
Vol.:(0123456789)1 3

Evolutionary Intelligence (2023) 16:519–537
https://doi.org/10.1007/s12065-021-00675-x

RESEARCH PAPER

A hybrid metaheuristic method for solving resource constrained
project scheduling problem

Ohiduzzaman Shuvo1 · Swajan Golder1 · Md. Rafiqul Islam1

Received: 14 July 2020 / Revised: 3 August 2021 / Accepted: 10 October 2021 / Published online: 3 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Resource constrained project scheduling problem (RCPSP) is a renowned variant of the scheduling problem. RCPSP is very
important in production and management but computationally hard. It is widely used in many fields like job shop schedul-
ing, flow shop scheduling, transactional planning, wireless communication etc. The objective of solving RCPSP is to obtain
minimum makespan maintaining all constraints. There are some exact, approximate, heuristic and metaheuristic algorithms
which were proposed to solve this problem. RCPSP is an NP-hard problem. Chemical reaction optimization (CRO) is a
population based metaheuristic method to solve such problems and it shows better performance comparing with some
other existing algorithms. CRO explores the large search space both locally and globally using its four operators. Genetic
algorithm (GA) is also a nature inspired algorithm which is used to solve various optimization problems. In this paper, we
are proposing a hybrid metaheuristic approach that integrates chemical reaction optimization (CRO) and genetic algorithm
(GA) named CRO-GA to solve RCPSP. We have redesigned the basic operators of CRO and GA to find out the solutions.
An additional operator called priority based selection operator is used in CRO to adjust with GA. Our proposed method is
compared with other related approaches such as adaptive particle swarm optimization (A-PSO), multi agent optimization
algorithm (MAOA), artificial bee colony (ABC), genetic algorithm (GA) which are state of the art for the RCPSP. The
experimental results show that our proposed methodology gives better results than other existing algorithms to solve RCPSP
with less computational time.

Keywords Chemical reaction optimization · NP-hard · Resource constrained project scheduling problem · Makespan

1 Introduction

Scheduling has an intrinsic impact on the production or
manufacturing process and it is also requisite in optimization
engineering. Scheduling is the mechanism of organizing,
governing, and optimizing work and workloads of a project.
Ordinarily, a project gets diverse forms in various business,
production, management, and engineering. But every project
is comprised of numerous tasks and each task is fixed with a
given start and end time. Each task also requires one or more

resources to perform its execution. As resources and time are
not perpetual, projects demand tight scheduling for dimin-
ishing project continuation. With the tremendous revolu-
tion in science and technology, industries and manufacturing
companies are initiating immense complex projects which
tend to succeed if they are drawn on an optimized scheduled
way. In the late 1950’s, many project organizing procedures
like PERT (Program Evaluation and Review Technique) and
CPM (Critical Path Method) helped to perceive minimum
duration schedules for projects where different resources
required for project fulfillment were assumed not to be a
limiting factor [9]. In the practical field, projects require
various resources but resources have bounded availability
which directly dominates project objectives, time optimiza-
tion, and profit gaining. Consequently, project scheduling
with tight resource allocation has become the focus of many
recent researchers.

A classical resource constrained project scheduling
problem (RCPSP) involves some activities with precedence

 * Ohiduzzaman Shuvo
 oheduzzamanshuvo@gmail.com

 Swajan Golder
 swajan.cse.ku@gmail.com

 Md. Rafiqul Islam
 dmri1978@gmail.com

1 Computer Science and Engineering Discipline, Khulna
University, Khulna 9208, Bangladesh

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-021-00675-x&domain=pdf

520 Evolutionary Intelligence (2023) 16:519–537

1 3

relationship and some limited renewable resources. In
RCPSP, our main challenge is to obtain the activity sequence
with resource allocation such that the project can be done
in the shortest possible time considering precedence and
resource constraints. More formally, we can define the
RCPSP as follows:

1. A RCPSP is comprised of a set of n activities,
A{a0, a1, a2,… , an+1}.

2. A set P which represents the zero lag, finish to start rela-
tionship of set A.

3. A set R which narrates the renewable resources and the
constraint of resource availability is Qr , ∀r ∈ R.

4. Each activity ‘a’ has a set of:

(a) Direct predecessors = pa ⊆ A

(b) Indirect predecessors = p′
a
⊆ A

(c) Direct successors = sa ⊆ A

(d) Indirect successors = s′
a
⊆ A.

5. Each activity ‘a’ has a constant duration of time, da and
a constant resource allocation.

6. An activity requires qar units of r types of resources dur-
ing each time period in its total duration.

7. The activities a0 and an+1 denote the starting and ending
of the project which are dummy activities.

The dummy start and end activities have duration d0 = dn+1
= 0 and resource unit q0r = q(n+1)r = 0. The values of da and
qar are assumed non negative. The precedence relationships
between these activities are two types. One is precedence
constraint that prevents an activity to start when its parent
activities are yet to finish. Another one is the sum of all
required resources at any time period could not exceed the
given amount of resources.An example of RCPSP with seven
activities is given in Fig. 1. One resource type and three
available resource units are used here. The feasible schedule
of this example with a makespan of 8 time periods is given

in Fig. 2 where X-axis and Y-axis represent the time period
and the resource instances respectively. According to the
complexity theory, if decision version of an optimization
problem is NP-complete, the problem will be called NP-
hard. The decision version of RCPSP is NP-complete. NP-
hardness of RCPSP has been presented by Blazewicz [4].
In the past, different types of scheduling algorithms were
introduced to solve RCPSP, but they had some disadvan-
tages that they failed to provide effective results for large
instances (more than 60 instances) in a reasonable computa-
tional time. Researchers proposed a number of heuristic and
metaheuristic algorithms to solve RCPSP. The majority of
heuristic algorithms can be categorized into two types: first
one priority rule based heuristics and second one neighbor-
hood based heuristics. To obtain a feasible schedule, vari-
ous heuristic algorithms used neighborhood search methods.
Researchers developed many metaheuristic algorithms like
Simulated annealing Boctor [6] Bouleimen and Lecocq [7],
Tabu search Baar et al. [2] Nonobe and Ibaraki [25], Ant
colony optimization (ACO) Merkle et al. [23] Herbots et al.
[12], Artificial bee colony Akbari et al. [1], Particle swarm
optimization (PSO) algorithm [31] Zhang et al. [30] Jar-
boui et al. [15] for solving RCPSP. There are two schedul-
ing schemes like serial and parallel are mostly applied in
most heuristic techniques published in the literature Kelley
[18] Brooks [8] Boctor [5] Kolisch and Sprecher [19] Drexl
and Gruenewald [10]. Recently, an adaptive PSO (A-PSO)
algorithm is proposed by K. Neetesh and D. Prakash to solve
RCPSP which is simple and also effective in producing the
better results than previous works Kumar and Vidyarthi
[20]. An adaptive inertia weight tuning process is used for
the noticeable convergence of the PSO. All of the above
mentioned algorithms can produce better results in some
restricted inputs criteria but all of them have some limita-
tions for large instances.

