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Abstract
Tree ensemble machine learning models offer particular promise for medical applications because of their ability to handle 
both continuous and categorical data, their faculty for modeling nonlinear relationships, and ease with which hyperparam-
eters can be adapted to improve performance. Modern methods include Random Forests, XGBoost and LightGBM, which 
are robust across many areas of diagnosis, prognosis, and medical treatments. Yet a critical limiting factor of ensembles 
is that they are difficult to interpret due to their complex inner workings. In medicine the ability to explain and interpret a 
model can be vital for clinical acceptance and trust. Diabetes and cardiovascular disease are two of the main causes of death 
in the United States. Identifying and predicting these diseases in patients is the first step towards stopping their progression. 
Utilizing the NHANES diabetes mortality data set, it is shown that the Random Forests ensemble with optimized hyper-
parameters yields a strong prognosis model. Importantly, conjoining Random Forests with SHapley Additive exPlanations 
(SHAP) yields reliable interpretability of the contributions and interactions among the features. SHAP results are compared 
to the recently proposed Agnostic Permutation algorithm.
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1  Introduction

Tree ensemble machine learning models hold particular 
promise for medical applications because of their ability to 
handle both continuous and categorical data, their faculty 
for modeling nonlinear relationships, and ease with which 
hyperparameters can be adapted to improve performance. 
Modern methods include Random Forests, XGBoost and 
LightGBM, which are robust across many areas of diag-
nosis, prognosis, and medical treatments. These techniques 
apply either bagging (bootstrap aggregating) or boosting as 
a way to reduce variance and bias. An example diagnostic 
application is brain tumor auto-segmentation for magnetic 
resonance imaging (MRI). Applications to prognosis include 
risk prediction customized to individual patients and non-
linear risk models with survival trees. Models can also be 
learned to assist in medical treatment by predicting what the 
potential effect of a specific treatment might be on a patient. 

Additionally, tree ensembles can be combined with natural 
language processing techniques to extract information from 
radiography reports to assign labels or to establish the basis 
for a bot for answering medical questions.

A critical limiting factor of ensembles is that they are 
difficult to interpret due to their complex inner workings. 
Yet in medicine the ability to explain and interpret a model 
can be crucial for human acceptance and trust. Accurate 
and reliable interpretation generates user trust in the model, 
provides insight into how a model may be improved and 
supports understanding of the process being modeled [1]. 
In some applications, simple models (e.g., linear models) 
have been preferred for their ease of interpretation, even 
if they yield lower accuracy than more complex models. 
For example, in Lundberg et al. [2] it was found that while 
complex machine learning models often provided high pre-
diction accuracy, their application in an actual clinical set-
ting was limited because their predictions were difficult to 
interpret and hence not actionable. Interpretable methods 
were preferred because of their ability to explain why a cer-
tain prediction was made for a patient, i.e., specific patient 
characteristics that led to the prediction.
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The motivation for this paper is that the incidence of dia-
betes continues to rise and has quickly become one of the 
most prevalent and costly chronic diseases worldwide. More-
over, a close link exists between diabetes and cardiovascular 
disease, which is the most prevalent cause of morbidity and 
mortality in diabetic patients [3]. Effective prognosis can 
contribute to understanding and provide actionable informa-
tion to clinicians. Using the NHANES epidemiology dataset 
(CDC Website), our predictive objective is the 10-year risk 
of death of individuals. This dataset contains relevant fea-
tures of diabetic patients, as well as their outcomes. This 
data is known to present a challenging non-linear prediction 
task [4].

Related research includes Dipnall et al. [5] who used 
Boosted Regression and imputation data sets from multiple 
chained regression sequences to identify 21 biomarkers asso-
ciated with depression. Boiaraskaia [6] studied comparative 
performance of machine learning algorithms in testing the 
impact of physical activity on cardiovascular D risk. Lasso 
Regression, Support Vector Machines and Random Forest 
classifiers all performed well on large sets of data-driven 
features, achieving greater than 82% classification accuracy. 
Single decision trees produced lesser results but yielded the 
most transparency and interpretability.

