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Abstract
The Flower Pollination Algorithm (FPA) is a highly efficient optimization algorithm that is inspired by the evolution pro-
cess of flowering plants. In the present study, a modified version of FPA is proposed accounting for an additional feature of 
flower pollination in nature that is the so-called pollinator attraction. Pollinator attraction represents the natural tendency of 
flower species to evolve in order to attract pollinators by using their colour, shape and scent as well as nutritious rewards. To 
reflect this evolution mechanism, the proposed FPA variant with Pollinator Attraction (FPAPA) provides fitter flowers of the 
population with higher probabilities of achieving pollen transfer via biotic pollination than other flowers. FPAPA is tested 
against a set of 28 benchmark mathematical functions, defined in IEEE-CEC’13 for real-parameter single-objective optimiza-
tion problems, as well as structural optimization problems. Numerical experiments show that the modified FPA represents 
a statistically significant improvement upon the original FPA and that it can outperform other state-of-the-art optimization 
algorithms offering better and more robust optimal solutions. Additional research is suggested to combine FPAPA with 
other modified and hybridized versions of FPA to further increase its performance in challenging optimization problems.
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1  Introduction

In plenty of challenging optimization problems in indus-
try and engineering, tracking of global optimum solutions 
remains a highly complex task. Conventional optimiza-
tion methods are often not performing satisfactorily in 
this category of problems, and thereby the application of 
metaheuristic algorithms inspired by nature is required [1]. 
In the literature, a significant number of efficient metaheuris-
tic optimisation algorithms have been proposed, including 
the Genetic Algorithm (GA) [2], Firefly Algorithm [3], Par-
ticle Swarm Optimization (PSO) [4], Cuckoo Search (CS) 
[5], and several others.

Recently, the Flower Pollination Algorithm (FPA) was 
developed by Xin-She Yang [6], which is a population-
based metaheuristic optimization algorithm inspired by the 

evolution process of flowering plants. FPA is characterised 
by formulation simplicity and flexibility as well as high com-
putational performance [7]. Furthermore, many studies show 
that it can outperform other metaheuristic optimization algo-
rithms (e.g. [6, 8–10]). As a result, FPA has been adopted 
by many optimization studies and it has been applied suc-
cessfully to many optimization problems in diverse scientific 
areas including electrical and power systems (e.g. [11–13]), 
structural design (e.g. [8–10, 14, 15]), computer gaming 
(e.g. [16]), meteorology (e.g. [17]), image science (e.g. [18]) 
and others [7, 19].

Following its original development, several studies pro-
posed modified and hybridized versions of FPA to improve 
its performance for different optimization problems [7, 19]. 
For example, Abdel-Raouf et al. [20] developed an improved 
FPA variant by using chaotic maps instead of random num-
bers and they found significant increase in the computational 
performance. Zhou et al. [21] developed an elite opposition-
based FPA version that was tested with 18 benchmark func-
tions yielding excellent results. Putra et al. [22], developed a 
modified version of FPA with dynamic switching probabil-
ity and the use of real-coded GA as mutation for local and 
global search to solve economic load dispatch optimization 
problems in power generation systems. Draa [23] developed 
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a new FPA variant based on the so-called generalized oppo-
sition-based learning (GOBL). Wang et al. [24] merged the 
standard FPA with the concept of the bee-pollinator to solve 
the data clustering problem. Al-Betar et al. [25] used the 
island model population technique to restrain premature con-
vergence of FPA. Abdel-Basset et al. [26] developed a modi-
fied FPA version based on the crossover for solving the mul-
tidimensional knapsack problems. Zhou et al. [27] developed 
the discrete greedy flower pollination algorithm that is using 
order-based crossover, pollen discarding behaviour and par-
tial behaviours for solving the spherical traveling salesman 
problem. Fouad and Gao [28] developed a novel FPA variant 
for global optimization by generating a set of global orienta-
tions for all members of the population and constructing a 
set of best solution vectors relating to all generated global 
orientations. Khurseed et al. [29] used a modified FPA with 
double exponential based dynamic switch probability and a 
dynamic step size function for model parameter estimation 
of Photovoltaic cells and modules. Xiao et al. [30] developed 
a modified FPA to solve the problem of robust visual tar-
get tracking system. The proposed variant, namely GTFPA, 
is based on the gravitational search algorithm and features 
an improved local search by a mutation operation based on 
trigonometric functions. Ozsoydan and Baykasoglu [31] 
introduced a new FPA variant by embedding to the original 
FPA a chaotic switch with irregular motion and an inten-
sifying step size function for a more detailed search. Fur-
thermore, Ozsoydan and Baykasoglu [32] developed a new 
multi-population FPA variant for multimodal optimization 
problems and a modified natural selection based on sym-
metry. In addition to the above, Rodrigues et al. [33] devel-
oped a binary version of FPA to address combinatorial and 
discrete optimization problems. Multi-objective versions of 
FPA have also been developed (e.g. [34–36]) to solve opti-
mization problems with more than one design objectives. 
In addition, hybridized FPA versions have been proposed in 
literature to achieve better balance between local and global 
search. In these versions, hybridization of FPA is achieved 
using local search algorithms (e.g. [37, 38]), population-
based algorithms (e.g. [39–42]) or other components.

An explanation of the efficiency of FPA is based on the 
fact that it is imitating the reproduction process of flowering 
plants. The latter has been so successful that flower species 
dominate the landscape of earth [43]. As with other biologi-
cal systems, the ultimate objective of flowers is reproduction 
via pollination. Flower pollination, which is typically related 
to the transfer of pollen, can be either biotic or abiotic [6, 
44]. In the former pollination type, pollen is transferred via 
animals and insects (e.g. bees, butterflies, birds and bats) 
that are called pollinators. Pollinators are able to fly long 
distances. Hence, biotic pollination can be considered as 
a global pollination mechanism [6]. In addition, the flight 
behaviour of pollinators has characteristics of Lévy flights 

[1, 45]. In the abiotic pollination type, pollen is transferred 
by water diffusion and/or the wind. A characteristic example 
of abiotic pollination is the grass [6, 44]. Typically, abiotic 
pollination takes place at short distances. Therefore, it can 
be considered as a local pollination mechanism [6]. Another 
significant feature of flower pollination is the so-called 
flower constancy. According to this feature, some pollinators 
prefer to select specific flower species and bypass others [6]. 
In this manner, flowers increase pollen transfer to the same 
species. Furthermore, pollinators ensure guaranteed nectar 
intake and avoid the risk of exploring other flower species.

