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Abstract
Background: According to ASEAN Centre of Energy 2020 report, electrification rates in certain ASEAN countries are consid-
erably low. The energy sector faces issues of unreliable supply, undersupply and high electricity rates. As power supply is an 
important source of daily requirement, this research work aims to improve the efficiency of solar power generation efficiency. 
In line with the aim, we proposed a modified Normative Fish Swarm Algorithm (mNFSA) and applied it to Maximum Power 
Point Tracking (MPPT) process in Photovoltaic (PV) application systems. Significant modifications have been made to the 
original NFSA, including the removal of unnecessary features, the formulation of modified behaviors, the refinement of 
adaptive parameters as well as settings, and the implementation of the MPPT architecture. Results: A complete PV system 
model is constructed for simulation, in which 10 PV arrays with different shading levels are connected in series in the PV 
panel. For a consistent evaluation, 10 sets of data on maximum extracted power were collected during MPPT simulation 
process. The statistical data were recorded for comprehensive performance checks. Overall, mNFSA was compared with 6 
other optimization algorithms, including 5 state-of-the-art algorithms and 1 related evolutionary algorithm. Conclusions: 
The results demonstrate that mNFSA outperforms other compared algorithms in terms of maximum extracted power and 
relative percentage error, demonstrating higher compatibility and effectiveness of mNFSA for MPPT. The statistical results 
support that mNFSA is one of the most robust algorithms and best suited for MPPT applications.

Keywords  Global optimization · Fish swarm algorithm · Maximum power point tracking · Photovoltaic system · Modeling

1  Introduction

Providing energy on a global scale is a responsibility and 
commitment towards development of various industries. 
Reliable energy is essential to support expanding industry, 
modern agriculture, increased trade and improved transpor-
tation in ASEAN developing countries. However, according 
to the official infographic obtained by the ASEAN Centre 
of Energy in 2020 report, electrification rates in certain 
ASEAN countries remain low. Among them, the electrifi-
cation rate of Cambodia is 68%, and that of Myanmar is only 
44%. Rio Jon Piter Silitonga also pointed out this fact in his 
paper published by the ASEAN Energy Center [1]: Nearly 

half of Cambodia’s population has lack of access to electric-
ity. In Cambodia, the country’s energy prices are among the 
highest in the region, mainly due to the high cost of energy 
imports. Such energy sector is characterized by unreliable 
supply, insufficient supply and high electricity prices. All 
these factors resulted in a supply shortage of approximately 
442.5 MW.

For a more sustainable energy solution to the energy 
shortage in some ASEAN countries, we turned our atten-
tion to photovoltaic (PV) systems. It is a power framework 
that provides renewable solar energy by converting sunlight 
energy into electricity in PV cells. Due to its beneficial low 
maintenance cost [2], environmental sustainability [3], eco-
nomic viability [4] and long life span [5, 6], PV systems can 
be and have been commercialized in many ASEAN coun-
tries. PV system has indeed achieved the greatest success. 
As a well-developed solar technology, more research works 
have been done on its future development. More develop-
ments have been suggested regularly to enhance the capabili-
ties of PV systems [7, 8].
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PV system requires parameter optimization during the 
Maximum Power Point Tracking (MPPT) process to maxi-
mize the power extraction from PV panel under all given 
conditions [9, 10]. The main difficulty of this study is due 
to its nonlinear characteristic and environmental depend-
ence [11]. In theory, only a fraction of PV cells that receive 
uniform radiation and temperature will operate at ideal 
efficiency [12]. Furthermore, the maximum power varies 
primarily with radiation levels and operating temperature, 
which in practice are strongly influenced by environmental 
changes. For better efficiency, a high-quality MPPT solution 
that can efficiently track the maximum power in response 
to environmental changes is required. Difficulty rises when 
MPPT is primarily executed in partially shaded conditions, 
where PV panels are shaded to specified levels to create 
more complex MPPT problems [13, 14]. Under partial shad-
ing conditions, a PV system produces multiple peaks in its 
Power-Voltage (P–V) curve, the number of which depends 
on the number of series-connected PV arrays with vary-
ing degrees of shading level inside the PV panel. Note that 
the highest peak in the P–V curve is also represented as 
the optimization objective, the so-called Maximum Power 
Point (MPP). From an optimization point of view, MPP 
is the global optimum representing the maximum extract-
able power, while the remaining peaks are local optima that 
slow down or possibly terminate the optimization process in 
MPPT. The problem is exacerbated when some local optima 
yield roughly the same power extraction close to MPP. As 
MPPT problems become more challenging tasks, so do the 
quality requirements for MPPT solutions.

In a recent trend, the development of various optimization 
algorithms has made a breakthrough in MPPT. Looking back 
at the background and history of optimization algorithms, 
they can basically be classified into three broad categories: 
evolutionary, physics-based, and bio-inspired. Evolutionary 
algorithm is a probabilistic search method that simulates nat-
ural selection processes based on biological evolution, such 
as reproduction, mutation, recombination, and selection, 
so that populations share and inherit optimal optimization 
information in the process of generations (iterations). Some 
well-known evolutionary algorithms include Evolutionary 
Programming (EP) [15], Genetic Programming (GP) [16], 
Differential Evolution (DE) [17], Genetic Algorithm (GA) 
[18] and Evolutionary Strategies (ES) [19]. Physics-based 
algorithms mimic the laws of physics in the universe and 
are often suitable for hybridizing with other optimization 
techniques. The relatively popular physics-based algorithms 
include Gravitational Search Algorithm (GSA) [20], Space 
Gravitational Algorithm (SGA) [21] and Electromagne-
tism-like algorithm (EMA) [22]. Bio-inspired algorithms 
imitate the social behavior of a group of creatures and are 
mostly considered swarm intelligence algorithms. Popular 
bio-inspired algorithms include Ant Colony Optimization 

(ACO) [23], Artificial Fish Swarm Algorithm (AFSA) [24], 
Artificial Bee Colony (ABC) [25], and Particle Swarm 
Optimization (PSO) [26]. Throughout the investigation, 
we learned that some bio-inspired optimization algorithms 
such as Whale Optimization Algorithm (WOA) [27, 28] and 
Particle Swarm Optimization (PSO) [29–31] have been suc-
cessfully applied to simulate PV systems to solve several 
complex MPPT problems. This shows that evolutionary 
development of various optimization algorithms has pushed 
the application of MPPT in PV systems to a higher level.

So far, we have noticed that powerful (fast convergence 
and high accuracy) optimization algorithms can effectively 
track the maximum power point in any PV system. It is 
strongly believed that this is the best solution to the short-
age of energy supply in some ASEAN countries. According 
to the renewable energy policy, energy efficiency will be the 
key to establishing a reliable and sustainable energy system 
for the future of Southeast Asia [32]. While most Southeast 
Asian countries have their own energy efficiency targets, 
ASEAN follows the ASEAN Action Plan for Energy Coop-
eration (APAEC) policy from 2016 to 2025, which covers 
the energy component of the ASEAN Economic Commu-
nity (AEC) Blueprint for 2025 [33]. In terms of energy effi-
ciency and energy conservation, this policy targets to reduce 
ASEAN's energy intensity by 20% and 30%, respectively, 
as a medium-term target for 2020 and a long-term target 
for 2025. In terms of renewable energy, this policy aims to 
increase the component of renewable energy in ASEAN's 
energy to the desired target of 23% by 2025. Hence, improv-
ing the effectiveness and efficiency of MPPT technique in 
PV systems may be the key to elevate the status of renew-
able energy.

The research work takes up the challenge to optimize 
the power extraction efficiency of PV systems through the 
MPPT process based on an improved optimization algo-
rithm. From a related work in 2017, the Comprehensive 
Improved Artificial Fish Swarm Algorithm (CIAFSA), as 
an evolutionary variant of the fish swarm algorithm, was 
applied to MPPT for PV application systems [11]. Although 
CIAFSA achieved good results on the maximum power 
extraction for designated PV model, our analysis discov-
ers that the application of CIAFSA in MPPT is not con-
vincing enough due to the lack of flexibility in determining 
the search direction. CIAFSA still needs to be improved 
to comprehensively address MPPT issues. Therefore, in 
this research work, we propose modified Normative Fish 
Swarm Algorithm (mNFSA) to surpass CIAFSA in solving 
MPPT problems for photovoltaic application systems. This 
becomes the main contribution of this research work. Note 
that Normative Fish Swarm Algorithm (NFSA) was pro-
posed as a novel AFSA variant in 2019 [34]. It is an effective 
global and local search technique that can obtain effective 
global optima at superior convergence speed. Attracted by 
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its compatibility, we consider modifying NFSA for MPPT 
applications. Significant modifications have been made to 
the original NFSA, including the removal of unnecessary 
features, the formulation of modified behaviors, the refine-
ment of adaptive parameters and settings, and the implemen-
tation of the MPPT architecture. Two modified behaviors 
greatly enhance the effectiveness and accuracy of global 
exploration and local exploitation operations, respectively, 
and the refined adaptive parameters fine-tune the variable 
bounds and step range of search agents to speed up con-
vergence in early iterations and improve global optimum 
achievement in later iterations. In the work of [31], NFSA 
was shown to outperform CIAFSA in single-objective opti-
mization. Therefore, it is highly expected that mNFSA can 
replace CIAFSA in MPPT application, and it is also con-
vincing that mNFSA can achieve better maximum output 
power than CIAFSA during simulation. With confidence, 
this research will undoubtedly serve ASEAN society with 
better energy efficiency, thereby reducing energy supply 
shortages.

For pre-experimental tests, we model a complete PV sys-
tem (framework) capable of generating non-convex multi-
modal MPPT problems in MATLAB-SIMULINK R2021a 
to simulate the feasibility of NFSA in practical applications. 
All settings and structures are clearly explained, making it 
easy for the reader to reconstruct the PV model system for 
further in-depth simulations. We also describe the step-
by-step concepts in PV cells, arrays, panels, and systems 
to support all statements and explanations about PV mod-
eling. This can be another contribution of this research work. 
Overall, this research work focuses on the development of 
the proposed algorithm (mNFSA) and the design of the PV 
framework to obtain a superior MPPT solution. This is the 
strength of this research work, where the knowledge gained 
can further refine the application of MPPT in realistic set-
ups. However, the downside is that the proposed algorithm 
may be suitable for MPPT solutions, but is expected to per-
form poorly in other applications if applied directly without 
further modification, as mNFSA fully integrates strategies 
that benefit MPPT applications.