Vangeeduram et al. [7] utilized a large-scale dataset from 
the NHANES corpus to research the performance of a well-
known adult diabetes risk self-assessment screener and pro-
posed pediatric clinical screening guidelines for identifying 
youth with prediabetes and diabetes biomarkers. They then 
evaluated data-driven machine learning-based classification 
algorithms, several of which performed significantly better 
than the pediatric screening guidelines.

Dihn et al. [8] tested several machine-learning algorithms 
to identify and predict diabetes, with the Information Gain 
method applied to identify the key variables in predicting 
diseases. Using deep neural networks, Oh et al. [4] were 
able to predict depression from health and demographic 
factors found in both the NHANES and K-NHANES data-
sets. Their deep learning algorithm was also able to predict 
depression well on new data set, both cross temporally and 
cross nationally.

These studies represent medical research where reli-
able determination of feature importance is fundamental to 
model trust and actionability. This, and similar requirements 
in other problem domains, has motivated development of 
robust methods for for interpreting machine learning models 
and gauging feature rank [3, 9–13]. This body of research 
has resulted in several widely implemented methods. Yet, it 

is shown in Lundberg and Lee [1] that each of these meth-
ods can be inconsistent. The features that are most impor-
tant may not always be given the highest feature importance 
score. Alternatively, a model can change in a way that relies 
more on a particular feature, yet the importance estimate 
assigned to that feature decreases. This inhibits meaningful 
comparison among features and complicates the objective of 
conjoining interpretability with high levels of predictability. 
Moreover, it infers that gain and split count are not reliable 
measures of global feature importance, which is important 
given their common usage.

The contribution of our research is twofold: The first is 
to design a machine-learning approach that achieves strong 
results on an important medical problem, as measured by 
the Concordance Index (C-Index). The second is to provide 
an empirical comparison of two state-of-the art methods 
of computing feature importance. The remainder of the 
paper proceeds as follows. Section 2 summarizes the tree 
version of SHAP [1] used in this study. Section 3 outlines 
the recently proposed Agnostic Permutation method [14]. 
Section 4 describes the methodology of our experiment. 
Section 5 presents results and analysis. Section 6 provides 
concluding remarks.

2 � Decision tree SHAP

SHAP builds on cooperative game theory as expressed in 
the Shapley value for any feature �i:

Here |M| is the total number of features. S represents any 
subset of features that doesn’t include the ith feature and |S| 
is the size of that subset. fs() represents the prediction func-
tion for the model for the subset S.

SHAP values for a tree can be computed by estimating 
E[f (x)|xS] as shown in Algorithm 1 and then using Eq. (1) 
where fx(S) = E[f (x)|xS] . In Algorithm 1 x denotes a sample 
instance, the vectors a and b represent the left and right node 
indexes for each internal node. The vector t  contains the 
thresholds for each internal node, and d is a vector of indexes 
of the features used for splitting in internal nodes. The vec-
tor r represents the cover of each node (i.e., how many data 
samples fall in that sub-tree). The weight w measures what 
proportion of the training samples matching the conditioning 
set S fall into each leaf.

(1)𝜙i =
∑

S⊆M�i

S|!(|M| − |S| − 1)!

|M|!
[
f (S ∪ i) − f (S)

]
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Here, G is a function that gets called recursively to walk 
down the tree starting at the root node. w is the weight given 
to the predictions of each node. v is the prediction of a leaf 
node. raj and rbj are the number of data points in the left and 
right child nodes of node j, and rj denotes the number of data 
points in node j. To clarify, we parse key components below.

2.1 � Leaf nodes

The code segment below processes a given leaf node. It 
accepts the prediction of that leaf node and multiplies it by 
some weight. The weight is determined by the proportion 
of training data points that end up reaching that leaf node,

2.2 � Ignoring a feature

This code handles the case where the feature that is used at a 
node is not included in the subset of features that are allowed 
for making a split. Here is an example, with F2 not included.

