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Abstract
This paper aims to shed light on some of the conceptual interpretations that might be extracted from either the informa-
tion conveyed by fuzzy differential equations (FDEs) or a fusion of such information with other data sources. Although no 
explicit effort has been conducted on the topic, there are two significant imperatives for such interpretations. First, concep-
tual interpretations are necessary when FDEs are employed in modelling, prediction, control theory, and suchlike subjects. 
Simply put, FDEs fail to be applicable if their corresponding interpretations have not been recognized conceptually. Second, 
when FDEs are supposed to be analyzed. In other words, in the lack of such interpretations of FDEs, any analysis on this 
type of differential equations is conceptually devoid of meaning. The interpretations are associated with the concept of 
possibility distribution and differential equations which might be called imprecise differential equations (IDEs) that are in 
effect the mother of differential equations. The concept of IDE makes a convenient point of departure for the development 
of the interpretations in question in terms of the concepts such as machine-oriented meaning precisiation, modal solutions, 
precisiations compatibility, and some new facets of sureness. Specifically, interpretations associated with the compatibility 
of precisiations and the notion of human-machine-based sureness demonstrate the role played by information resident in an 
FDE fused with perception-based meaning precisiation, that stems from the knowledge of an expert. Some illustrations and 
examples are presented to clarify the basic concepts and the applications of interpretations.

Keywords Perception-based Computing · Nested generalized constraint · CoP principle · Imprecision · Precisiations 
compatibility · Fuzzy logic

1 Introduction

Differential equations, as a mathematical tool, have long 
played a pivotal role in the description of a wide range of 
dynamical systems. Such a role might also be well played 
by fuzzy differential equations (FDEs) when there is uncer-
tainty that relates to classes whose boundaries are defined 
unsharply. An FDE presents a description of a dynamical 
system in the form of a differential equation such that the 
uncertainties in question are emerged in some of the coef-
ficients and/or parameters and/or boundary conditions of 

the differential equation, and they are regarded as a class 
of fuzzy sets. The class of fuzzy sets is mainly regarded as 
the class of fuzzy numbers, denoted by E, consisting of sets 
that are normal, fuzzy convex, upper semi-continuous, and 
compactly supported fuzzy subsets of the real numbers ℝ.

Since 1978 when the term fuzzy differential equations 
emerged in the literature, prevailing research effort has 
been dedicated not only to the development of the concepts 
concerning the topic, but also to its potential applications. 
So far, the extensive research works carried out on fuzzy 
differential equations have been mainly dealt with proving 
the existence and uniqueness of an FDE solution, propos-
ing methods for solving FDEs, introducing various types of 
fuzzy derivatives, and an analysis of the behavior of FDEs, 
for an insightful review on FDEs see [1]. Nevertheless, what 
has not been addressed in the literature is an answer to these 
queries: What information is conveyed by an FDE? and how 
can such information be exploited? This paper is devoted to 
providing some answers to the queries. The answers under-
lie some conceptual interpretations of information resident 
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in FDEs. Thus, as the title of this paper suggests, various 
and yet new conceptual interpretations, mainly in terms of 
possibility distribution and the notion of precisiations are 
presented in this work.

There are two major imperatives for the conceptual inter-
pretations. First, conceptual interpretations are necessary 
when FDEs are employed in modelling, prediction, control 
theory, and suchlike subjects. Simply put, FDEs fail to be 
applicable if their corresponding interpretations have not 
been recognized conceptually. As an instance, there is a 
great deal of effort to suggest the applications of FDEs, e.g. 
see Sect. 4 in [1]. However, none of them has explained 
either the reasons for the importance of utilizing or any 
interpretations of FDEs in the suggested applications. Thus, 
if someone looks for the reasons, they may only encoun-
ter such familiar and unconvincing comments expressing 
that, due to the existence of uncertainty, the fuzzy differ-
ential equations are used, or FDEs are useful when there is 
uncertainty. Nevertheless, the advantages of FDEs and their 
significance in the applications have remained unclear. For 
example, suppose that the mathematical model of a phe-
nomenon has been proposed in the form of an FDE. If those 
who have put forward this model are asked to explain why 
they have considered the FDE as a mathematical model of 
the phenomenon, they highly likely fail to give convincing 
answers, apart from the above common comment.

Second, when FDEs are supposed to be analyzed. In other 
words, in the lack of such interpretations of FDEs, any anal-
ysis on this type of differential equations is conceptually 
devoid of meaning. As a case in point, there are numerous 
research works, e.g. see Sect. 3 in [1], which are intended 
to find or prove a solution for FDEs. Nevertheless, none of 
them has provided a convincing and straightforward answer 
to such a question: Why does finding the solutions of fuzzy 
differential equations matter? To put that simply, there are 
a number of approaches by which solutions of FDEs are 
obtained. Yet it is almost unknown what the importance 
of such solutions is. In other words, suppose that someone 
solves an FDE by one of the proposed approaches and raises 
such queries: What can I do with this solution? What is the 
importance of this solution? What does this solution mean? 
So far, no explicit answer has been given to such queries. As 
a matter of fact, a common thread which runs through these 
examples - and indeed all research works carried out on 
FDEs since 1978 till now - relates to the lack of conceptual 
interpretations coming with FDEs. However, this paper, for 
the first time in the literature, presents conceptual interpreta-
tions concerning with FDEs through which explicit and con-
vincing answers to the mentioned questions can be found.

The conceptual interpretations presented here provide 
a way for describing the behavior of a dynamical system 
imprecisely by the use of words or sentences in a natural 
language. For example, assume that the aim is to describe 

the behavior of pressure in a dynamical system S. The inter-
pretation of information conveyed by an FDE presenting 
a type of mathematical model of S, may lead to following 
statements:

• It is not possible that the pressure reaches 240(mmH2O) 
before 2 hours,

• The possibility degree that the pressure is 190(mmH2O) 
at t = 1 is 0.7,

• We should be 63% sure that the pressure is high at t = 2,
• That the pressure of system will be low (mmH2O) at t = 1 

is 75% compatible with our opinion.
• It can be stated we are 70% sure that the pressure of S will 

be very high at t = 3 and it is 75% compatible with our 
opinion. In addition, the pressure reaches 250(mmH2O) 
with 90% possibility.

Since some of the major interpretations associated with FDEs 
bear a close relation to differential equations that may be called 
imprecise differential equations (IDEs), the concept of an IDE 
with its solution and some properties are introduced briefly. 
As a matter of fact, the concept of an IDE makes a convenient 
point of departure for presenting the interpretations in question 
in terms of other concepts such as precisiation, compatibility, 
and sureness. In addition, a principle, compatibility of precisia-
tions principle (CoP), is introduced, which makes it possible to 
investigate the interpretation associated with compatibility. Fur-
thermore, some facets of sureness are presented, among which 
machine-based sureness and human-machine-based sureness 
are shed light in accord with the role that FDEs may play.