Chemical reaction optimization and genetic algorithm
are two population based metaheuristic algorithms and
they were used to solve many optimization problems. By

S 7

6

5

4

3

2

1

E

0|0

1|1

2|2

3|1

2|2

3|2

1|2

2|1 0|0

Duration Resource

Fig. 1 A RCPSP example

2

1 5

4 3 6

7

1 2 3 40 5 6 7 8

1

2

3

re
so
ur
ce
s

time

Fig. 2 A feasible schedule of the RCPSP example

521Evolutionary Intelligence (2023) 16:519–537

1 3

exploring the efficiencies and effectiveness of CRO and
GA, this paper proposes a new hybrid metaheuristic method
named CRO-GA for solving the resource constrained project
scheduling problem. A new priority selection operator has
been introduced in this method and embedded with CRO.
The originality and contribution of the proposed work are
as follows:

1. We have redesigned four basic operators such as on-
wall ineffective collision, decomposition, intermolecular
ineffective collision, synthesis of CRO to find the job
sequence which ensures minimum project duration.

2. A priority based selection operator has been proposed
here for CRO.

3. Three evolutionary operators of GA such as selec-
tion, crossover and mutation have been redesigned for
RCPSP.

4. The combination of CRO with GA to solve RCPSP is
one of our other novel works.

5. The proposed CRO-GA model follows both serial and
parallel scheduling for estimating project duration.
This model is easy to implement and takes minimum
time to find the expected job sequence. The outcomes
of the proposed model are compared with the previous
related works such as A-PSO Kumar and Vidyarthi [20],
MAOA Zheng and Wang [32], ABC Jia and Seo [16],
GA Montoya-Torres et al. [24] to show the performance
of our work.

6. We have done statistical tests to show the significance
of our proposed method.

The paper is organized as follows. The motivation is pre-
sented in section 2 after the introduction. The literature
review is given in section 3, whereas different related algo-
rithms are explained. Section 4 represents the proposed
CRO-GA hybrid model. The information about the dataset
and how we have used it in our system have been depicted
in section 5. In section 6, the experimental results are given,
whereas the performances of the proposed method are com-
pared with other related algorithms. The conclusions are
depicted in section 7.

2 Motivation

RCPSP has several important application areas. It is widely
used in large projects which consist of a huge number of
jobs. Production and management largely depend on intel-
ligent scheduling which is controlled by RCPSP. Besides,
RCPSP has become more popular in the field of computing,
wireless communication, operations research and transport
planning. Many algorithms are available to solve RCPSP.
But in case of large instances they showed poor performance

in solving RCPSP. Our target is to design an algorithm
which solves this problem efficiently and effectively than
the others.

Chemical reaction optimization is an efficient population
based metaheuristic algorithm. The CRO algorithm repre-
sents the molecular interaction during a chemical reaction
Mahmud et al. [22]. It is an optimization technique inspired
by the nature of the chemical reaction. According to the
studies by a number of researchers, the CRO algorithm has
proved its improved performance than the other metaheuris-
tic approaches by solving various problems with efficien-
cies Saifullah and Islam [26]. CRO has been used to solve
the 0–1 knapsack problem Truong et al. [27], task schedul-
ing and grid computing problem Xu et al. [29], quadratic
assignment problem Xu et al. [28], shortest common super
sequence problem Saifullah and Islam [26], longest com-
mon subsequence problem for multiple string Islam et al.
[14], the max flow problem Barham et al. [3], RNA structure
prediction Kabir and Islam [17], generalized vertex cover-
ing Islam et al. [13] etc. with superior results than the other
exact, heuristic and metaheuristic algorithms.

Genetic Algorithm is based on the principal of genetics
and natural selection. It is frequently used to find optimal or
near optimal solutions of difficult problems which otherwise
would take extensive time to solve. So, we have proposed an
algorithm based on CRO by redesigning four basic operators
and the priority based selection as an additional operator and
combined with GA to make efficient convergence for solving
RCPSP problem than the other existing algorithms.

3 Related works

Several approaches were proposed by researchers for solv-
ing RCPSP. Only some of these approaches had shown effi-
ciency in a huge number of activities. This section gives
a literature review for solving RCPSP while focusing on
heuristic and metaheuristic techniques such as genetic algo-
rithm (GA), tabu search (TS), simulated annealing (SA), ant
colony optimization (ACO), and artificial bee colony (ABC).

3.1 Simulated annealing (SA)

Simulated annealing (SA) is a searching approach in the
large solution space for finding the comparatively global
optimum for a given operation. Boctor proposed a new
method for solving resource constrained project schedul-
ing problems using simulated annealing algorithm in which
resources are limited, renewable and non-preemptive Boctor
[6]. This algorithm solves both single mode and multi mode
problems and satisfies different optimizing objective func-
tions. Any scheduling heuristic is manipulated to generate
the initial solution in this algorithm. This adaptation has

522 Evolutionary Intelligence (2023) 16:519–537

1 3

some special characteristics; it can be detailed as an anneal-
ing procedure with reheating and variable cooling rate. The
procedure is composed of a number of heating cycles and at
the beginning of each of them the cooling temperature T is
reinitialized and set to its initial value TMAX. The proposed
way shows better performance compared with some tabu
search heuristics. The main drawback of the designed work
was to deal with a large amount of dataset which produced
unexpected results.

Single mode and multiple mode version of resource con-
strained project scheduling problem were solved by Boulei-
men and Lecocq using a simulated annealing (SA) algorithm
Bouleimen and Lecocq [7]. The objective function is the
minimization of the makespan. A new design replaces the
conventional SA search scheme that takes into account the
specificity of the solution space of scheduling problems. For
RCPSP, all parameters were set after preliminary statistical
experiments completed on test instances and the search was
dependent on an alternated activity and time incrementing
process. For MRCPSP, they used an original approach which
consisted of two embedded search loops. The algorithm
proved the effectiveness of both adaptation by experiment-
ing benchmark instances available in the literature among
the recent published methods.

3.2 Ant colony optimization (ACO)

The general idea of ACO metaheuristic is to avail the ant
algorithm for finding the best solution. Merkle used ant
colony optimization algorithm for solving non-preemptive
resource constrained project scheduling problems Merkle
et al. [23]. They proposed a combination of summation
evaluation and direct method for solving RCPSP. Within
this approach, the initial solution is generated by using serial
or parallel scheduling algorithm. In the case of the summa-
tion evaluation method, it is important to schedule a job not
too late. But at the same time, a group of activities should
be scheduled which satisfies the resource requirements. In
the activity list, there might be some places from which the
activity list used by a serial or parallel schedule that is good
while other places in the activity list might be worse. This
kind of behavior can be modeled using the direct evaluation
method. For handling this behavior they proposed a com-
bination of direct and summation evaluation method. Sum-
mation evaluation strategy enforces a job to be scheduled
according to its tardiness value.

The main parameters of an ACO algorithm are � , � and � .
During the whole run of the algorithm, these parameters are
assigned to fixed values. In the previous work, no variation
in the parameters value was considered but in the proposed
work they considered a variation in the values of � and � .
Here, � controls the contingent influence of the heuristic

values and parameter � determines the convergence speed
of the algorithm.