All previous characteristics of flower pollination have 
been considered in the formulation of the original FPA [6]. 
However, an additional important characteristic of the flower 
pollination process in nature is the fact that flower species 
evolve to attract pollinators and ensure pollen transfer via 
biotic pollination [46, 47]. To serve this goal, flowers entice 
pollinators by employing a variety of attractions. For exam-
ple, they offer pollinators nutritious rewards such as pol-
len and nectar. Pollinators eat pollen to produce their eggs. 
Furthermore, nectar offers significant amounts of energy to 
pollinators. Honeybees, in particular, use nectar to produce 
honey. In addition to nutritious rewards, flowers have devel-
oped other methods to attract pollinators. Many flowers have 
developed shapes (e.g. bowl-shaped flowers) that facilitate 
unique access of certain types of pollinators [47]. Further-
more, some flowers have developed bright colours to attract 
pollinators with colour vision such as bees and birds [46, 
47]. In addition, flowers attract pollinators by scent. It is 
interesting to note that flowers relying on night pollinators 
(e.g. bats) focus mainly on scent to entice pollinators and 
most of them are colourless [46, 47]. It is such the need of 
some plants to attract pollinators that they produce flow-
ers resembling female pollinators in colour, shape and scent 
such as the case with orchids and bees [47]. It is clear from 
the above that flower species do evolve to attract pollinators; 
the more successful they are in this evolution process, the 
more likely it is that they will transfer their pollen via biotic 
pollination [47].

In our proposed approach, the well-observed and success-
ful in nature evolution mechanism of pollinator attraction 
will be introduced to the mathematical formulation of the 
existing FPA algorithm by increasing the probability of fitter 
flowers to conduct biotic pollination as they are more attrac-
tive to pollinators. The resulting variant, namely FPAPA 
(Flower Pollination Algorithm with Pollinator Attraction), 
is then compared with the original FPA and other efficient 
optimization algorithms to establish its computational per-
formance against benchmark mathematical functions and 
real-world optimization problems.

In the following, the original FPA is introduced in §2. 
In §3, the proposed modifications to the formulation of the 
original FPA are described to account for the pollinator 
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attraction evolution mechanism. In §4, the proposed FPAPA 
is compared with the original FPA and other well-estab-
lished optimization algorithms against mathematical and 
structural optimization problems to test its computational 
efficiency. In §5, the main conclusions of the present study 
are summarized.

2 � Original FPA

The types of flower pollination process, the behaviour of 
pollinators and flower constancy have been idealized in the 
following basic rules of the original version of FPA:

1.	 Biotic pollination is assumed as a global pollination pro-
cess with pollinators performing Lévy flights.

2.	 Abiotic pollination is assumed as a local pollination 
mechanism.

3.	 Flower constancy is considered by assuming the repro-
duction probability to be proportional of the similarity 
of flowers involved.

4.	 The mechanism of pollination mechanism (global or 
local) is controlled by a switching probability p in [0, 1].

In the following, for reasons of simplicity, it is assumed 
that each plant develops one flower, which produces only 
one pollen gamete [6]. Under this assumption, there exists 
no need to differentiate between plants, flowers and pollen 
gametes. In FPA, a flower i represents a candidate solution 
vector xi. The algorithm employs two separate search pro-
cedures or search mechanisms. The global and local pollina-
tion. Following the first and third rules of FPA, the global 
pollination procedure can be represented mathematically by 
the following equation:

where xt
i
 stands for flower i at iteration t, g* represents the 

best flower of the population again at iteration t, λ is a con-
stant, γ is a scaling factor to set the step size, and L(λ) > 0 
represents the size of the flight step reflecting pollination 
strength. More particularly, L(λ) is taken from a Lévy dis-
tribution as follows:

where Γ(λ) is the standard gamma function and s > 0. In the 
present study, based on a preliminary parametric analysis 
and recommendations in literature [6], it is assumed that 
λ = 3/2 and γ = 0.01 as these values yielded the best perfor-
mance of the algorithm.
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On the other hand, the local pollination rule (second rule) 
and flower constancy (third rule) are represented by the fol-
lowing equation, where xt

j
 and xt

k
 are different flowers of the 

same population and ε is drawn from a uniform distribution 
in [0, 1].

According to the fourth rule, the type of flower pollina-
tion (global or local) is controlled by a switch probability 
p in [0, 1]. In Sect. 4 of this research, a parametric study 
is conducted to establish the values of p that yield the best 
performance of FPA algorithm.

Summarizing the previous information, the pseudo code 
of FPA is presented in Fig. 1, where d is the number of 
problem dimensions and n the size of flowers population.

3 � FPA with pollinator attraction (FPAPA)

From the discussion above, it is concluded that the original 
version of FPA provides all flowers with the same switch 
probability p of transferring pollen by biotic or abiotic pol-
lination. However, as discussed in the introduction section, 
many flower species have developed evolution mechanisms 
to attract pollinators and achieve pollen transfer via biotic 
pollination. Hence, it is expected that the fitter flowers (i.e. 
the ones that have developed more efficient attraction mecha-
nisms) will have higher probabilities of attracting pollinators 
and conducting biotic pollination than the other flowers.

The simplest, perhaps, way to model this observation in 
FPAPA is to assume that the switch probability pt

i
 of flower i 
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Fig. 1   Pseudo-code of the original FPA
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at iteration t is not the same for all flowers of the population 
but it depends on the rank of the flower i in the population in 
terms of the objective function value f (xi). For simplicity, it 
is assumed herein that this probability varies linearly (Fig. 2) 
between two values p1 and p2 in [0, 1], where p1 is the switch 
probability of the flower with the worst objective function 
value and p2 is the respective probability of the flower with 
the best objective function value in the population. Hence, 
if fsh is the sorted, in descending order for minimization 

problems, vector of objective function values of the popula-
tion and �t

i
 is the index (location) of flower i in fsh at iteration 

t, then the probability pt
i
 is given by:

In Eq. (4), to be consistent with the pollinator attraction 
evolution mechanism, p2 > p1 should hold (i.e. maximum 
probability for the fittest flower). However, the algorithm 
works for any p1 and p2 values in [0, 1]. Furthermore, for 
p1 = p2 the original FPA is derived. To accommodate the 
aforementioned pollinator attraction rule, the pseudo-code 
of the FPAPA version is shown in Fig. 3.

