
In particular, this paper presents some necessary and suf-
ficient global optimality conditions for 0–1 quadratic pro-
gramming problems.

The outline of the paper is as follows. In Sect. 2, we 
describe the alternative theorem and give the some rel-
evant theoretical knowledge and notations description. In 
Sect. 3, we present necessary global optimality conditions 
for nonlinear programming problems with non-polynomial 
constraints functions and develop sufficient global optimal-
ity conditions for polynomial objective function program-
ming problems with non-polynomial constraints functions. 
In Sect. 4, we also discuss necessary and sufficient global 
optimality conditions for 0–1 quadratic programming prob-
lems. In Sect. 5, we put the conclusion.

2  Experimental

2.1  Symbol description

Denoting the real polynomial ring on Rn by R[x] where 
x = (x1,… , xn)

T ∈ Rn . The set of all natural numbers 
is denoted by N . The notation A ⪰ 0 means that the 
matrix A is positive semi-definite. f is a sum of squares 
polynomial (SOS polynomial) in R[x] if there exist 
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k ∈ N , fi ∈ R[x], i = 1,… , k , such that for each x ∈ Rn , 
f (x) =

∑k

i=1
f 2
i
(x) . Let f1,… , fk ∈ R[x] . Here are those fol-

lowing notations throughout the paper:

2.2  Alternative theorem

In the literature [6], Schichl and Neumaier proposed that 
researches about optimality conditions generally depend 
on qualitative conditions (smooth, linear, convex, etc.) 
which describe the type of problem, that is, constraint 
qualification, which meet to remove specific difficulties 
or counter-examples in proving. However, optimality con-
ditions are used to exclude some solutions or to verify 
the existence of solutions, their own availability is very 
important. So, optimality conditions should not depend on 
any constraint qualification. Schichl and Neumaier pointed 
out the alternative theorem is a key point in research of 
optimality conditions. And a very strong non-degenerate 
condition is required in (second-order) necessary condi-
tions. Schichl and Neumaier constructed necessary and 
sufficient conditions of polynomial optimization problems 
which are without any constraint qualifications by using a 
polynomial similar theorem of linear system transposition 
theorem that is namely Positivstellensatz theorem.

Theorem 1 [6] (Polynomial transformation theorem II) P, Q 
and R are respectively vectors of polynomials. The following 
two conditions are listed and only one is true: 

 (i) P(x) ≥ 0,Q(x) = 0,Ri(x) > 0(i = 1,… , k) , for some 
x ∈ Rn;

 (ii) w1 + w2 + w3 = 0  ,  f o r  s o m e 
w1 ∈ C⟨P,R⟩,w2 ∈ I⟨Q⟩,w3 ∈ M⟨R⟩.

The theorem above refers to alternative theorem, there 
is one established between two choices. Alternative 
theorem is a key point to construct or prove optimality 

S⟨f1,… , fk⟩ ∶ =

�
k∏

i=1

f
ei
i
�ei ∈ {0, 1}

�
.

I⟨f1,… , fk⟩ ∶ =

�
k∑

i=1

ai fi�ai ∈ R[x]

�
.

M⟨f1,… , fk⟩ ∶ =

�
k∏

i=1

f
ei
i
�ei ∈ N ∪ {0}

�
.

C⟨f1,… , fk⟩ ∶ =

�
2k∑
i=1

yiui�yi is a SOS polynomial, ui ∈ S⟨f1,… , fk⟩
�

.

conditions. Some global optimality conditions are pre-
sented in [20].

3  Global optimality conditions for nonlinear 
programming problems

In [20], authors discussed problems with polynomial con-
straints. Here, we consider the problem over non-polynomial 
constraints and present some global optimality conditions.

We consider the problem

where p(x), pi(x), hj(x) are real polynomials on Rn , k(x), ki(x) 
are twice continuously differentiable convex functions on 
Rn . We Denote

Let x̂ be a feasible point of (P1) , to define the function 
g̃∗
ix̂
∶ Rn

→ R,

And the function g̃∗
x̂
∶ Rn

→ R,

Theorem 2 If x̂ is a global optimal solution of (P1) , then 
there exist

and SOS polynomials yi(x), i = 1,… , 2k+1,

such that, for some 1 ≤ i∗ ≤ 2k+1 , we have

and for each x ∈ Rn , we have

(P1)

⎧
⎪⎨⎪⎩

min p(x) − k(x)

s.t pi(x) + ki(x) ≥ 0, i = 1,… , k;

hj(x) = 0, j = 1,… , l.

F0 = {x|pi(x) + ki(x) ≥ 0, i
= 1,… , k, hj(x) = 0, j = 1,… , l}.

g̃∗
ix̂
(x) = pi(x) − pi(x̂) + ∇ki(x̂)

Tx − ∇ki(x̂)
T x̂, i = 1… , k.

g(x) = p(x) − ∇k(x̂)Tx and g̃∗
x̂
(x) = g(x̂) − g(x).