This means that the training samples in both the left and 
right sub-tree of F2 should be included when making a pre-
diction. In other words, it is supposed that the model was 
not trained on F2. In this case, the algorithm computes the 
sum of the weighted predictions from both its left and right 
subtree.

2.3 � Including a feature

For cases when the feature at node is within the desired 
subset of features, then the algorithm can follow the left 
subtree or the right subtree, whichever path that the input 
data is assigned to via the split.

After Algorithm 1 computes fx = E[f (S) = E[f (x)|xS) ] 
it can be substituted into Eq. (1) to calculate �i . Additive 
feature attribution methods, which are simple models that 
are used to explain complex models, can then be applied. 
In particular

Here the z′
i
 variables represent the feature being observed 

( z�
i
= 1) or unknown 

(
z�
i
= 0

)
 and the �′

i
 are the feature attri-

bution values.

(2)g
(
z
�)

= �
0
+
∑M

i=1
�iz

�

i
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Intuitively, think of the tree model as a complex model 
that we seek to explain with a simple, linear model. Equation 
(2) specifies that we can select a single datapoint and let the 
model make a prediction. Its attribution can then be divided 
among the features based on how important those features 
are to the model’s prediction and based on whether the fea-
ture values push the prediction in the positive or negative 
direction. For example, say that we have trained a model on 
three features. If it is given no inputs to make a prediction, 
then its prediction would be the weighted average of all its 
training samples. For example, suppose that the weighted 
average of the training labels is 200. That is, if a model is 
given no feature inputs and asked to make a prediction, it 
would predict 200, the expected value based on the train-
ing labels. Now, assume we give the model a single sample 
observation for all three features, and the model returns a 
prediction of 300. The additive feature attribution model 
might assign feature importance to the three features as 
follows:

feature 1∶ +90
feature 2∶ +70
feature 3∶ −30
This asserts that feature 1 pushed the model’s prediction 

up by 90, feature 2 pushed the model’s prediction up by 70, 
and feature 3 pushed the model’s prediction down by 30. 
The result is to move from the expected value of 200 to a 
prediction of 330. In general, the calculated SHAP values 
are those values that push the model’s prediction from the 
average of the training labels to the model’s final prediction. 
When the SHAP values are summed for all model features 
the result is the model’s prediction.

3 � Agnostic permutation method

Traditionally, tree-based models have motivated measures 
of feature importance based on mean decrease in impurity. 
Impurity is quantified by the splitting criterion of the deci-
sion trees (Gini, Entropy, or Mean Squared Error). However, 
these methods can assign highest importance to features that 
may not be predictive on unseen data when the model is 
overfitting. Conversely, permutation-based feature impor-
tance is predictive on unseen data. Additionally, impurity-
based feature importance for trees is strongly biased and 
favors high cardinality features (typically numerical) over 
low cardinality features such as binary factors or categori-
cal variables with a small number of possible categories. 
Permutation-based feature importance does not exhibit such 
bias [14].

Historically, permutation feature importance measure-
ment was introduced by Breiman [13] for Random Forests. 
Fisher et al. [14] modernized this approach by developing 
a model-agnostic permutation method, which measures the 
increase in the prediction error of the model after permuting 
the feature's values and breaks the relationship between the 
feature and the true outcome. The importance of a feature is 
measured by calculating the increase in the model's predic-
tion error after permuting the feature. A feature is important 
if shuffling its values increases the model error, inferring that 
the model relied on the feature for the prediction. Likewise, 
a feature is unimportant if shuffling its values leaves the 
model error unchanged, indicating that the model ignored 
the feature for the prediction. Formally,
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In total, the permutation importance measure automati-
cally considers all interactions with other features. Permut-
ing the feature destroys the interaction effects with other 
features, inferring that the permutation feature importance 
takes into account both the main feature effect and the inter-
action effects on model performance. However, this can be 
limiting because the importance of the interaction between 
two features is included in the importance measurements of 
both features. Accordingly, the feature importance values 
may not add up to the total drop in performance.

