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Abstract
Data clustering plays a crucial role in the analysis of information collected from a variety of domains. Researchers developed 
many classical and mathematical algorithms to solve real-life problems, but due to the inherent property of these algorithms, 
they prematurely converge and fall to local optima. A further pattern of data in terms of shape, size, and distribution has a 
significant effect on the exploitation and exploration characteristic of algorithms which draw attention to many researchers. 
This work attempts to solve this problem by proposing an LNSMO local neighbour spider monkey optimization algorithm for 
data clustering. In the proposed algorithm Local Leader Phase of the spider monkey optimization algorithm is improved with 
its neighbour solution. Further to enhance the global search global leader phase of spider monkey optimization is improved 
with a chaotic operator. The performance of LNSMO is compared with eleven real-life datasets with five well-known Meta-
heuristic algorithms in terms of a sum of within-cluster distance and convergence speed. It is further compared with recently 
developed hybrid meta-heuristic algorithms. Experimental result demonstrates that the proposed algorithm provides a better 
result in terms of Accuracy, F-measure, and SWCD.

Keywords  Spider monkey optimization · Swarm optimization · Neighbour search · Chaotic factor · Clustering

1  Introduction

The objective of the clustering method is to classified data 
into its respective class (Clusters) such that data having simi-
lar property falls to the same cluster and different clusters 
have different properties. The success of any clustering algo-
rithm is purely dependent on how it has been designed, for 
instance, its encoding scheme, distance measure or objec-
tive function, data assignment technique, search strategy, etc. 
Clustering techniques are broadly defined in two domains 
Hierarchal and partition clustering [1]. Where former gener-
ate a tree-like structure and later divide data such that single 

data assign to only one cluster. Among them, partition clus-
tering is the first choice for researchers in the past few dec-
ades. K means algorithms, which are based on proximity 
measure as a distance is more preferred as it is easy to imple-
ment and flexible for hybridization with other algorithms. 
But it has limitations with premature convergence and speed 
as it’s depending on the initial condition of clusters [2].

To find a new pattern in living organisms and frame 
to mathematical steps is an emerging trend among data 
researchers. This trend is broadly defined in two subdomain 
evolutionary and swarm-based algorithms. Evolutionary 
algorithms are derived from the principle of natural evolu-
tion which is existing on this planet for the past millions of 
years. And follow the interactive pattern of personal growth, 
collective development, breed selection, and reproduction to 
survive on the planet. These algorithms are older and more 
mature. Genetic Algorithm (GA), Differential Evolution 
(DE), Genetic programming (GP), Genetic Improvement, 
(GI), Evolution strategy (ES), Linear Genetic Programming 
(LGP), Gene Expression Programming (GEP), etc. are well 
known EA algorithms [3].

Swarm-based algorithms are structure with the popula-
tion having agents interacting local with neighbours and 
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with the global environment, decentralize and self-organ-
ized pattern exist in the foraging process. [4]. Examples 
of SI include Particle swarm optimizer (PSO), artificial 
bee colony (ABC) algorithm, glow-worm swarm algorithm 
(GSA), firefly algorithm (FFA), cuckoo search algorithm 
(CSA), bat algorithm (BA), grey wolf optimizer (GWO), 
Whale optimization algorithm (WOA), Spider Monkey 
Optimization (SMO) and so on [5].

In the application of Meta-heuristic algorithms, they 
have to process a huge amount of data may be neighbour or 
unknown region. And both should be effectively searched 
to obtain a true or near optimum solution. In literature, 
it is known as exploitation and exploration respectively. 
More weightage to search around local space lead to pre-
mature and fast convergence and lessen the effect of global 
solution on the opposite side more weightage to explo-
ration lead to slow convergence and unpredicted result 
[5]. Therefore it is an open problem for the researcher to 
balance between two search spaces. In literature number 
of researchers tries to solve a said problem with a differ-
ent approach of initialization, update strategy, proximity 
measure distance, and many more.

The main contribution of this paper is to improve the 
search process of the spider monkey optimization algo-
rithm hybridizes with a local neighbour search. This algo-
rithm uses SMO as a global search and to refined search 
space, the neighbour search is embedded with the local 
leader phase of SMO. To improve global search a non-
linear property as a chaotic factor is implemented to the 
global leader phase of the proposed algorithm.