This article is outlined as follows: Sect. 1 presents the 
introduction of research work, describing the problem 
statement, motivation, background overview, comparable 
sources, brief analysis, proposed methods, and contributions. 
Section 2 reviews NFSA in terms of methodology, mathe-
matical expressions, and strategic benefits. This section also 
prepares a table summarizing all mathematical notations 
used in NFSA for readers’ convenience. Section 3 explains 
the methodology of the proposed mNFSA, where its subsec-
tions describe the corresponding modified behaviors and the 
refined adaptive method in terms of mathematical expres-
sions and strategic theories. A complete flowchart is shown 

to illustrate the step-by-step process of mNFSA execution. 
The parameter settings for mNFSA are also displayed in a 
table. Section 4 describes the PV modeling in preparation 
for the simulation. This section first introduces the software 
used in this research work, and in-depth introduces the 
implementation and modeling methods of PV arrays, PV 
panels, and PV model systems in each subsection. Section 5 
analyzes the results and discussion. This section is impor-
tant for validating all our contributions from the proposed 
mNFSA and evaluating the potential of other state-of-the-art 
algorithms for future MPPT applications by examining their 
respective strengths and weaknesses in direct implementa-
tion. Section 6 concludes the research work. This section 
put an end on this research work by summarizing all the 
obtained research materials, results and discussions, and 
predicting the future development of MPPT solutions.

2 � Overview of NFSA

The related works of NFSA were previously proposed by 
[35] in 2018 and by [34] in 2019. NFSA has been further 
studied in this research work and many interpretations of 
the proposed strategy have been completed from detailed 
analysis. NFSA is a modified AFSA that amalgamate the 
normative knowledge taken from Cultural Artificial Fish 
Swarm Algorithm (CAFSA) [36] into the properties of Fish 
Swarm Algorithm optimized by Particle Swarm Optimiza-
tion algorithm with Extended Memory (PSOEM-FSA) [37]. 
The connection with normative knowledge resulted in addi-
tional guidelines, which were then integrated into behaviors 
adopted from PSOEM-FSA. With supplementary guidelines, 
search agents can cite very precise and accurate routes when 
executing progressive behaviors. As the exchange of infor-
mation between candidates is significantly indispensable, the 
search agent updates and shares the same global best infor-
mation during the end of each iteration loop. NFSA proposes 
two improved hybrid behaviors, referred to as normative 
communication behavior and normative memory behavior. 
In summary, normative communication behavior and norma-
tive memory behavior are respectively the improved editions 
of communication behavior and memory behavior, of which 
the original version appeared in the work of PSOEM-FSA. 
These two behaviors play the role of enhancing the global 
search ability and local search ability of the search agents, 
respectively. NFSA also modifies the original and intro-
duces novel adaptations to the parameters that control the 
search and scout scope of each agent. The proposed adaptive 
parameters balance the inconsistency between exploration 
and exploitation. It has been proved from the work of [34, 
35] that compared with the related swarm algorithms, the 
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proposed NFSA has achieved relatively superior results in 
terms of global optimal achievement and convergence speed.

Table 1 lists all the mathematical notations used in NFSA. 
The execution of NFSA is as follows [34]:

Step 1:	 Randomly initialize the population, preliminary 
location vector, initial global best solution of the popu-
lation and the present local best location solution in the 
memory of each agent.

Step 2:	 Independently execute 4 correlative behavioral 
architectures:

(i)	 Normative communication behavior or else prey behav-
ior

(ii)	 Normative memory behavior or else prey behavior
(iii)	 Follow behavior or else prey behavior
(iv)	 Swarm behavior or else prey behavior
	   Each of these behavioral pattern outputs a unique 

solution.
Step 3:	 Using the concept of greedy selection, choose the 

best performing solution generated from either behavior, 

thereby updating the location vectors of population to be 
used in the next iteration.

Step 4:	 Update the local best solution of each agent and 
the global best solution of the population (all agents) 
by comparing the relevant objective values to the corre-
sponding data currently stored inside the bulletin board.

Step 5:	 In case global best solution remains the same and is 
not updated after tlimit counts, both stepmin and visualmin 
are gradually declined. Otherwise, it will jump to Step 
6.

Step 6:	 Execute the adaptation of parameters in terms of 
step and visual.

Step 7:	 Terminate the algorithm if t > tmax . Otherwise, 
increment t and proceed to Step 2.

For the ease of understanding, the pseudo code of NFSA is 
given as follows [34]:

Pseudo code of NFSA
Randomly initialize AF population
Initialize parameters
Initialize iteration, 
WHILE ( <= )

FOR = 1 TO 
Evaluate search agent
Execute normative communication behavior
IF (normative communication behavior fail) THEN

Execute prey behavior
END
Store 
Execute normative memory behavior
IF (normative memory behavior fail) THEN

Execute prey behavior
END
Store 
Execute follow behavior
IF (follow behavior fail) THEN

Execute prey behavior
END
Store 
Execute swarm behavior
IF (swarm behavior fail) THEN

Execute prey behavior
END
Store 

= greedy selection from →

= + 1

Update local best solution
END FOR
Update global best solution
IF (global best solution is not updated after times) THEN

Gradient decline visualmin
Gradient decline stepmin

END
Improved adapt visual
Improved adapt step
= + 1

END WHILE
Output global best solution

The following subsections explain the structure of the spe-
cific features in NFSA. Readers can refer to a previous work 
[24] for other unmentioned strategies (i.e. follow behavior, 
swarm behavior and prey behavior), as they are not unique 
features in NFSA.

Table 1   Mathematical notations of NFSA

Notation Description

i Index of population (agents)
t Index of iteration
k Index of dimension
n Population number
tmax Greatest allowable iterative number
tlimit Limited number of iterations that allows the 

best fitness to remain unchanged without 
updating

N Total number of dimensions
X Location vector or solution
Xgbest Global best solution of the population
Xi,lbest Local best solution of ith agent
f (X) Objective function value of X
|X| Euclidean norm of vector X
u
t Upper bound at tth iteration

l
t Lower bound at tth iteration
R1 , R2 Random number within 0 and 1
r1 , r2 , r3,r4 Random number within −1 and 1
visual Perceivable range
visual

min
Minimum visual value

step Movable range
step

min
Minimum step value

� Velocity momentum
�t Current effective element
�t−1 Efficiency element of expanded memory
� Declining scale factor
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2.1 � Normative communication behavior

Efforts on changing the formulation of NFSA has been 
made. The connection of speed vector has been removed 
and the inertia weight ω has been erased from the original 
equation of relevant communication behavior. In addition 
to that, the reconnaissance is executed around the current 
and previous global best solutions, Xt

gbest
 and Xt−1

gbest
 to find 

the complementary guidelines, Xt
cg

 and Xt−1
cg

 . The idea of 
modification aims to help the search agents to discover 
pathways as precise and accurate as possible, while avoid-
ing perceptual disorders. The normative communication 
behavior is expressed as follows:

where t ∈
(
1, 2… tmax

)
 and i ∈ (1, 2… n) . � is usually set 

to 0.5 to have an equal distribution across elements. Both 
�t and �t−1 can be set to 0.5, and hence 

∑
� = �t + �t−1 = 1 . 

The upper bound ut and lower bound lt at tth iteration can be 
updated as follows:

where k ∈ (1, 2… N), ΔXmin,l = argmin
X

f
(
X
t+1
i=1→n

)
− l

t , and 

ΔXmax,u = argmax
X

f
(
X
t+1
i=1→n

)
− u

t.

The scouting range is calculated from a feasible range 
[
lk, uk

]
 of the search space with normative knowledge. Some 

transformations have been made to vary the feasible space 
[
lk, uk

]
 to accommodate the enhanced behavioral pattern 

without changing the notion of normative knowledge, which 
is conservative when narrowing the search interval and pro-
gressive when expanding the search interval [34]. lk and uk 
are initialized with initial lower and upper bounds, lt=0

k
 and 

u
t=0
k

 respectively.

(1)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

X
t+1

i
= X

t

i
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

� �

X
t
cg−X

t
i

�

𝜉t+

�

X
t−1
cg −Xt−1

i

�

𝜉t−1

�
�
�
�

�

X
t
cg−X

t
i

�

𝜉t+

�

X
t−1
cg −Xt−1

i

�

𝜉t−1
�
�
�
�

�

𝛽

+

� �

X
t
gbest

−Xt
i

�

𝜉t+

�

X
t−1
gbest

−Xt−1
i

�

𝜉t−1

�
�
�
�

�

X
t
gbest

−Xt
i

�

𝜉t+

�

X
t−1
gbest

−Xt−1
i

�

𝜉t−1
�
�
�
�

�

(1 − 𝛽)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

R1step

X
t

cg
=

�
X

t

gbest
+
�
u
t − l

t
�
r1

X
t

gbest

, if f
�

X
t

cg

�

< f
�

X
t

gbest

�

, otherwise

X
t−1

cg
=

�
X

t−1

gbest
+
�
u
t − l

t
�
r2

X
t−1

gbest

, if f
�

X
t−1

cg

�

< f
�

X
t−1

gbest

�

, otherwise

(2)l
t+1
k

=

{
min

(

X
t+1
i=1→n,k

)

l
t
k
+ |
|ΔXmin,l

|
|

, if min

(

X
t+1
i=1→n,k

)

< l
t
k

, otherwise

(3)u
t+1
k

=

{
max

(

X
t+1
i=1→n,k

)

u
t
k
− |
|ΔXmax,u

|
|

, if max

(

X
t+1
i=1→n,k

)

> u
t
k

, otherwise

Search agents entering this behavior primarily execute 
Eq. (1). According to the theoretical analysis of math-
ematical expressions, the i th search agent is guided by 
four search directions, two of which are originated from 
the current location vector ( Xt

i
 ) and the remaining two are 

derived from the location vector in the extended memory 
( Xt−1

i
 ). The idea of extended memory was inspired by 

POEM-FSA, as not to give up any possible better solu-
tions oriented from the previous location vectors. Com-
pared to PSOEM-FSA, NFSA adds two additional search 
directions in one behavior. The additional search direc-
tions greatly enhance the global search capabilities of 
search agents, as they are now able to search in more 
diverse directions. This simplifies the difficulty of finding 
the correct global optimal region.

The normative communication behavior is an enhanced 
global exploration operation that searches for any possi-
ble global optimal region or space. This behavior greatly 
enhances the characteristics of the original communica-
tion behavior amongst agents, enabling a more efficient 
global search. As the exploratory ability is closely related 
to the global search capability, it improves the conver-
gence speed of the optimization process in NFSA. There 
is a reasonable order for more efficient optimization, that 
is, to emphasize global exploration in the early stage, 
and shift the focus to local exploitation in the later stage. 
With this theory, this behavior should be emphasized in 
the early stages of the iteration, when it can provide the 
search agents with huge step range for better global explo-
ration capabilities.

2.2 � Normative memory behavior

Normative memory behavior has been proposed as an 
evolutionary memory behavior to promote local exploita-
tion to the next level. The design of this normative mem-
ory behavior is exceptionally comparable to the specifi-
cation of normative communication behavior. The only 
difference is that normative communication behavior pri-
marily reinforces the global exploration, while normative 
memory behavior basically fortifies the local exploita-
tion capability. The connection of speed vector has been 
removed and the inertia weight ω has been erased from 
the original equation of relevant memory behavior. The 
reconnaissance is then executed around the current and 
previous local best solutions, Xt

lbest
 and Xt−1

lbest
 to discover 

complementary criteria, Xt
cl

 and Xt−1
cl

 for more accurate 
pathways while enhancing local search capability. The 
normative memory behavior is expressed as follows:
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The parameters ut and lt are updated based on Eqs. (2) 
and (3), respectively.