In this paper, it has been presumed in prior that readers are 
well familiar with some concepts and subjects such as possibil-
ity theory, fuzzy calculus, fuzzy information granulation, gener-
alized theory of uncertainty, computing with words, generalized 
constraint language, precisiation, probability theory, random 
differential equations, and preliminaries of fuzzy sets theory.

It should also be noted that - in their closed form, FDEs, 
just as any other types of differential equations, present 
some information about the relationship between variables 
involved in the equation and their effects, or interactions, on 
each other. Nonetheless, this paper is intended to focus on 
information that might be exploited from an FDE by the aid 
of concepts pertaining to fuzzy set theory, in a broad sense, 
rather than the investigation of the relationship between vari-
ables or their interactions. Indeed, such an investigation may 
also be carried out based on the approach presented here. In 
addition, it is stressed that the current paper is a brief exposi-
tion of several important conceptual interpretations of FDEs 
rather than a full exposition of all interpretations.

The information resident in an FDE also comes with the 
FDE solution and, even more, it might manifest itself more 
clearly in the solution. Thus, the conceptual interpretations 
of FDEs solutions serve as a convenient point of departure 
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for the explicitation of the information contained in FDEs. 
Besides, they pave the way for the exploitation of such 
information. For the sake of simplicity, we shall concern 
our attention with FDEs in which fuzzy number-valued func-
tions are involved. In addition, for the illustration and to have 
an impression of the interpretations, the following simple 
FDE presenting a mathematical model of cerebrospinal fluid 
(CSF) pressure [2] - that is a medical disorder - with an 
uncertain initial condition is considered in whole this paper.

In (1), x̃(t) denotes the CSF pressure in mmH2O, and x̃(t0) 
does the initial condition assumed to be a triangular fuzzy 
number1. Fig. 1 illustrates approximately the solution of 
(1), denoted by x̃∗ , for t ∈ [0, 8] , x̃(0) = (110, 115, 120) , 
k =

1

0.5
, r = 600, If (t) = 0.15, and x̃d = x̃(0) . It should be 

noted that this paper has nothing to do with approaches 
based on which a solution to an FDE may be obtained. 
In other words, the conceptual interpretations that will be 

(1)̇̃x(t) =
−k

r
x̃2(t) + k

(

If (t) +
x̃d

r

)

x̃(t), x̃(t0) ∈ E

introduced in the sequel are independent of approaches by 
which FDEs are dealt with2.

2  The interpretation associated 
with the possibility distribution concept

The simplest and yet important interpretation of information 
conveyed by an FDE is related to the concept of possibility 
distribution. Let x̃∗(t) satisfy an FDE, e.g. ̇̃x(t) = f (t, x̃(t)) , 
over t ∈ (a, b) ⊆ ℝ . The value of x̃∗(t) at any t = t� is a fuzzy 
set which might be regarded as an elastic constraint on the 
values that may be assigned to x̃∗(t�) . Such an elastic con-
straint induces a possibility distribution with the possibil-
ity distribution function, 𝜋x̃∗(t�) , equated to 𝜇x̃∗(t�) that is the 
membership function of x̃∗(t�) . Thus, 𝜋x̃∗(t�) = 𝜇x̃∗(t�) . Such an 
equation serves as a means of interpreting the solution of an 
FDE as a possibilistic process. Thus, at any t = t� , the fuzzy 
set x̃∗(t�) characterized by 𝜋x̃∗(t�) includes information about 
the degree of possibility or feasibility of a value u ∈ ℝ which 
may be assigned to x̃∗(t�) . Such an interpretation makes it 
possible providing some answers to queries concerning 
dynamical systems modeled by FDEs exemplified by:

• Is it feasible that the pressure is equal to 120(Pa) ?

Fig. 1  The solution of the fuzzy 
differential equation associated 
with the model of CSF pressure 
system

1 A triangular fuzzy number Ã is characterized by the triple (a, b, c) 
as Ã = (a, b, c) where a ≤ b ≤ c , and a, c are the left and right end-
points, and c is the core of Ã . Similarly a trapezoidal fuzzy number is 
denoted by Ã = (a, b, c, d) where a ≤ b ≤ c ≤ d. 2 A collection of approaches dealing with FDEs may be found in [1].
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• How much is the possibility that the temperature is equal 
to 37(oC)?

• Does it happen that the speed of DC motor reaches 
235(Rpm)?

• Is it hard that the voltage of the resistor in the RLC circuit 
assumes 15(V)?

Therefore, an FDE includes information about all possible 
behaviors of a dynamical system and its solution associates 
a possibilistic process with the dynamical system output. As 
a way of illustration, consider the model of CSF pressure 
system. On the basis of the presented interpretation, Fig. 1 
illustrates the possibilistic process corresponding to the CSF 
pressure model based on which the following queries are 
answered.

• Is it possible that the pressure of the patient’s CSF 
reaches 190? Yes, it is. It happens for t ∈ [2.8, 4.12] 
with the most possibility at t = 3.36 . The possibility is 
increased by the passage of time from t = 2.8 to t = 3.36 
and then it is decreased to its lowest amount at t = 4.12.

• How much is it easy that the pressure of the patient’s CSF 
is equal to 200 at t = 7 ? The degree of ease is 0.3.

• Is it feasible that the pressure of the patient’s CSF reaches 
less than 200 after t = 5 ? Yes, it is.

• Is it possible that the pressure of the patient’s CSF is 205 
before t = 6 ? Yes, it is, and the most degree of possibility 
is 0.5.

Thus, a fuzzy differential equation may also be termed as a 
possibilistic differential equation whose solution illustrates 
a possibilistic process - similar to, but not the same as, a 
random process corresponding to a random differential equa-
tion. In other words, a fuzzy differential equation conveys 
information describing possible behaviors of a dynamical 
system with different degrees of feasibility in the form of a 
possibilistic differential equation.

What follows presents interpretations of FDEs that bear a 
close relation to the concept of a type of differential equations 
which may be called imprecise differential equations (IDEs). 
Thus, we shall first introduce a brief exposition of IDEs.

3  Imprecise differential equations

In the theory of generalized uncertainty [3] information is 
equated to a generalized constraint. A generalized constraint 
(GC) is a constraint of the form X isr R where X is the con-
strained variable, R is a constraining relation and r defines 
the modality of the constraint or the mode of precisiation 

[4, 5]. There are some modes of precisiation3 among which 
more important are possibility distribution, r = blank , 
probability distribution, r = p , and fuzzy graph, r = fg . The 
generalized constraint is used to precisiate a precisiend , p. 
A precisiend, p, may be a proposition, or a set of proposi-
tions, sentences, or a combination of words expressed in a 
natural language which is precisiable and includes imprecise 
information that is precisiated under a mode of precisiation 
resulting in a precisiand, p∗ . In fact, information conveyed 
by a precisiend, p, can be precisiated, i.e. p∗ , in the form of 
a generalized constraint. Thus, the precisiand p∗ ∶ X isr R 
may be called the GC form of the precisiend p and written 
as GC(p) = p∗ . As a way of illustration consider the follow-
ing precisiends 

p1  : “The temperature of room is high”,
p2  : “The speed of car is approximately 80(km/h)”

 whose precisiands may be, respectively, as follows 

p∗
1
  : “ T(room) is T̃ = (35, 40, 45)”,

p∗
2
  : “ S(car) is ṽ = (70, 80, 85)”

 where T(room) and S(car) are respected focal variables in 
p1 and p2 . The mode of precisiation applied in the above 
propositions is that of possibility distribution.