4 � Experimental design

Our experimental design pipelines five components: 
NHANES diabetes data, the Random Forest algorithm, 
meta-heuristic hyperparameter search, C-Index performance 
metric, and feature interpretation by both SHAP and Agnos-
tic Permutation methods. Considering the NHANES diabetic 
data, an audit of missing values is reflected in the heatmap of 
Fig. 1. Missing data is a common occurrence in medical data 
due to a variety of reasons: measuring instrument malfunc-
tion, respondents not willing or not able to supply informa-
tion, or errors in the data collection process. Figure 1 shows 
each feature as a column, with values that are present shown 
in black and missing values in a lighter color. From this 
plot, it can be seen that many values are missing for systolic 
blood pressure (Systolic BP). A simple solution is to discard 
all instances containing a missing value in the Systolic BP 
feature. However, this may eliminate useful information.

Instead, we imputed missing values using stochas-
tic regression imputation. Formally, a feature column is 

designated as output y and the other feature columns are 
treated as inputs X . A regressor is fit on (X, y) for known y . 
Then, the regressor is used to predict the missing values of y . 
A stochastic modification attempts to preserve the variabil-
ity of the data by adding an error, or residual, term to each 
predicted value. The residual term is normally distributed 
with a mean of zero and a variance equal to the variance of 
the predictor used for imputing.

4.1 � Hyperparameter tuning

A common method of improving Random Forest perfor-
mance is by hyperparameter tuning, which is the task of 
approximating optimal hyperparameters for a learning algo-
rithm for a particular dataset. While grid search is popular, 
a potentially more effective way to search for an optimal 
set of hyperparameters is with a random search estimator. 
Expressly, a randomized search meta-estimator is an algo-
rithm that trains and evaluates a series of models by taking 
random draws from a predetermined set of hyperparameter 
distributions. The algorithm picks the most successful ver-
sion of the model it’s seen after training N different versions 
of the model with different randomly selected hyperparam-
eter combinations, leaving a model trained on a near-optimal 
set of hyperparameters. This method has an advantage over 
grid search in that the algorithm searches over distributions 
of parameter values rather than predetermined lists of can-
didate values for each hyperparameter.

4.2 � Performance metric

We employ the C-Index as a performance metric. The reason 
for its widespread use in medical studies is its efficacy in 
measuring the ability of a model to discriminate between dif-
ferent classes by quantifying how often [when considering 
all pairs of patients (A,B) ], the model predicts that patient A 
has a higher risk score than patient B , when in the observed 
data patient A actually died and patient B actually lived. 
Here, our model is a binary classifier, where each risk score 
is either 1 (the model predicts that the patient will die) or 0 
(the patient will live).

Formally, define permissible pairs of patients as pairs 
where the outcomes are different, concordant pairs as per-
missible pairs where the patient that died had a higher risk 
score (e.g., the model predicted 1 for the patient that died 
and 0 for the one that lived), and ties as permissible pairs 
where the risk scores are equal (e.g., the model predicted 
1 for both patients and 0 for both patients). The C-Index is 
then computed as

C − Index =
#concordant pairs + 0.5 ∗ #ties

#permissable pairs

Fig. 1   Patient feature heat map
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Hypothesis 1  A Random Forest ensemble, with parameters 
optimized by random search, will yield strong performance 
as measured by the C-Index, which has proven an effec-
tive measure of how well a model predicts time to an event. 
Strong performance has been assessed as 80 percent or 
higher [8].

4.3 � Feature importance

Perhaps most valuable is reliable assignment of feature 
importance to the results. In addition to enhancing inter-
pretability, feature importance can aid in guiding clinical 
actions, and evidencing accountability to medical regula-
tions. It is natural that different feature importance algo-
rithms will produce somewhat different results. We seek to 
test the significance of these differences.