Search agents entering this behavior primarily execute 
Eq. (4). According to the theoretical analysis of mathe-
matical expressions, the ith search agent is also guided by 
four search directions, two of which are originated from 
the current location vector ( Xt

i
 ) and the remaining two are 

derived from the location vector in the extended memory 
( Xt−1

i
 ). So far, everything is similar to normative com-

munication behavior, except for the target points of the 
search directions. In theory, Eq. (4) unequally refines the 
search capability of each agent, as it exploits distinctive 
local best solution, which is owned only by that particular 
agent and not shared with other agents. This is considered 
a more independent approach to increase the flexibility of 
proxy search.

Normative memory behavior is an enhanced local exploi-
tation operation that conducts a detailed investigation within 
the global optimal region or space to trace the true global 
optimal solution. This behavior enhances the features of the 
original memory behavior to perform efficient local search. 
It improves the global optimum achievement of NFSA due 
to the efficient local search that is able to smooth out the 
exploitation process. As mentioned earlier, there is a reason-
able order for more efficient optimization, that is, to empha-
size global exploration in the early stage, and shift the focus 
on local exploitation in the later stage. With this theory, the 
behavior should be emphasized in the later stages of the 
iteration, when NFSA can provide the search agents with 
small step for better local exploitation capabilities.

2.3 � Adaptive parameters

Most of the time, incompatibility between the adaptive 
parameters and the search strategy is the cause for defect. 
NFSA transforms and modifies adaptive parameters 
to ensure they are compatible with NFSA's behavioral 
searches. It descends the visual and step parameters at a 
slower rate to ensure that the global search can catch up 
with the rate of descent. The decrement of the parameters 
is calculated as follows:

(4)

⎧
⎪
⎪
⎪
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⎪
⎨
⎪
⎪
⎪
⎪
⎪
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X
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= X
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X
t
i,cl
−X

t

i

�

𝜉t+

�

X
t−1
i,cl

−X
t−1

i

�

𝜉t−1

�
�
�
�

�

X
t
i,cl
−X

t

i

�

𝜉t+

�

X
t−1
i,cl

−X
t−1

i

�

𝜉t−1
�
�
�
�

�

𝛽

+

� �

X
t
i,lbest

−X
t

i

�

𝜉t+

�

X
t−1
i,lbest

−X
t−1

i

�

𝜉t−1

�
�
�
�

�

X
t
i,lbest

−X
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i

�
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�

X
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i,lbest

−X
t−1

i

�

𝜉t−1
�
�
�
�

�

(1 − 𝛽)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

R2step

X
t
i,cl

=

�
X
t
i,lbest

+
�
u
t − l

t
�
r3

X
t
i,lbest

, if f (Xt
i,cl
) < f (Xt

i,lbest
)

, otherwise

X
t−1
i,cl

=

�
X
t−1
i,lbest

+
�
u
t − l

t
�
r4

X
t−1
i,lbest

, if f (Xt−1
i,cl

) < f (Xt−1
i,lbest

)

, otherwise

The graph in Fig. 1 is plotted based on Eq.  (5) with 
tmax = 500 . This figure helps to verify the structural devia-
tions of the adaptive parameters. The initial visual and step 
are set to 100, and visualmin and stepmin are fixed to 1. Allow-
able � value ranges from 0.5 to 1. Values of � less than 0.5 or 
greater than 1 will cause the descent curve to lose its desired 
shape. The closer the � value is to the minimum value of 0.5, 
the faster the rate of decline. The rapid decline of visual and 
step parameters is in pursuit of fast convergence, but most of 
the time, the search strategy seems unable to keep-up with 
them. Eventually, overall performance in terms of global 
optimum achievement and convergence speed deteriorate. 
After pre-testing, the ideal σ value is 0.8 to have a slower 
rate of descent without reducing the rate of convergence. In 
Fig. 1, the value of σ is also set to 0.8.

The local exploitation ability is significantly improved 
in later iterations, when the values of visual and step 
parameters become considerably small. Understandably, 
the visual and step parameters drop at a slower rate with-
out any rapidly dropping values. These modified adaptive 
parameters pursue stable and robust processing rates rather 
than rapid drops in parameters. Hence, it requires more 
iterations to perform a proper global search. In Fig. 1, 
visual and step values gradually decrease and eventually 
fall to visualmin and stepmin values, respectively, at the end 
of the iteration. It can therefore be inferred that visualmin 
and stepmin are responsible for constraining the visual and 
step parameters to prevent them from decreasing close to 
zero. This is also to prevent the agent from losing the flex-
ibility to conduct any pre-local investigation due to ina-
bility to perform any critical movement. However, fixing 

(5)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

visualt+1 = visualt − visualt� + visualmin

stept+1 = stept − stept� + stepmin

� = exp

�

−
�

4
√
(tmax)

3

�
tmax − t

�
�

Fig. 1   Adaptive visual and step parameters against the iterative num-
ber t, when t

max
= 500
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the values of visualmin and stepmin does not contribute to 
incremental optimization. Local exploitation ability may 
be constrained by the visualmin and stepmin parameters 
which do not change later in the iteration. Assuming large 
values of visualmin and stepmin are used, the precision of 
native measurements is greatly suppressed. Conversely, if 
visualmin and stepmin are set to insignificant values, more 
iterations are required to precisely reach the true optimum. 
To benefit from both global and local search, NFSA pro-
poses a novel visualmin and stepmin adaptation method, by 
descending them in a specified degree under certain pre-
requisite, when the global best solution remains unchanged 
and is not updated after tlimit count. The declination of the 
visualmin and stepmin parameters are designed to assign 
smaller visual and step sizes for the next iteration, improv-
ing the local search efficiency. The visualmin and stepmin 
utilize the following expressions:

In theory, each search agent must always be provided 
with the desired parameters at the appropriate stage to 
perform the most efficient operation. Obviously, a fixed 
value cannot be the desired parameter of the search agent 
throughout the iteration. By utilizing Eqs. (5) and (6) to 
descend the visual, step, visualmin and stepmin across itera-
tions, NFSA ensures that each search agent can always be 
assigned a smaller visual and step in upcoming iterations. 
This further stabilizes the transition from global explora-
tion to local exploitation.

3 � Proposed mNFSA

This research work conducts an in-depth analysis of the 
utility of modern evolutionary techniques in MPPT appli-
cations via a comprehensive understanding of the NFSA 
methodology. As a result, modified Normative Fish Swarm 
Algorithm (mNFSA) is proposed. Transformations and 
modifications made to the original NFSA are:

	 (i)	 Remove unnecessary features that are unlikely to 
benefit to MPPT application, such as follow behavior, 
swarm behavior and prey behavior.

(6)

⎧
⎪
⎨
⎪
⎩

visualt+1
min

=
visualt

min

0.5× 3
√
tmax

stept+1
min

=
stept

min

3
√
tmax

	 (ii)	 Formulate modified behaviors that regulate norma-
tive communication and normative memory strate-
gies.

	 (iii)	 Refine the adaptive step parameter to provide agents 
with appropriate step size to better solve the specific 
MPPT problems. Note that the visual parameter is 
no longer used, as the relevant behaviors (i.e., follow 
behavior and swarm behavior) are removed from the 
algorithm.

	 (iv)	 Implement MPPT architecture into mNFSA. Upon 
implementing the MPPT architecture, mNFAS 
adjusts the duty cycle D according to the change of 
input power Ppv [38] via a direct control method [39], 
where Ppv is obtained by the product of photovoltaic 
voltage Vpv and photovoltaic current Ipv . In general, 
mNFSA takes voltage Vpv and current Ipv as inputs 
and the duty cycle D as an output. The superiority 
of one's duty cycle D relative to other depends on 
the magnitude of input terminal power Ppv [40]. This 
brings up the fact that D denotes the updated solu-
tion output from mNFSA, and Ppv denotes the objec-
tive function value of D. In other words, Ppv = f (D) , 
where Ppv determines the performance of mNFSA in 
MPPT. During the MPP tracking process, mNFAS 
utilizes simply one control loop to straightforwardly 
adjust the duty cycle D [41] until maximum Ppv is 
achieved.

The following subsections explain the modified behav-
ioral architectures, refined adaptive parameters, complete 
mechanism, and parameter settings of mNFSA in MPPT 
simulations.

3.1 � Modified normative communication behavior

To be perfectly utilized in the MPPT approach, the origi-
nal operation of normative communication behavior must 
be modified. The modification is mainly for several goals: 
simplify the execution of the behavioral architecture, refine 
the agent's global search capabilities to speed up the con-
vergence in the case of one-dimensional optimization, and 
diversify the global search space for better exploration in the 
MPPT method. Hence, the modified normative communica-
tion behavior is expected to enhance the effectiveness of 
global search in mNFSA. The improved behavioral pattern 
can be expressed as follows:
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where D represents the scalar target point in terms of duty 
cycle, replacing the solution X in the equation. Note that 
Dgbest denotes the global best point, which can be defined 
as the best solution among all the points that the population 
have visited so far. Whenever a better solution is found at 
the end of each iteration loop, the global best point can be 
replaced with that solution. mNFSA significantly modifies 
the adaptation of variable lower and upper bounds. lt and ut 
are updated as follows:

where Dt+1
best

 is the best performing solution among popula-
tion or agents.

Equation (7) preserves the concept of extended mem-
ory. Compared with the original operation, the execution 
of this modified behavior becomes more straightforward 
and diversified, as it removes the conditional selection 
of complementary guidelines and turns them into direct 
integration. This shortens the execution time of each 
simulation, which is beneficial to the process of MPPT, 
as the extended execution duration does not conform to 
the demands of rapid convergence and efficient optimiza-
tion in PV application systems. As the target point of the 
duty cycle D is specified for one-dimensional solution, 
an in-depth adaptation is expected to bring more ben-
efits. Hence, the main improvements and modifications 
fall on the adaptation concept of lt and ut . Equations (8) 
and (9) are formulated as three-step conditional equations 
to yield more selective boundary changes. From a math-
ematical perspective, they can boldly extend the range of 
[l,u] by shifting the bounds reasonably under appropriate 
conditions. This provides a more flexible global search 
space for all agents to get rid of the local optima in speci-
fied MPPT problems. This strategy is necessary because 
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complex MPPT problems always belong to the type with 
multiple local optima, which greatly hinders the optimi-
zation process.

3.2 � Modified normative memory behavior

Note that mNFSA still retains the concept of extended 
memory. The modifications are mainly aimed at achiev-
ing several goals: simplify the execution of the behavioral 
architecture, refine the agent's local search capabilities 
to precisely track the global optimal solution in the case 
of one-dimensional optimization, and stabilize the local 
search space for better exploitation in the MPPT method. 
The improved behavioral pattern is:

where Di,lbest is represented as the local best point of i th 
agent. Note that the local best point of i th agent can also be 
defined as the best solution among all the positions that the 
i th agent has visited so far throughout the iterations. If a bet-
ter solution is found by the i th agent at the end of each popu-
lation loop, the i th agent will replace the local best point. 
The lt and ut are adapted using Eqs. (8) and (9), respectively.