A mathematical model of the system S conveys infor-
mation about the system behavior. Such information is uti-
lized to analyze or predict the behavior of S. In most cases, 
the mathematical model of S is in the form of a differen-
tial equation, or a system of differential equations, whose 
boundary conditions, coefficients, and the other constituents 
might be imprecise and expressed in the form of precisiends 
stemming from the knowledge of an expert. Such a differ-
ential equation that deals with precisiends might be called 
imprecise differential equation (IDE). As simple examples 
related to the context of this paper, let us consider the IDEs 
ẋ(t) = f (x(t)) and ẋ(t) = kx(t) for which the subjective pre-
cisiends may be respectively as follows: 

p  : “the initial condition of the equation ẋ(t) = f (x(t)) is 
near 25”,

p  : “the value of the parameter, k, in the equation 
ẋ(t) = kx(t) is more than 8”

 In fact, an IDE is a result of a combination of our knowl-
edge from physics laws4 and perception-based, or generally 

3 An insightful discussion of various modes of precisiation and the 
concept of precisiation with more details may be found in [3].
4 The laws of mechanics, electromagnetism, and thermodynamics.
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imprecise, information from the system S. Since perception-
based information is intrinsically imprecise [5], an IDE also 
represents an imprecise description of S in an abstracted 
form. In this perspective, an IDE is an imprecisely math-
ematical precisiation (im-precisiation) or machine-oriented 
precisiation (m-precisiation)5 of S6. Specifically, if x∗(t) is 
the solution of an IDE associated with the system S, then it is 
a set of precisiends which, in effect, gives some perception-
based information about S. Therefore, S might be precisiated 
by a disjunction of Cartesian product of t and x∗(t) written as

or equivalently as

where X is the focal variable in S, ∫  denotes a disjunction 
operator7, pt ∶ X isx x∗(t) . Symbolically we may write 
GC(S) = S∗ . In GC form of S a new value denoted by x has 
been considered for the indexing variable r which will be 
introduced in the sequel. The definition of x as a value of r 
in GC form of a system comes from two major differences 
between precisiation of a system and a precisiend. In pre-
cisiation of a precisiend, p, perception-based information 
conveyed by p is precisiated that results in a precisiand, p∗ . 
Thus, the precisiand of p is not imprecise and the mode 
of precisiation is known. Nevertheless, in precisiation of 
a system S8, the result of precisiation is perception-based 
information that plays the role of a precisiand of S playing 
the role of a precisiend. Thus, the precisiand of S is itself 
imprecise in nature and the mode of precisiation is unknown. 
Due to these reasons a new value x - meaning unknown or 
imprecise - along with other values of indexing variable r 
has been defined here. Therefore, hereafter,

or equivalently

(2)S∗ ∶ X isx
∫

t × x∗(t)

(3)S∗ ∶
∫

pt

(4)X isx R(t)

(5)∫
pt

in which pt ∶ X isx x∗(t) , signifies that X is the focal vari-
able of a system being precisiated, x means that the preci-
siation is in the mode of imprecision, and R(t) ≜ ∫ t × x∗(t)
9 is a set of perception-based information about X expressed 
in a natural language, t × x∗(t) is the Cartesian product of 
precisiend x∗(t) and t, and ∫  denotes a disjunction operator 
which is replaced by 

∑
 for a finite number or countable 

samples of t, see Fig. 2.
What follows explains how the interpretation of informa-

tion resident in an FDE on the basis of precisiation concept 
bears a close relation to the GC form of a mathematical 
model of a system.

3.1  The interpretation associated with the concept 
of mm‑precisiation

Although imprecise precisiation of a system may be given 
by the aid of an IDE, i.e. machine-oriented precisiation, no 
direct approach for obtaining the solution of an IDE exists, 
at this juncture. Nonetheless, an IDE can be precisiated and 
the solution of the result of the precisiation of the IDE is 
obtained. The precisiation of an imprecise differential equa-
tion is defined as the precisiation of precisiends associated 
with the IDE. The precisiation of an IDE results in an uncer-
tain differential equation (UDE) that may be viewed as a GC 
form of the IDE expressed symbolically as

The mode of precisiation determines the role that is played 
by the UDE. Specifically, the GC form of an IDE results 
in an uncertain differential equation which is called fuzzy 

(6)GC(IDE) = UDE

Fig. 2  The role of imprecise differential equation in the precisiation 
of a dynamical system S 

5 Machine-oriented precisiation differs from machine-oriented mean-
ing precisiation (mm-precisiation).
6 It should be stressed that here a system is going to be precisiated 
that is different from the precisiation of a proposition.
7 For countable samples of time 

∑
 replaces ∫ .

8 By precisiation of a system we mean human-oriented or machine-
oriented precisiation.

9 For human-oriented precisiation, R(t) ≜
∑

t × x∗(t) replaces 
R(t) ≜ ∫ t × x∗(t).
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differential equation if the precisiation of the IDE is in 
the mode of a possibility distribution, i.e. r = blank in the 
generalized constraint. The UDE plays the role of a ran-
dom differential equation (RDE) if r = p in the generalized 
constraint, i.e. the precisiation of the IDE is in the mode 
of a probability distribution. Crisp differential equations , 
interval-valued differential equations, Z-differential equa-
tions are also considered as the result of precisiation of IDE 
when the mode of precisiation is the respected singleton, 
interval, and possibility-probability distribution. Thus, in 
symbols we may write:

Moreover, new types of differential equations that have 
not been introduced or recognized yet might be derived as 
the result of precisiation of IDE with possibly various com-
binations of precisiation modes. In this perspective, IDEs 
may be viewed as the mother of differential equations from 
which all other types of differential equations can be derived, 
see Fig. 3. As a way of illustration, the precisiation of IDEs 
ẋ(t) = f (x(t)) and ẋ(t) = kx(t) , with their corresponding 
precisiends, in the mode of a possibility distribution may 
lead to FDEs ̇̃x(t) = f (x̃(t)) and ̇̃x(t) = kx̃(t) with respected 
precisiands 

p∗  : “the initial condition of the equation ̇̃x(t) = f (x̃(t)) is 
x̃(t0) = (22, 25, 27)”,

p∗  : “the value of the parameter, k , in the equation 
̇̃x(t) = kx̃(t) is k̃ = (8, 8, 15)”.

 Therefore, FDE (1) might be regarded as the result of the 
precisiation of an IDE in the same structure of (1) with the 
initial condition in the form of a precisiend such as 

(7)
GC(IDE)||r=blank = FDE

GC(IDE)||r=p = RDE

p  : “the initial pressure of the patient’s CSF is approxi-
mately 115”.

 Such a precisiend is, in effect, perception-based information 
that has been come from the knowledge of an expert.