4 � Numerical simulations

4.1 � Mathematical optimization problems

In this section, the proposed FPAPA algorithm is compared 
with the original FPA and other state of the art optimiza-
tion algorithms in order to validate its numerical efficiency. 
To serve this goal, the set of functions specified in IEEE-
CEC’13 [48] for real-parameter single-objective optimiza-
tion problems is employed herein. This set is comprised of 

(4)pt
i
=

1

n − 1

[(

p2 − p1
)

⋅ �t
i
+ np1 − p2

]

1 n

1

2

Fig. 2   Variation of switch probabilities pt
i
 for different flowers (i = 1 

to n) of the population based on their indices �t
i
 in the sorted popula-

tion in the descending order vector fsh (i.e. index �t
i
 = 1 is the flower 

with the maximum objective function value and index �t
i
 = n is the 

flower with the minimum respective value)

Fig. 3   Pseudo-code of FPAPA
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28 benchmark functions fi (i = 1, 2, …, 28) shown in Table 1 
[48] together with their global optimum values. All fi func-
tions represent minimization problems with variable number 
of dimensions d. All test functions are scalable and shifted 
to o = [o1, o2, …, od], which is randomly distributed in [− 80, 
80]d. Moreover, the search space for all functions is defined 
in [− 100, 100]d. In addition, some functions are rotated by 
using orthogonal (rotation) matrices that are generated from 
standard normally distributed entries by the Gram-Schmidt 
orthonormalization. The test functions can be classified in 
three main categories: unimodal, basic multimodal and com-
positions functions that are generated by combinations of the 
former functions [48].

For each algorithm, 20 independent runs are conducted 
for each function with 10,000·d maximum number of func-
tion evaluations MaxFES and by using a population size of 
50 flowers. Furthermore, two different numbers of problem 
dimensions are examined: d = 10 and 30. Uniform random 
initialization within the search space is assumed. For each 
algorithm run, the error value (i.e. the best solution found by 

the algorithm minus the global optimum of the test function 
shown in Table 1) is recorded when the number of function 
evaluations becomes equal to (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 1.0)·MaxFES. In this manner, the speed 
of convergence of the different algorithmic solutions can 
also be assessed. The solutions are terminated when either 
MaxFES is reached or the error value is smaller than 10–8. 
For each function, algorithm and number of function evalua-
tions, the mean and standard deviation of the error values are 
calculated from the 20 independent runs. The algorithms are 
subsequently ranked according to these mean and standard 
deviation values.

To better illustrate this procedure, the example of function 
f11 (i.e. Rastrigin’s Function) for d = 10 is presented in the 
following. Figure 4a, b present, in the form of box plots, the 
minimum, maximum and median (red line) errors obtained 
by the 20 independent runs by 5 different FPA options (i.e. 
FPA with p = 0.2, 0.4 and 0.6 and FPAPA with p1 = 0.2 
and p2 = 0.6 or p1 = 0.6 and p2 = 0.2) after 0.2·MaxFES and 
1.0·MaxFES function evaluations respectively. Inside the 

Table 1   IEEE-CEC’13 benchmark functions

Function no Function name Global optimum fi*

Unimodal 1 Sphere Function  − 1400
2 Rotated High Conditioned Elliptic Function  − 1300
3 Rotated Bent Cigar Function  − 1200
4 Rotated Discus Function  − 1100
5 Different Powers Function  − 1000

Basic multimodal 6 Rotated Rosenbrock’s Function  − 900
7 Rotated Schaffers F7 Function  − 800
8 Rotated Ackley’s Function  − 700
9 Rotated Weierstrass Function  − 600
10 Rotated Griewank’s Function  − 500
11 Rastrigin’s Function  − 400
12 Rotated Rastrigin’s Function  − 300
13 Non-Continuous Rotated Rastrigin’s Function  − 200
14 Schwefel's Function  − 100
15 Rotated Schwefel's Function 100
16 Rotated Katsuura Function 200
17 Lunacek Bi_Rastrigin Function 300
18 Rotated Lunacek Bi_Rastrigin Function 400
19 Expanded Griewank’s plus Rosenbrock’s Function 500
20 Expanded Scaffer’s F6 Function 600

Composite multimodal 21 Composition Function 1 700
22 Composition Function 2 800
23 Composition Function 3 900
24 Composition Function 4 1000
25 Composition Function 5 1100
26 Composition Function 6 1200
27 Composition Function 7 1300
28 Composition Function 8 1400
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boxes, the 25th to 75th percentile solutions are contained. It 
is found that the proposed FPAPA with p1 = 0.2 and p2 = 0.6 
demonstrates the best performance out of the 5 FPA vari-
ants in terms of both median and minimum errors and for 
both numbers of function evaluations. Furthermore, Fig. 4c 
presents the progression of the mean prediction errors for 
the same optimization task and algorithms as a function of 
the computational budget as measured by the fraction of the 
number of function evaluations with respect to MaxFES. It is 
observed that the proposed FPAPA with p1 = 0.2 and p2 = 0.6 
offers better mean predictions for almost the full range of 
function evaluations. This is also illustrated in Fig. 4d that 
shows the ranks of the different FPA options for the case of 
f11 with d = 10 based on the mean prediction errors shown in 
Fig. 4c and in relation to the number of function evaluations.

In the following, the results of FPAPA are compared with 
the results of the original FPA for different switch probabil-
ity values and across the whole range of CEC’13 functions. 
To serve this goal, parametric analyses are first conducted 
with the original FPA for switch probability values: p = 0, 
0.2, 0.4, 0.6, 0.8 and 1. The mean aggregated rank of these 
p values across all 28 CEC’13 test functions is shown in 

Fig. 5 for both d = 10 and 30 problem dimensions in depend-
ence of the number of function evaluations. It is clear that 
the original FPA performs better for probability values p 
between 0 and 0.4 for d = 10 and between 0.2 and 0.6 for 
d = 30. In both cases, the worst performance is obtained for 
p = 1 that sets the algorithm to conduct only global and no 
local pollination.

Based on the previous results, numerical analyses with 
the proposed FPAPA are conducted assuming p1 = 0 and 
p2 = 0.4 for d = 10 and p1 = 0.2 and p2 = 0.6 for d = 30. It is 
recalled that this arrangement of switch probabilities (i.e. 
p2 > p1) supports the pollinator attraction evolution mecha-
nism recommended in this study (i.e. higher probability of 
biotic pollination for better flowers in the population). For 
comparison purposes, it is also examined herein the use 
of FPAPA with p1 = 0.4 and p2 = 0 for d = 10 and p1 = 0.6 
and p2 = 0.2 for d = 30. The latter probability arrangements 
with p1 > p2 are opposed to the pollinator attraction rule and 
therefore it is interesting to see how they affect the efficiency 
of the proposed algorithm.