They tested the ACO algorithm on a set of large bench-
mark problems from the project scheduling library Merkle
et al. [23]. From this library, they used the test set j120.sm
which contains the largest problem instances in the PSPLIB.
They compared their results with the results of other heu-
ristics for the RCPSP including genetic algorithm (GA),
simulated annealing (SA), tabu search and other sampling
algorithms but this algorithm performed best on average.
The fact that the algorithm behaves very well (compared
to several other heuristics) in both cases with and without
restrictions to the number of evaluated schedules and shows
the flexibility of the approach.

3.3 Multi agent optimization algorithm (MAOA)

There are mainly three types of characteristics in a multi
agent system and these are environments, behaviors of
agents and interaction among agents. An agent holds three
types of behavior like autonomous, social and self learn-
ing behavior. A multi agent based method was developed
by Xiao and Wang to solve RCPSP Zheng and Wang [32].
In this paper, a group structure of N groups with S agents
is employed where the best agent of a group is selected as
a group leader. In the MAOA, solutions are represented
by agents. The relationship between individual agents are
described by an organized architecture. In the MAOA, an
environment is constructed by dividing agents into several
groups. Then the global exploration is performed through
the social behavior of an agent and the local searching is
performed through the autonomous and self learning behav-
ior of an agent. In this algorithm, agents are moved among
the groups to adjust the environment and information are
shared using agent based search behaviors for further well
evolution.

For solving RCPSP, a particular activity list called
extended activity list is used to represent an agent, which
is comprised of three lists. First one is an activity list
A{a0, a1, a2,… , an+1} , the second one is the start time of
each activity and the last is the end time of each activity.
For finding a better initial agent in MAOA, a regret based
biased random sample method with LFT priority rule is used
to initialize each activity. To select an eligible activity a
selection strategy based on roulette wheel with LFT prior-
ity rule is used. In this paper, they designed a new operator
named magnet based crossover to solve RCPSP. The mag-
net based crossover operator (MBCO) can provide offspring
which inherit some characterstics from both parents. The
MBCO is used to obtain a better exploration. After obtain-
ing a better offspring, the worst agent in the population is
replaced by the new offspring. The resource based crossover
operator (RBCO) is used to inherit an activity which utilizes

523Evolutionary Intelligence (2023) 16:519–537

1 3

resources Zheng and Wang [32]. The RBCO can improve
the local behavior of an agent. The agents and the leader of
a group are modified by performing RBCO.

To compare the results of this algorithm with other exist-
ing algorithms, they used the three well known datasets from
PSPLIB Kolisch and Sprecher [19]. The benchmark dataset
contains 480 J30 instances, 460 J60 instances and 600 J120
instances. In this work, they used average percentage devia-
tion from lower bound for comparison.

3.4 Genetic algorithm (GA)

A genetic algorithm is usually used to produce a standard
result by applying different operators. A genetic algorithm
approach for resource constrained project scheduling prob-
lem was proposed by Montoya [24]. The algorithm was
evaluated with benchmark instances available at the PSPLIB
website. In terms of computational time and effective solu-
tion quality, their solution procedure is enough efficient. In
this paper, for the implementation of the genetic algorithm
they developed an object oriented conceptual model. In
OOP implementation, they represented each chromosome
as an object having its own features. There are two types of
schedule generation scheme in the case for solving RCPSP.
In this paper, they used a series schedule generation scheme.
In this work for implementing the operators of GA, they also
used two types of crossovers: one point crossover and two
point crossover. The evolution strategy is implemented in
this algorithm using the basis of elitist list. The strategy is
consisted of selection of the best individual and utilization
of it to produce a number of important individuals for the
next generation. The population size was fixed to 150. This
OOP model showed an efficient convergency.

4 Proposed CRO‑GA hybrid model

Chemical reaction optimization (CRO) is inspired by the
nature of chemical reactions and a hugely used popula-
tion based metaheuristic for optimization. It was proposed
by Albert Lam and Li [21]. It is an approach that cou-
ples chemical reactions with an optimization technique.
There are several essential attributes of each molecule
that takes part in the basic operation of CRO. These are
molecular structure (�), potential energy (PE) and kinetic
energy (KE). Molecular structure (�) captures a solution
of the problem. There are four elementary reactions of
CRO which are on-wall ineffective collision, decompo-
sition, synthesis and intermolecular ineffective collision.
A genetic algorithm is a search based heuristic which is
inspired from the biological process. The fundamental
concept of the GA design is based on the principles posed

by Garg to find the survival of the fittest Garg [11]. GA
was inaugurated as a computational metaphor of adap-
tive systems. GA is modeled by combining the principles
of the evolution through natural selection, employing a
population of individuals that undergo selection in the
presence of variability inducing operators such as muta-
tion and recombination (crossover). For the evaluation of
individuals, a fitness function is used and reproductive
success depends on fitness value.

In the proposed CRO-GA based hybrid model, CRO
uses or shares GA ′ s selection operator. Ordinarily, CRO
chooses molecules randomly from the population for exe-
cuting any of the four reactions. There remains a possibil-
ity of not adopting good molecules, which may not pro-
duce better molecules comparing with reactant molecules.
We have combined the theory of thermodynamics and evo-
lution in our hybrid CRO-GA model. We have designed
a priority based selection operator for CRO which selects
supreme molecules for a collision.

In the proposed model, CRO searches for the optimal
solution both locally and globally by adopting the priority
based selection operator and operating its basic four opera-
tors in the solution space at first then it will transfer its
solution space to GA for a better outcome. GA will use all
CRO modified molecules as chromosomes to form its own
population. Then GA executes its operation using native
selection, crossover and mutation operators. There exists
both good and cheap mean random quality molecules in
the initial CRO population. The priority based selection
operator is designed based on priority rule. Hence, favora-
ble molecules get further opportunity to react. As poor
molecules are discarded during each step of CRO execu-
tion, the final solution space of CRO becomes many times
better than the primary population. If CRO cannot ensure
optimal or near optimal solutions even in the final stage,
GA will try. GA uses CRO’s final solution space but no
priority selection is needed as the solution space is already
good enough. GA uses random selection operator.

In the proposed model, CRO selects prioritized mol-
ecules from the population where GA′ s selection empha-
sizes random molecules which ensures more robustness
than single CRO or GA as there is a combination of ran-
domness and priority. Sometimes CRO gets stuck at local
minima, in those cases GA assists to escape it and reach
to global minima. If CRO perceives expected solution, GA
will never be triggered and the execution will be termi-
nated. Two termination conditions have been used in the
proposed CRO-GA model: first the specified number of
iterations passed; second expected solution is found. For
GA we have always used 20 generations and it also follows
the aforementioned termination conditions. The flowchart
of our proposed CRO-GA hybrid model is shown in Fig. 3.

524 Evolutionary Intelligence (2023) 16:519–537

1 3

4.1 Population generation

The population is generated and the values of different
parameters such as PopSize, MoleColl, buffer, initial KE,
KELossRate, thresholds (� , �) are initialized in the initial-
ization phase. The population is made up with a number
of solutions or molecules. Every solution is a sequence of
all activities which satisfies the precedence relation. An
activity is said to be eligible, if its all predecessors have

already been added to the solution sequence. A list S will
be a partial feasible solution of our problem, if we add
some activities randomly from the eligible set. When an
activity is added to S, the eligible set and S are updated.
By iteratively doing this, when the eligible set is empty,
we get one feasible solution. The pseudo-code for our pro-
posed population generation is shown in Algorithm 1.

start

Initialization

Intermolecular Collison?