Equation (10) also preserves the concept of extended mem-
ory. The modified normative memory behavior becomes rather 
directional. It reduces the offset of the supplementary guide-
lines (target points) to refine the local search capability of the 
agents. Since the execution mode of this modified behavior is 
simplified, the execution time is greatly shortened, and thus, 
the MPPT execution is accelerated. The three-step conditional 
expressions in Eqs. (8) and (9) can also yield more detailed 
boundary changes. From mathematical perspective, they can 
fine-tune the range of [l, u] rationally under appropriate condi-
tions. As another part of achievement, the modified adaptations 
of lt and ut enhance the local exploitation of mNFSA by ideally 
narrowing the range of [l,u] at the later stage of the iteration, 
thereby improving the ability to find the true optimal solution. 
This strategy is conducive to enhance the global best achieve-
ment during the optimization process.
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3.3 � Refined adaptive parameter

In mNFSA, parameter step determines the step range of agents. 
Theoretically, if step is given a colossal value, it is conducive 
to global exploration, i.e., the agents can approach the global 
optimal region faster to get rid of the local optima [42]. On the 
contrary, smaller value of step is beneficial to local exploita-
tion, as agents will be more capable of performing enhanced 
investigation to track the true optimal solution. To exactly bal-
ance the contradiction between the global exploration and local 
exploitation, step size cannot be given a fixed parameter value. 
It must gradually descend at an appropriate pace. As mNFSA is 
primarily formulated to solve the MPPT problems, the step size 
must correspond to the transition from global search to local 
search according to the duty cycle requirements. Therefore, the 
adaptation of the step size is refined in terms of the descend 
rate. In this proposed algorithm, the modified adaptation of step 
is as follows:

where tcount represents an iterative counter when the global 
best point has not been updated during the running of the 
algorithm.

By having a refined descending rate, the agents in execu-
tion can move within a more satisfactory range at the appro-
priate stage of iteration. In general, the step size is now 
reduced at a faster rate than original to speed up the transi-
tion from global search to local search, which is expected to 
smoothen the optimization of mNFSA in MPPT. Note that 
the descending rate of stepmin in Eq. (11) is also increased to 
accommodate mNFSA, as mNFAS is now more functional 
than its original version, which can tolerate higher parameter 
decrements for better optimization efficiency. These strate-
gies speed up the convergence because the search agents are 
given a rapidly decreasing step size parameter during search-
ing, and the smaller stepmin size also facilitates detailed local 
search, which can strengthen the realization of the global 
optimum.

3.4 � Complete mechanism

Figure 2 illustrates the entire process of mNFSA optimization in 
MPPT for PV application system. mNFSA is considered as an 
evolutionarily improved meta-heuristic bio-inspired algorithm. 
Basically, it employs two behaviors: modified normative com-
munication behavior and modified normative memory behav-
ior. From the theoretical analysis of mathematical expressions, 

(11)
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, tcount > tlimit
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Eqs. (7) and (10) look similar in terms of formulations. The 
only difference is the target point that the agents head to. As 
the search agent executing Eq. (7) refers to the global best solu-
tion during navigation, we confirm that the modified normative 
communication behavior plays the role as an enhanced global 
exploration operation for one-dimensional optimization. Con-
versely, the search agent executing Eq. (10) refers to its own 
local best solution during navigation, leading to the following 
implications: the modified normative memory behavior serves 
as an enhanced local exploitation operation. In theory, a reason-
able sequence for more efficient optimization is to emphasize 
global exploration early in the iteration and shift the focus to 
local exploitation later in the iteration. However, in mNFSA, 

Fig. 2   Flow chart of mNFSA during simulation of MPPT
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the search agents will execute both behaviors (i.e., Eqs. (7) and 
(10)) simultaneously without passing through any selection and 
decision coefficients. This may prevent the execution time of 
the algorithm from being prolonged due to excessive patterns 
of selection, but the weakness is that it takes double the time to 
compute the objective function value. Since the displacement 
distance of the agent is varied indirectly through randomized 
step size, it brings to a more flexible change of pace, which is 
very beneficial for irregular optimization. Additionally, agents 
can share and update the same information on bulletin board, 
even though they are largely independent of each other. The 
interaction amongst the entire population is believed to yield 
better performance, as they can share the benefits through infor-
mation exchange during each iterative update of the global best 
solution.

3.5 � Parameter settings of mNFSA

The parameter settings of mNFSA are summarized in 
Table 2.

Note that these parameter settings are primarily intended 
to address the specified PV problem we designed for the 
simulation. However, these values are still reasonably appli-
cable to other simulation cases as it meets the basic require-
ments of MPPT.

4 � Modeling and simulation

In this research work, MATLAB − SIMULINK R2021a was 
used for the simulation work involving programming, cod-
ing, modeling and simulation [43]. MATLAB − SIMULINK 
is best for simulating this application due to the following 
reasons:

(i)	 An integrated graphical block diagram editor can be 
used, and a custom block library can be created to 
facilitate modeling.

(ii)	 The latest MPPT solutions from other researchers are 
typically coded using the MATLAB programming lan-
guage. It helps for the ease of referring.

(iii)	 A complete PV circuit created in Simulink models can 
be connected to a function model encoded with the 
MPPT solution.

(iv)	 MATLAB R2015 or higher versions are strongly rec-
ommended, because ready-to-use PV array block can 
be found from the Simulink block library.

(v)	 Graphical data can be easily collected in MATLAB and 
saved in Excel files.

The following subsections describe the modeling and 
simulations.

4.1 � PV array

PV array model is available from the SIMULINK block 
library. Figure 3 depicts its block diagram. This PV array 
model has two input ports: "Ir" should be inserted with 
irradiance level ranging from 0 to 1000 W/m2, and "T" 
should be inserted with ambient temperature in °C unit. 
Additionally, the PV array model has three output ports: 

Table 2   Parameter settings for 
mNFSA

Parameter Value

�t 0.500
�t−1 0.500
� 0.670
Step 1.125
Stepmin 0.002
tlimit 1.000

Fig. 3   PV array model in SIM-
ULINK

Fig. 4   Array data in PV array model

Fig. 5   Module data in PV array model
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"m", " + " and "-". The " + " and "-" ports represent the 
positive and negative output power terminals of the PV 
array, respectively. The "m" port is used for measurements, 
returning a five-element vector to the user, which can leave 
there unconnected.

It is necessary to know how to setup the parameters 
within a PV array block, or more specifically within the 
PV modules. In general, a PV array consists of multi-
ple PV modules, but in special cases, a PV array can be 
regarded as a PV module when each PV array is given the 
data as shown in Fig. 4. For each module, users need to 
setup five primary parameters: Voc , Isc , Vmp , Imp and Ncell , 
which can significantly affect the P–V and I-V character-
istics of the PV array. Voc is the open circuit voltage, Isc is 
the short circuit current, Vmp is the voltage at maximum 

power point, Imp is the current at maximum power point, 
and Ncell is the number of cells per module. In SIMULINK, 
these parameters are user definable. Figure 5 also displays 
the parameter settings for each specified module, which 
are assigned to every PV array for upcoming modeling 
and simulation.

4.2 � PV panel

In SIMULINK, 10 PV arrays were connected in series (as 
shown in Fig. 6), and each array was irradiated with 1000, 
900, 800, 700, 600, 500, 400, 300, 200 and 100 W/m2, 
respectively at a nominal temperature of 25 °C (as shown in 
Table 3). Upon inspection, bypass diodes were connected 
in parallel with each PV array. The internal resistance of all 
bypass diodes was set to be negligible to minimize power 
loss. A series of fully connected PV arrays are therefore 
referred to as a PV panel to be employed in upcoming exper-
imental operations.

A PV panel designed as shown in Fig. 6 was short-cir-
cuited with the charging power source to collect data on 
photovoltaic current IPV , photovoltaic voltage VPV , and pho-
tovoltaic power PPV . Using the collected data, P–V curve 
and I-V curve can be plotted for further interpretation. Fig-
ure 7 shows the experimental P–V curve, and Fig. 8 shows 
the experimental I-V curve. Considering 10 different irradi-
ance levels in the arrays, the P–V curve depicts a total of 10 
peaks. A full irradiated PV array receives 1000 W/m2 solar 
intensity, while a non-irradiated PV array receives 0 W/m2 
solar intensity. Irradiance levels below 1000 W/m2 simulate Fig. 6   PV panel with 10 series-connected PV arrays in SIMULINK

Table 3   Parameter settings of 
solar radiation and ambient 
temperature

PV array

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Temperature (°C) 25 25 25 25 25 25 25 25 25 25
Irradiance levels (W/m2) 1000 900 800 700 600 500 400 300 200 100

Fig. 7   P–V characteristic curve of PV panel under partial shading 
condition
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shading phenomena, where the PV array is somehow shaded 
by external causes. Shaded PV array cannot draw as much 
current as unshaded PV array, and increasing the shading 
percentage worsens current extraction. From the theoreti-
cal analysis, the 10th peak of the P–V curve is generated 
without current bypassing any diodes, when the current is 
less than or equal to 0.389A. The 9th peak occurs when less 
than 0.778A of current bypasses the 10th diode (i.e., the 
10th diode is forward biased). The 8th peak occurs when 
less than 1.167A of current bypasses the 9th and 10th diodes 
(i.e., the 9th and 10th diodes are forward biased). It continu-
ously allows more current to bypass more diodes until the 1st 
peak is generated in the P–V characteristic curve [44]. All 

interpretations and explanations about the shape of the P–V 
characteristic curve in Fig. 7 are theoretically supported by 
the I-V characteristic curve in Fig. 8. It can hence be noticed 
from Fig. 7, that the highest amount of power that the PV 
panel can extract is 206.7831 W. It is called the Maximum 
Power Point (MPP) that serves as a global optimum dur-
ing the mathematical optimization process. From a math-
ematical optimization point of view, MPP (i.e., 206.7831 W) 
is the only global optimum, and the remaining peaks are 
local maxima that occasionally hinder the MPPT process. 
Obviously, the P–V curve generated by the PV panel is a 
non-convex multi-modal optimization MPPT problem. The 
proposed mNFSA is expected to solve this optimization 
(MPPT) problem by tracking its MPP during a simulation.

4.3 � PV model system

Next, the simulated PV system was modeled to control 
the power extraction from the PV panel. The complete PV 
model system built in SIMULINK is shown in Fig. 9. The 
optimization algorithm to be tested (i.e., mNFSA) is placed 
between the output power terminals of the PV panel and the 
Pulse Width Modulation (PWM) generator. Theoretically, 
mNFSA inputs the photovoltaic power PPV extracted from 
the PV panel and executes relevant optimization operations 
with reference to the received power value. The duty cycle 
D is the solution output of mNFSA, which is updated as the 
location vector of the search agent is updated. This brings 

Fig. 8   I-V characteristic curve of PV panel under partial shading con-
dition

Fig. 9   PV model system in SIMULINK
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up the fact that D denotes the updated solution (target point) 
output from mNFSA, and Ppv denotes the objective fitness 
value of D (i.e., objective function f = Ppv(D) ), which deter-
mines the performance of mNFSA in MPPT. The output 
duty cycle D is then inserted into the PWM generator to 
generate a digital pulse signal P based on the ratio value 
provided by D. As such, D, which ranges from 0 to 1, deter-
mines the consecutive ON time for a given period in signal 
P. Figure 10 illustrates the shape of the graphical digital 
pulse P at D = 0.5 , D = 0.75 and D = 0.25 . Note that at 
D = 0 , the resulting pulse signal P will remain completely 
OFF.