Figure 6 presents the mean aggregated ranks of the 
mean error values of the original FPA and the proposed 

a b

c d

Fig. 4   a Box plots of error predictions after 0.2·MaxFES evaluations; b box plots of error predictions after 1.0·MaxFES evaluations; c mean pre-
diction errors; d ranks of the original FPA and the proposed FPAPA algorithms for the f11 test function with d = 10
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FPAPA algorithms within the same probability ranges 
and across all 28 test functions for d = 10 and 30 prob-
lem dimensions in dependence of the number of function 
evaluations. It is obvious that the proposed FPAPA sup-
porting the pollinator attraction rule (i.e. p2 > p1) outper-
forms the original FPA algorithm for all switch probability 
values and for both numbers of problem dimensions. It is 
also important to note that the proposed FPAPA demon-
strates better computational performance from the very 
early stages of function evaluations which means that it 
exhibits higher convergence rates. On the other hand, the 
FPAPA algorithm with switch probability values oppos-
ing the pollinator attraction rule (i.e. p1 > p2) demonstrates 
one of the worst performances out of the different FPA 
options. The latter represents another strong indication 
that the proposed pollinator attraction evolution mecha-
nism can indeed affect positively the efficiency of the FPA 
algorithm.

Furthermore, Fig. 7 shows the mean aggregated ranks of 
the standard deviations of the error values of the original 
FPA and the proposed FPAPA algorithms. It is evident that 
the proposed FPAPA not only exhibits better mean errors as 
shown in Fig. 6 but also outperforms or shows equivalent 
performance to the other FPA options in terms of computa-
tional robustness.

Moreover, Fig. 8 presents the mean aggregated ranks 
of the mean error values of the original FPA and the pro-
posed FPAPA algorithms across the different categories of 
test functions (i.e. unimodal; multimodal and composite) 
for d = 10 and 30 problem dimensions. It can be concluded 
that the proposed algorithm FPAPA with p2 > p1 outper-
forms the original FPA algorithm for all categories of test 
functions and for both numbers of problem dimensions. 
The only exception is the case of unimodal functions for 
d = 10, where it appears that the standard FPA with p = 0 
offers better numerical performance. This is explained by 

a b

Fig. 5   Mean aggregated rank of original FPA p values across all 28 CEC’13 test functions for a d = 10; b d = 30 problem dimensions

a b

Fig. 6   Mean aggregated ranks of the mean error values of the original FPA and the proposed FPAPA algorithms across all 28 test functions for a 
d = 10; b d = 30 problem dimensions
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the fact that FPA with p = 0 conducts only local pollination 
and therefore may converge faster to the single optimum of 
these functions.

The mean error values of the original FPA and the pro-
posed FPAPA algorithms of the 28 test functions for d = 10 
after 10,000·d function evaluations are shown in Table 2. 
The same results are presented in Table 3 for d = 30. As 
expected, the errors increase with the number of problem 
dimensions and appear to be more significant for the com-
posite functions due to the higher degree of complexity 
involved.

Furthermore, Tables 4 and 5 present the Sign test pair-
wise comparisons of the proposed FPAPA with the original 
FPA options for MaxFES function evaluations. This test 
compares the performances of two algorithms by counting 
the number of wins of one algorithm with respect to the 
other [49]. For a given problem, an algorithm wins when 
the mean error observed is smaller than the other algorithm 
[49]. For np number of problems, if an algorithm wins np/2 
+ 1.96·√np/2 times or above then the algorithm is consid-
ered significantly better than the other with level of signifi-
cance α ≤ 0.05 [49]. The latter is a strong indication against 
the null hypothesis [28, 49]. For the IEEE-CEC’13 set of 
functions, np = 28 and therefore 19 wins are required for an 
algorithm to be significantly better than its rival. In Tables 4 
and 5, the wins of the proposed FPAPA against the other 
FPA formulations are presented. It is noted that equivalences 
are split evenly between two algorithms in this table. It can 
be observed than in all cases the proposed FPAPA has 19 
wins and above when compared with the other FPA options. 
Therefore, the proposed FPAPA can be considered as a sig-
nificant improvement with respect to the other options.

In addition, Tables 6 and 7 show the Wilcoxon signed 
ranks test for the same algorithms [49]. This test calculates 
the differences of the performances of two algorithms for 

np problems and ranks these differences according to their 
absolute values. Next, the sum of ranks R+ for the problems 
in which the first algorithm outperforms the second and the 
sum of ranks R− of the opposite cases are calculated. If T is 
the minimum of R+ and R− and T is smaller or equal than 
the Wilcoxon’s distribution for np degrees of freedom then 
the winning algorithm outperforms the other with the sig-
nificance level associated [49]. In Tables 6 and 7, the R+, 
R− and T values for the comparisons between the proposed 
FPAPA and the original FPA options are presented for d = 10 
and d = 30 respectively. In these tables, ties are split evenly 
among the sums. Again, it can be concluded that the pro-
posed FPAPA offers significant improvement with respect 
to the other options with significance level α ≤ 0.05 since all 
T values are below the limit value, which is 116 for α = 0.05 
and np = 28.

In addition to comparing with the original FPA algo-
rithm, the proposed FPAPA is compared with three state-
of-the art optimization algorithms including the Standard 
Particle Swarm Optimization Algorithm (SPSO-2011) [50], 
the Global and Local real-coded Genetic Algorithm (GL-
25) [51], and the Covariance Matrix Adaptation Evolution 
Strategies (CMA-ES) [52]. SPSO-2011 represents a major 
improvement over previous PSO versions with an adaptive 
random topology and rotational invariance being the main 
advancements. GL-25 was developed by Garzia-Martinez 
et al. in 2008 and it is based on parent-centric real-parameter 
crossover operators to create off-springs. CMA-ES, devel-
oped by Hansen and Ostermeier in 2001, is one of the most 
successful and cited variants of Evolution Strategies that 
puts forward two useful methods for self-adaptation of the 
mutation distribution. Furthermore, FPAPA is compared 
with another variant of FPA, namely the Novel Modified 
FPA (NMFPA), by Fouad an Gao [28] that is described in 
the introduction section of this study and has been found to 

a b

Fig. 7   Mean aggregated ranks of the standard deviations of the error values of the original FPA and the proposed FPAPA algorithms across all 
28 test functions for a d = 10; b d = 30 problem dimensions
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yield superior computational performance when compared 
with other algorithms and FPA variants [28].