Take one solution
(priority based selection)

Take two solutions
(priority based selection)

Decomposition? Synthesis?

On-wall ineffective
 collision Decomposition Synthesis

Inter-molecular
ineffective collision

Check for new optimal solution

Yes
No

YesYesNo No

Is termination conndition met?
No

Is expected solution met?
Yes

Use CRO molecules as GA population

Selection

Crossover

Mutation Is termination conndition met?

No

Return best solution

End

Yes

Yes

No

Fig. 3 Flowchart of CRO-GA

525Evolutionary Intelligence (2023) 16:519–537

1 3

By applying the aforementioned population generation
algorithm to the example in Fig. 1 for two times, two feasible
solutions are generated shown in Fig. 4.

4.2 Operators used in CRO

In this section we have designed some operators which
are used as primary operators of CRO. The operators are
described below.

4.2.1 Priority based selection

We have designed a new selection operator named priority
based selection operator. Priority based selection has been
used for molecule selection. A molecule with lower fitness
value (makespan value) has a higher probability to select for
CRO operation. Priority calculation of CRO follows Eq. 1.

This operator helps the method to select molecules with
lower fitness (makespan) value. Since the objective of this
method is to find the minimum makespan, this selection
increases the efficiency of this method. The whole popu-
lation is sorted according to priority in descending order.
After sorting the population in descending order, the mol-
ecules with the minimum fitness values come to the front
of the sorted population list that leads to select molecules
randomly from the first half of the sorted population for
CRO’s elementary reactions.

(1)priority =
1

fitness

4.2.2 On‑wall ineffective collision

This elementary reaction is used for local search in CRO.
We randomly pick a molecule (solution) from the popula-
tion and select one random position, i from the selected
solution S. Then the elements of i and i +1 positions are
swapped which create a new molecule S′ . If this breaks the
precedence relation, we have to abandon this operation and
choose a new position i and do the same thing. If the new
molecule’s potential energy (PE) is less than the original,
then the original molecule S is replaced by the new one S′ .
This operation can be written as S → S′ . The on-wall inef-
fective collision for a feasible molecule of RCPSP is shown
in Fig. 5. The pseudo-code of on-wall ineffective collision
is given in Algorithm 2.

4.2.3 Decomposition

For exploring another area of the search space decomposi-
tion is used. A newly generated molecule after performing
decomposition gets an enormous change in its molecular
structure. The output of this operator is two molecules S1
and S2 . Molecule S1 gets the sequence of the first half of
its original molecule S and molecule S2 gets the sequence
of the second half of its original molecule S. The rest parts
of the solutions are shuffled according to their own patents
following the precedence relationship. The operation of this
operator can be represented as S → S1 + S2.

A solution with the minimum PE is kept in the popula-
tion. Figure 6 represents the decomposition reaction.

7645231

7654321

Fig. 4 Population generation

S

S' 7645321

7654321

Fig. 5 On-wall ineffective collision

526 Evolutionary Intelligence (2023) 16:519–537

1 3

The pseudo-code of decomposition is shown in
Algorithm 3.

4.2.4 Inter molecular ineffective collision

This reaction affects the solution structure but the number
of solutions remains unchanged. Two solutions, say S1 and
S2 are taken randomly and two random points are also taken
within the solution length. As a result, both the solutions are
divided into three parts. The odd parts of S1 are rearranged
following the solution’s sequence of S2 and the even part
remains unchanged to form new solution S′

1
 . The same thing

is done in S2 to form new solution S′
2
 . The reaction can be

represented as S1 + S2 → S�
1
+ S�

2
.

A solution with the minimum PE is kept in the popula-
tion. Figure 7 shows this reaction for RCPSP. The pseudo-
code of inter molecular ineffective collision is given in
Algorithm 4.

4.2.5 Synthesis

Synthesis is reverse to decomposition. Here, two molecules
collide with each other and produce one molecule. Let S1
and S2 are two molecules. After a collision, if S is fused
molecule, then it can be represented as S1 + S2 → S. Here, we
randomly pick two solutions such as S1 , S2 from the popula-
tion. Firstly, a contiguous block of activities is selected from
S1 by randomly drawing two positions n1 , n2 . Secondly, it

Fig. 6 Decomposition

S1 6754321

Content of S1 sequenced as S2 Fixed sequence from S1

S2 7534162

S1'

S2'

7654312

7534621

Content of S1 sequenced as S2

Content of S2 sequenced as S1 Fixed sequence from S2 Content of S2 sequenced as S1

Fig. 7 Inter molecular ineffective collision

527Evolutionary Intelligence (2023) 16:519–537

1 3

determines the smallest position of the contiguous block in
S2 denoted as n3 and largest position of the block in solu-
tion S2 denoted as n4 . The new solution S is then built by
concatenating:

1. The activities in positions 1 to n3 - 1 of S2.
2. The activities in positions n3 to n4 of S2 which are the

predecessors to any activity of the contiguous block.
3. The activities of the contiguous block.
4. The activities in positions n3 to n4 of S2 which are the are

successors to any activity of the contiguous block.
5. The activities in positions n4 + 1 to last of S2.

The activities of n3 to n4 of S2 which are not predecessors or
successors of the block are called free activities. Free activi-
ties are added before the block or after the block randomly
without violating any precedence relationship. The scenario
is given in Fig. 8. The pseudo-code of synthesis is shown
in Algorithm 5.

7645321S E S 6735412 E

n1 n4n2 n3

6745321 ES

S 1 42 3 5

2 3 5S 1

7 6 E

7 6 E

7 6 E

7 6 E

4

2 3 5

2 3 5

1S

1Sstep-1

step-2

step-3

step-4

step-5

parent-1 parent-2

Fig. 8 Synthesis

C1 7654321

C2 7645231

C1'

C2'

7645321

7654231

Odd part Even part

Fig. 9 Crossover

528 Evolutionary Intelligence (2023) 16:519–537

1 3

4.3 Operators used in GA

We have used three operators of GA to solve RCPSP. The
operators are described below.

4.3.1 Selection

The random rule based selection has been used for chromo-
some selection. GA selects a chromosome randomly from
its population.

4.3.2 Crossover

Crossover searches the solution space globally. Two chro-
mosomes are selected from population randomly and one
point crossover is performed on them. We take one random
point within the chromosome length. As a result, both of the
chromosomes are divided into two parts. The odd part of
each chromosome remains unchanged and the even part of
each chromosome is rearranged following the sequence of
the other chromosome. We can represent the operation as C1
+ C2 → C′

1
 + C′

2
 . Figure 9 shows this operation for RCPSP.

The pseudo-code of crossover is given in Algorithm 6.

4.3.3 Mutation

Mutation performs a local search for GA. Randomly one
chromosome is chosen and mutation is executed by follow-
ing a threshold. A random number is taken from a uniform
distribution from 0 to 1. If the number is greater than the
threshold value, a mutation occurs otherwise not. We have

used 0.4 as a threshold value. Mutation follows CRO′ s on-
wall ineffective operator remaining a slight difference. The
first position is taken randomly but the second position is
taken by adding a specific number with the first position.
The scenario is depicted in Fig. 10. The pseudo-code of
mutation is shown in Algorithm 7.