� ∈ N, aj(x) ∈ R[x], j = 1,… , l,

u(x) ∈

{
k∏

i=1

[
g̃∗
ix
(x)

]ei[
g̃∗
ix
(x)

]e |eie ∈
}

∈ {0, 1}

u(x) = (u1(x),… , u2k+1 (x)),

ui∗ (x̂) = 1, yi∗ (x̂) = 0,



294 Evolutionary Intelligence (2024) 17:291–301

1 3

Proof If x̂ is a global optimal solution of (P1).
Let

  ◻

By construction of �(x) , its gradient vanishes at x̂ . So,

Thus,

For i = 1,… , k , let

So, x̂ is a minimum of �i(x).

Since x̂ is a feasible point of problem, then pi(x̂) + ki(x̂) ≥ 0.
If pi(x) + ki(x) < 0 , then g̃∗

ix̂
(x) < 0.

By construction, g̃∗
x̂
(x), g̃∗

ix̂
(x), i = 1,… , k are polynomi-

als. So, from theorem 1, let

Then exactly one of the following holds: 

 (i) P(x) ≥ 0,Q(x) = 0,R(x) > 0 for some x ∈ Rn;
 (ii) w1(x) + w2(x) + w3(x) = 0  f o r  s o m e 

w1(x) ∈ C⟨P(x),R(x)⟩,w2(x) ∈ I⟨Q(x)⟩,
w3(x) ∈ M⟨R⟩.

(1)
2k+1∑
i=1

yi(x)ui(x) +
l∑

j=1

aj(x)hj(x) + [g̃∗
x̂
(x)]𝛾 = 0.

g(x) = p(x) − ∇k(x̂)Tx,

g̃∗
x̂
(x) = g(x̂) − g(x) = p(x̂) − p(x) − ∇k(x̂)T (x̂ − x),

𝜙(x) = p(x) − k(x) − g(x),

∇𝜙(x) = ∇p(x) − ∇k(x) − ∇g(x) = −∇k(x) + ∇k(x̂),

∇2𝜙(x) = −∇2k(x) ⪯ 0,

∇𝜙(x̂) = 0.

𝜙(x) ≤ 𝜙(x̂), p(x) − k(x) − g(x) ≤ p(x̂) − k(x̂) − g(x̂),

g(x̂) − g(x) ≤ p(x̂) − k(x̂) − (p(x) − k(x)).

g(x̂) − g(x) ≤ 0 when p(x̂) − k(x̂) − (p(x) − k(x)) ≤ 0.

gi(x) = pi(x) + ∇ki(x̂)
Tx,

g̃∗
ix̂
(x) = gi(x) − gi(x̂) = pi(x) − pi(x̂) + ∇ki(x̂)

T (x − x̂),

𝜙i(x) = pi(x) + ki(x) − gi(x),

∇𝜙i(x) = ∇pi(x) + ∇ki(x) − ∇gi(x) = ∇ki(x) − ∇ki(x̂),

∇2𝜙i(x) = ∇2ki(x) ⪰ 0,

∇𝜙i(x̂) = 0.

𝜙i(x) ≥ 𝜙i(x̂),

pi(x) + ki(x) − gi(x) ≥ pi(x̂) + ki(x̂) − gi(x̂),

pi(x) + ki(x) − (pi(x̂) + ki(x̂)) ≥ gi(x) − gi(x̂).

P(x) = (g̃∗
1x̂
(x),… , g̃∗

kx̂
(x)),

Q(x) = (h1(x),… , hl(x)),

R(x) = g̃∗
x̂
(x).

If x̂ is a global solution, then for x ∈ F0,R(x) ≤ 0.
For x ∈ Rn ⧵ F0,
Case 1, hj(x) = 0 , for all j = 1,… , l , then there must exist 

1 ≤ i0 ≤ k , such that

then P(x) ≥ 0 does not hold.
Case 2, there exists 1 ≤ j0 ≤ l , such that

then Q(x) ≠ 0.
So, for each x ∈ Rn,

don’t hold at the same time. Thus, (ii) holds. To obtain (1) 
when x̂ is a global solution of (P1).