Tables 8 and 9 show the mean solution errors of 20 inde-
pendent runs of the afore-described optimization algorithms 
for the 28 CEC’13 test functions after 10,000·d function 
evaluations for d = 10 and 30 respectively. These results are 
taken from Fouad and Gao [28] where the algorithm settings 

used are the ones proposed in their original papers. The 
results of the proposed FPAPA are also included in these 
tables as well as the rankings of the five optimization algo-
rithms based on their mean solution errors.

It can be seen in these tables that the proposed FPAPA 
is second best for both numbers of dimensions with aver-
age rankings 2.11 and 2.79 for d = 10 and 30 respectively 

a b

c d

e f

Fig. 8   Mean aggregated ranks of the mean error values of the origi-
nal FPA and the proposed FPAPA algorithms across test functions: 
a f1–f5 (unimodal) for d = 10; b f1–f5 (unimodal) for d = 30; c f6–f20 

(basic multimodal) for d = 10; d f6–f20 (basic multimodal) for d = 30; e 
f21–f28 (composite) for d = 10; f f21–f28 (composite) for d = 30
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following the NMFPA that exhibits average rankings of 
1.43 and 1.61 for the same dimensions. The SPSO-2011 
is the third best with 3.32 average ranking for d = 10 and 
CMA-ES is the third best for d = 30 with average rank-
ing 2.96.

The previous results drive to the conclusion that 
the proposed FPAPA offers a significant improvement 
to the computational performance of the original FPA 
with only minor modifications to its formulation. Fur-
thermore, FPAPA is able to perform better or equal to 
well-established metaheuristic optimization algorithms in 
literature. There exist in literature other FPA variants that 
seem to demonstrate higher computational performance 
than FPAPA. Therefore, it is worth investigating in the 
future the combination of FPAPA with other FPA variants 
to achieve even higher numerical efficiency.

4.2 � Structural optimization problems

In this section, the performance of FPAPA is tested against 
real-world structural optimization problems. Two sepa-
rate structural optimization problems are examined in the 
following.

4.2.1 � Volume optimization of a cantilever beam

A stepped cantilever beam is considered herein carrying a 
concentrated load P = 50,000 N at its free end as shown in 
Fig. 9 [53]. The objective is to minimize the volume of the 
beam while keeping bending stresses below the permissi-
ble limit of 14,000 N/cm2 and the displacement at the free 
end below 2.7 cm. The ten design variables (d = 10) of the 
problem are the widths bi and heights hi (i = 1 to 5) of the 

Table 2   The mean error values of the original FPA and the proposed FPAPA algorithms of the 28 test functions for d = 10 after 10,000·d func-
tion evaluations

FPA FPAPA

Function p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.0 p2 = 0.4 p1 = 0.4 p2 = 0.0

1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 2.15E−07 8.30E−02 1.00E−08 1.00E−08
2 1.00E−08 1.00E−08 1.00E−08 2.49E−08 2.75E−02 5.36E+05 1.00E−08 1.00E−08
3 1.15E+03 2.40E+03 1.75E+04 1.27E+05 7.90E+05 4.57E+07 2.11E+03 3.18E+03
4 1.00E−08 1.00E−08 1.00E−08 1.55E−08 1.10E−02 1.45E+04 1.00E−08 1.00E−08
5 1.00E−08 1.00E−08 1.00E−08 4.71E−08 6.50E−05 7.03E−01 1.00E−08 1.00E−08
6 1.00E−08 1.00E−08 1.00E−08 2.49E−07 1.75E−02 1.68E+00 1.00E−08 1.00E−08
7 3.15E+00 9.73E+00 1.44E+01 2.62E+01 4.17E+01 7.42E+01 7.81E+00 6.57E+00
8 2.05E+01 2.04E+01 2.03E+01 2.04E+01 2.04E+01 2.03E+01 2.04E+01 2.03E+01
9 4.28E+00 4.42E+00 4.96E+00 5.38E+00 5.81E+00 8.18E+00 4.71E+00 4.78E+00
10 3.44E−02 3.01E−02 2.92E−02 3.84E−02 8.32E−02 2.14E+00 2.72E−02 3.75E−02
11 7.76E+00 8.81E+00 9.87E+00 1.16E+01 1.56E+01 2.68E+01 7.46E+00 1.02E+01
12 6.49E+00 1.00E+01 1.13E+01 1.50E+01 2.52E+01 1.12E+02 8.21E+00 9.08E+00
13 1.25E+01 1.27E+01 1.54E+01 2.22E+01 2.86E+01 1.03E+02 1.16E+01 1.43E+01
14 9.16E+02 5.56E+02 4.87E+02 4.75E+02 4.64E+02 4.56E+02 4.84E+02 7.97E+02
15 8.60E+02 7.83E+02 7.73E+02 8.30E+02 8.69E+02 9.67E+02 7.33E+02 8.47E+02
16 9.73E−01 8.69E−01 8.96E−01 7.85E−01 8.43E−01 8.45E−01 8.88E−01 9.17E−01
17 3.05E+01 2.62E+01 2.43E+01 2.65E+01 3.17E+01 8.90E+01 2.12E+01 2.89E+01
18 3.07E+01 2.63E+01 2.75E+01 2.81E+01 3.83E+01 1.49E+02 2.44E+01 3.04E+01
19 1.13E+00 8.96E−01 8.60E−01 9.78E−01 1.04E+00 4.65E+00 7.37E−01 1.19E+00
20 3.03E+00 3.16E+00 3.21E+00 3.30E+00 3.50E+00 3.90E+00 3.11E+00 2.98E+00
21 1.45E+02 1.35E+02 1.45E+02 1.30E+02 1.35E+02 2.84E+02 1.35E+02 1.30E+02
22 9.06E+02 7.56E+02 6.67E+02 7.09E+02 7.18E+02 6.52E+02 6.69E+02 9.77E+02
23 9.36E+02 9.20E+02 9.51E+02 1.11E+03 1.21E+03 1.39E+03 9.20E+02 1.06E+03
24 1.33E+02 1.35E+02 1.51E+02 1.54E+02 1.70E+02 2.25E+02 1.32E+02 1.38E+02
25 1.96E+02 1.85E+02 1.93E+02 2.09E+02 2.07E+02 2.26E+02 1.94E+02 1.97E+02
26 1.18E+02 1.19E+02 1.20E+02 1.31E+02 1.37E+02 1.97E+02 1.10E+02 1.20E+02
27 3.91E+02 3.91E+02 3.97E+02 4.08E+02 4.07E+02 4.02E+02 4.05E+02 4.02E+02
28 2.10E+02 1.80E+02 1.40E+02 1.50E+02 1.23E+02 6.23E+02 1.70E+02 2.00E+02
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Table 3   The mean error values of the original FPA and the proposed FPAPA algorithms of the 28 test functions for d = 30 after 10,000·d func-
tion evaluations