4.3.4 Parameter setting

We implemented the proposed CRO-GA in Python 3.6
and tested on a personal computer with Intel Core i5 (2.50
GHz) and 4 GB RAM under Windows 10 operating system
(64 bit). Among the state of the art algorithms for RCPSP,
MAOA showed better performence. MAOA was imple-
mented using C++ Zheng and Wang [32]. For fair compari-
son, we also implemented MAOA in Python 3.6 and tested
on the same environment. There are three key parameters in
MAOA they are the number of group (N), the group size (S)
and the acceptance probability (�). The best combination of
parameters for MAOA is given in Table 1.

There are eight main parameters of CRO-GA. They are
PopSize, Alpha, Iteration, KELossRate, MolColl, InitialKE,
Beta, Mutation Threshold. For the experiment we set differ-
ent values to these parameters. To achieve the best results,
values of the parameters are tuned. Parameter tunings are
showed in Fig. 11(a) to 11(d). The parameters used in the
proposed CRO-GA are shown with their values in Table 2.
From the Figure 11(a) to 11(d), we can observe that for �
= 3, KElossRate = 0.4 and � = 0.6, we get best solutions.

C

C'

7654321

7624351

Fig. 10 Mutation

Table 1 Parameters used in
MAOA

Dataset N S �

J30 7 5 0.9
J60 5 10 0.9
J90 5 10 0.9
J120 5 10 0.9

529Evolutionary Intelligence (2023) 16:519–537

1 3

5 Experimental dataset

For analyzing the performance of our proposed CRO-
GA algorithm, the project duration was determined using
serial or parallel scheduling. We used the PSLIB datasets
given in the literature Kumar and Vidyarthi [20]. This

benchmark dataset contains four different sets named
J30, J60, J90, and J120 with project of 30, 60, 90, and
120 activities respectively. Here, J30, J60, and J90 sets
contain 480 instances for each of them but J120 set con-
tains 600 instances. The optimal solutions are given only
for J30 instances and the upper bounds and lower bounds
are provided for J60, J90 and J120 in the literature and
these can be found in psplib. In this experimental work,
two lower bounds were considered one was best lower
bound and another one was critical path method lower
bound. A critical path method (CPM) lower bound was
estimated by assuming endless resources (relaxation of
resource constraints) and solving the simplified prob-
lem. To evaluate our proposed model we generated 1000,
5000 and 50000 schedules. The efficiency of the pro-
posed model was measured by considering the value of
the average deviation and the value of the number of
optimal found. The project makespan has been computed
by randomly choosing serial or parallel scheduling as the

Table 2 Parameters used in CRO-GA

Symbol Description Value

PopSize Population Size 100
Alpha On-Wall and Decomposition Criteria 3
Iteration No. of Execution 2000
KELossRate Kinetic Energy Loss Rate 0.4
MolColl Uni and Inter Molecular Criteria 0.6
InitialKE Initial Kinetic Energy 0.51
Beta Synthesis Criteria 0.6
Threshold Mutation Criteria 0.4

(a) Parameter tuning for alpha. (b) Parameter tuning for beta.

(c) Parameter tuning for iteration (d) Parameter tuning for KE Loss Rate.

Fig. 11 Parameter Tuning for some parameters

530 Evolutionary Intelligence (2023) 16:519–537

1 3

fitness function. We measured the average deviation of
project duration for every dataset and also calculated the
number of times optimal found.

The average deviation from optimal and average devi-
ation from critical path method lower bound are rep-
resented by Avg.Dev.opt and Avg.Dev.Cpm.lb respec-
tively. Eq. 2 is used to calculate Avg.Dev.opt and Avg.
Dev.Cpm.lb.

Here, xi is the calculated makespan and x′
i
 is optimal or criti-

cal makespan for instance i.
The number of optimal solutions is calculated using the

Eq. 3.

Here, n is the number of optimal instances and N is the total
number of instances.

It is clear that the smaller average deviation and greater
number of optimal solutions indicate better algorithm.

(2)

Avg.Dev.opt �� Avg.Dev.Cpm.lb =
1

N

N∑

i=1

xi − x�
i

x�
i

× 100

(3)Noptimal =
n

N
× 100

6 Experimental results

First of all, we show the effect of genetic algorithm after
combining it with chemical reaction optimization algo-
rithm. The result of the proposed hybrid algorithm are
compared with other existing state of art works where it
can be observed that CRO-GA performs better than other
metaheuristic algorithms in terms of average deviation, num-
ber of optimal solution and execution time.

6.1 Effect of GA in hybrid CRO‑GA

To show the influence of GA in CRO-GA, we implemented
GA, CRO and MAOA algorithms in our system and com-
pared the performance with our proposed hybrid algorithm.
The performance of the proposed model was evaluated using
different numbers of schedules e.g., 1000, 5000 and 50000
schedules. We executed GA, CRO, MAOA and CRO-GA
five times with the mentioned dataset and the best results are
reported in Table 3. Besides this, for fair comparison MAOA
is combined with GA and the results are shown in Table 3.
Since the optimal solutions are known for J30 instances,
there is no need of calculating critical path method (CPM)
lower bound deviation for J30 and the corresponding cells of

Table 3 Comparison
between CRO-GA and other
methaheuristics

Dataset Algorithm Avg.Dev.opt(%) Or Avg.
Dev.lb(%)

Avg.Dev.Cpm.lb(%) No of Optimal
Found(%)

1000 5000 50000 1000 5000 50000 1000 5000 50000

J30 GA 0.18 0.071 0.02 N/A N/A N/A 88.95 96.88 99.38
CRO 0.169 0.0693 0.02 N/A N/A N/A 89.16 97.08 99.58
MAOA 0.17 0.06 0.01 N/A N/A N/A 89.87 97.13 99.58
MAOA-GA 0.17 0.058 0.01 N/A N/A N/A 89.87 97.29 99.58
CRO-GA 0.158 0.052 0.00 N/A N/A N/A 90.00 97.70 100

J60 GA 1.74 1.13 0.86 11.74 10.97 10.65 72.70 74.00 76.25
CRO 1.70 1.10 0.84 11.73 10.97 10.649 73.00 74.16 76.25
MAOA 1.75 1.32 0.84 11.67 10.84 10.64 73.00 74.20 76.25
MAOA-GA 1.63 1.09 0.84 11.66 10.84 10.64 73.00 74.20 76.46
CRO-GA 1.60 1.02 0.82 11.64 10.80 10.627 73.13 74.38 76.70

J90 GA 2.64 2.18 1.49 15.15 14.60 12.23 56.67 57.70 59.20
CRO 2.56 2.15 1.47 15.11 14.56 12.23 57.00 57.92 59.20
MAOA 3.25 2.10 1.25 15.72 15.03 12.47 56.67 57.50 58.96
MAOA-GA 3.00 2.00 1.25 15.65 15.00 12.47 57.08 57.70 58.96
CRO-GA 2.03 1.83 1.22 14.83 14.21 12.15 57.35 58.62 60.21