The proposed LNSMO (local neighbour-based spi-
der monkey optimization) algorithm attempts to balance 
between local and global search space while preserving 
diversity property. The working of the proposed LNSMO 
algorithm has been analyzed using the eleven datasets 
from the UCI repository [6] and is compared with five 
well-known clustering algorithms like Particle swarm 
optimization, Genetic Algorithm, Grey wolf optimiza-
tion, Differential Evolution, and Spider monkey optimiza-
tion. It is further compared with seven recently developed 
hybrid clustering algorithms like, VDEO [7], AMADE [8], 
PSOPC [5], GLPSOK [9], WOAC [10], KMCLUST [11], 
and TEABC_elite [12]

The performance of the LNSMO algorithm is evaluated 
based on the sum of within-cluster distance or intra-cluster 
distance as an objective function and based on conver-
gence speed. Finally to validate the clustering result of 
the assignment of data to the respective class is correct 
or not, two quality measures Accuracy and F-measure 
based on the confusion matrix are calculated. To check 
the significance of the proposed algorithm with a compe-
tent algorithm, statically an unpaired t-test is performed 
on the clustering result.

The simulation result of the proposed algorithm shows 
that the LNSMO algorithm performs better than its com-
petitors in terms of SWCD and convergence characteristics. 
The result of the quality measure indicates that the proposed 
algorithm is more efficient in terms of the assignment of 
data to the correct cluster. Analysis of the t-test shows that 
LNSMO is statically significant compare to a competent 
algorithm.

The rest of this paper is organized in the following 
sequence. Section 2 describes the basic definition of the 
clustering problem and followed by past work done in the 
field of meta heuristic-based clustering algorithms. Section 3 
explains the basic steps of the spider monkey optimization 
algorithm. Section 4 presents the proposed algorithm with 
the neighbour search method and chaotic operator. The 
experimental data set, parameter setting, and results are pre-
sented in Sect. 5. Finally, the conclusion and future direction 
are presented in Sect. 6.

2 � Theoretical background

This section first describes the mathematical background 
and property of the clustering method and thereafter a brief 
literature review.

2.1 � Clustering theory

Data clustering is the method of dividing n number of data 
points into the finite number of clusters k based on some 
similarity property having d-dimensional space (attribute). 
Let the set of n data points with d-dimension be written as 
Y = {y1, y2, y3..., yn} . The k number of clusters can be writ-
ten as Z = {z1, z2, z3..., zk} , such that data assign to the same 
cluster have the same property and different clusters have 
different properties. And cluster constrained to the following 
properties [13].

Each cluster should not empty and have at least one mem-
ber or data point.

Two different clusters should not have a common member 
or data point

Each data point should belong to a cluster

The clustering problem with the Meta-heuristic algorithm 
is an optimization of the data point’s separation such that it 

(1)Zi ≠ �,∀i ∈ {1, 2, ..., k}

(2)Zi ∩ Zj = �,∀i ≠ j and i, j ∈ {1, 2, ..., k}

(3)
k⋃

i=1

Zi = Y
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creates a well-separated compact cluster and also preserves 
the above properties. And for better optimization, it required 
an effective objective or fitness function. The fitness function 
also accounts for a measure of the partitioning of data points. 
Mean square error is the most commonly used fitness func-
tion in the clustering problem and is defined as [5].

where, min represents the minimum distance between 
data points yj and cluster zi or similarity measure. In this 
paper well known Euclidean distance is used as a similarity 
measure.

2.2 � Related work

Researchers try to solve the clustering problem either by 
evolutional or swarm-based algorithms.