To substitute x = x̂ in (1), and note that

By construction of ui(x) , there must exist 1 ≤ i∗ ≤ 2k+1 , such 
that

and for all 1 ≤ i ≠ i∗ ≤ 2k+1 , we have

so, yi∗ (x̂) = 0 . That completes the proof.
We consider the problem

C⟨P(x),R(x)⟩ =
⎧
⎪⎨⎪⎩

2k+1�
i=1

yi(x)ui(x)�yi(x)is a SOS polynomial,

ui(x) ∈ S⟨P(x),R(x)⟩�,

S⟨P(x),R(x)⟩ =
�

k�
i=1

[g̃∗
ix̂
(x)]ei [g̃∗

x̂
(x)]e�ei, e ∈ {0, 1}

�
,

I⟨Q(x)⟩ =
�

l�
j=1

aj(x)hj(x)�aj(x) ∈ R[x]

�
,

M⟨R⟩ =
�
[g̃∗

x̂
(x)]𝛾 �𝛾 ∈ N

�
{0}

�
.

pi0 (x) + ki0 (x) < 0, g̃∗
i0 x̂
(x) < 0,

hj0(x) ≠ 0,

P(x) ≥ 0,Q(x) = 0,R(x) > 0,

g̃∗x̂ (x̂) = 0, g̃∗ix̂(x̂) = 0, i = 1,… , k, hj(x̂)

= 0, j = 1,… , l,
2k+1
∑

i=1
yi(x̂)ui(x̂) = 0.

ui∗ (x̂) = 1,

ui(x̂) = 0,

(P2)

⎧⎪⎨⎪⎩

min f (x)

s.t pi(x) − ki(x) ≥ 0, i = 1,… , k;

�j(x) − �j(x) = 0, j = 1,… , l.
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Where f (x), pi(x), �j(x) are real polynomials on Rn , 
k(x), ki(x), �j(x) are twice continuously differentiable convex 
functions on Rn . We Denote

Since for i = 1,… , k,

to denote x(i) ∈ Rn , such that

The function g̃∗∗
ix(i)

∶ Rn
→ R,

And the function g̃∗∗∗
jx̂

∶ Rn
→ R,

Theorem 3 Let x̂ be a feasible point of problem (P2) , if 
there exist � ∈ N and SOS polynomials yi(x), i = 2k+l+1 , 
u(x) = (u1(x),… , u2k+l+1 (x)),

such that for each x ∈ Rn , we have

then x̂ is a global optimal solution of problem (P2).

Proof Let

  ◻

By construction of �i(x) , its gradient vanishes at x(i) . So,

F = {x|pi(x) − ki(x) ≥ 0, i = 1,… , k, �j(x) − �j(x) = 0, j = 1,… , l}.

{x|pi(x) − ki(x) ≥ 0} ≠ Rn
, {x|pi(x) − ki(x) < 0} ≠ �,

pi(x
(i)) − ki(x

(i)) = 0 or pi(x
(i)) − ki(x

(i)) < 0.

g̃∗∗
ix(i)

(x) = pi(x) − pi(x
(i)) + ∇ki(x

(i))Tx(i) − ∇ki(x
(i))Tx, i = 1… , k.

g̃∗∗∗
jx̂

(x) = 𝛽j(x) − 𝛽j(x̂) + ∇𝛼j(x̂)
T x̂ − ∇𝛼j(x̂)

Tx, j = 1,… , l.

ui(x) ∈

{
k∏

i=1

[
g̃∗∗
ix(i)

(x)
]ei l∏

j=1

[
g̃∗∗
jx̂
(x)

]ej [
f (x̂) − f (x)

]e|ei, ej, e ∈ {0, 1}

}

(2)
2k+l+1∑
j=1

yj(x)uj(x) + [f (x̂) − f (x)]𝛾 = 0,

�i(x) = pi(x) − ki(x) − (pi(x) − ∇ki(x(i))Tx),
∇�i(x) = ∇pi(x) − ∇ki(x) − ∇pi(x)
+∇ki(x(i)) = −∇ki(x) + ∇ki(x(i)),
∇2�i(x) = −∇2ki(x) ⪯ 0,
∇�i(x(i)) = 0.

i f  pi(x) − ki(x) ≥ 0  ,  t h e n 
pi(x

(i)) − ki(x
(i)) − (pi(x) − ki(x)) ≤ 0 , we have

Let

Similarly,

Since x̂ is a feasible point,

By construction, g̃∗∗
ix(i)

(x), i = 1,… , k, g̃∗∗∗
jx̂

(x), j = 1,… , l are 
polynomials.

So, let

Then exactly one of the following holds: 

 (i) P(x) ≥ 0,R(x) > 0 for some x ∈ Rn;
 (ii) w1(x) + w3(x) = 0  f o r  s o m e 

w1(x) ∈ C⟨P(x),R(x)⟩,w3(x) ∈ M⟨R⟩.