J120 GA 4.30 3.08 2.50 33.92 32.50 31.50 31.67 33.15 34.17
CRO 4.26 3.06 2.51 33.88 32.47 31.50 32.50 33.15 34.17
MAOA 5.23 3.57 2.94 33.87 32.64 31.02 32.15 32.92 34.17
MAOA-GA 4.85 3.50 2.90 33.87 32.60 31.02 32.15 32.92 34.17
CRO-GA 4.08 3.03 2.42 33.85 32.42 30.95 32.70 33.15 35.00

531Evolutionary Intelligence (2023) 16:519–537

1 3

Table 3 for J30 Avg.Dev.Cpm.lb(%) are denoted by N/A (not
applicable). Only average deviation from optimal has been
estimated in case of J30. Deviation from best and critical
path method lower bound are measured in case of J60, J90,
and J120 since the optimal deviation for them are not given.
The CRO and MAOA separately performed nearly same for
our dataset where GA showed poor performance in case of
both average deviation and number of optimal solutions. We
also compared the result of MAOA-GA with the result of
our proposed model where CRO-GA calculates the average
deviation 0.15%, 1.60% 2.03% and 4.08% which are lowest
comparing with other algorithms for 1000 number of sched-
ules. The proposed algorithm also shows better performance
than others for J60. J90 and J120 datasets.

We also compared the performance of CRO and CRO-
GA by illustrating the graphical representation which can
be seen in Fig. 12.The graphical representation shows that
the hybrid algorithm always perform better while comparing
with CRO algorithm alone. We also analyzed the percent-
age of GA triggering when CRO becomes unsuccessful to
find the optimal solution as shown in Fig 13 for each data-
set. Here, we did our experiment using 1000, 5000, 50000

schedules. It can be noticed from the Figure 13 that when
the number of schedules increases, the percentage of GA
triggering decreases.

6.2 Comparisons with other algorithms

We compared the performance of our proposed hybrid algo-
rithm with other four existing state of the art works e.g.,
A-PSO Kumar and Vidyarthi [20], MAOA Zheng and Wang
[32], ABC Jia and Seo [16], GA Montoya-Torres et al. [24]
that related to RCPSP. We analyzed the performance for each
dataset separately. Although the A-PSO, MAOA, ABC have
been experimented with similar number of schedules, GA
was not applied for the same number of schedules. Hence,
most of the comparisons for GA remain empty. Besides, all
these existing algorithms worked with J30, J60, and J120
datasets but they did not experiment with J90 dataset.

Tables 4, 5 and 6 show the comparison of experimental
results for J30, J60, J120 respectively between CRO-GA
and other mentioned algorithms. The algorithm that did
not refer any output for a particular case is denoted by ‘-’
(hyphen) in the tables. The percentage of average deviation

(a) Comparison of J30 dataset (b) Comparison of J60 dataset

(c) Comparison of J90 dataset (d) Comparison of J120 dataset

Fig. 12 Comparison of Avg.Dev between CRO and CRO-GA corresponding to Table 3 for all datasets

532 Evolutionary Intelligence (2023) 16:519–537

1 3

(a) Percentage of GA triggering
for 1000 schedules

(b) Percentage of GA triggering
for 5000 schedules

(c) Percentage of GA triggering
for 50000 schedules

Fig. 13 Comparison of percentage of GA triggering for different number of schedules

Table 4 Comparison of
CRO-GA with other algorithms
for J30

Algorithm References Avg.Dev.opt(%) No. of Optimal
Found(%)

 1000 5000 50000 1000 5000

 CRO-GA Present Work 0.158 0.052 0.00 90.0 97.70
 A-PSO Kumar and Vidyarthi [20] 0.28 0.06 – 88.92 97.48
 MAOA Zheng and Wang [32] 0.17 0.06 0.01 89.87 97.13
 ABC Jia and Seo [16] 0.49 0.17 – 86.60 91.74
 GA Montoya-Torres et al. [24] 2.0 – – – –

Table 5 Comparison of
CRO-GA with other algorithms
for J60

Algorithm References Avg.Dev.lb(%) Avg.Dev.cpm.lb(%) No. of Optimal
Found(%)

1000 5000 1000 5000 50000 1000 5000

CRO-GA Present Work 1.60 1.02 11.64 10.80 10.627 73.13 74.38
A-PSO Kumar and Vidyarthi [20] 3.02 2.76 11.94 11.12 – 73.02 75.58
MAOA Zheng and Wang [32] 1.75 1.32 11.67 10.84 10.64 73.00 74.20
ABC Jia and Seo [16] 3.35 3.02 12.35 11.96 – 72.50 74.03
GA Montoya-Torres et al. [24] 5.0 – – – – – –

533Evolutionary Intelligence (2023) 16:519–537

1 3

and percentage of the number of optimal solutions obtained
can be seen for J30, J60 and J90 datasets in Tables 4, 5
and 6. The proposed CRO-GA algorithm showed 0.158%,
0.052% and 0.00% average deviation for 1000, 5000 and
50,000 schedules for J30 dataset and solved 90% and 97.70%
instances optimally which are better than other algorithms.
Since CRO-GA also performed better for 50,000 schedules,
it can be stated that the hybrid algorithm can explore the
search space effectively.

The performance analysis of the proposed algorithm
for J60 and J120 datasets has been done by comparing the
percentage of average deviation from the best lower bound
and critical path lower bound since the optimal results
for these datasets are not given. For J60, the proposed

method was evaluated for 1000 and 5000 schedules in case
of average deviation from best lower bound where it was
executed using 1000, 5000 and 50000 schedules for aver-
age deviation from critical path lower bound. Although the
proposed hybrid algorithm performs almost similar while
comparing for critical path lower bound, it shows 1.60%
and 1.02% average deviation from best lower bound which
is almost double than A-PSO and ABC algorithm for both
1000 and 5000 schedules. The percentage of calculating
number of optimal solutions using CRO-GA is nearly same
with other algorithms.

Further, the similar results have been reproduced for
J120 dataset which have been reported in Table 6. The pro-
posed method performs better for measuring the percentage

Table 6 Comparison of
CRO-GA with other algorithms
for J120

Algorithm References Avg.Dev.lb(%) Avg.Dev.cpm.lb(%) No. of Optimal
Found(%)

1000 5000 1000 5000 50000 1000 5000

CRO-GA Present Work 4.08 3.03 33.85 32.42 30.95 32.70 33.15
A-PSO Kumar and Vidyarthi [20] 8.02 7.24 34.93 32.49 – 30.75 32.96
MAOA Zheng and Wang [32] 5.23 3.57 33.87 32.64 31.02 32.15 32.92
ABC Jia and Seo [16] 8.12 7.42 36.84 35.79 – 29.50 31.20

(a) Comparison of J30 dataset (b) Comparison of J60 dataset

(c) Comparison of J120 dataset

Fig. 14 Comparison of CRO-GA and other algorithms with respect to Avg.Dev.cpm.lb for three datasets

534 Evolutionary Intelligence (2023) 16:519–537

1 3

of optimal solution for J120 dataset which are 32.70% and
33.15% respectively.