Bouyer [14] developed a hybrid clustering method based 
on improved cuckoo and modified particle swarm optimiza-
tion with K -Harmonic Means, In this work velocity equa-
tion of particle, is updated with global worst and personal 
worst solutions to balance between local and global search. 
The advantage of this algorithm is a parameter of the cuckoo 
search algorithm is updated automatically. Lei Yang [15] 
presents PSO clustering which is formulated as a tree struc-
ture and neighborhood property. In PSO velocity is modified 
with four components, basic velocity, particle current, and 
its best position, particle current and population best, parti-
cle current, and neighbour best position to refined the search 
process. PSO is designed as a tree structure in which the tree 
structure is updated with iteration such that the parent node 
is better than the child node. Neetu Kushwaha [16] presents 
teaching–learning-based optimization embedded with PSO 
and applied to the clustering problem. In which output of 
TLBO is taken as an input parameter to PSO for fine refine-
ment of clustering results. Yugal Kumar [17] presents cat 
swarm optimization improve by modification in governing 
equation and extended with clustering problem. To improve 
global search global best is embedded in the equation of 
tracking mode velocity. Acceleration parameters of the algo-
rithm are made dynamic to balance the search process. It is 
compared with K-Means, genetic algorithm, particle swarm, 
teaching–learning based optimization, ant colony optimi-
zation, and cuckoo search optimization algorithm. And the 
result shows better performance compare to its competitor. 
J. Prakash [18] present ABC with the global best property 
for the clustering problem. In this algorithm to speed up and 
keep away premature convergence global best and crossover 
operator is combined with ABC. Results demonstrate that 
the developed algorithm outperforms ABC and its variants. 
Ibrahim Aljarah [19] developed Locality informed GWO 

(4)f (Y , Z) =

n∑

j=1

min{||yj − zi||2}, {i = 1, 2, 3, ...k}

and applied it to clustering analysis. In this algorithm per-
formance of GWO is improved by the tabu search operator 
which is acts as a local search near the best solution. The 
addition of new terms refined search space and perform 
better than compared algorithms like K-Medoids, K-means, 
hierarchical clustering and, furthest first techniques. Krishna 
Gopal Dhal [20] presents a cuckoo search algorithm with 
modification to balance between local and global search 
strategy and applied to the clustering method. This explo-
ration is improved by global best and mutation with Levy 
and Cauchy distribution. A further mutation is controlled 
by step size derived from fitness. Exploitation is improved 
by k-neighborhood and previous personal solutions. In the 
proposed work author tries to improve clustering results by 
new search strategies and dynamic parameters updating. 
Yuefeng Tang [21] proposed Glowworm swarm optimiza-
tion improved by variable step size which is a function of the 
level of luciferin carried by each glowworm instead of fixes 
one and initialization method based on iterations. And an 
improved algorithm was applied to the clustering problem. 
Yating Li [22] proposed Chaotic starling PSO for cluster-
ing. In this algorithm, acceleration coefficients are updated 
with the logistic map and exponential function is used to 
update inertial weight. To avoid trapping into local optima, a 
dynamic disturbance term is added to the velocity equation. 
Further starling bird’s local search capability and neighbours 
information is used to direct particle search direction. The 
main drawback algorithm is that it may trap local optima 
when applied to a problem with multiple local optima. Far-
zaneh Zabihi [23] present a history driven ABC algorithm 
to balance local, global search result and extended to data 
clustering. In this algorithm, a memory archive structure is 
used to store individual fitness and position which is useful 
for avoiding fitness calculation. A guided anisotropic search 
strategy is used to improve local search. Scout bees mutation 
is improved with the global best component. Ashish Kumar 
Tripathi [24] proposed grey wolf optimization and enhanced 
it with new search strategies further applied to data cluster-
ing. In this work hunting strategy of a grey wolf is improved 
with Lévy Flight and Binomial crossover for prey to improve 
the exploration and exploitation capabilities. It is further par-
allelized by the map-reduce model in the Hadoop framework 
for clustering a large number of data sets. Vijay Kumar [25] 
proposed a clustering approach using a grey wolf algorithm. 
This algorithm adapts the searchability of GWO to over-
come the weakness of local optima in the K-means algo-
rithm. Pranesh Das [11] proposed a modified bee colony 
optimization for data clustering. To improve clustering and 
convergence results untrustworthy bees are getting change 
to participate with some probability. From the second itera-
tion onward center of the previous solution is considered as 
a center of a present cluster solution. Further to maintain 
diversity, data that are not assigned in the previous stage 
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are utilized. Hassanzadeh and Meybodi [26] applied the 
property of the firefly algorithm to K means for improve-
ment in premature convergence of the K- means algorithm. 
Cluster centers are found by FA and further refined by K- 
means algorithm. The proposed algorithm is compared with 
k mean, PSO, KPSO, and proves to be better. Amol kumar 
[27] proposed a hybrid approach of the exponential grey 
wolf and whale optimization for clustering. In this approach, 
the hunting mechanism of the whales is utilized to find a 
number of clusters, and exploration is improved by expo-
nential grey wolf optimization. Amr Mohamed [28] presents 
a modified step whale optimization algorithm hybridized 
with tabu search and applied to the clustering problem. In 
the proposed work diversification of whale optimization is 
improved by changing swarm location based on their origi-
nal position. To preserve the best location from the search 
space memory element of tabu search is utilized. The further 
search process is improved by a crossover operator. Yap-
ing Li [29] proposed an improved glow worm algorithm 
for clustering. For better clustering results good-point set 
theory is used to distribute the initial population of the 
K-means algorithm and result further optimized with glow 
worm optimization. Roselyn Isimeto [30] proposed a glow 
worm swarm algorithm in which the sensor range parameter 
of glow warm swarm is found by min, max value of the 
sensory range, and fitting to quadratic function and solved 
by a least square method. Further to improve the result, the 
sum of the mean squared error is made a function of itera-
tion by multiplying the number of clusters that change with 
iteration dynamically. Manju Sharma [5] proposed polyga-
mous crossover-based PSO for clustering. In the proposed 
algorithm polygamous crossover operator is embedded with 
the velocity equation of PSO to refined a search process. 
The proposed algorithm compared with PSO, GA, DE, FA, 
GWO, and prove to be better in terms of SWCD. Nehsat 
et al. [31] presented a hybrid approach of PSO to perform a 
global search with K- means to perform a local search. Saida 
et al. [32] applied a cuckoo search capability to the cluster-
ing problem. And show better results in terms of distance 
measure and convergence.