Figure 9 illustrates the detailed layout of each component. 
The following electronic components: metal–oxide–semi-
conductor field-effect transistor (MOSFET), filter capacitor 
C1, DC bus capacitor C2, boost inductor L and load R can 
be grouped up to form a DC-DC buck converter. The interior 
components are given the following parameters: C1 = 82�F , 
C2 = 47�F , L = 6.6 mH and R = 90Ω . The DC-DC buck 
converter is diametrically connected to the PV panel and 
serves as a central component for eliciting power from the 
connected PV panel, or more specifically, the internal MOS-
FET is the component that behaves to control the amount of 
power extraction while interrogating the incoming digital 
pulse signal generated by the PWM generator. It allows cur-
rent bypass whenever the MOSFET keeps the switch ON. 
Hence, it can be inferred that mNFSA adjusts the duty cycle 
D during operation to find the best solution for maximiz-
ing power from the PV panel [38]. In generally, a quali-
fied PV system is supposed to comply with the following 
regulations:

(i)	 The duty cycle D only vary within 0 and 1. For each 
interval of a period, D contributes the proportion of ON 
to OFF for digital pulse signal P (refer to Fig. 10).

(ii)	 Digital modulating pulse P is inserted into the ‘gate’. 
MOSFET is switched ON whenever the incoming pulse 
contributes an ON signal at the given period.

(iii)	 P regulates the timing of the current bypassed through 
the MOSFET, thereby adjusting the amount of current 
sent to the load R. Hence, the load current IR is less 
than photovoltaic current Ipv extracted from the PV 
panel ( IR < IPV).

(iv)	 The extracted photovoltaic power PPV  should be 
approximately equal to the load power PR during simu-
lation.

(v)	 Due to the facts that IR < IPV and PPV ≈ PR , the load 
voltage VR should be greater than the extracted photo-
voltaic voltage VPV ( VR > VPV).

4.4 � Simulation method

Simulations were performed entirely using MAT-
LAB − SIMULINK R2021a. All electronic components 
are directly available from the SIMULINK block library, 
only optimization algorithm needs to be coded into a 
MATLAB function block. At runtime, SIMULINK can 
access MATLAB function script to facilitate the simula-
tion process. For clarity, the SIMULINK model settings 
are shown in Table 4.

The mNFSA coded in a MATLAB function block 
adopts the parameter settings mentioned in Subsection 3.5. 
It controls the duty cycle D to generate a digital modulat-
ing pulse P, which is sent to a DC-DC bulk converter for 
adjusting the amount of power extraction over time. For 
a clearer image, readers can refer to the connection of the 
model in Fig. 9 to facilitate understanding of the simu-
lation. All valuable data including D, IPV  , VPV  , PPV  , IR , 
VR and PR can be collected in scope blocks for feasibility 
verification. The simulated PV model not only needs to be 
able to extract the highest PPV from the PV panel, but also 
needs to stabilize the maximum available power Pmax for 
the users. Note that Pmax is collected from load R, which 
means Pmax = PR when t > tmax . The primary goal of the 

Fig. 10   Digital pulse signals generated in different scenarios

Table 4   Model settings for SIMULINK model

Indicator Configuration

Stop time 5 s
Type Variable-step
Solver ode15s
Maximum step time 1E-06 s
Minimum step time Auto
Number of consecutive minimum step 1
Relative tolerance 1E-06 s
Absolute tolerance Auto
Zero-crossing control Use local settings
Shape preservation Disable
Tasking and sample time options Disable
Data import/ export Enable
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proposed mNFSA is now to achieve a maximum power 
Pmax that is ideally close to or equal to the MPP value. 
Hence, the evaluation metric of the optimization algorithm 
is given as:

where MPP is equal to 206.7831 W (refer to Fig. 7). The 
closer Pmax is to MPP, the better the performance of the PV 
system and the smaller the relative error [45]. A lower rela-
tive percentage confirms the ability of the test algorithm to 
achieve higher power supply for the users.

To assess the performance of the proposed algorithm, 
mNFSA must be compared with other algorithms of dif-
ferent types. A number of optimization algorithms, Rep-
tile Search Algorithm (RSA) [46], Arithmetic Optimiza-
tion Algorithm (AOA) [47], Aquila Optimizer (AO) [48], 
Equilibrium Optimizer (EO) [49], Seagull Optimization 

(12)Relative Error =
MPP − Pmax

MPP
× 100%

Algorithm (SOA) [50], and Comprehensive Improved 
Artificial Fish Swarm Algorithm (CIAFSA) [11] are 
used for comparative purpose. RSA, AOA, AO, EO and 
SOA are standard novel optimization algorithms, while 
CIAFSA is a hybrid and modified algorithm. These very 
well cover bio-inspired, physics-based, evolutionary and 
hybrid types of algorithms. For an equitable comparison, 
all comparative algorithms were simulated using the same 
problem definition, where n = 5 , tmax = 10 , [l, u] = [0, 1] 
and dim = 1 . All of these were certainly simulated with the 
same PV model, simply replacing the MATLAB function 
block of mNFSA with the corresponding algorithms (refer 
to Fig. 9). A total of 10 simulations were run for each 
algorithm to collect 10 sets of data for consistent exami-
nation. Statistical tests were conducted in comparison of 
results with other published algorithms, mainly in terms of 
best, mean and standard deviation. The best result tests the 
available global best value, the mean tests the accuracy of 

Output from: Output graph of variable

Algorithm block

(a) Duty cycle, D

PV panel

(b) Photovoltaic current, (c) Photovoltaic voltage, (d) Photovoltaic power,

Load R

(e) Load current, (f) Load voltage, (g) Load power,

Fig. 11   Graph of specified variable data collected during a simulation
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the algorithm, and the standard deviation tests the preci-
sion and robustness of the algorithm.

5 � Results and discussion

The evaluation was carried out from two aspects: (1) the fea-
sibility verification of the PV model system via mNFSA and 
(2) the performance evaluation of mNFSA in maximizing 
the power extraction in the modeled PV system, as compared 
to other optimization algorithms using the same settings and 
model.

5.1 � Feasibility verification of PV modeling

Data including D, IPV  , VPV  , PPV  , IR , VR and PR were col-
lected in scope blocks for feasibility verification. Fig-
ures 11a to g display the graphical diversion of duty cycle 
D, photovoltaic current IPV , photovoltaic voltage VPV , pho-
tovoltaic power PPV , load current IR , load voltage VR , and 
load power PR during the simulation with mNFSA. From 
observation, when step time ≥ 4.3s , the iterative process is 
terminated, and these variables are optimized. In order to 
prove the feasibility of PV modeling, all the prerequisites 
mentioned earlier must be met.

The duty cycle D is only allowed to vary within 0 and 1. 
Figure 11a shows that D does not exceed any fixed bound-
ary. The oscillations of the D graph are decreasing, indi-
cating that mNFSA has a potential to converge during the 
simulation.

According to the description in Sect. 4.3, the load cur-
rent IR should be less than the PV current IPV  extracted 
from the PV panel ( IR < IPV ). IPV is initialized by drawing 
the maximum current (≈ short-circuit current ISC ) from 
the PV panel, where IPV will gradually decrease through-
out the simulation. Referring to Figs. 11b and e, during 
the simulation, the PV current IPV is always greater than 
the load current IR . This demonstrates the functionality of 
the MOSFET in DC-DC buck converter to decompose the 
larger portion of IPV into a smaller portion of IR.

The currents in the PV panel and the load R are differ-
ent, and hence, the corresponding voltages in the PV panel 
and the load R should also be different. Theoretically, the 
load voltage VR should be greater than the photovoltaic 
voltage VPV ( VR > VPV ). The VR in Fig. 11f tends to exceed 
the VPV value in Fig. 11c throughout the simulation. This 
meets one of the prerequisites.

With references to Figs. 11d and g, photovoltaic power 
PPV and load power PR produce similar diversion, confirm-
ing the fact that the PPV extracted during the simulation is 
approximately equal to the load power PR . The MPP as a 

Table 5   MPPT results of mNFSA in comparison with other algorithms

Algorithm (Year)

Run Indicator mNFSA (Proposed) RSA (2022) AOA (2021) AO (2021) EO (2020) SOA (2019) CIAFSA (2017)

1st Pmax (W) 206.7664 202.6400 206.7694 206.7124 206.5820 205.8265 206.5683
Rel. Error (%) 8.08E-03 2.00E + 00 6.65E-03 3.42E-02 9.72E-02 4.63E-01 1.04E-01

2nd Pmax (W) 206.5732 197.1598 206.3002 206.4332 206.7579 205.9194 206.5201
Rel. Error (%) 1.02E-01 4.65E + 00 2.34E-01 1.69E-01 1.22E-02 4.18E-01 1.27E-01

3rd Pmax (W) 206.7753 201.2945 204.4847 204.9468 206.7711 205.2447 206.7682
Rel. Error (%) 3.77E-03 2.65E + 00 1.11E + 00 8.88E-01 5.80E-03 7.44E-01 7.21E-03

4th Pmax (W) 206.7625 205.7625 204.6396 205.9353 205.8092 206.4085 206.6604
Rel. Error (%) 9.96E-03 4.94E-01 1.04E + 00 4.10E-01 4.71E-01 1.81E-01 5.93E-02

5th Pmax (W) 206.7689 198.0860 205.6775 206.1862 205.7098 206.0443 206.6719
Rel. Error (%) 6.87E-03 4.21E + 00 5.35E-01 2.89E-01 5.19E-01 3.57E-01 5.38E-02

6th Pmax (W) 206.7567 203.8172 205.2715 206.3169 206.7152 206.3939 206.2651
Rel. Error (%) 1.28E-02 1.43E + 00 7.31E-01 2.25E-01 3.28E-02 1.88E-01 2.51E-01

7th Pmax (W) 206.7443 203.7750 204.9256 206.3984 206.7555 205.9249 206.6005
Rel. Error (%) 1.88E-02 1.45E + 00 8.98E-01 1.86E-01 1.33E-02 4.15E-01 8.83E-02

8th Pmax (W) 206.7213 199.2363 206.2883 205.5752 205.9772 206.3453 206.7024
Rel. Error (%) 2.99E-02 3.65E + 00 2.39E-01 5.84E-01 3.90E-01 2.12E-01 3.90E-02

9th Pmax (W) 206.7648 201.5146 205.5899 206.2062 206.3584 206.4445 206.5700
Rel. Error (%) 8.85E-03 2.55E + 00 5.77E-01 2.79E-01 2.05E-01 1.64E-01 1.03E-01

10th Pmax (W) 206.7687 194.6106 203.9256 205.9069 206.7475 206.7642 206.4983
Rel. Error (%) 6.96E-03 5.89E + 00 1.38E + 00 4.24E-01 1.72E-02 9.13E-03 1.38E-01



1150	 Evolutionary Intelligence (2023) 16:1135–1154

1 3

reference demonstrates that the maximized power Pmax 
captures the MPP with high accuracy. Combining all the 
evidence, it can be concluded that the PV model system in 
Fig. 9 is compatible and feasible.