As a result, if x̃∗(t) satisfies an FDE, e.g. ̇̃x(t) = f (t, x̃(t)) , 
which represents a type of mathematical model of a system, 
S, then it may be employed to precisiate x(t) which satisfies 
the imprecise differential equation ẋ(t) = f (t, x(t)) contain-
ing precisiends that imprecisely precisiate S. In other words, 
x̃∗(t) may be viewed as the GC form of x(t) , i.e. symboli-
cally GC(x∗(t)) = x̃∗(t)10. Thus, an FDE plays the role of a 
mathematically precisiated model of S. Such a role is also 
played by other UDEs and emerges in nested precisiations 
of S, see Fig. 4.

As a way of illustration, let us consider the CSF pres-
sure system whose mathematical precisiated model has been 
given by FDE (1) that is satisfied by x̃∗(t) shown in Fig. 1. In 
this case, the following simple subjective precisiends may be 
stated as an imprecise description of the behavior of patient’s 
CSF pressure status at t = 0, 1, 2, 3, 7 : 

p0  : “The initial pressure of patient’s CSF is approximately 
115”,

p1  : “The pressure of patient’s CSF will be low at t = 1”,
p2  : “The patient’s CSF pressure will be medium, 2 min-

utes later”,
p3  : “The pressure will be high, at t = 3”,
p7  : “The CSF pressure will be high, 7 minutes later”,

 whose precisiation might be considered as follows: 

p∗
0
  : “The initial pressure of patient’s CSF is 

x̃∗(0) = (110, 115, 120)”,
p∗
1
  :  “The pressure of patient’s CSF will  be 

x̃∗(1) = (140.8, 147, 153) at t = 1”,
p∗
2
  :  “The  pa t ien t’s  CSF pressure  wi l l  be 

x̃∗(2) = (164.5, 171, 177) , 2 minutes later”,
p∗
3
  : “The pressure will be x̃∗(3) = (180, 186, 192) , at t = 3

”,
p∗
7
  :  “ T h e  C S F  p r e s s u r e  w i l l  b e 

x̃∗(7) = (198.4, 203.6, 208.8) , 7 minutes later”.

 In fact, just as the precisiands p∗
0
 to p∗

7
 may be viewed as 

a model of p0 to p7 ; so may FDE (1) be viewed as a model 
of the IDE

(8)ẋ(t) =
−k

r
x2(t) + k

(
If (t) +

xd

r

)
x(t)

Fig. 3  The derivation of some types of differential equations from 
imprecise differential equations

10 It should be understood that GC(x∗(t)) = x̃∗(t) implicitly implies 
that GC(pt) = p∗

t
 for which x̃∗(t) plays the role of a constraint on the 

focal variable of the precisiend pt whose imprecise value is x∗(t).
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containing the following perception-based information: the 
initial pressure of patient’s CSF, i.e. x(0) , is approximately 
115, xd = x(0) , k = 1

0.6
, r = 700, If (t) = 0.1 . As such, x̃∗(t) 

that satisfies FDE (1) may be regarded as a model of x(t) 
satisfying IDE (8).

More concretely, based on information given by an expert 
and the rules governing the operations, an FDE with its 
structure serves as a machine for the modification of infor-
mation in order to precisiate the meaning of m-precisiation 
of a dynamical system S.

Thus, an FDE may be viewed as an active machine-ori-
ented meaning precisiation11, active mm-precisiation, whose 
solution, as a whole, is active mm-precisiand of S; and preci-
siates a perception-oriented description of S. In other words, 
a fuzzy differential equation contains information about pre-
cisiands which may be used as the result of the precisiation 
of precisiends describing imprecisely the behavior of the 
dynamical system S for which the FDE plays the role of a 
mathematical precisiated model.

What should be underscored is that two modes of preci-
siation may be associated with an FDE. First, when an FDE, 
e.g. ̇̃x(t) = f (t, x̃(t)) , for all t ∈ (a, b) ⊆ ℝ is regarded as a 
machine-oriented representation of S, then the precisiation 

may be viewed in the mode of a fuzzy graph. As such, S 
may be precisiated, in the form of nested generalized con-
straints, as

where R(t) ≜ ∫ t × x(t) , R∗(t) ≜ ∫ t × x̃∗(t) , x(t) comes from 
the solution of an IDE associated with S and x̃∗(t) is the solu-
tion of the FDE associated with the IDE.

Second, the precisiation in the mode of a possibility dis-
tribution is associated with the FDE if x̃∗(t) or ̇̃x∗(t) at the 
specified instant t = t� is employed for the precisiation of a 
precisiend concerning S. Specifically, if pt′ is a proposition 
with x(t�) being the imprecise value of its focal variable; and 
describes the behavior of S at t = t� , then its precisiation, 
in the form of a generalized constraint, results in p∗

t�
∶ X 

is x̃∗(t�) . The precisiands p∗
0
 to p∗

7
 may be viewed as cases 

of the precisiation of p0 to p7 in the mode of a possibility 
distribution which have been determined based on FDE (1).

Another point that should be stressed is the dual role 
played by an IDE concerning the system S and an FDE. 
When an IDE is employed as a machine-oriented precisia-
tion of a system, its solution characterizes precisiands of S 
denoted by pt ∶ X isx x(t) , at each t ∈ (a, b) ⊆ ℝ . Thus, the 
GC form of S may be written symbolically as a collection of 
propositions pt by ∫ pt (or by 

∑
pt for countable samples), 

(9)GC(GC(S) ∶ X isx R(t)) ∶ X isfg R∗(t)

Fig. 4  The precisiation of an imprecise differential equation and nested generalized constraint of a dynamical system S 

11 More details about the concept of machine-oriented meaning pre-
cisiation may be found in [3, 4].
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i.e. GC(S) ∶ ∫ pt . For example, in the case of CSF pressure 
system, the m-precisiation of the system may be stated as 
GC(S) ∶

∑
pt = p0 + p1 + p2 + p3 + p7 with the understand-

ing that “ + ” denotes the disjunction operator rather than the 
arithmetic sum.

Since propositions pt are imprecise in nature, an FDE 
may be employed as a machine-oriented meaning precisia-
tion of pt resulting in precisiands p∗

t
∶ X is x̃∗(t) where x̃∗(t) 

is the solution of the FDE. More concretely, the precisiands 
characterized by an IDE are regarded as precisiends by an 
FDE. Therefore, precisiation of a system in the form of 
nested generalized constraints shown in (9) may be equiva-
lently written as

For more illustration see Fig. 4.
It should be noted that by considering the precisiation 

in the mode of a possibility distribution, a relation between 
the present interpretation with the preceding one is made. 
The interpretation presented here might be also employed in 
combination with other interpretations. Such combinations 
will be demonstrated in the sequel.