While tree-ensembles lose the natural interpretability of 
single trees, the recent development of SHAP [1] provides a 
theoretically sound, cutting-edge method to explain predic-
tions made by models which are too complex to be under-
standable by humans. Given a prediction made by a machine 
learning model, SHAP values explain the prediction by 
quantifying the additive importance of each feature to the 
prediction. Although it is computationally expensive to 
compute SHAP values for general black-box models, in the 
case of trees and forests there exists a fast polynomial-time 

algorithm. Because of its recent development, we contrast 
the Agnostic Permutation algorithm [14] with SHAP.

Hypothesis 2  Reliable assessment of feature importance is 
fundamental to machine learning applications. Since SHAP 
[1] provides a unifying theoretical foundation, we hypothe-
size that it will yield a significantly different interpretation of 
variable importance than the heuristics used in the advanced 
version of Agnostic Permutation [14]. Other methods have 
been excluded considering the evidence provided in Sect. 1.

5 � Results and discussion

After applying multivariate imputation and a randomized 
search meta-estimator the Random Forests algorithm yields 
the following results Table 1.

Table 1   Experiment results
Train C-Index 0.8531
Validation C-Index 0.8454
Test C-Index 0.8297

Fig. 2   Aggregate feature impact
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While evaluation of such results can depend on specific 
objectives, generally C-Index results over 0.80 are indicative 
of a strong model [8]. Given this constructive result, it is 
important to interpret what the model has found in the data.

Particularly, we seek to know the underlying importance 
of the covariate values. Standard feature importance bar 
charts give a notion of relative importance in the training 
dataset but they do not represent the range and distribution 
of impacts that feature has on the model’s output; nor how 

the feature’s value relates to its impact. SHAP summary 
plots leverage individualized feature attributions to convey 
these aspects of a feature’s importance, while remaining 
visually concise.

Concretely, Fig. 2 sorts features by the sum of SHAP 
value magnitudes over all samples and uses those values to 
show the distribution of the impacts each feature has on the 
model output: color represents the feature value (red high, 
blue low). For example, it can be seen that being a woman 

Fig. 4   Permutation feature importance

Fig. 3   SHAP feature impor-
tance
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(sex = 2.0, as opposed to men for which sex = 1.0) has 
a negative SHAP value, meaning that it reduces the risk 
of dying within 10 years. Conversely, high Age and high 
Systolic Blood Pressure contribute positive SHAP values 
and are therefore associated with increased mortality. The 
density of the Age plot shows how common different ages 
are in the dataset, and the coloring shows a smooth increase 
in the model’s output as age increases. In contrast to Age, 
Systolic Blood Pressure only has a large impact for a minor-
ity of people with high blood pressure. The general trend of 
long tails reaching to the right, but not to the left, infers that 
extreme values of these measurements can significantly raise 
risk of death but cannot significantly lower risk.

We can also examine the mean absolute value of the 
SHAP values for each feature to obtain stacked bars for 
multi-class outputs as illustrated in Fig. 3. Here we see 
respective importance for both types of outcomes. This 
will be useful in comparing to the results of Agnostic 
Permutation.

5.1 � Contrasting agnostic permutation

For comparison we compute feature importance with the 
Agnostic Permutation [14] method. With this method, the 
importance of feature i is the regular performance of the 
model minus its performance with the values for feature i 
permuted in the dataset. In this way, one can assess how 
well a model without that feature would do without having 

to train a new model for each feature. The resulting feature 
importance is shown in Fig. 4.

Comparing Figs. 3 and 4 suggests that SHAP and Agnos-
tic Permutation do not produce the same importance distri-
bution for model features. A pairwise t-test confirms this, 
yielding

Additional perspective is provided in Table 2, which 
shows the comparative feature importance ordering of SHAP 
versus Agnostic Permutation. There are consistencies among 
the top rankings for both methods, such as Age, Sex, and 
Systolic BP. Conversely, a marked difference is seen in the 
importance ranking of Diastolic BP. Other notable differ-
ences are observed in Pulse Pressure, White Blood Cells, 
and Serum Cholesterol. These variations in importance may 
convey different actionable information.