5.2 � Performance evaluation of mNFSA compared 
to other algorithms

Table 5 displays the MPPT results obtained by mNFSA 
and other comparative optimization algorithms. Data in 
bold reveals the best results among all comparative algo-
rithms for each simulation run. mNFSA ranked first in 7 
out of 10 simulation runs, securing the best performance 
for MPPT. The average relative error for mNFSA is barely 
equal to 0.0207%, and lower errors can be achieved without 
minor failure in the 2nd simulation run. Each value of Pmax 
is relatively close to MPP, confirming the fact that mNFSA 
achieves an extremely superior maximum output power. Sev-
eral sensible conclusions can hence be drawn from Table 5. 
The proposed mNFSA outperforms other algorithms in the 
MPP tracking process. Under the partial shading effect, 
mNFSA significantly enhances the unwavering quality and 
viability of PV system (framework) through the modified 
architectures in the MPPT approach. It can be inferred that 
the respective contributions help to solve the MPPT problem 
more accurately and efficiently.

Table 6 compares statistical results of Pmax and Relative 
Error obtained by mNFSA and other algorithms. Obviously, 
mNFSA ranked first in the best, mean, and standard devia-
tion results. mNFSA gives the most prominent statistical 
results and is proven to be the algorithm with the best accu-
racy, precision and robustness. The fact that mNFSA is able 
to yield the best results for MPPT also indicates that it has 
the best global optimum achievement.

By interpreting the statistics, it is confirmed that the per-
formance of the algorithms can be ranked in the following 
order: mNFSA > CIAFSA > EO > SOA > AO > AOA > RS
A. Through in-depth analysis of the results and algorithm 
structure, AO, AOA and RSA with poor performance have 
similar mechanisms or methodologies. They have 4 execut-
able strategies, and in each iteration, they select only one 
of them to execute. The selection method is based on the 

specified options and conditions. This type of mechanism is 
easier to scale with a slow but smooth search process, requir-
ing more iterations and population size to get the perfect 
piece. However, the fact is that the MPPT application only 
allows short iterations and small population sizes to ensure 
that the simulation runs in the shortest possible duration. In 
a realistic setup, the PV framework needs to track the MPP 
as fast as possible to frequently respond to environmental 
changes. Therefore, excessive iteration numbers and popu-
lation sizes should be avoided in optimization techniques 
or algorithms, as it may slow down the MPPT process in 
practical PV frameworks. Optimization for MPPT requires 
fast convergence and more detailed utilization, which AO, 
AOA, and RSA fail to do so.

In contrast, well-performed mNFSA, CIAFSA, EO, and 
SOA are similar in that they directly enforce strategies with-
out selection and conditions. Combining all the evidence, 
we can make the following inferences: On the premise that 
only short iterations and small populations are allowed, 
every processing loop in the algorithm must play a real 
deal. Therefore, switching of strategies based on conditional 
selections is discouraged, as it will only prolong the simula-
tion time, and there is a high chance that an inappropriate 
strategic solution will be assigned in the incorrect iteration. 
From a mathematical point of view, when more selections 
are given, the more complex an algorithm becomes. It may 
also be that the particular strategy has not yet functioned but 
has been skipped to the next stage of execution. Since the 
iterations are short, strong MPPT-based optimization algo-
rithms should directly execute strategies without too many 
conditional selections. Non-selective strategy enforcement 
ensures that the algorithm makes the best use of a given 
architecture without skipping any beneficial methods. The 
results have shown that this mechanism is most suitable for 
MPPT applications.

Note that mNFSA and CIAFSA are improved algo-
rithms that hybridize biologically inspired and evolutionary 
approaches. Comparing only mNFSA and CIAFSA, mNFSA 
is superior to CIAFSA. The difference in performance is 
mainly due to differences in algorithmic mechanism and 
strategies. mNFSA is unique in its notion of modifications 
that implement boundary changes at each iteration [i.e., 

Table 6   Comparison of Pmax and Relative Error statistics between mNFSA and other algorithms

Indicator Algorithm mNFSA RSA AOA AO EO SOA CIAFSA

Pmax (W) Best 206.7753 205.7625 206.7694 206.7124 206.7711 206.7642 206.7682
Mean 206.7402 200.7896 205.3872 206.0617 206.4184 206.1316 206.5825
SD 0.0607 3.4656 0.9078 0.5051 0.4279 0.4300 0.1396

Rel. Error (%) Best 3.77E-03 4.94E-01 6.65E-03 3.42E-02 5.80E-03 9.13E-03 7.21E-03
Mean 2.07E-02 2.90E + 00 6.75E-01 3.49E-01 1.76E-01 3.15E-01 9.70E-02
SD 1.00E + 02 9.83E + 01 9.96E + 01 9.98E + 01 9.98E + 01 9.98E + 01 9.99E + 01
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Eqs. (8) and (9)]. This is the distinctive strength of mNFSA 
that differentiates its performance from CIAFSA and other 
algorithms. In addition, mNFSA has an extremely refined 
parameter adaptation method (i.e., Eq. (11)), which assigns 
every search agent the most appropriate step range best 
suited for MPPT. Due to the contributions of the algorith-
mic mechanism and strategies proposed in Eq. (7), mNFSA 
has stronger clustering properties than other algorithms. 
From the discussion point of view, the clustering character-
istics in an algorithm are absolutely important in the MPPT 
process. It can be inferred that the clustering process ena-
bles the agents to quickly converge to the global optimal 
region, thereby speeding up the transition from exploration 
to exploitation, which is very beneficial for this application. 
Algorithms with fast convergence and high clustering prop-
erties are expected to require less iterations to get the job 
done.

Table 7 shows the average execution time of mNFSA and 
other compared algorithms. Execution time represents the 
duration that an algorithm participates in the computational 
process. Obviously, a shorter execution time is more con-
ducive for MPPT process. A shorter execution time indi-
cates faster processing speed of the algorithm. mNFSA only 
ranked fifth in average execution time, barely faster than 
AO and CIAFSA, and slightly slower than EO. This is a 
minor weakness found in mNFSA, where it requires more 
processing time than others. A slightly longer execution time 
in mNFSA is basically due to the additional implementa-
tion of the extended memory concept [in Eqs. (7) and (10)]. 
However, the difference in milliseconds has little effect on 
the MPPT application, as the PV framework still works fine 
with good results as shown in Table 5.

This research work focuses on the development of the 
proposed algorithm (mNFSA) and the design of the PV 
framework to obtain a superior MPPT solution. This is the 
strength of this research work, where the knowledge gained 
can further refine the application of MPPT. However, the 
downside is that the proposed algorithm is only suitable for 
MPPT solutions and is expected to perform poorly in other 
applications if applied directly without further modification. 
Analysis of the results also proves that the hybrid strategy is 
effective for MPPT. The optimized hybrid concept stabilizes 
power extraction, making it more robust and precise than 
a single optimization type. Some hybrid intelligence algo-
rithms are hereby recommended for further study [51, 52].

5.3 � Potential applications of proposed framework 
in realistic setups

Extensive investigations and studies were conducted to dem-
onstrate potential application of the proposed framework in 
the real-world settings. Note that the implementation cost of 
PV solar technology is surprisingly low. Standard PV panels 
are typically designed for commercial use at low cost but can 
be used as high-efficiency solar power sources. Reviewing 
literatures [53, 54], we can summarize several factors for PV 
cost reduction and efficiency increase. The first factor is the 
presence of high-efficiency PV inverters in current technol-
ogy. By definition, a PV inverter is an electrical converter 
that converts the variable direct current (DC) output of a 
PV solar panel into a utility frequency alternating current 
(AC) that can be fed into the commercial electrical grid. 
In practical setup, a DC-AC converter (i.e., PV inverter) is 
used instead of a DC-DC buck converter. High-efficiency 
inverters made of Silicon Carbide (SiC) and Gallium Nitride 
(GaN) can reduce passive component failure rates, packag-
ing- installation costs, and the size of inverter heat sinks 
because GaN and SiC have excellent thermal conductivity. 
The second factor is the development of high-efficiency PV 
modules. Double-sided glass modules or new encapsulation 
materials can effectively increase power generation. Another 
factor is the reduction in system cost. Measures such as finer 
diamond wires, larger dimensions, and lower drawbar power 
consumption will further reduce the material and energy 
costs of components. While reducing the cost per watt, the 
land cost and non-material costs such as plant construction, 
support, electrical equipment, and management expenses 
are diluted.

There are basically two types of PV systems: on-grid 
or off-grid PV systems [55–58]. On-grid means the solar 
system is connected to the local utility's grid. Off-grid is 
a solar system that is not connected in any way to the grid 
via the electrical network or utility company. While there 
are distinctive differences between on-grid and off-grid PV 
solar systems, the selection should depend on the user's cir-
cumstances. Off-grid systems allow complete elimination of 
utilities, but they are generally more expensive. The biggest 
disadvantage of off-grid systems is that they cannot ingrati-
ate the power demands of all loads because the cost and size 
of the batteries would be prohibitive. Such systems require 
more specialized equipment to operate. Not only are these 

Table 7   Average execution time 
of mNFSA compared to other 
algorithms

Indicator mNFSA RSA AOA AO EO SOA CIAFSA

Avg. Exc. Time (s) 0.0753 0.0447 0.0448 0.0848 0.0728 0.0291 0.1259
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systems expensive and complex to install, but they are also 
not very environmentally friendly. In contrast, on-grid sys-
tems combine significant power (cost) savings with a reli-
ance on the grid, so users never have to worry about running 
out of power. On-grid system sends the excess electricity 
generated to the utility grid when overproducing. These are 
the most cost-effective and simplest systems to install. They 
are very friendly in terms of cost saving and provision of 
environmental protection.

Considering factors such as performance, management 
and user demands [59], it is strongly recommended that 
the proposed framework be built into on-grid PV systems. 
Note that if the user is on the grid in most places, the user 
can sell the excess power to the grid and buy it back when 
power is not available. The high-performing PV framework 
proposed in this research work can generate more excess 
electricity in exchange for more money to cover the instal-
lation fee. As a rough estimate, this proposed framework 
will pay for itself by offsetting bills in 3–6 years through 
efficient solar power generation from PV systems. With 
its high performance and effectiveness, it is believed that 
this proposed framework can continue to provide excess 
power if the environment is favorable. Hence, it should be 
installed and applied to some fields that require very high 
power, such as electrical and electronic industry sectors. 
This helps to solve the energy shortage problem, in line 
with APAEC's policy of reducing ASEAN's energy inten-
sity by 20% and 30% as a medium-term target for 2020 and 
a long-term target for 2025 and increasing the component 
of renewable energy to desired target of 23% by 2025.