3.2  The interpretation associated with a modal 
solution of an IDE

An imprecise differential equation conveys information in 
the form of precisiends which serve as a means of a precisia-
tion of a system S. The solution of the IDE places these pre-
cisiends in evidence. However, there is no direct approach, 
at this juncture, for obtaining the solution of an IDE. In spite 
of this fact, it may be possible to determine approximately 
the IDE solution on the basis of a mode of the precisiation 
of the IDE. Such an approximate solution is called the modal 

(10)GC

(

GC(S) ∶
∫

pt

)

∶
∫

p∗
t

solution that is denoted by x∗
r
(t) in which r indicates the 

mode of mm-precisiation.
One the modal solutions may be obtained through an 

FDE. Specifically, an FDE, e.g. ̇̃x(t) = f (t, x̃(t)) , is the result 
of the precisiation of an IDE, e.g. ẋ(t) = f (t, x(t)) , in the 
mode of a possibility distribution. Let x̃∗(t) be the solution 
of the FDE associated with the result of the precisiation of 
the IDE whose solution is denoted by x∗(t) . The aim is to 
characterize the imprecise precisiend x∗

r
(t) as an approxima-

tion of x∗(t) by the use of x̃∗(t) . It should be noted that, x∗(t) 
includes imprecise information about the focal variable X of 
the system, and has been precisiated in the mode of a pos-
sibility distribution. Thus, some information about X granu-
lated by fuzzy sets is to be provided by the knowledge of an 
expert or a data set. Such information granulation (IG)12 may 
be presented in the form of a perception-based data set or 
the plane of precisiends of X. Suppose that the pair (xi,�xi ) , 
i = 1, ...,m , indicates the ith precisiend associated with IG 
of X, denoted by xi , with �xi being the possibility distribu-
tion function of the precisiand of xi , and m is the number of 
fuzzy granules. Then, a modal solution of the IDE may be 
determined as

where r = possibility distribution, Dr is a metric serving as 
a similarity measure of precisiands13, and � ≥ 0 is a small 
real number, see Fig. 5. In the figure, assignment module 
refers to (11).

Therefore, the precisiands included in an FDE may be 
utilized for the characterization of precisiends resulting in 
a modal solution of an IDE which precisiates the system 

(11)x∗
r
(t) = xi ↔ Dr(𝜋x̃∗(t),𝜋xi ) ≤ 𝜖

Fig. 5  The modal solution of an IDE obtained by the aid of FDE.

12 More details about information granulation may be found in [6].
13 There are some metrics that may be employed in (11) among 
which is the granular metric [7].
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S. Further to aforementioned explanations, there are a few 
comments in need.

First, another modal solution of an IDE may be also 
determined, in a similar fashion explained above, based on 
another mode of precisiation of the IDE in a combination 
with IG. Specifically, in the mode of a probability distri-
bution, a modal solution of the IDE may be characterized 
by an RDE solution in a combination with IG. Thus, a 
modal solution of an IDE, in a general setting, may be 
determined by

where r indicates the mode of mm-precisiation, x∗
UDE

(t) is 
the solution of the UDE resulted from the mm-precisiation 
of IDE in the mode of r; x∗

i
 and xi are the ith precisiand and 

precisiend of IGr that is the IG associated with the knowl-
edge of an expert or a data set in the mode of r, see Fig. 6 

(12)x∗
r
(t) = xi ↔ Dr(x

∗
UDE

(t), x∗
i
) ≤ �

as an illustration. In the figure, assignment module refers 
to (12).

Second, depending on the mode of precisiation of the 
IDE, different modal solutions may be obtained. The dif-
ference in question comes from the differences between 
the type of modes, the employed IG and the metric, D , that 
is used for the similarity measure of precisiands.

Third, a modal solution is a reflection of the solution of an 
IDE hitting a mode of precisiation, see Fig.  7. In this perspec-
tive, the solution of an IDE is defined as follows:

Definition 1 If x∗(t) is the solution of an IDE, then it is 
the modal solution of the IDE independent of the mode of 
precisiation.

In other words, if the reflection of the solution of an IDE 
hitting any mode of precisiation is the same, then the modal 
solution is the IDE solution, see Fig. 8 for the illustration. 
The IDE solution as the m-precisiation of S might differ from 
human-oriented precisiation (h-precisiation) of S. In what fol-
lows, we shall discuss briefly about this matter which leads 
to the other interpretation of information conveyed by FDEs.

3.3  The interpretation associated 
with the compatibility of precisiations

The other interpretation of information resident in an FDE, 
that is presented here, bears a close relation to the concepts of 
compatibility of precisiations. As was stated already, a system 
S may be precisiated imprecisely as

or equivalently as

Such a precisiation has been called machine-oriented pre-
cisiation if R(t) , or pt , is characterized by an IDE. The 
precisiation may be called human-oriented precisiation 
(h-precisiation) if S is precisiated imprecisely based on the 
knowledge of an expert. The GC form of S associated with 
h-precisiation is written as

(13)GC(S) ∶ X isx R(t)

(14)GC(S) ∶
∑

pt

Fig. 6  The modal solution of an IDE obtained by the aid of UDE

Fig. 7  The relation between a modal solution of an IDE and the solu-
tion of the IDE

Fig. 8  The solution of an IDE
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or equivalently as

where R̂(t) ≜
∑

t × x̂(t) , p̂t ∶ X isx x̂(t) , and x̂(t) is the pre-
cisiend coming from the perception of the expert about the 
system; and might be postulated as if it is the perception-
based solution of the IDE whose solution has been assumed 
to be x(t) . It should be noted that due to the bounded abil-
ity of the human mind and sensory organs to resolve detail 
and store information14, in h-precisiation a finite number 
of propositions is employed. Thus, in (15) and (16) 

∑
 has 

replaced ∫  . The meaning precisiation of the result of the 
h-precisiation of system S is called perception-based mean-
ing precisiation (pm-precisiation) or expert-oriented mean-
ing precisiation (em-precisiation). Although em-precisiation 
and pm-precisiation are almost interchangeable, there is a 
slight difference between them. The pm-precisiation stems 
purely from the expert perception, however, em-precisi-
ation comes from either expert cognition or analysis of a 
data set. Both meaning precisiations result in precisiands 
p̂∗
t
∶ X isr x̂∗(t) . Correspondingly, in symbols we may write

A point that is worthy of note is that the mode of pm-preci-
siation in (17) is known and determined by the expert. How-
ever, the mode of precisiation in h-precisiation, analogous 
to m-precisiation, is imprecise.