FPA FPAPA

Function p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.2 p2 = 0.6 p1 = 0.6 p2 = 0.2

1 7.53E+02 1.50E−07 1.00E−08 1.00E−08 4.96E−08 4.92E−05 1.00E−08 1.03E−08
2 1.32E+05 1.97E+01 2.31E+00 1.70E−01 6.19E+01 4.81E+06 2.76E+01 2.78E+00
3 1.22E+09 9.68E+05 1.50E+06 7.98E+06 4.25E+07 4.45E+08 8.07E+05 2.99E+06
4 2.38E+03 1.32E+02 1.38E+02 9.99E+01 7.05E+02 7.30E+04 1.11E+02 3.22E+01
5 5.85E+01 2.36E−04 9.40E−06 2.30E−05 5.18E−05 1.21E−02 3.79E−06 6.51E−05
6 8.91E+01 9.01E+00 9.18E+00 1.18E+01 1.35E+01 2.30E+01 1.07E+01 1.24E+01
7 6.35E+01 8.33E+01 9.82E+01 1.07E+02 1.11E+02 1.40E+02 9.74E+01 9.75E+01
8 2.09E+01 2.10E+01 2.10E+01 2.09E+01 2.09E+01 2.09E+01 2.10E+01 2.09E+01
9 2.43E+01 2.66E+01 2.78E+01 2.95E+01 3.04E+01 3.40E+01 2.63E+01 2.87E+01
10 7.64E+01 1.07E−02 3.19E−03 5.42E−04 1.10E−03 4.11E−01 6.12E−03 2.22E−03
11 1.05E+02 6.63E+01 6.85E+01 8.02E+01 8.36E+01 9.20E+01 6.47E+01 8.19E+01
12 1.38E+02 1.18E+02 1.38E+02 1.60E+02 2.10E+02 6.59E+02 1.32E+02 1.51E+02
13 1.78E+02 1.98E+02 2.00E+02 2.27E+02 2.41E+02 6.31E+02 2.08E+02 1.98E+02
14 4.78E+03 3.31E+03 3.07E+03 2.97E+03 2.85E+03 2.81E+03 2.87E+03 3.41E+03
15 4.75E+03 4.23E+03 4.10E+03 4.21E+03 4.30E+03 4.55E+03 3.98E+03 4.29E+03
16 1.86E+00 1.98E+00 1.77E+00 2.18E+00 2.13E+00 2.44E+00 2.00E+00 2.10E+00
17 2.05E+02 1.98E+02 1.83E+02 1.93E+02 1.96E+02 4.22E+02 1.71E+02 1.82E+02
18 2.08E+02 1.90E+02 2.08E+02 2.26E+02 2.39E+02 6.95E+02 1.89E+02 1.99E+02
19 2.95E+01 1.36E+01 1.16E+01 1.14E+01 1.18E+01 2.49E+01 9.96E+00 1.29E+01
20 1.21E+01 1.21E+01 1.24E+01 1.27E+01 1.31E+01 1.46E+01 1.24E+01 1.27E+01
21 6.28E+02 2.79E+02 2.67E+02 2.60E+02 2.18E+02 2.26E+02 2.72E+02 2.57E+02
22 5.39E+03 3.89E+03 3.81E+03 3.64E+03 3.29E+03 3.36E+03 3.30E+03 3.98E+03
23 5.31E+03 4.66E+03 4.75E+03 5.23E+03 5.20E+03 5.80E+03 4.63E+03 5.05E+03
24 2.73E+02 2.78E+02 2.79E+02 2.83E+02 2.91E+02 3.15E+02 2.78E+02 2.79E+02
25 2.91E+02 2.97E+02 3.00E+02 3.04E+02 3.12E+02 3.41E+02 2.99E+02 2.97E+02
26 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
27 9.96E+02 1.07E+03 9.93E+02 9.91E+02 9.17E+02 1.03E+03 1.07E+03 1.01E+03
28 1.30E+03 3.83E+02 3.66E+02 3.66E+02 3.01E+02 4.12E+03 3.00E+02 3.62E+02

Table 4   Sign test pairwise 
comparisons of the proposed 
FPAPA with the original FPA 
options for the 28 test functions 
and d = 10 after 10,000·d 
function evaluations

Proposed FPAPA FPA FPAPA opposing 
pollinator attrac-
tion

p1 = 0.0, p2 = 0.4 p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.4, p2 = 0.0

Wins 19.5 19.5 20.5 22.5 24 23 20.5
Losses 8.5 8.5 7.5 5.5 4 5 7.5

Table 5   Sign test pairwise 
comparisons of the proposed 
FPAPA with the original FPA 
options for the 28 test functions 
and d = 30 after 10,000·d 
function evaluations

Proposed FPAPA FPA FPAPA opposing 
pollinator attrac-
tion

p1 = 0.0, p2 = 0.4 p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.4, p2 = 0.0

Wins 19 19 19.5 21.5 22 24 19
Losses 9 9 8.5 6.5 6 4 9
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rectangular cross sections of the five beam segments with 
length l = 500 cm. Furthermore, the aspect ratio between the 
cross sections heights and widths cannot exceed the value of 
20. It is also considered that sections widths range between 
1 cm ≤ bi ≤ 5 cm and heights 30 cm ≤ hi ≤ 65 cm (i = 1 to 5). 
The elastic modulus of the beam is E = 200 GPa.

For this optimization problem, the PSO and GA algo-
rithms are applied in addition to the original FPA algorithm 
with switch probability values of p = 0 and 0.4 in accordance 
with the findings of §4.1. Furthermore, the proposed FPAPA 
is applied with one arrangement for the switch probabilities 
supporting the pollinator attraction rule and another one 
opposing it.

For each algorithm, 50 independent runs are conducted 
independently for three different values of function evalua-
tions that are 100·d, 300·d and 500·d, respectively. Table 10 
presents the mean values and standard deviations of the 
minimum beam volume values obtained by the different 
solutions. It can be seen that for all function evaluation val-
ues the proposed algorithm solution provides the best mean 
beam volumes and standard deviations. In the last row of the 
table, the minimum volumes out of all 50 runs after 500·d 
evaluations are also presented. It is observed that the pro-
posed solution yields again the best result with a value of 
63,111 cm3, which approaches very closely to the optimum 

value of 63,110 cm3 reported in [53]. The PSO algorithm 
is characterised by significant variability and in most of 
the cases returns the worst mean beam volumes. Among 
the original FPA solutions, the p = 0 option yields the best 
results outperforming also the FPAPA algorithm opposing 
the pollinator attraction rule.