�i(x) ≤ �i(x
(i)),

pi(x) − ki(x) − (pi(x) − ∇ki(x
(i))Tx) ≤ pi(x

(i))

− ki(x
(i)) − (pi(x

(i)) − ∇ki(x
(i))Tx(i)),

(pi(x
(i)) − ∇ki(x

(i))Tx(i)) − (pi(x) − ∇ki(x
(i))Tx)

≤ pi(x
(i)) − ki(x

(i)) − (pi(x) − ki(x)),

g̃∗∗ix(i) (x) = (pi(x) − ∇ki(x(i))Tx)

−(pi(x(i)) − ∇ki(x(i))Tx(i)) ≥ 0.

gjx̂(x) = 𝛽j(x) − ∇𝛼j(x̂)
Tx,

g̃∗∗∗
jx̂

(x) = gjx̂(x) − gjx̂(x̂) = 𝛽j(x) − 𝛽j(x̂) − ∇𝛼j(x̂)
T (x − x̂),

𝜋j(x) = 𝛽j(x) − 𝛼j(x) − gjx̂(x),

∇𝜋j(x) = ∇𝛽j(x) − ∇𝛼j(x) − ∇gjx̂(x) = −∇𝛼j(x) + ∇𝛼j(x̂),

∇2𝜋j(x) = −∇2𝛼j(x) ⪯ 0,

∇𝜋j(x̂) = 0.

𝜋j(x) ≤ 𝜋j(x̂),

𝛽j(x) − 𝛼j(x) − gjx̂(x) ≤ 𝛽j(x̂) − 𝛼j(x̂) − gjx̂(x̂),

gjx̂(x̂) − gjx̂(x) ≤ 𝛽j(x̂) − 𝛼j(x̂) − (𝛽j(x) − 𝛼j(x)).

𝛽j(x̂) − 𝛼j(x̂) = 0, gjx̂(x̂) − gjx̂(x) ≤ 0 when 𝛽j(x) − 𝛼j(x) = 0.

P(x) = (g̃∗∗
1x(1)

(x),… , g̃∗∗
kx(k)

(x), g̃∗∗∗
1x̂

(x),… , g̃∗∗∗
lx̂

(x)), R(x) = f (x̂) − f (x).

C⟨P(x),R(x)⟩ =
⎧
⎪⎨⎪⎩

2k+1+1�
i=1

yi(x)ui(x)�yi(x)is a SOS polynomial, ui(x) ∈ S⟨P(x),R(x)⟩
⎫⎪⎬⎪⎭

S⟨P(x),R(x)⟩ =
�

k�
i=1

�
g̃∗∗
ix(i)

(x)
�ei l�

j=1

�
g̃∗∗
jx̂
(x)

�ej�
f (x̂) − f (x)

�e�ei,ej, e ∈ {0, 1}

�

M⟨R⟩ =
�
[f (x̂) − f (x)𝛾 �𝛾 ∈ �

�
{0}

�
.
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If (2) holds, (ii) holds, then (i) doesn’t hold.

don’t hold for each x ∈ Rn.
For all x ∈ F, �j(x) − �j(x) = 0 , we have

Also,

So, for each x ∈ F , we have P(x) ≥ 0 , which means that 
R(x) > 0 does not hold.

Thus,

x̂ is a global minimum of (P2) . That completes the proof.
Now we consider the problem

Where f (x), p1(x) are real polynomials on Rn , k1(x) is a 
twice continuously differentiable convex function on Rn . 
We denote x(1) ∈ Rn , such that

To define the function g̃∗∗
1x(1)

∶ Rn
→ R,

Corollary 1 Let x̂ be a feasible point of problem (P3) , there 
exist � ∈ N,aj(x) ∈ R[x], j = 1,… , n and SOS polynomials 
yi(x), i = 1, 2, 3, 4 , such that for each x ∈ Rn,

Then x̂ is a global optimal solution.

Proof Let �j(x) = x2
j
− xj, �j(x) = 0, j = 1,… , n . Similarly as 

theorem 3, let

there exactly one of the following holds: 

P(x) ≥ 0,R(x) > 0,

g̃∗∗∗
jx̂

(x) = gjx̂(x) − gjx̂(x̂) ≥ 0.

pi(x) − ki(x) ≥ 0, g̃∗∗
ix(i)

(x) ≥ 0.

f (x̂) − f (x) ≤ 0,

(P3)

⎧⎪⎨⎪⎩

min f (x)

s.t p1(x) − k1(x) ≥ 0;

x ∈ {0, 1}n.

p1(x
(1)) − k1(x

(1)) = 0 or p1(x
(1)) − k1(x

(1)) < 0.

g̃∗∗
1x(1)

(x) = p1(x) − p1(x
(1)) + ∇k1(x

(1))Tx(1) − ∇k1(x
(1))Tx.

(3)

y1(x) + y2(x)(f (x̂) − f (x)) + y3(x)g̃
∗∗

1x(1)
(x) + y4(x)g̃

∗∗

1x(1)
(x)(f (x̂) − f (x))

+
n∑
j=1

aj(x)(x
2

j
− xj) + (f (x̂) − f (x))𝛾 = 0.