6 � Conclusion

The research work successfully proposed the modified 
Normative Fish Swarm Algorithm (mNFSA) to solve the 
simulated MPPT problem in the PV framework. This helps 
improve the efficiency of solar power generation in the 
realistic setups. The simulated PV model system (frame-
work) was pre-tested to verify its feasibility using mNFSA. 
Numerical MPPT simulations were then conducted to com-
pare the performance of mNFSA with different potential 
algorithms (i.e., RSA, AOA, AO, EO, SOA, and CIAFSA). 
Experimental results show that mNFSA outperforms other 
comparative algorithms in terms of maximum power 
extraction (mean: 206.7402 W) and relative percentage 
error (mean: 2.07E-02%). Although perfect global optimi-
zations have not yet been achieved, they are closer to the 
global optimum, confirming the contribution of the for-
mulation, modification, and implementation of mNFSA to 
MPPT applications. Statistical tests validated the strength 
of mNFSA, which has been shown to be an accurate, precise 

and robust algorithm. In addition, the results in terms of the 
average execution time (avg.: 0.0753 s) of each algorithm 
were collected. mNFSA did not achieve good execution 
time, exposing a minor weakness in the processing speed 
of algorithm.

For academic purposes, this research work details all 
mathematical expressions, software employed, mode-
ling methods, settings, etc. for future replication by other 
researchers to further deepen their research in MPPT appli-
cations. The major finding should be the implementable 
strategies best suited for MPPT applications. According to 
the analysis, algorithms with the following characteristics 
can achieve better performing MPPT results, i.e., good clus-
tering properties, straightforward execution, and a balanced 
transition from global exploration to local exploitation. The 
only shortcoming of this research work is that the knowledge 
and equipment are insufficient to cover the realistic setups. 
Therefore, future research directions can consider realistic 
setups of the proposed PV framework. As hybridization of 
bio-inspired and evolutionary strategies in algorithms (such 
as CIAFSA and mNFSA) have been proven to yield the best 
performance results in MPPT applications, it is planned to 
hybrid extensive evolutionary operations (such as mutation, 
crossover, multi-group combination, and chaos mapping) 
with state-of-the-art bio-inspired algorithms for more effi-
cient power extraction in PV systems.

Acknowledgements  This research is supported by the Ministry of 
Higher Education (MOHE) Malaysia under the Fundamental Research 
Grant Scheme (Grant no. FRGS/1/2021/TK0/USM/02/14).

Authors’ Contribution  W-HT conceived, developed and tested the for-
mulated algorithm, collected and analyzed the data, and wrote this 
manuscript. JM-S validated the analytical methods and supervised 
the findings of this work. Both authors revised and approved the final 
manuscript.

Funding  This work is financially funded by the Ministry of Higher 
Education (MOHE) Malaysia under the Fundamental Research Grant 
Scheme (Grant no. FRGS/1/2021/TK0/USM/02/14).

Data availability  All data generated or analyzed during this study are 
included in this published article (and its supplementary information 
files).

Declarations 

Conflict of interest  No author associated with this paper has disclosed 
any potential or pertinent conflicts which may be perceived to have 
impending conflict with this work.

Ethics approval  This research does not contain any studies with human 
participants or animals performed by any of the authors.



1153Evolutionary Intelligence (2023) 16:1135–1154	

1 3

References

	 1.	 Silitonga RJP (2020). Energy efficiency cambodiapromoting and 
demonstrating energy management system in Cambodia. ASEAN 
Centre of Energy.

	 2.	 Prasanna MG, Sameer SM, Hemavathi G (2014) Financial analy-
sis of solar photovoltaic power plant in India. IOSR J Econom 
Finance. 1:9–15

	 3.	 Ndagijimana MT, Kunjithapathan B (2019) Design and imple-
mentation PV energy system for electrification rural areas. Int J 
Eng Adv Technol (IJEAT) 8(5):2340–2352

	 4.	 Oko C et al (2012) Design and economic analysis of a photovol-
taic system: a case study. Int J Renew Energy Develop 1:65–73. 
https://​doi.​org/​10.​14710/​IJRED.1.​3.​65-​73

	 5.	 Mallon K, Assadian F, Fu B (2017) Analysis of on-board photo-
voltaics for a battery electric bus and their impact on battery lifes-
pan. Energies 10(7):943. https://​doi.​org/​10.​3390/​EN100​70943

	 6.	 Sharma R et al (2018) Life span and overall performance enhance-
ment of solar photovoltaic cell using water as coolant: a recent 
review. Materialstory Proc. 5(9):18202–18210. https://​doi.​org/​10.​
1016/J.​MATPR.​2018.​06.​156

	 7.	 Senthil R (2019) Enhancement of electrical and thermal perfor-
mance by cooling of solar PV systems. Int J Innov Technol Explor 
Eng (IJITEE) 8(6):420–423

	 8.	 Kirubakaran D, Kamalakannan S (2019) Power quality enhance-
ment of on grid solar PV system with Z Source inverter. J Eng Sci 
Technol. 14(Special Issue 1/2019):135–143

	 9.	 Tofoli FL, de Pereira DC, de Paula WJ (2015) Comparative study 
of maximum power point tracking techniques for photovoltaic 
systems. Int J Photoenergy. 2015:1–10. https://​doi.​org/​10.​1155/​
2015/​812582

	10.	 Pakkiraiah B, Sukumar GD (2016) Research survey on various 
MPPT performance issues to improve the solar PV system effi-
ciency. J Solar Energy 2016:1–20. https://​doi.​org/​10.​1155/​2016/​
80124​32

	11.	 Mao M et al (2017) Comprehensive improvement of artificial 
fish swarm algorithm for global MPPT in PV system under par-
tial shading conditions. SAGE. https://​doi.​org/​10.​1177/​01423​
31217​697374

	12.	 Seyedmahmoudian M et al (2013) Analytical modeling of par-
tially shaded photovoltaic systems. Energies 6(1):128–144. 
https://​doi.​org/​10.​3390/​EN601​0128

	13.	 Saadsaoud M et al (2016) Study of partial shading effects on 
photovoltaic arrays with comprehensive simulator for global 
MPPT control. Int J Renew Energy Res (IJRER) 6(2):413–420

	14.	 Dadjé A, Djongyang N, Tchinda R (2017) Electrical power 
losses in a photovoltaic solar cell operating under partial shad-
ing conditions. J Power Energy Eng 5(10):19–33. https://​doi.​
org/​10.​4236/​JPEE.​2017.​510002

	15.	 Eiben AE, Smith JE (2003) Evolutionary programming. In: 
Introduction to evolutionary computing. Natural Co Edition., 
Springer, Berlin, Heidelberg. pp. 89–99. doi: https://​doi.​org/​
10.​1007/​978-3-​662-​05094-1_5.

	16.	 Vanneschi L, Poli R (2012) Genetic programming — introduc-
tion, applications, theory and open issues. In: Handbook of 
natural computing, Springer, Berlin, Heidelberg. pp. 709–739. 
doi: https://​doi.​org/​10.​1007/​978-3-​540-​92910-9_​24.

	17.	 Storn R, Price K (1997) Differential evolution – a simple and 
efficient heuristic for global optimization over continuous 
spaces. J Global Optim 11(4):341–359. https://​doi.​org/​10.​
1023/A:​10082​02821​328

	18.	 Holland JH (1975) Adaptation in natural and artificial systems: 
an introductory analysis with applications to biology, control, 
and artificial intelligence Illustrate. University of Michigan 
Press, Ann Arbor, Michigan, p 1975

	19.	 Beyer H-G, Schwefel H-P (2002) Evolution strategies – a com-
prehensive introduction. Nat Comput 1:3–52. https://​doi.​org/​10.​
1023/A:​10150​59928​466

	20.	 Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a grav-
itational search algorithm. Inf Sci 179(13):2232–2248. https://​
doi.​org/​10.​1016/J.​INS.​2009.​03.​004

	21.	 Shah-Hosseini H (2011) Principal components analysis by the 
galaxy-based search algorithm: a novel metaheuristic for con-
tinuous optimisation. Int J Comput Sci Eng. https://​doi.​org/​10.​
1504/​IJCSE.​2011.​041221

	22.	 Birbil Şİ, Fang S-C (2003) An electromagnetism-like mecha-
nism for global optimization. J Global Optim 25:263–282. 
https://​doi.​org/​10.​1023/A:​10224​52626​305

	23.	 Colomi A, Dorigo M, Maniezzo V (1991) Distributed optimi-
zation by ant colonies. In: Proceedings of the first European 
Conference on artificial life. pp. 134–142.

	24.	 Li XL, Shao ZJ, Qian JX (2002) An optimizing method based 
on autonomous animate: fish-swarm algorithm. Chinese J Syst 
Eng-theory Practice 22(11):32–38. https://​doi.​org/​10.​12011/​
1000-​6788(2002)​11-​32

	25.	 Basturk B, Karaboga D (2007) A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony 
(ABC) algorithm. J Global Optim 39(3):459–471. https://​doi.​
org/​10.​1007/​S10898-​007-​9149-X

	26.	 Freitas D, Lopes LG, Morgado-Dias F (2020) Particle swarm 
optimisation: a historical review up to the current developments. 
Entropy 22(3):362. https://​doi.​org/​10.​3390/​E2203​0362

	27.	 Nasiri J, Khiyabani FM, Yoshise A (2018) A whale optimization 
algorithm (WOA) approach for clustering. Cogent Math Stat 
5(1):1–13. https://​doi.​org/​10.​1080/​25742​558.​2018.​14835​65

	28.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. 
Adv Eng Softw 95:51–67. https://​doi.​org/​10.​1016/J.​ADVEN​
GSOFT.​2016.​01.​008

	29.	 Eberhrt R, Kennedy J (1995) A new optimizer using particle 
swarm theory. In: Proceeding of the 6th international sympo-
sium on micro machine and human science. pp. 39–43. doi: 
https://​doi.​org/​10.​1109/​MHS.​1995.​494215.

	30.	 Aziz NAA et al (2011) Particle swarm optimization for con-
strained and multiobjective problems : a brief review. In: 2011 
international conference on management and artificial intelli-
gence. vol. 6. pp 146–150.