In the proposed work spider monkey optimization 
improved with neighbour search and a chaotic operator is 
proposed for data clustering. The next section represents the 
basic SMO with its limitation, neighbour search method, and 
chaotic operator to develop the proposed algorithm.

3 � SMO and neighbour search method

This section describes the basic theory and limitation of 
SMO and neighbour search methods which inspired the 
author to develop a new algorithm.

3.1 � Spider monkey optimization algorithm

Spider monkey optimization (SMO) algorithm is developed 
by Jagdish Chand Bansal [33]. It is derived based on the intel-
ligence of spider monkey inspired by the social structure of 
FFSS (Fission fusion social structure). According to FFSS 
monkeys distribute them in different size groups for foraging 
and have the following characteristic. Initially, all spider mon-
keys were grouped into 40–50 individuals. Each group follows 
the common leader to find new food source terms as the global 
leader of that group. In case of lack of required quantity of 
food, the Global leader divides the main group into smaller 
groups each having three to eight members for forage. And 
each group is guided by a local leader. Local leaders decide 
on searching food sources in each sub-group separately. The 
member of the group uses unique sound as a communication 
for social bonding and defining boundaries for defense. The 
SMO algorithm is structured with six different phases to com-
plete its forage process as discuses in subsequent steps.

In SMO initial population of N spider monkey is generated 
randomly. Let, D- Dimensional vector space denoted by Yij 
representing spider monkey with jth dimension and ith indi-
vidual. Then Yij initialize as,

where Ymin j and Ymax j represent the lower and upper limit of 
jth dimension of ith individual. U(0,1) is a random number 
between [0,1]. The subsequent section describes six phases 
of SMO.

3.1.1 � LLP: Local leader phase

In this step new position of the individual is found by informa-
tion of local leader and individual of the group by Eq. 6. To 
check the quality of solution fitness measure is used means if 
current fitness is better than the old solution then the position 
will be updated with a new value.

where, LLkj and Yrj represent jth dimension of the local 
group leader and randomly selected rth spider monkey from 
kth group such that r ≠ i.

To control the diversity in the current step perturbation rate 
Pr between [0.1, 0.8] is used, The Pseudocode of the local 
leader phase is given in Fig. 1.

3.1.2 � GLP: Global leader phase

As shown in Eq. 7 position of all individuals is updated 
based on the position of a global leader and other members 
of the group.

(5)Yij = Ymin j + U(0, 1) × (Ymax j − Ymin j)

(6)
Ynewij = Yij + U(0, 1) × (LLkj − Yij) + U(−1, 1) × (Yrj − Yij)
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where GLj show the jth dimension of the global leader and 
j ∈ {1, ...D} is randomly chosen value. Further, the probabil-
ity probi which is a function of fitness as depicted in Eq. 8 
is used to select a better candidate for the next iteration. 
Figure 2 Shows the Pseudocode of the global leader phase.

3.1.3 � GLL: Global leader learning phase

In this step greedy selection based on the best fitness from 
a population is used to update the global leader position. If 
the global leader position is not updated then its global limit 
count is increment by 1.