Therefore, the system S may be precisiated by either 
m-precisiation or h-precisiation. These precisiations coin-
cide each other or are said to be equal if the expert cogni-
tion, including em-precisiation, about S does not change by 
replacing precisiends associated with h-precisiation, i.e. p̂t , 
with those that are associated with m-precisiation, i.e. pt . If 
h-precisiation coincides m-precisiation, that may be written 
symbolically as 

∑
p̂t =

∑
pt , then their meaning precisia-

tion in the same mode also do, i.e. 
∑

p̂∗
t
=
∑

p∗
t
15. However, 

in most cases machine-oriented precisiation ceases to coin-
cide with human-oriented precisiation. As an example, let us 
assume that an expert is asked to answer a set of queries16, 
qi , pertaining to the CSF pressure system. The first query is: 

(15)GC(S) ∶ X isx R̂(t)

(16)GC(S) ∶
∑

p̂t

(17)GC
(
GC(S) ∶

∑
p̂t

)
∶
∑

p̂∗
t

q1  : “How much is the the initial pressure of the patient’s 
CSF?”

 with the answer being 

p̂0  : “The initial pressure of the patient’s CSF is approxi-
mately 115”

 The precisiand of p̂0 can be also determined if the expert 
is asked to precisiate the proposition, p̂0 , by the model that 
they may have got in their mind. Suppose that p̂0 is precisi-
ated as 

p̂∗
0
  : “The initial pressure of the patient’s CSF is 

x̂∗(0) = (110, 115, 120)”

 Since in FDE (1), x̃∗(0) = x̂∗(0) , thus the precisiation of p̂0 
on the basis of the FDE results in a precisiand, p∗

0
 , that is 

readily the same as p̂∗
0
 . In other words, at t = 0 , the precisia-

tion of p̂0 based on the FDE coincides that is based on the 
perception of the expert. On the basis of given initial infor-
mation and the rules governing the operations, the informa-
tion is processed in FDE (1) and exposed in the solution for 
t ≥ 0 . Now, the expert is asked to answer the second query 

q2  : “How much will be the pressure of the patient’s CSF 
7 minutes later than the initial time based on your 
perception?”

 The answer is assumed to be the following proposition 

p̂7  : “The patient’s CSF pressure will be high 7 minutes 
later”

 whose pm-precisiation according to the knowledge of the 
expert may result in 

p̂∗
7
  : “The patient’s CSF pressure will be x̂∗

7
= Ĝ7 , 7 min-

utes later”,

 where G̃7 is a possibility distribution characterized by a 
Gaussian possibility distribution function. Nevertheless, 
based on Fig. 1, FDE (1) suggests the precisiand 

p∗
7
  :  “The  pa t ien t’s  CSF pressure  wi l l  be 

x̃∗(7) = (198.4, 203.6, 208.8) , 7 minutes later”

 which differs from the model of precisiend expressed by the 
expert in p̂∗

7
 . The difference may be also explicitly in terms 

of precisiends. For example, the expert may answer to the 
second query by 

16 An expert would be also asked to describe the behavior of the sys-
tem instead of answering the queries.

14 Such a statement has been also expressed as one of the reasons 
that why perceptions are intrinsically imprecise [3–5].
15 Two precisiands p̂∗

t
 and p∗

t
 are said to be equal, denoted by 

p̂∗
t
= p∗

t
 , if their corresponding constrained variables and constraining 

relations are equal. The equality 
∑

p̂∗
t
=
∑

p∗
t
 is defined as p̂∗

t
= p∗

t
 

for any t.



451Evolutionary Intelligence (2024) 17:441–456 

1 3

p̂7  : “The patient’s CSF pressure will be very high 7 min-
utes later”

 However, m-precisiation, on the basis of IDE solution, may 
state that 

p7  : “The patient’s CSF pressure will be medium 7 minutes 
later”.

 In other words, the information extracted from an FDE, or 
IDE, may not be completely in accord with that extracted 
from the knowledge of an expert for the precisiation of a 
precisiend, or a system. Such a phenomenon, that happens 
in most cases, may be called precisiations incompatibility. 
In other words, precisiations incompatibility, in a sense, is 
referred to as a gap between machine-oriented precisiation 
and human-oriented precisiation. The source of such a gap 
may come from the incompatibility of the structure of, and 
rules governing the operations involving in the precisiations; 
and the imprecision that is intrinsic in the perception-based 
meaning precisiation. Precisiations incompatibility suggests 
to determine the compatibility degree of the precisiations in 
question which underlies the following principle.

3.3.1  Compatibility of precisiations principle (CoP 
principle)

The compatibility degree of precisiations with each other 
is equivalent to that of their corresponding meaning 
precisiation.

Therefore, underlined CoP principle, the compatibility 
degree of a machine-oriented precisiation with a human-
oriented precisiation is equivalent to that of mm-precisiation 
with pm-precisiation. The CoP principle may derive from 
the fact that the causes and effects might reflect some infor-
mation, implicitly or explicitly, about the causation. Simple 
instances of this fact may be found in dynamical systems 
theory, mathematics, sociology, psychology and the other 

fields. As a simple illustration, let us consider the dynami-
cal system S1 whose structure and constituents are unknown, 
however, a set of input-output data of the system carrying 
some information about S1 are known17. Now, assume there 
is also another dynamical system S2 , and the aim is to com-
pare it with S1 . Such a comparison is made, mainly, based on 
a set of specified inputs given to both systems and compar-
ing the obtained outputs, see Fig. 9.

Analogously, the structure, constituents, operators and 
the rules governing the operators in h-precisiation and 
m-precisiation are unknown or partially known, however, a 
compatibility degree between these precisiations might be 
obtained by the aid of pm-precisiation and mm-precisiation, 
see Fig.  10 as an illustration. The figure signifies the fact 
that the more compatible the precisiands, the more compat-
ible the precisiations. What follows is intended to introduce 
the definition of the concept of compatibility of m-precisia-
tion with h-precisiation.

3.3.2  Precisiations compatibility degree

Suppose that 
∑

p̂t , is a set of propositions pertaining to 
h-precisiation of a dynamical system, S, with precisiands 
p̂∗
t
 resulting from perception-based meaning precisiation of 

p̂t . The pm-precisiation is supposed to be in the mode of 
a possibility distribution with 𝜋x̂∗t  denoting the distribution 
function induced by p̂t.

Moreover, let 
∑

pt be the m-precisiation of S with 
machine-oriented meaning precisiation associating the pre-
cisiand p∗

t
 with x̃∗(t) that satisfies a fuzzy differential equa-

tion which represents a mathematical precisiated model of 
S. Then, the compatibility degree of m-precisiation with 
h-precisiation denoted by c is defined as

where c ∈ [0, 1] , 
⋀

≜ min18, 𝜋x̃∗(t) is the possibility distribu-
tion function of x̃∗(t) , and ∫

u∈Dm
 is the conventional integral 

over Dm denoting the support of x̃∗(t).
It should be noted that according to Definition 1, if the 

solution of an IDE is determined then it is equal to any 
modal solution. Thus, the compatibility degree of propo-
sitions associated with the modal solution, characterized 
through an FDE, with h-precisiends implies the compat-
ibility degree of propositions related to the solution of IDE 
with h-precisiends. Therefore, the compatibility degree of 

(18)c ≜
�

t

�
∫
u∈Dm

𝜋x̃∗(t)(u)
⋀

𝜋x̂∗t
(u)du

∫
u∈Dm

𝜋x̃∗(t)(u)du

�

Fig. 9  The comparison of dynamical systems S
1

 and S
2

 based on a set 
of input-output data

17 The set of input-output data plays a major role in systems identifi-
cation theory.
18 In a general setting 

⋀
 may be a t-norm.
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pt ∶ X isx x(t) with p̂t ∶ X isx x̂(t) where x(t) and x̂(t) are 
respectively the IDE modal solution and h-precisiend is 
defined as

in which x̃∗(t) is the solution of the FDE by which - accord-
ing to relation (11) - a modal solution of the IDE is obtained. 
As such, the compatibility degree of 

∑
pt , i.e. m-precisiation, 

with 
∑

p̂t , i.e. h-precisiation, may be rewritten abstractly as

A point that is worthy of note is that if, at the instant t = t� , 
ct� = 1 , then pt′ semantically entails p̂t′ . Therefore, x̂(t�) is a 
modal solution of the IDE at t = t� . Moreover, ct� = 𝜋x̂∗

t�
(u) 

providing that the support of x̃∗(t) at t = t� is only the point 
u, i.e. x̃∗(t�) is a fuzzy singleton. As a result, for any t at 
which the solution of FDE is a fuzzy singleton such that it 
coincides the core of x̂∗

t
 , it can be concluded that x̂(t) is a 

modal solution of IDE.