P(x) = g̃∗∗
1x(1)

(x),Q(x) = (x2
1
− x1,… , x2

n
− xn),R(x) = f (x̂) − f (x),

 (i) There exist some x ∈ Rn such that 

 (ii) w1 + w2 + w3 = 0 for some 

   (3) holds, there exist � ∈ N ∪ {0} , 

 and 

 such that for each x ∈ Rn , we have 

 So, (ii) holds and (i) does not hold. Let x̂ be a feasi-
ble point of (P3) , from the proof of theorem 3, 

 As (i) does not hold, we have f (x̂) − f (x) ≤ 0 . x̂ is 
a global solution of (P3) . That completes the proof.

  ◻

4  Global optimality conditions for 0–1 
quadratic problems

Global optimality conditions for polynomial function are 
proposed by Schichl and Neumaier [6] in terms of the objec-
tive function and constraint functions are polynomials. In 
2011, Jeyakumar and Li further deepened Schichl and Neu-
maier’s theory in [20]. They proposed necessary global opti-
mality conditions of non-linear objective function, polyno-
mial constrained optimization problem by putting forward 
a concept of over-estimator to convert optimality conditions 
for polynomial problems made by Schichl and Neumaier.

Here is the problem considered in [20],

g̃∗∗1x(1) (x) ≥ 0, x2i − xi = 0 for i = 1,… , n and

f (x̂) − f (x) > 0;

w1 ∈ C⟨g̃∗∗
1x(1)

(x), f (x̂) − f (x)⟩,
w2 ∈ I⟨x2

1
− x1,… , x2

n
− xn⟩,

w3 ∈ M⟨f (x̂) − f (x)⟩.

w
1

∈ C⟨g̃∗∗
1x(1)

(x), f (x̂) − f (x)⟩
= {y

1
(x) + y

2
(x)(f (x̂) − f (x)) + y

3
(x)g̃∗∗

1x(1)
(x)

+y
4
(x)g̃∗∗

1x(1)
(x)(f (x̂) − f (x))

�yi is a SOS polynomial, i = 1, 2, 3, 4},

w
2
∈ I⟨x2

1
− x

1
,… , x2

n
− xn⟩

= {

n�
j=1

aj(x)(x
2

j
− xj)�aj ∈ R[x]},

w1(x) + w2(x) + (f (x̂) − f (x))𝛾 = 0.

P(x) ≥ 0,Q(x) = 0.
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Where f is a twice continuously differentiable function on 
Rn , gi and hj respectively is polynomial function on Rn.The 
feasible set of (P4) is given by

For x̂ ∈ Rn , denote g̃x̂ ∶ Rn
→ R,

Lemma 1 [20] For the problem (P4) , suppose that there exist 
a convex set C ⊇ F1 and p ∈ Rn , such that, for each x ∈ C,

If x̂ is a global optimal solution of (P4) , then there exist

and

such that min{yi(x̂), ui(x̂)} = 0 for i ∈ {1,… , 2k+1} and for 
each x ∈ Rn,

Lemma 1 is a necessary global optimality condition for 
twice continuously differentiable objective function with 
polynomial constraints optimization problem. In this section, 
we set the objective function in (P4) as f (x) = 1

2
xTQx + bTx.

Considering the following 0-1 quadratic problem

Where Q is a real symmetric matrix, b ∈ Rn.

Theorem 4 Let x̂ ∈ {0, 1}n , x̂ is a global optimal solution if 
and only if there exist

and SOS polynomials y1(x) and y2(x) , such that

(P4)

⎧
⎪⎨⎪⎩

min f (x)

s.t gi(x) ≥ 0, i = 1,… , k;

hj(x) = 0, j = 1,… , l.

F1 ∶= {x|gi(x) ≥ 0, hj(x) = 0, i = 1,… , k j = 1,… , l}.

g(x) ∶= p(x) − (∇p(x̂) − ∇f (x̂))Tx, g̃x̂(x) = g(x̂) − g(x).

∇2f (x) − ∇2p(x) ⪯ 0.

� ∈ N, aj ∈ R[x], j = 1,… , l,

yi ∈ SOS, ui ∈ S⟨g1,… , gk, g̃x̂⟩, i = 1,… , 2k+1,

(4)
2k+1∑
i=1

yi(x)ui(x) +
l∑

j=1

aj(x)hj(x) + [g̃x̂(x)]
𝛾 = 0.

(P5)

{
min f (x) =

1

2
xTQx + bTx

s.t x ∈ {0, 1}n.