The graphical representations of performance analysis of
our proposed algorithm with MAOA, and A-PSO has been
shown in Fig. 14(a) to 14(c). Since the MAOA was not
tested for J90 dataset Zheng and Wang [32] in the existing
study, for fair comparison, we executed MAOA with J90
dataset in our environment and the graphical representation
of comparison between CRO-GA and MAOA with respect
to J90 dataset has been shown in Fig. 15.From the above
performance analysis of the proposed algorithm, it can be
seen the CRO-GA provides much better results than other
heuristics and metaheuristic algorithms considering the
same number of schedules. The reason behind the better
performance of CRO-GA can be the hybridization of CRO
with GA. While CRO failed to provide optimal results for
some instances, the operators of GA are executed on these
instances to calculate the minimum makespan.

6.3 Run time comparison

We compared the execution time of our proposed model
with GA, CRO, MAOA and MAOA-GA which were imple-
mented in our environment. The execution time of each algo-
rithm was calculated by setting the best parameter values
given in Tables 1, 2. We calculated the execution time for
all the datasets with different number of schedules that has

been reported in Table 7. Although the run time of GA and
CRO algorithm is nearly similar, the experimental results
for MAOA and MAOA-GA are different. Our proposed
CRO-GA takes less time than both MAOA and MAOA-GA.
The average running time of the proposed model is 6.65s,
43.56s and 463.24s for 1000, 5000 and 50000 schedules. We
also illustrated graphical representations of execution time
among MAOA, MAOA-GA and CRO-GA which are shown
in Fig. 16(a) to 16(c).

After the performance analysis of our proposed hybrid
algorithm, it can be concluded that CRO-GA is more effi-
cient and effective in both cases of deviation and computa-
tional time in solving resource constrained project schedul-
ing problem.

6.4 Comparison using Student’s t‑test

From the above discussion it can be seen that our proposed
method has better performance over all other compared algo-
rithms both in average deviation and execution time. Now
we want to show a statistical significance test over the algo-
rithms CRO-GA and MAOA. Here, 50,000 schedules were
used for all datasets in the experiment. We have executed both
CRO-GA and MAOA eight times for each dataset using same
experimental setup. There are two hypothesis for the experi-
ment that are stated as H0 : There is no statistical difference
between CRO-GA and MAOA and alternative hypothesis, H1
: CRO-GA is statistically significant than MAOA. We define
significance level, � = 0.05. Since the number of test cases is
8, the degree of freedom, dof = (8+8-2) = 14. The decision
state value that means tvalue is calculated using Eq. 4.

Here v1 , v2 are average of deviation values of two algorithms
and std1 , std2 are standard deviation of deviation values of
two algorithms respectively.

We get the critical value, tcrit = 2.145 from the t-distribu-
tion table at � = 0.05 and dof=14 values. The null hypoth-
esis is set that there is no significance difference between
CRO-GA and MAOA. The null hypothesis can be rejected

(4)tvalue =
��v1 − v2

��
√
std1 − std2

Fig. 15 Comparison of CRO-GA and MAOA for J90 dataset

Table 7 Execution time
comparison between CRO-GA
and MAOA

Algorithm 1000 schedules Avg.
Time(s)

5000 schedules Avg.Time(s) 50000 schedules Avg.Time(s)

J30 J60 J90 J120 J30 J60 J90 J120 J30 J60 J90 J120

GA 0.41 3.60 5.50 11.20 2.00 20.30 49.00 99.23 29.26 195.00 595.26 1020.00
CRO 0.41 3.60 5.50 11.20 2.11 20.38 49.20 99.50 29.31 196.00 596.00 1020.00
MAOA 0.85 4.55 6.12 19.83 3.23 25.00 52.24 105.27 35.17 210.00 615.35 1026.89
MAOA-GA 0.92 5.00 6.30 20.31 4.00 25.00 53.40 106.12 35.17 212.76 617.21 1027.00
CRO-GA 0.492 3.72 5.83 12.57 2.52 21.42 50.00 100.32 29.34 199.86 600.77 1023.00

535Evolutionary Intelligence (2023) 16:519–537

1 3

and it can be said that CRO-GA and MAOA are significantly
different if tvalue tcrit or tvalue < −tcrit.

Using the values from Table 8 we calculated tvalue = 2.22.
Since tvalue is greater than tcrit = 2.145, we can reject the null
hypothesis and it can be said that there is a statistical differ-
ence between CRO-GA and MAOA algorithms in case of J30
dataset. In the above case, v1 = 0.0151, v2 = 0.0123 and std1
= 0.00372 , std2 = 0.00189.Similarly using the values from
Table 9 we calculated tvalue = 2.21. Since tvalue is greater than
tcrit = 2.145, we can reject the null hypothesis and it can be
said that there is a statistical difference between CRO-GA and

(a) Time comparison in case of

1000 schedules.

(b) Time comparison in case of

5000 schedules.

(c) Time comparison in case of

50000 schedules.

Fig. 16 Comparison of Execution time among MAOA, MAOA-GA and CRO-GA for different number of schedules

Table 8 Average deviation
value for J30 dataset

No MAOA CRO-GA

1 0.0142 0.012
2 0.015 0.01
3 0.013 0.0143
4 0.02 0.0127
5 0.0125 0.011
6 0.018 0.0134
7 0.0173 0.015
8 0.011 0.01

Table 9 Average deviation
value for J60 dataset

No MAOA CRO-GA

1 10.69 10.65
2 10.72 10.68
3 10.69 10.64
4 10.80 10.76
5 10.64 10.62
6 10.77 10.66
7 10.74 10.69
8 10.69 10.62

Table 10 Average deviation
value for J120 dataset

No MAOA CRO-GA

1 31.23 31.13
2 31.08 31.04
3 31.04 31.02
4 31.17 31.09
5 31.13 31.10
6 31.07 31.03
7 31.09 31.02
8 31.13 31.04

536 Evolutionary Intelligence (2023) 16:519–537

1 3

MAOA algorithms in case of J60 dataset. In the above case,
v1 = 10.72 , v2 = 10.67 and std1 = 0.051 , std2 = 0.045. Simi-
larly using the values from Table 10 we calculated tvalue = 2.24.
Since tvalue is greater than tcrit = 2.145, we can reject the null
hypothesis and it can be said that there is a statistical differ-
ence between CRO-GA and MAOA algorithms in case of J120
dataset. In the above case, v1 = 31.12 , v2 = 31.06 and std1 =
0.06 , std2 = 0.04. After the above three t-tests, it indicates that
CRO-GA is statistically significant than MAOA for all datasets.

7 Conclusions

Over the last few years, RCPSP has become more vital as it has
a fundamental impact on production and manufacturing. This
work presents the well known optimization problem of project
scheduling which is implemented by combining two popula-
tion based metaheuristics called Chemical Reaction Optimiza-
tion (CRO) and Genetic Algorithm (GA). Priority based selec-
tion operator has been integrated with CRO framework. This
selection operator selects most fit solutions, good solutions
have a higher probability of regenerating more fit solutions to
reach the global optimal. As a result, our proposed algorithm
has received a higher convergence rate. The operators of CRO
and GA have been redesigned to solve RCPSP. GA has been
combined with CRO for getting advantages from both thermo-
dynamics and biological evolution concepts. The hard tasks
during the implementation of RCPSP were estimating project
duration using serial or parallel rules where all resource restric-
tions and precedence restrictions had to be maintained. The
results of the CRO-GA algorithm are compared with pertinent
algorithms such as A-PSO, MAOA, ABC, GA and the results
show that CRO-GA outperforms the other algorithms. The
additional priority based selection operator plays a significant
role in the quick convergence of CRO. GA recoups CRO in
case of non optimality. The integration of CRO, priority based
selection operator and GA constructs hybrid CRO-GA method
which ensures less average deviation and requires minimum
computation time.