4.2.2 � Cost optimization of an earthquake‑resistant 
reinforced concrete frame

In this section, the proposed FPAPA variant is applied to the 
seismic design of a three-storey two-bay (Fig. 10) reinforced 
concrete frame. The design constraints are set according to 
Eurocode 2 (EC2) [54] and Eurocode 8 (EC8) [55] structural 
design codes for Ductility Class Low (DCL). The frame is 
part of a building of ordinary importance that rests on soil 
class B. Uniform distributed loads of 22.5 kN/m act along 
beam members of all storeys and point loads of 67.5 kN 
and 135 kN are applied at the exterior and interior joints, 
respectively, for the quasi-permanent load combination. A 
design peak ground acceleration value of 0.40 g is assumed. 
Concrete class C25/30 and reinforcing steel grade B500C 
are used.

The objective of the design is to minimize the material 
cost which is the sum of the costs of concrete, reinforcing 
steel and formwork. The following unit prices are assumed 
for these materials: concrete 101 (€ / m3), reinforcing steel 
1.07 (€ / kg) and formwork 15.7 (€ / m2). Eight (d = 8) inde-
pendent design variables are used in this problem, assum-
ing symmetric concrete frame configuration. These are the 
section heights of the central and exterior square columns, 
respectively, as well as the section heights and widths of the 
rectangular beams of the three storeys. All cross-sectional 
dimensions range between 0.3 m and 1 m. For construction 
simplicity, steel reinforcement is assumed to be uniform 
along column and beam members. More information on the 
assumptions and design methodology of this frame can be 
found in Mergos [56].

Table 11 presents the statistical results of the minimum 
material costs obtained by 10 independent runs for each 
algorithm solution and 800 (= 100·d) function evaluations. 
The costs are provided in the form: mean ± standard devia-
tion (success rate). Successful are the designs satisfying all 
design constraints of EC2 and EC8. It is evident that the pro-
posed FPAPA outperforms the other solutions as it exhibits 
the minimum mean cost (€6752.32) and standard deviation 
(€16.29). Furthermore, it always drives to successful design 
solutions. The least satisfying performance is obtained by 
the PSO algorithm and the FPA algorithm for p = 0.4 con-
sidering both costs and success rates. The relatively poor 
performance of FPAPA opposing the pollinator attraction 
rule is also observed.

Table 6   Wilcoxon signed ranks test for pairwise comparisons of the 
proposed FPAPA with the original FPA options for the 28 test func-
tions and d = 10 after 10,000·d function evaluations

Comparison R+ R− T

Proposed FPAPA versus FPA with p = 0.0 293 104 104
Proposed FPAPA versus FPA with p = 0.2 308 89 89
Proposed FPAPA versus FPA with p = 0.4 315 82 82
Proposed FPAPA versus FPA with p = 0.6 337 70 70
Proposed FPAPA versus FPA with p = 0.8 352 54 54
Proposed FPAPA versus FPA with p = 1.0 371 35 35
Proposed FPAPA versus FPAPA opposing 

pollinator attraction
329 68 68

Table 7   Wilcoxon signed ranks test for pairwise comparisons of the 
proposed FPAPA with the original FPA options for the 28 test func-
tions and d = 30 after 10,000·d function evaluations

Comparison R+ R− T

Proposed FPAPA versus FPA with p = 0.0 339 67 67
Proposed FPAPA versus FPA with p = 0.2 291 115 115
Proposed FPAPA versus FPA with p = 0.4 305 102 102
Proposed FPAPA versus FPA with p = 0.6 326 81 81
Proposed FPAPA versus FPA with p = 0.8 323 83 83
Proposed FPAPA versus FPA with p = 1.0 358 48 48
Proposed FPAPA versus FPAPA opposing 

pollinator attraction
292 114 114
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5 � Conclusions

In this paper, a modified version of the Flower Pollination 
Algorithm is presented, namely Flower Pollination Algo-
rithm with Pollinator Attraction (FPAPA), that accounts 
for the pollinator attraction evolution mechanism. The pol-
linator attraction mechanism reflects the observed natural 
tendency of flower species to evolve in order to attract 
pollinators by nutritious rewards and attractive shapes, 
colours and scents. Thereby, it is anticipated that the fit-
ter flowers, that develop the most efficient mechanisms to 
entice pollinators, will be more likely to achieve pollen 
transfer by biotic pollination.

To model this expectation in FPAPA, the switch prob-
ability p that controls the pollination mechanism (biotic or 
abiotic) in FPA is not taken as constant for all flowers of the 
population, but it is varied appropriately in the population 
so that fitter flowers are provided with higher probabilities 
of conducting biotic pollination.

The proposed FPAPA has been validated against the set 
of 28 benchmark functions defined in IEEE-CEC’13 for 
real-parameter single-objective optimization problems as 
well as structural optimization problems. It is found that the 
proposed FPAPA, whilst maintaining almost the same level 
of simplicity as the original FPA code, outperforms sig-
nificantly the original FPA. Furthermore, it offers superior 

Table 8   Mean solution errors and rankings of the proposed FPAPA and the SPSO-2011, GL-25, CMA-ES & NMFPA algorithms for the 
CEC’13 test functions with d = 10 after 10,000·d function evaluations