(19)ct =
∫
u∈Dm

𝜋x̃∗(t)(u)
⋀

𝜋x̂∗t
(u)du

∫
u∈Dm

𝜋x̃∗(t)(u)du

(20)c ≜
⋀

t

ct

Let us assume that the compatibility degree of precisia-
tions is c = 0.4 . Then it may be stated that:

• The compatibility of machine-oriented precisiation with 
the human-oriented precisiation is 40%,

• The machine-oriented meaning precisiation is 40% 
compatible with the perception-based meaning preci-
siation,

• The compatibility of information conveyed by the FDE 
concerning S with the expert’s opinion about S is 40%.

As a way of illustration, let us consider the CSF pressure 
system for which some of the precisiends of h-precisiation 
are assumed to be as follows 

p̂1  : “The pressure of patient’s CSF will be low at t=1”,
p̂2  : “Patient’s CSF pressure will be medium, 2 minutes 

later”,
p̂3  : “The pressure will be high, 3 minutes later”,
p̂7  : “Patient’s CSF pressure will be high, 7 minutes later”

 whose pm-precisiation may be respectively as 

Fig. 10  Compatibility of precisiations principle
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p̂∗
1
  :  “The pressure of patient’s CSF will  be 

x̂∗(1) = (110, 110, 140, 160) at t=1”,
p̂∗
2
  : “Patient’s CSF pressure will be x̂∗(2) = (140, 160, 190) , 

2 minutes later”,
p̂∗
3
  : “The pressure will be x̂∗(3) = (160, 190, 230, 230) , 3 

minutes later”,
p̂∗
7
  :  “ P a t i e n t ’s  C S F  p r e s s u r e  w i l l  b e 

x̂∗(7) = (160, 190, 230, 230) , 7 minutes later”.

 According to the solution of FDE (1), the mm-precisiation 
of the system in question, in the mode of a possibility dis-
tribution, is 

p∗
1
  :  “The pressure of patient’s CSF will  be 

x̃∗(1) = (140.8, 147, 153) at t=1”,
p∗
2
  :  “ P a t i e n t ’s  C S F  p r e s s u r e  w i l l  b e 

x̃∗(2) = (164.5, 171, 177) , 2 minutes later”,
p∗
3
  : “The pressure will be x̃∗(3) = (180, 186, 192) , 3 min-

utes later”,
p∗
7
  :  “ P a t i e n t ’s  C S F  p r e s s u r e  w i l l  b e 

x̃∗(7) = (198.4, 203.6, 208.8) , 7 minutes later”.

 In virtue of (19) we have c1 = 0.87, c2 = 0.86, c3 = 0.98 , 
and c7 = 1 . Thus, it may be stated that m-precisiation is up 
to 86% compatible with the expert cognition of the system.

As a result, information conveyed by an FDE serves as a 
means of filling in the gap between machine-oriented preci-
siation and human-oriented precisiation of dynamical sys-
tems behavior.

3.4  The interpretation associated with sureness 
level of m‑precisiation

The preceding interpretation dealt with a combination of 
m-precisiation and h-precisiation under this assumption 
that they cease to coincide each other. The assessment of 
the compatibility of m-precisiation with h-precisiation was 
one of the results of such a particular combination. In the 
following discussion, a combination of meaning precisia-
tions for the assessment of the sureness of m-precisiation 
is investigated.

As was stated already, a system S may be precisiated 
in the mode of imprecision by an IDE, i.e. m-precisiation. 
There are a variety of modes by which the IDE in its own 
right may be also precisiated, mm-precisiation. Specifically, 
an FDE is the result of mm-precisiation of the IDE in the 
mode of a possibility distribution. However, the IDE may 
be also precisiated in the mode of a probability distribution 
which results in a random differential equation represent-
ing a mathematical precisiated model of S. Therefore, the 
precisiation of S in a form of nested generalized constraint 
may also be written as

where p̄∗
t
∶ X isp x̄∗(t) with x̄∗(t) being the solution of the 

RDE.
A question that arises here is: Which mode of mm-preci-

siation should be employed for the precisiation of an IDE? 
The answer to this question depends on the knowledge of an 
expert about the system and the type of information that is 
desired to be exploited. Specifically, mm-precisiation in the 
mode of a possibility distribution makes a convenient way 
for exploiting some information about the feasible behavior 
of the system, determining a modal solution of an IDE, and 
the compatibility degree of m-precisiation with h-precisi-
ation. If some information about the probable behavior of 
the system is going to be exploited, then mm-precisiation 
should be in the mode of a probability distribution. Never-
theless, one of important information, that in most cases is 
desirable, concerns with the level of reliability or sureness 
of either a precisiation of S or propositions associated with 
the precisiation of S. In the sequel, the sureness level of 
machine-oriented precisiation is assessed19. As we shall see, 
some information about the level of sureness is exploited by 
a fusion of information resident in the results of mm-preci-
siation of m-precisiation in two different modes. As a way 
of illustration, let us assume that some precisiends drawn 
from an m-precisiation of patient’s CSF pressure system at 
t = 1, 2, 3, 7 are as: 

p1  : “The pressure of patient’s CSF will be low at t=1”,
p2  : “Patient’s CSF pressure will be medium, 2 minutes 

later”,
p3  : “The pressure will be high, 3 minutes later”,
p7  : “Patient’s CSF pressure will be high, 7 minutes later”

 whose meaning precisiation in the mode of a possibility dis-
tribution, according to the solution of the FDE, is as follows: 

p∗
1
  :  “The pressure of patient’s CSF will  be 

x̃∗(1) = (140.8, 147, 153) at t=1”,
p∗
2
  :  “ P a t i e n t ’s  C S F  p r e s s u r e  w i l l  b e 

x̃∗(2) = (164.5, 171, 177) , 2 minutes later”,
p∗
3
  : “The pressure will be x̃∗(3) = (180, 186, 192) , 3 min-

utes later”,
p∗
7
  :  “ P a t i e n t ’s  C S F  p r e s s u r e  w i l l  b e 

x̃∗(7) = (198.4, 203.6, 208.8) , 7 minutes later”.