	31.	 Sengupta S, Basak S, Peters RA (2018) Particle swarm optimiza-
tion : a survey of historical and recent developments with hybridi-
zation perspectives. Mach Learn Knowl Extract. 1(1):157–191. 
https://​doi.​org/​10.​3390/​MAKE1​010010

	32.	 Lu Y et al (2020) A critical review of sustainable energy policies 
for the promotion of renewable energy sources. Sustainability 
12(12):5078. https://​doi.​org/​10.​3390/​SU121​25078

	33.	 ASEAN (2015) ASEAN action plan for energy cooperation 
(APAEC) 2016–2025 In: Zamora CG, (ed.) ASEAN Centre for 
Energy

	34.	 Tan W-H, Mohamad-Saleh J (2019) Normative fish swarm algo-
rithm (NFSA) for optimization. Soft Comput. 24:2083–2099. 
https://​doi.​org/​10.​1007/​S00500-​019-​04040-0

	35.	 Tan W-H, Mohamad-Saleh J (2018) Normative improved artificial 
fish swarm algorithm (NIAFSA) for global optimization. Int J 
Innov Technol Explor Eng (IJITEE). 8(2S2):480–484

	36.	 Wu Y, Gao XZ, Zenger K (2011) Knowledge-based artificial 
fish-swarm algorithm. IFAC Proc Volumes 44(1):14705–14710. 
https://​doi.​org/​10.​3182/​20110​828-6-​IT-​1002.​02813

	37.	 Duan Q et al (2016) An improved artificial fish swarm algo-
rithm optimized by particle swarm optimization algorithm with 
extended memory. Kybernetes 45(2):210–222. https://​doi.​org/​10.​
1108/K-​09-​2014-​0198

https://doi.org/10.14710/IJRED.1.3.65-73
https://doi.org/10.3390/EN10070943
https://doi.org/10.1016/J.MATPR.2018.06.156
https://doi.org/10.1016/J.MATPR.2018.06.156
https://doi.org/10.1155/2015/812582
https://doi.org/10.1155/2015/812582
https://doi.org/10.1155/2016/8012432
https://doi.org/10.1155/2016/8012432
https://doi.org/10.1177/0142331217697374
https://doi.org/10.1177/0142331217697374
https://doi.org/10.3390/EN6010128
https://doi.org/10.4236/JPEE.2017.510002
https://doi.org/10.4236/JPEE.2017.510002
https://doi.org/10.1007/978-3-662-05094-1_5
https://doi.org/10.1007/978-3-662-05094-1_5
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1016/J.INS.2009.03.004
https://doi.org/10.1016/J.INS.2009.03.004
https://doi.org/10.1504/IJCSE.2011.041221
https://doi.org/10.1504/IJCSE.2011.041221
https://doi.org/10.1023/A:1022452626305
https://doi.org/10.12011/1000-6788(2002)11-32
https://doi.org/10.12011/1000-6788(2002)11-32
https://doi.org/10.1007/S10898-007-9149-X
https://doi.org/10.1007/S10898-007-9149-X
https://doi.org/10.3390/E22030362
https://doi.org/10.1080/25742558.2018.1483565
https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008
https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.3390/MAKE1010010
https://doi.org/10.3390/SU12125078
https://doi.org/10.1007/S00500-019-04040-0
https://doi.org/10.3182/20110828-6-IT-1002.02813
https://doi.org/10.1108/K-09-2014-0198
https://doi.org/10.1108/K-09-2014-0198


1154	 Evolutionary Intelligence (2023) 16:1135–1154

1 3

	38.	 Tey KS et al (2018) Improved differential evolution-based MPPT 
algorithm using SEPIC for PV systems under partial shading con-
ditions and load variation. IEEE Trans Industr Inf 14(10):4322–
4333. https://​doi.​org/​10.​1109/​TII.​2018.​27932​10

	39.	 Hassani M et al (2011) A novel MPPT algorithm for load protec-
tion based on output sensing control. In: 2011 IEEE ninth inter-
national conference on power electronics and drive systems. pp. 
5–8. doi: https://​doi.​org/​10.​1109/​PEDS.​2011.​61474​00.

	40.	 Kamarzaman NA, Tan CW (2014) A comprehensive review of 
maximum power point tracking algorithms for photovoltaic sys-
tems. Renew Sustain Energy Rev 37:585–598. https://​doi.​org/​10.​
1016/J.​RSER.​2014.​05.​045

	41.	 Gaikwad DD, Chavan MS (2015) A novel algorithm for MPPT 
for PV application system by use of direct control method. Int J 
Comput Appl 109(2):10–15. https://​doi.​org/​10.​5120/​19159-​0602

	42.	 Azizi R (2014) Empirical study of artificial fish swarm algorithm. 
Int J Comput Commun Netw 3(1):1–7

	43.	 Argyrou MC, Christodoulides P, Kalogirou SA (2018) Modeling 
of a photovoltaic system with different MPPT techniques using 
MATLAB/Simulink. In: 2018 IEEE international energy con-
ference (ENERGYCON). pp. 1–6. doi: https://​doi.​org/​10.​1109/​
ENERG​YCON.​2018.​83987​34.

	44.	 Teo JC et al (2018) Impact of partial shading on the P-V character-
istics and the maximum power of a photovoltaic string. Energies 
11(7):1860. https://​doi.​org/​10.​3390/​EN110​71860

	45.	 Joshi AS, Dincer I, Reddy BV (2009) Performance analysis 
of photovoltaic systems: a review. Renew Sustain Energy Rev 
13(8):1884–1897. https://​doi.​org/​10.​1016/J.​RSER.​2009.​01.​009

	46.	 Abualigah L et al (2022) Reptile search algorithm (RSA): a nature-
inspired meta-heuristic optimizer. Expert Syst Appl 191:116158. 
https://​doi.​org/​10.​1016/J.​ESWA.​2021.​116158

	47.	 Abualigah L et al (2021) The arithmetic optimization algorithm. 
Comput Methods Appl Mech Eng 376:113609. https://​doi.​org/​10.​
1016/J.​CMA.​2020.​113609

	48.	 Abualigah L et al (2021) Aquila optimizer: a novel meta-heuristic 
optimization algorithm. Comput Ind Eng 157(11):107250. https://​
doi.​org/​10.​1016/J.​CIE.​2021.​107250

	49.	 Faramarzi A et al (2020) Equilibrium optimizer: a novel optimiza-
tion algorithm. Knowl-Based Syst 191:1–21. https://​doi.​org/​10.​
1016/J.​KNOSYS.​2019.​105190

	50.	 Dhiman G, Kumar V (2019) Seagull optimization algorithm: 
theory and its applications for large-scale industrial engineering 

problems. Knowl-Based Syst 165:169–196. https://​doi.​org/​10.​
1016/J.​KNOSYS.​2018.​11.​024

	51.	 Azizi A (2017) Introducing a novel hybrid artificial intelligence 
algorithm to optimize network of industrial applications in mod-
ern manufacturing. Complexity. https://​doi.​org/​10.​1155/​2017/​
87282​09

	52.	 Azizi A (2019) Hybrid artificial intelligence optimization tech-
nique. In: Applications of artificial intelligence techniques in 
industry 4.0. SpringerBr Edition., Springer, Singapore. pp 27–47. 
doi: https://​doi.​org/​10.​1007/​978-​981-​13-​2640-0_4.

	53.	 Cengiz MS, Mamiş MS (2015) Price-efficiency relationship for 
photovoltaic systems on a global basis. Int J Photoenergy. https://​
doi.​org/​10.​1155/​2015/​256101

	54.	 Kavlak G, McNerney J, Trancik JE (2018) Evaluating the 
causes of cost reduction in photovoltaic modules. Energy Policy 
123:700–710. https://​doi.​org/​10.​1016/J.​ENPOL.​2018.​08.​015

	55.	 Ranjan R et al (2017) Off-grid and on-grid connected power gen-
eration: a review. Int J Comput Appl 164(9):12–16. https://​doi.​
org/​10.​5120/​IJCA2​01791​3716

	56.	 Kim H et al (2016) Comparative analysis of on- and off-grid elec-
trification: the case of two South Korean Islands. Sustainability 
8(4):350. https://​doi.​org/​10.​3390/​SU804​0350

	57.	 Vigneshwari CA et al (2016) Performance and economic study of 
on-grid and off-grid solar photovoltaic system. In: 2016 interna-
tional conference on energy efficient technologies for sustainabil-
ity (ICEETS). pp. 239–244. doi: https://​doi.​org/​10.​1109/​ICEETS.​
2016.​75829​33.

	58.	 Jasuan A, Nawawi Z, Samaulah H (2018) Comparative analysis of 
applications off-grid PV system and on-grid PV system for house-
holds in Indonesia. In: 2018 international conference on electrical 
engineering and computer science (ICECOS). pp. 253–258. doi: 
https://​doi.​org/​10.​1109/​ICECOS.​2018.​86052​63.

	59.	 Irtija N, Sangoleye F, Tsiropoulou EE (2020) Contract-theoretic 
demand response management in smart grid systems. IEEE 
Access 8:184976–184987. https://​doi.​org/​10.​1109/​ACCESS.​2020.​
30301​95

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TII.2018.2793210
https://doi.org/10.1109/PEDS.2011.6147400
https://doi.org/10.1016/J.RSER.2014.05.045
https://doi.org/10.1016/J.RSER.2014.05.045
https://doi.org/10.5120/19159-0602
https://doi.org/10.1109/ENERGYCON.2018.8398734
https://doi.org/10.1109/ENERGYCON.2018.8398734
https://doi.org/10.3390/EN11071860
https://doi.org/10.1016/J.RSER.2009.01.009
https://doi.org/10.1016/J.ESWA.2021.116158
https://doi.org/10.1016/J.CMA.2020.113609
https://doi.org/10.1016/J.CMA.2020.113609
https://doi.org/10.1016/J.CIE.2021.107250
https://doi.org/10.1016/J.CIE.2021.107250
https://doi.org/10.1016/J.KNOSYS.2019.105190
https://doi.org/10.1016/J.KNOSYS.2019.105190
https://doi.org/10.1016/J.KNOSYS.2018.11.024
https://doi.org/10.1016/J.KNOSYS.2018.11.024
https://doi.org/10.1155/2017/8728209
https://doi.org/10.1155/2017/8728209
https://doi.org/10.1007/978-981-13-2640-0_4
https://doi.org/10.1155/2015/256101
https://doi.org/10.1155/2015/256101
https://doi.org/10.1016/J.ENPOL.2018.08.015
https://doi.org/10.5120/IJCA2017913716
https://doi.org/10.5120/IJCA2017913716
https://doi.org/10.3390/SU8040350
https://doi.org/10.1109/ICEETS.2016.7582933
https://doi.org/10.1109/ICEETS.2016.7582933
https://doi.org/10.1109/ICECOS.2018.8605263
https://doi.org/10.1109/ACCESS.2020.3030195
https://doi.org/10.1109/ACCESS.2020.3030195

	Modified normative fish swarm algorithm for optimizing power extraction in photovoltaic systems
	Abstract
	1 Introduction
	2 Overview of NFSA
	2.1 Normative communication behavior
	2.2 Normative memory behavior
	2.3 Adaptive parameters

	3 Proposed mNFSA
	3.1 Modified normative communication behavior
	3.2 Modified normative memory behavior
	3.3 Refined adaptive parameter
	3.4 Complete mechanism
	3.5 Parameter settings of mNFSA

	4 Modeling and simulation
	4.1 PV array
	4.2 PV panel
	4.3 PV model system
	4.4 Simulation method

	5 Results and discussion
	5.1 Feasibility verification of PV modeling
	5.2 Performance evaluation of mNFSA compared to other algorithms
	5.3 Potential applications of proposed framework in realistic setups

	6 Conclusion
	Acknowledgements 
	References