� ∈ N, aj(x) ∈ R[x], j = 1,… , n,

and for each x ∈ Rn,

Proof If x̂ is a global optimal solution of (P5) , then by lemma 
1, (4) holds. For problem (P5) , there exist a convex set

and

such that

x ∈ {0, 1}n can be written as

We Denote

Since there isn’t any inequality constraints in (P5) , 
k = 0, 2k+1 = 2 . So,

set u1(x) = 1, u2(x) = f (x̂) − f (x).

By lemma 1, (4)can be written as

so, (5) is obtained.
On the contrary, if (5) holds, for each feasible point 

x ∈ {0, 1}n,

SOS  po lynomia ls  y1(x) ≥ 0  and  y2(x) ≥ 0  ,  so , 
f (x̂) − f (x) ≤ 0 , this shows that

for each feasible point x ∈ {0, 1}n . Thus, x̂ is a global opti-
mal solution of (P5) . That completes the proof.   ◻

y1(x̂) = 0,

(5)

y1(x) + y2(x)(f (x̂) − f (x)) +
n∑
j=1

aj(x)(x
2

j
− xj) + (f (x̂) − f (x))𝛾 = 0.

Rn ⊇ {0, 1}n,

p(x) = f (x) ∈ R[x],

∇2f (x) − ∇2f (x) ⪯ 0.

hi = x2
i
− xi = 0, i = 1,… , n.

g̃x̂(x) = f (x̂) − f (x).

S⟨g1,… , gk, g̃x̂⟩ = {1, f (x̂) − f (x)},

min{yi(x̂), ui(x̂)} = 0, i = 1, 2.

(6)
2∑
i=1

yi(x)ui(x) +
n∑
j=1

aj(x)hj(x) + [g̃x̂(x)]
𝛾 = 0,

y1(x) + y2(x)(f (x̂) − f (x)) + (f (x̂) − f (x))𝛾 = 0,

f (x̂) ≤ f (x)
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Theorem 5 If x̂ is a global optimal solution of (P5) , then 
the following two conditions are listed and only one is true: 

 (i) there exist u = y2(x̂) + 1, v̂1 = a1(x̂),… , v̂n = an(x̂) , 
such that 

 (ii) there exist u = y2(x̂), v̂1 = a1(x̂),… , v̂n = an(x̂) , such 
that 

 Where ai(x), i = 1,… , n, y2(x) are polynomials sat-
isfying (5).

Proof From theorem 4, if x̂ is a global optimal solution of 
(P5) , then for each x ∈ Rn

  ◻

Let x = x̂ . If � = 1 , then

If 𝛾 > 1 , then

By theorem 4, y1(x̂) = 0.
Since y1(x) is a sum of square polynomial,

y1(x̂) = 0 means for all 1 ≤ j ≤ s,

So,

n∑
j=1

∇hj(x̂)v̂j − ∇f (x̂)u = 0;

n∑
j=1

∇hj(x̂)v̂j − ∇f (x̂)u = 0.

y
1
(x) + y

2
(x)(f (x̂) − f (x)) +

n∑
j=1

aj(x)(x
2

j
− xj) + (f (x̂) − f (x))𝛾 = 0,

∇y
1
(x) + ∇y

2
(x)(f (x̂) − f (x)) + y

2
(x)(−∇f (x)) +

n∑
j=1

∇aj(x)(x
2

j
− xj)

+
n∑
j=1

aj(x)(0,… , 0, 2xj − 1, 0,… , 0)T + 𝛾(f (x̂) − f (x))𝛾−1(−∇f (x)) = 0.

∇y
1
(x̂) + y

2
(x̂)(−∇f (x̂)) +

n∑
j=1

aj(x̂)(0,… , 0, 2x̂j − 1, 0,… , 0)T − ∇f (x̂) = 0.

∇y1(x̂) + y2(x̂)(−∇f (x̂)) +
n∑
j=1

aj(x̂)(0,… , 0, 2x̂j − 1, 0,… , 0)T = 0.

y1(x) =

s∑
j=1

f 2
j
(x).

fj(x̂) = 0.

∇y1(x̂) =
s∑

j=1

2fj(x̂)∇fj(x̂) = 0.

Thus, the conclusion is obtained.

Corollary 2 If x̂ is a global optimal solution of (P5) , 
(a1(x̂),… , an(x̂)) ≠ (0,… , 0) , then the following two condi-
tions are listed and only one is true: 

 (i) If in (5) � = 1 , then Lagrangian multipliers in KKT 
conditions are 

 (ii) If in (5) 𝛾 > 1 , then Lagrangian multipliers in KKT 
conditions are 

Proof If � = 1 , u = y2(x̂) + 1 . As y2(x) is a SOS polynomial, 
y2(x) ≥ 0 for each x ∈ Rn , so,

By theorem 5,

can be written as

that is, Lagrangian multipliers in KKT conditions are

If 𝛾 > 1 , u = y2(x̂) . ∇hi(x̂) = (0,… , 0, 2x̂i − 1, 0,… , 0)T.
For i = 1,… , n , ∇hi(x̂) are linearly independent. Note that

I f  u = y2(x̂) = 0  ,  b y  t h e  a s s u m p t i o n 
(a1(x̂),… , an(x̂) ≠ (0,… , 0)  ,  −∇f (x̂)u +

n∑
j=1

∇hi(x̂)v̂i = 0 

would contradict the linear independence of ∇hi(x̂) . Thus, 
(ii) holds when 𝛾 > 1 . That completes the proof.