Based upon study outcomes, Hypothesis 1 is supported. 
Our model yields a C-Index of 0.8297 (> = 0.80).

p = 0.000035

Table 2   Feature importance comparison

Feature SHAP importance Permutation 
importance

Age 1 1
Sex 2 2
Poverty index 3 4
Sedimentation rate 4 5
Pulse pressure 5 8
Systolic BP 6 6
BMI 7 9
White blood cells 8 11
Serum albumen 9 7
Serum cholesterol 10 14
Race 11 16
Serum magnesium 12 10
Serum protein 13 13
TIBC 14 12
Red blood cells 15 15
Diastolic BP 16 3
TS 17 17
Serum iron 18 18

Fig. 5   SHAP dependence between age and sex

Fig. 6   SHAP dependence between poverty index and age
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For Hypothesis 2, SHAP and Agnostic Permutation gen-
erated significantly different feature importance structures 
as postulated. Based upon its unifying mathematical theory, 
we propose that the differences favor SHAP.

5.2 � Potential actionable dependencies

The SHAP interpretation can probe deeper using depend-
ence plots. These show the SHAP value for a given feature 
for each data point, and color the points in using the value 
for another feature. This helps to explain the variation in 
SHAP value for a single value of the main feature. In par-
ticular, it is of interest to explore dependencies among the 
top contributing features from Figs. 2 and 3. For example, 
Fig. 5 shows the interaction between Age and Sex.

We see that while Age > 60 is generally riskier (increas-
ing positive SHAP value), being a woman appears to miti-
gate the impact of Age. This parallels evidence that women 
generally live longer than men.

Next consider the dependencies between Poverty Index 
and Age shown in Fig. 6.

Observe that the impact of the Poverty Index transforms 
quickly from positive to negative SHAP values, and for 
higher income individuals Age appears to correlate with 
variation in the impact of the Poverty Index. While the Pov-
erty Index is indirectly associated with 10-year mortality 
risk, it appears that reducing its underlying causes could be 
actionable.

Lastly, Fig. 7 indicates that high blood pressure is con-
cerning when a person is young (blue dots associated with 
high Systolic BP). Positive SHAP values are less surpris-
ing as Age increases, as it appears to require time for high 
blood pressure to lead to fatal complications. Recent reports 
put an upper bound for normal Systolic BP pressure at 129. 
Figure 7 suggests that the danger level is about 137, which is 
considered Stage 1 hypertension. (https://​www.​health.​harva​

rd.​edu/​blog/​new-​high-​blood-​press​ure-​guide​lines-​20171​
11712​756)

6 � Summary and conclusion

This study was motivated by two theses. Firstly, that effec-
tive prognosis of diabetic risk can contribute to under-
standing and provide actionable information to clinicians. 
Secondly, that accurate interpretation of medical prognosis 
models can generate user trust in the model, provide insight 
into how a model may be improved, support understanding 
of the process being modeled, and provide a data-driven 
basis for strategic action. Conjoining the robustness of tree 
ensembles with modern feature importance algorithms pro-
vided a schema for testing two hypotheses.

Overall, a novel integration of SHAP with Random For-
ests yields a strong model and discovers in a consistent way 
the most important features relevant to predicting 10-year 
survivability. As this is among early studies of its kind, it 
may provide a useful platform for investigations of related 
medical domains.

More broadly, current research is focusing on explana-
tions that improve user understanding and user task per-
formance, with an increasing emphasis on the concept of 
responsible artificial intelligence (AI) [15]. Responsible 
AI seeks methodologies for the large-scale implementation 
of AI methods in real organizations with fairness, model 
explainability and accountability at its core [16]. In this con-
text, we are currently pursuing research on bias and fairness 
in medical machine learning, with a focus on fairness and 
remediation.
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