(21)GC

(

GC(S) ∶
∫

pt

)

∶
∫

p̄∗
t

19 In a somewhat similar fashion, the reliability level of humane-
oriented precisiation might be also assessed which is ignored in this 
paper.
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 In addition, the meaning precisiation in the mode of a prob-
ability distribution, according to the solution of an RDE, is 
supposed to be as: 

p̄∗
1
  : “The pressure of patient’s CSF will be G1 = (145, 4) 

at t=1”,
p̄∗
2
  : “Patient’s CSF pressure will be G2 = (170, 3) , 2 min-

utes later”,
p̄∗
3
  : ”The pressure will be G3 = (185, 2.5) , 3 minutes 

later”,
p̄∗
7
  : ”Patient’s CSF pressure will be G7 = (202, 2) , 7 min-

utes later”.

 where Gt� = (m, �2) is a normal probability density function 
whose respected mean value and variance have been denoted 
by m and �2 . The probability density function Gt′ comes from 
the solution of the RDE at t = t� . Now, the question is: How 
much the m-precisiation of patient’s CSF pressure system is 
reliable? What follows presents a definition of the sureness 
(or reliability) level of m-precisiation20.

Definition 2 Suppose that ∫ pt , is a set of propositions per-
taining to machine-oriented precisiation of a dynamical 
system, S. Let ∫ p∗

t
 and ∫ p̄∗

t
 be the results of two machine-

oriented meaning precisiations of ∫ pt in the modes of pos-
sibility and probability distributions, respectively. In addi-
tion, suppose that p∗

t
 and p̄∗

t
 are associated with x̃∗(t) and 

x̄∗(t) which satisfy respectively a fuzzy differential equation 
and a random differential equation representing mathemati-
cal precisiated models of S. Then, the sureness level of the 
m-precisiation of S is defined as

(22)sm ≜
⋀

t
�u∈Dm

Px̄∗(t)(u)𝜋x̃∗(t)(u)du

where Px̄∗(t) is the probability density function of x̄∗ at the 
instant t, 𝜋x̃∗(t) is the possibility distribution function of x̃∗(t) 
at the instant t, and Dm is the support of x̃∗(t).

Relation (22) can be also written as sm ≜
⋀

t

st in which 

st , equating the integral term, signifies the sureness level of 
the proposition pt in ∫ pt . As a way of illustration let us 
consider precisiends p1, p2, p3 and p7 drawn from the m-pre-
cisiation of patient’s CSF pressure system with their corre-
sponding mm-precisiation already given in the modes of 
possibility and probability distributions. Thus, the sureness 
l e ve l  o f  p r e c i s i e n d s  a r e  d e t e r m i n e d  a s 
s1 = 0.63, s2 = 0.75, s3 = 0.75 and s7 = 0.66 . On the basis 
of the captured information it can be concluded that the sure-
ness level of m-precisiation is not more than 63%.

A point that is worthy of note is that a Z-differential equa-
tion (ZDE) [2, 8] bears a close relation to the concept of 
sureness defined in Definition 2. Specifically, according to 
the notion of the conceptual unity presented in [2], a ZDE 
may be viewed as a bimodal meaning precisiation of an IDE 
in the modes of probability and possibility distributions. In 
other words, a ZDE is an mm-precisiation of m-precisiation 
with a combination of probability and possibility distribu-
tion modes, symbolically

As an illustration, Fig. 11 shows the sureness levels st for 
t ∈ [0, 25] . This result has been adopted from the solution of 
ZDE, as a mathematical precisiated model of CSF pressure 
system, presented in [2]. As the result shows, the sureness 
level of m-precisiation of CSF pressure system is sm = 64%.

The concept of sureness has some facets. What may 
be called machine-based sureness (m-sureness) is the 
concept which has been already explained. More con-
cretely, m-sureness is referred to as the sureness level 
of an m-precisiation that is obtained from a combina-
tion of mm-precisiations. The m-sureness, denoted by 
sm , is obtained according to relation (22). The sureness 

(23)GC(IDE)||r={blank & p}
= ZDE

Fig. 11  The machine-based sureness levels
Fig. 12  Various new facets of sureness

20 This definition of sureness is also called machine-based sureness 
(m-sureness)
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measure of m-precisiation may be called human-machine-
based sureness (hm-sureness) if it is determined in terms 
of pm-precisiation and mm-precisiation. There are also 
two more facets of sureness that are related to the sure-
ness of h-precisiation, which may be called human-based 
and machine-human-based sureness, h-sureness and mh-
sureness for short. The former is defined based on a com-
bination of pm-precisiations, and the latter is defined on 
the basis of mm-precisiation, in the mode of a probabil-
ity distribution, and pm-precisiation, in the mode of a 
possibility distribution. Fig. 12 illustrates some facets of 
sureness. In the sequel, a brief exposition of hm-sureness 
is presented.

The hm-sureness level of m-precisiation of a system is 
defined based a combination of meaning precisiation of 
h-precisiation and m-precisiation in the modes of prob-
ability and possibility distributions respectively. Suppose 
that GC(S) ∶

∑
p̂t is the h-precisiation of system S with 

GC(GC(S) ∶
∑

p̂t) ∶
∑

p̂∗
t
 being the em-precisiation of 

h-precisiation in the mode of a probability distribution, 
i.e. p̂∗

t
∶ X isp x̂∗(t) . Then, the hm-sureness level of the 

m-precisiation of S is defined as

where Px̂∗(t) is the probability density function of x̂∗ at the 
instant t, 𝜋x̃∗(t) is the possibility distribution function of 
x̃∗(t) at the instant t and associated with mm-precisiation of 
m-precisiation, and Dm is the support of x̃∗(t) .

As a result of this section, it may be stated that a fusion 
of information resident in an FDE with that conveyed by 
expert-oriented meaning precisiation leads to assessing 
the reliability or sureness level of m-precisiation.

,

4  Conclusions

Presenting various interpretations of a subject often makes 
the imperatives of the subject more clear. This is also the 
case for FDEs. In fact, conceptual interpretations outlined 
in this paper may serve as a means of a manifestation of 
the importance of FDEs in the description of the behav-
ior of dynamical systems. It has been shown that there 
is a relationship between FDEs and our perceptions of 
the behavior of a phenomenon. However, among various 
interpretations presented for information conveyed by an 
FDE, the most important may be stated by the equation

Fuzzy differential equations=machine-oriented mean-
ing precisiation

It should be well realized that such interpretations can 
also be applied for fuzzy integro-differential equations, 

(24)shm ≜
⋀

t
�u∈Dm

Px̂∗(t)(u)𝜋x̃∗(t)(u)du fuzzy fractional differential equations, intuitionistic fuzzy 
differential equations, and suchlike. To sum up, the intro-
duced conceptual interpretations suggest that we have 
a comprehensively new outlook to the results that have 
been already obtained and enlarge the territory of FDEs 
applications.

Appendix A Abbreviations

Table 1 shows the descriptions of abbreviations used in 
this article.
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