For any real symmetric matrix Q , there exists orthogonal 
matrix A such that AQAT = Λ . Λ is the diagonal matrix with 
entries �i, �i(i = 1,… , n) are eigenvalues of Q . Based on this 
result, there are following theorems.   ◻

v1 = −
a1(x̂)

y2(x̂) + 1
,… , vn = −

an(x̂)

y2(x̂) + 1
;

v1 = −
a1(x̂)

y2(x̂)
,… , vn = −

an(x̂)

y2(x̂)
.

y2(x̂) ≥ 0, y2(x̂) + 1 ≥ 1.

−∇f (x̂)u +

n∑
j=1

∇hi(x̂)v̂i = 0,

∇f (x̂) +

n∑
j=1

∇hi(x̂)(−
v̂i

u
) = 0,

vi = −
v̂i

u
= −

ai(x̂)

y2(x̂) + 1
, i = 1,… , n.

u = y2(x̂) > 0.
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Theorem 6 Consider the problem (P5) with b = (b1,… , bn)
T , 

� = max
1≤i≤n

{|�i|} . If bi − 1

2
� ≥ 0, i = 1,… , n , then the global 

optimal solution of (P5) is 0.

Proof Let x ∈ Rn
, z = Ax , then

Set

So, y1(x) is a SOS polynomial,

and

  ◻

From theorem 4, 0 is the global optimal solution.

Theorem  7 Let x̂ ∈ {0, 1}n and c = Qx̂ + b + 𝜆x̂ −
1

2
𝜆e , 

e = (1,… , 1)T . ci ≥ 0 when x̂i = 0 and ci ≤ 0 when x̂i = 1 , 
then x̂ is a global optimal solution of (P5).

Proof Let x ∈ Rn
, z = Ax, ẑ = Ax̂ , set

zTz =xTATAx = xTx =

n∑
i=1

x2
i
,

xTQx =zTAQATz =

n∑
i=1

�iz
2

i
.

y1(x) =
1

2

n∑
i=1

(�i + �)z2
i
+

n∑
i=1

(bi −
1

2
�)x2

i
, y2(x) = 0,

� = 1, ai(x) = −bi, i = 1,… , n.

�i + � ≥ 0,

bi −
1

2
� ≥ 0, i = 1,… , n, y

1
(0) = 0.

y
1
(x) + y

2
(x)(f (0) − f (x))

+

n∑
j=1

aj(x)(x
2

j
− xj) + (f (0) − f (x))

=
1

2

n∑
i=1

(�i + �)z2
i
+

n∑
i=1

(bi −
1

2
�)x2

i

+

n∑
j=1

(−bj)(x
2

j
− xj) −

1

2
xTQx − bTx

=
1

2

n∑
i=1

(�i + �)z2
i
−

1

2

n∑
i=1

�x2
i
−

1

2
xTQx = 0.

ai(x) = −
1

2
� − ci when x̂i = 0 ; ai(x) = −

1

2
� + ci when x̂i = 1.

Similarly as the proof of theorem 6, y1(x) is a SOS poly-
nomial, and

So, (5) can be written as

Thus, x̂ is the global optimal solution of (P5) .   ◻

Example We consider  the  problem (P5) wi th 

Q =

⎛⎜⎜⎝

−2 3 5

3 − 8 − 1

5 − 1 9

⎞⎟⎟⎠
,

so, � = 10.9343 . For feasible point x̂ = (0, 1, 1)T,

satisfy ci ≥ 0 when x̂i = 0 and ci ≤ 0 when x̂i = 1 , from theo-
rem 7, we can see x̂ = (0, 1, 1)T is a global optimal solution.