Although the experimental results show that CRO-GA
works very good but converging rate is little bit slow for
relatively long projects. Moreover, in a future complete
study on population generation, more efficient parameter
generation and more efficient hybrid technique for CRO
may provide higher excellence in this field.

References

 1. Akbari R, Zeighami V, Ziarati K (2011) Artificial bee colony
for resource constrained project scheduling problem. Int J Ind
Eng Comput 2(1):45–60

 2. Baar T, Brucker P, Knust S (1999) Tabu search algorithms and
lower bounds for the resource-constrained project scheduling
problem. Meta-Heuristics. Springer, pp 1–18

 3. Barham R, Sharieh A, Sliet A (2016) Chemical reaction optimi-
zation for max flow problem. IJACSA). Int J Adv Comput Sci
Appl 7(8)

 4. Blazewicz J, Lenstra JK, Kan AR (1983) Scheduling subject
to resource constraints: classification and complexity.Discrete
Appl Math 5(1):11–24

 5. Boctor FF (1990) Some efficient multi-heuristic procedures for
resource-constrained project scheduling. Eur J Operational Res
49(1):3–13

 6. Boctor FF (1996) Resource-constrained project scheduling by
simulated annealing.Int J Prod Res 34(8):2335–2351

 7. Bouleimen K, Lecocq H (2003) A new efficient simulated anneal-
ing algorithm for the resource-constrained project scheduling
problem and its multiple mode version. Eur J Operational Res
149(2):268–281

 8. Brooks GH (1969) An algorithm for finding optimal or near opti-
mal solutions to the production scheduling problem. J Indl Eng
16(1):34–40

 9. Demeulemeester EL, Herroelen WS (1996) An efficient optimal
solution procedure for the preemptive resource-constrained pro-
ject scheduling problem. Eur J Operational Res 90(2):334–348

 10. Drexl A, Gruenewald J (1993) Nonpreemptive multi-mode
resource-constrained project scheduling. IIE Trans 25(5):74–81

 11. Garg H (2016) A hybrid pso-ga algorithm for constrained optimi-
zation problems. Appl Math Comput 274:292–305

 12. Herbots J, Herroelen W, Leus R (2004) Experimental investiga-
tion of the applicability of ant colony optimization algorithms for
project scheduling

 13. Islam MR, Arif IH, Shuvo RH (2019) Generalized vertex cover
using chemical reaction optimization. Appl Intell 1–21

 14. Islam MR, Saifullah CK, Asha ZT, Ahamed R (2018) Chemical
reaction optimization for solving longest common subsequence
problem for multiple string. Soft Comput 1–25

 15. Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial
particle swarm optimization for solving multi-mode resource-
constrained project scheduling problems. Appl Math Comput
195(1):299–308

 16. Jia Q, Seo Y (2013) Solving resource-constrained project schedul-
ing problems: conceptual validation of flp formulation and effi-
cient permutation-based abc computation. Comput Operations
Res 40(8):2037–2050

 17. Kabir R, Islam R (2018) Chemical reaction optimization for rna
structure prediction. Appl Intell 1–24

 18. Kelley JE (1963) The critical-path method: resource planning and
scheduling. Ind Scheduling

 19. Kolisch R, Sprecher A (1997) Psplib-a project scheduling problem
library: Or software-orsep operations research software exchange
program. Eur J Operational Res 96(1):205–216

 20. Kumar N, Vidyarthi DP (2016) A model for resource-con-
strained project scheduling using adaptive pso. Soft Comput
20(4):1565–1580

 21. Lam AY, Li VO (2010) Chemical-reaction-inspired metaheuris-
tic for optimization. IEEE Trans Evolutionary Comput
14(3):381–399

 22. Mahmud MR, Pritom RM, Islam MR (2017) Optimization of col-
laborative transportation scheduling in supply chain management
with tpl using chemical reaction optimization. In Computer and
Information Technology (ICCIT), 2017 20th International Confer-
ence of, pages 1–6. IEEE

 23. Merkle D, Middendorf M, Schmeck H (2002) Ant colony opti-
mization for resource-constrained project scheduling. IEEE Trans
Evolutionary Comput 6(4):333–346

537Evolutionary Intelligence (2023) 16:519–537

1 3

 24. Montoya-Torres JR, Gutierrez-Franco E, Pirachicán-Mayorga C
(2010) Project scheduling with limited resources using a genetic
algorithm. Int J Project Managt 28(6):619–628

 25. Nonobe K, Ibaraki T (2002) Formulation and tabu search algo-
rithm for the resource constrained project scheduling problem.
Essays and surveys in metaheuristics. Springer, pp 557–588

 26. Saifullah CK, Islam MR (2016) Chemical reaction optimization
for solving shortest common supersequence problem. Comput
Biolo Chem 64:82–93

 27. Truong TK, Li K, Xu Y (2013) Chemical reaction optimization
with greedy strategy for the 0–1 knapsack problem. Appl Soft
Comput 13(4):1774–1780

 28. Xu J, Lam AY, Li VO (2010) Parallel chemical reaction optimiza-
tion for the quadratic assignment problem. In World Congress in
Computer Science, Comput Eng Appl Comput, Worldcomp 2010

 29. Xu J, Lam AY, Li VO (2011) Chemical reaction optimization for
task scheduling in grid computing. IEEE Trans Parallel Distrib-
uted Syst 22(10):1624–1631

 30. Zhang H, Li H, Tam C (2006) Particle swarm optimization for
resource-constrained project scheduling. Int J Project Managt
24(1):83–92

 31. Zhang H, Li X, Li H, Huang F (2005) Particle swarm optimiza-
tion-based schemes for resource-constrained project scheduling.
Automation in Construc 14(3):393–404

 32. Zheng X-L, Wang L (2015) A multi-agent optimization algorithm
for resource constrained project scheduling problem. Exp Syst
Appl 42(15):6039–6049

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A hybrid metaheuristic method for solving resource constrained project scheduling problem
	Abstract
	1 Introduction
	2 Motivation
	3 Related works
	3.1 Simulated annealing (SA)
	3.2 Ant colony optimization (ACO)
	3.3 Multi agent optimization algorithm (MAOA)
	3.4 Genetic algorithm (GA)

	4 Proposed CRO-GA hybrid model
	4.1 Population generation
	4.2 Operators used in CRO
	4.2.1 Priority based selection
	4.2.2 On-wall ineffective collision
	4.2.3 Decomposition
	4.2.4 Inter molecular ineffective collision
	4.2.5 Synthesis

	4.3 Operators used in GA
	4.3.1 Selection
	4.3.2 Crossover
	4.3.3 Mutation
	4.3.4 Parameter setting

	5 Experimental dataset
	6 Experimental results
	6.1 Effect of GA in hybrid CRO-GA
	6.2 Comparisons with other algorithms
	6.3 Run time comparison
	6.4 Comparison using Student’s t-test

	7 Conclusions
	References