3.1.4 � LLL: Local leader learning phase

In this step greedy selection based on the best fitness from a 
particular group is used to update the local leader position. 

(7)
Ynewij = Yij + U(0, 1) × (GLj − Yij) + U(−1, 1) × (Yrj − Yij)

probi =
fitnessi
N∑
i=1

fitnessi

If the position of a local leader is not updated then its local 
limit count is increment by 1.

3.1.5 � LLD: Local leader decision phase

This phase helps to decide the position of local leader group 
members. If any local leader position is not updated up to 
a predefined number of count (Local Leader Limit) then a 
member of its group position is generated either by random 
or by information gained from the local and global leader 
phase as per Eq. 9 With probability, Pr.

It is revealed from Eq. 9 that the updated position of a spider 
monkey is repeal from local and attracted to global leader. 
Finally, the fitness of the updated position is calculated. Fig-
ure 3 Shows the Pseudocode of the LLD phase.

3.1.6 � GLD: Global leader decision phase

This phase is the same as the previous but applied to the 
global leader phase. If the position of global leader is not 
updated for a predefined number of count (Global Leader 
Limit) then the global leader divides the population into 
small groups start with two and increment with one till a 
maximum number of group (MG) forms. Each time in the 
GLD phase local leader learning phase is repeated to elect 
a local leader with newly generated group positions. Even 
after dividing to a maximum number of the group if the posi-
tion of global leader is not updated then the global leader 
merges all groups to form a single group.

Figure 4 shows the Pseudocode of the Spider monkey 
optimization algorithm.

3.2 � Neighbour search method

In this method, a neighbour solution is found by moving the 
present solution by perturbation by some defined strategy. It 
is also known as neighbour search and result in a Local solu-
tion rather than a global solution. This method follows the 

(9)
Ynewij = Yij + U(0, 1) × (GLj − Yij) + U(0, 1) × (Yij − LLkj)

Fig. 1   Pseudocode of local leader phase

Fig. 2   Pseudocode of global leader phase Fig. 3   Pseudo code of LLD phase



138	 Evolutionary Intelligence (2023) 16:133–151

1 3

following basic procedure. [34]. The Pseudocode of Neigh-
bour search method is given in Fig. 5.

Neighbourhood structure: Neighbour can be defined in 
many ways. In this work following strategies are applied 
[35].

Swap neighbourhood: Exchange of ith and jth position.
Insert neighbourhood: Remove the ith position and put it 

to the jth position.
Reverse neighbourhood: Select two random positions and 

reverse order of positions between selected positions.
In the SMO algorithm, the position of the spider mon-

keys is updated based on the positions of other randomly 
selected monkeys without checking its property. This leads 
to slow convergence, high breaking, and merging of groups 
[36]. Further, SMO has not the neighbour search property 
around the find solution. So to solve the described problem 
we have proposed, SMO with neighbour search embedded 
to Local Leader Phase of spider monkey algorithm. Further 

to improved global search, nonlinear property in terms of 
a chaotic operator is applied to the global leader phase of 
SMO.

4 � The proposed algorithm (LNSMO)

To balanced exploitation and exploration following modi-
fications are made in a basic variant of the spider monkey 
optimization algorithm. To improve the local search of an 
SMO algorithm, a neighbour search is embedded in the LLP 
phase of the SMO algorithm. In basic SMO, local leader 
search is influenced by randomly selected spider monkeys 
without checking its domination in terms of the objective 
function value. This shows that still there is a possibility of 
a better neighbour solution near to selected spider monkey. 
This encourages us to search neighbour solutions for better 
optimum results. Further to improve global search a chaotic 
operator derived from a logistic map is introduced in the 
global leader phase of SMO to overcome premature conver-
gence. The flow chart in Fig. 6 shows the detailed steps of 
LNSMO and the Pseudocode in Fig. 7 shows the clustering 
application of the proposed algorithm. The descriptions of 
other steps of LNSMO are described below.

4.1 � Neighbour search procedure

To find a better neighbour position in this work we applied 
swap, insert, and reverse search strategies [35] randomly to 
the local leader phase of SMO. Following pseudo code in 
Fig. 8 shows the modification in the Local leader phase with 
neighbour search procedure.