On the other hand, x0 = (1, 1, 1)T is not the global optimal 
solution,

y1 =
1

2

n∑
i=1

(𝜆i + 𝜆)(zi − ẑi)
2 +

∑
x̂i=0

cix
2

i
+
∑
x̂i=1

−ci(xi − 1)2,

y2(x) =0, 𝛾 = 1,

y1(x̂) =
1

2

n∑
i=1

(𝜆i + 𝜆)(ẑi − ẑi)
2 +

∑
x̂i=0

cix̂
2

i
+
∑
x̂i=1

−ci(x̂i − 1)2 = 0.

y
1
(x) +

n∑
x̂i=0

(−
1

2
𝜆 − ci)(x

2

i
− xi)

+
n∑

x̂i=1

(−
1

2
𝜆 + ci)(x

2

i
− xi) +

1

2
x̂TQx̂ + bT x̂

−
1

2
xTQx − bTx

=
n∑
i=1

(cixi +
1

2
𝜆xi) −

∑
x̂i=1

ci

+x̂TQx̂ + bT x̂ − bTx +
1

2

n∑
i=1

𝜆ẑ2 −
n∑
i=1

𝜆ziẑi

−
n∑
i=1

𝜆iziẑi

= x̂TQx̂ + bT x̂ +
1

2

n∑
i=1

𝜆ẑ2 −
∑
x̂i=1

ci

= 0.

b = (1, 2,−14)T , �1 = 10.9343, �2 = −2.2102, �3 = −9.7241,

c = Qx̂ + b + 𝜆x̂ −
1

2
𝜆e = (3.5328,−1.5328,−0.5328)T ,

c = (12.46715, 1.46715, 4.46715)T , x0i = 1, ci > 0.
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In theorem 7, conditions ci ≥ 0 when x̂i = 0 and ci ≤ 0 when 
x̂i = 1 refer to

So, conditions in theorem 7 can be expressed as

Thus, theorem 7 also can be written as:

Th e o re m   8  L e t  x̂ ∈ {0, 1}n  a n d  � = max
1≤i≤n

{|�i|} , 
X̂ = Diag(x̂1,… , x̂n) . If

then x̂ is a global optimal solution of (P5).

In [14], the authors present a sufficient global optimal-
ity condition of (P5).

Th e o re m   9  [ 1 4 ]  L e t  x̂ ∈ {0, 1}n  ,  �n = min
1≤i≤n

{�i}

,�1 = max
1≤i≤n

{�i} . If

then x̂ is a global optimal solution of (P5).

There is some relationship between theorem  8 and 
theorem 9.

Theorem  10  Let  x̂ ∈ {0, 1}n  and  � = max
1≤i≤n

{|�i|} , 
�n = min

1≤i≤n
{�i},

If (7) holds, then (8) holds.

Proof If �1 ≥ ⋯ ≥ �n ≥ 0 , then � = �1.
If 0 ≥ �1 ≥ ⋯ ≥ �n , then � = −�n.
If �1 ≥ ⋯ ≥ 0 ≥ ⋯ ≥ �n and �1 ≥ −�n , then � = �1.
If �1 ≥ ⋯ ≥ 0 ≥ ⋯ ≥ �n and �1 ≤ −�n , then � = −�n.
Thus, 𝜆1 > −𝜆n when � = �1 ; and �1 ≤ −�n when � = −�n

.
Case 1, if � = −�n , (7) and (8) are the same. Case 2, if 

� = �1,

(2x̂i − 1)ci ≤ 0, 1 ≤ i ≤ n.

(2X̂ − I)c ≤ 0,

(2X̂ − I)c = (2X̂ − I)(Qx̂ + b + 𝜆x̂ −
1

2
𝜆e) ≤ 0,

(2X̂ − I)(Qx̂ + b) ≤ −(2X̂ − I)(𝜆x̂ −
1

2
𝜆e)

= −
1

2
𝜆e, (2x̂i − 1)2 = 1.

(7)2(2X̂ − I)(Qx̂ + b) ≤ −𝜆e,

(8)2(2X̂ − I)(Qx̂ + b) ≤ 𝜆ne,

𝜆1 = max
1≤i≤n

{𝜆i}, X̂ = Diag(x̂1,… , x̂n).

The theorem is proved.   ◻

5  Conclusion

For the nonlinear programming over constrains which are 
not real polynomial functions, the paper gives some global 
optimality conditions. Necessary global optimality condi-
tions for nonlinear programming problems with non-polyno-
mial constraints functions are proposed and sufficient global 
optimality conditions for polynomial objective function pro-
gramming problems with non-polynomial constraints func-
tions are developed. In particular, for 0-1 quadratic prob-
lems, necessary and sufficient global optimality conditions 
are discussed. We can also continue to study the 0-1 quad-
ratic problems in depth, as when the index � is not too large, 
y1(x), y2(x), aj(x), j = 1,… , n corresponding � = 1, 2, 3 . 
And if the corresponding y1(x), y2(x), aj(x), j = 1,… , n are 
the same construction when � is odd or � is even. If not, 
general situation can be met when � is too large, we can 
make � ≤ k, k ∈ N as a rule, no y1(x), y2(x), aj(x), j = 1,… , n 
satisfy global optimality conditions for any feasible point 
if � ≤ k.

This work was supported by the Research Fund of Fun-
damentals Department of Air Force Engineering University 
(JK2022204).
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