Function Mean errors Rankings

FPAPA SPSO GL-25 CMA-ES NMFPA FPAPA SPSO GL-25 CMA-ES NMFPA

1 1.00E−08 1.08E+03 1.00E−08 1.00E−08 1.00E−08 1 5 1 1 1
2 1.00E−08 3.90E+04 4.24E+06 1.00E−08 4.27E+02 1 4 5 1 3
3 2.11E+03 7.46E+04 3.28E+08 1.55E+01 2.35E+00 3 4 5 2 1
4 1.00E−08 2.12E+03 1.62E+04 1.00E−08 7.13E+00 1 4 5 1 3
5 1.00E−08 7.46E+02 1.00E−08 1.00E−08 1.00E−08 1 5 1 1 1
6 1.00E−08 5.82E+02 2.50E+01 7.35E+00 5.58E−01 1 5 4 3 2
7 7.81E+00 3.46E+02 2.64E+01 4.26E+02 7.13E−07 2 4 3 5 1
8 2.04E+01 2.08E+01 2.05E+01 2.03E+01 2.01E+01 3 5 4 2 1
9 4.71E+00 1.24E+01 5.78E+00 1.24E+01 2.14E+00 2 4 3 4 1
10 2.72E−02 4.19E+02 8.83E+00 1.74E+02 7.57E−02 1 5 3 4 2
11 7.46E+00 1.77E+02 9.52E+00 1.33E+02 1.44E+00 2 5 3 4 1
12 8.21E+00 1.86E+02 2.38E+01 4.00E+02 7.06E+00 2 4 3 5 1
13 1.16E+01 1.74E+02 2.68E+01 3.43E+02 7.17E+00 2 4 3 5 1
14 4.84E+02 6.52E+02 6.32E+02 1.61E+03 2.55E+01 2 4 3 5 1
15 7.33E+02 5.94E+02 1.45E+03 1.74E+03 3.49E+02 3 2 4 5 1
16 8.88E−01 6.19E−01 1.79E+00 2.37E+01 5.28E−01 3 2 4 5 1
17 2.12E+01 1.72E+01 2.78E+01 1.07E+03 1.03E+01 3 2 4 5 1
18 2.44E+01 1.90E+01 4.39E+01 1.01E+03 1.65E+01 3 2 4 5 1
19 7.37E−01 8.11E−01 1.40E+00 1.12E+00 5.13E−01 2 3 5 4 1
20 3.11E+00 2.37E+00 3.34E+00 4.05E+00 1.44E+00 3 2 4 5 1
21 1.35E+02 4.00E+02 4.00E+02 4.00E+02 2.85E+02 1 3 3 3 2
22 6.69E+02 6.48E+02 8.07E+02 2.29E+03 1.69E+02 3 2 4 5 1
23 9.20E+02 4.05E+02 1.47E+03 2.17E+03 5.55E+02 3 1 4 5 2
24 1.32E+02 2.01E+02 2.12E+02 4.63E+02 1.81E+02 1 3 4 5 2
25 1.94E+02 2.00E+02 2.08E+02 2.53E+02 1.91E+02 2 3 4 5 1
26 1.10E+02 1.34E+02 1.49E+02 2.73E+02 1.48E+02 1 2 4 5 3
27 4.05E+02 3.12E+02 3.88E+02 3.62E+02 3.58E+02 5 1 4 3 2
28 1.70E+02 2.80E+02 3.63E+02 9.03E+02 1.60E+02 2 3 4 5 1

Average Rankings: 2.11 3.32 3.64 3.86 1.43
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performance when compared with other state-of-the-art 
metaheuristic algorithms.

Further research will focus on parameter tuning of the 
scheme of the variations of the flower probabilities to con-
duct biotic pollination based on their objective function as 
well as exploring additional schemes that may offer higher 
computational performance. Furthermore, the combination 
of FPAPA with other modified and hybridized versions of 
FPA will be examined to further improve its performance 
for different optimization problems in engineering and 
industries.

Table 9   Mean solution errors and rankings of the proposed FPAPA and the SPSO-2011, GL-25, CMA-ES & NMFPA algorithms for the 
CEC’13 test functions with d = 30 after 10,000·d function evaluations

Function Mean errors Rankings

FPAPA SPSO GL-25 CMA-ES NMFPA FPAPA SPSO GL-25 CMA-ES NMFPA

1 1.00E−08 1.28E+03 1.96E−04 1.00E−08 1.00E−08 1 5 4 1 1
2 2.76E+01 2.45E+05 3.18E+07 1.00E−08 1.26E+04 2 4 5 1 3
3 8.07E+05 4.46E+07 5.96E+09 1.94E+03 1.70E+05 3 4 5 1 2
4 1.11E+02 6.23E+03 4.25E+04 1.00E−08 7.88E−01 3 4 5 1 2
5 3.79E−06 9.62E+02 1.17E−04 1.00E−08 1.00E−08 3 5 4 1 1
6 1.07E+01 7.76E+02 1.02E+02 1.32E+00 6.59E+00 3 5 4 1 2
7 9.74E+01 5.03E+02 8.51E+01 1.60E+01 8.04E−01 4 5 3 2 1
8 2.10E+01 2.12E+01 2.10E+01 2.09E+01 2.08E+01 3 5 4 2 1
9 2.63E+01 4.77E+01 3.11E+01 4.43E+01 1.55E+01 2 5 3 4 1
10 6.12E−03 4.76E+02 6.35E+01 1.78E−02 2.90E−01 1 5 4 2 3
11 6.47E+01 3.80E+02 7.35E+01 1.27E+02 1.55E+01 2 5 3 4 1
12 1.32E+02 2.87E+02 1.74E+02 6.66E+02 3.51E+01 2 4 3 5 1
13 2.08E+02 1.94E+02 1.97E+02 2.13E+03 7.21E+01 4 2 3 5 1
14 2.87E+03 4.80E+03 4.84E+03 5.11E+03 1.35E+03 2 3 4 5 1
15 3.98E+03 4.31E+03 7.63E+03 5.18E+03 3.27E+03 2 3 5 4 1
16 2.00E+00 1.41E+00 3.09E+00 1.01E−01 1.78E+00 4 2 5 1 3
17 1.71E+02 1.26E+02 1.67E+02 3.77E+03 5.15E+01 4 2 3 5 1
18 1.89E+02 1.07E+02 2.43E+02 4.19E+03 7.72E+01 3 2 4 5 1
19 9.96E+00 5.77E+00 5.60E+01 3.51E+00 1.86E+00 4 3 5 2 1
20 1.24E+01 1.07E+01 1.35E+01 1.26E+01 9.70E+00 3 2 5 4 1
21 2.72E+02 3.18E+02 3.71E+02 2.84E+02 3.28E+02 1 3 5 2 4
22 3.30E+03 3.85E+03 3.89E+03 7.04E+03 1.07E+03 2 3 4 5 1
23 4.63E+03 4.19E+03 7.43E+03 6.73E+03 3.39E+03 3 2 5 4 1
24 2.78E+02 2.28E+02 2.50E+02 9.35E+02 2.31E+02 4 1 3 5 2
25 2.99E+02 2.62E+02 2.96E+02 2.59E+02 2.63E+02 5 2 4 1 3
26 2.00E+02 2.31E+02 2.17E+02 4.53E+02 2.00E+02 2 4 3 5 1
27 1.07E+03 5.78E+02 9.64E+02 5.75E+02 6.32E+02 5 2 4 1 3
28 3.00E+02 3.00E+02 1.02E+03 9.82E+02 3.00E+02 1 1 5 4 1

Average Rankings: 2.79 3.32 4.07 2.96 1.61
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A

A
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Fig. 9   Stepped cantilever beam
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