Fig. 4   Pseudo code of spider monkey optimization

Fig. 5   Pseudo code of neighbour search method
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4.2 � Modified global leader phase

Chaos is a phenomenon of nonlinear dynamics having a 
property of stochastic randomness, regularity, ergodicity, 
and sensitivity to an initial condition. This characteristic is 
helpful to avoid sticking to the local optimum in the search 

process [37, 38]. The main objective of this section is to 
improved global search by random and nonlinear property 
of chaotic factor using a logistic map as shown in Eq. 10

where, rand() is a random number between 0 to 1, And z is 
a logistic mapping given by Eq. 11

where z is a random number between 0 to 1.
Finally, the position update equation of global leader 

phase is modified as,

Figure 9 shows the pseudo-code of the Modified global 
leader phase.

4.3 � Population representation

Every SM position is represented as a search agent having 
a string of real numbers encoded with K number of cluster 
centers. The length of each position string is represented 
as K × D two-dimensional matrixes. Where D represents D 
dimensional search space. In this representation, each row 
specifies the cluster center and the column specifies the 
attribute of the input data set.

For example: Let K = 3 and D = 4, Problem with four 
attributes and number of cluster three then each position is 
represented as,

1.2 0.2 1.8 2 Cluster 1

1.3 0.4 2.1 1.9 Cluster 2
0.9 0.2 2 1.7 Cluster 3

4.4 � Population initialization

For N number of population, each SM position is initialized 
with K randomly generated data points based on the mini-
mum and maximum attribute value of the input data set as 
a cluster center.

4.5 � Fitness function

Clustering with a meta-heuristic or swarm algorithm is an opti-
mization problem and to solve the optimization problem we 
required an objective or fitness function. In this algorithm first 
Euclidian distance between every data point and cluster centers 
is calculated, and assign to the nearest cluster. Then after the 
center of the cluster is refined by the mean value of all data 
points belongs to that cluster and cluster center. Then fitness 
function sum of within-cluster distance (SWCD) is calculated 

(10)w = 0.5 × rand() + 0.5 × z

(11)z = 4 × z × (1 − z)

(12)Ynewij = Yij + w × (GLj − Yij) + U(−1, 1) × (Yrj − Yij)

End

Initialize population 

Evaluate fitness for all position

Find Global and Local leaders

Update Position by LLP Algorithm

Apply neighbour strategy to find 

neighbour solution

Greedy selection between LLP and 

Neighbour solution

Apply greedy selection between old 

and new solution 

Find probi for all group members by 

Eq.8

Update position by modified GLP 

Fig.9 

Local and Global leader learning 

phase 

Local leader decision phase 

Algorithm

Termination 

?

Start

Global leader decision phase 

Algorithm

No

Yes

Fig. 6   Flow chart code of LNSMO algorithm
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Input parameters:
Population size: N

Maximum iterations: Maxiter

Probability:  Pr

Maximum local leader limit: MLL

Maximum Global leader limit: GLL

Maximum clusters: K

Population dimensions: D

Data set: X

Output: Cluster centers, SWCD

Begin
Generate initial position (SM) of N spider monkeys with K randomly selected clusters.

Find the Euclidian distance of every data point from the cluster center and assign it to the nearest 

cluster.

               Find the fitness of every SM position by Eq.13.

Find global (GL) and local leaders (LL) by greedy selection. 

for iteration = 1 to Maxiter

1) Update each SM position based on the local leader phase (Fig.8)

 SM = LLP (SM, LL, Parameters, X);

a) Calculate the fitness of the newly generated SM position by Eq.13.

b) Apply neighbour search steps to SM position updated by LLP, and find a neighbour 

position.

c) Calculate the fitness of the neighbour position by Eq.13.

d) Update SM position by greedy selection between position updated by LLP and neighbour 

position generated by neighbour search steps.

2) Apply greedy selection between old and newly generated SM positions based on fitness.

3) Apply Eq.8 to find probi for all SM positions.

4) Update SM position selected by probi with the modified global leader phase (Fig.9).

SM = GLP (SM, GL, Parameters, X);

5) Apply global and local leader learning phases (Section 3.1.3, 3.1.4) with greedy selection to update 

local and global leader’s positions on all groups.

LL = LLL (SM, LL, Parameters);

GL = GLL (GL, LL, Parameters);

Best Solution = GL;

6) If the position of any local group leader is not updated for a predefined number of counts (Local 

Leader Limit) then members of that group updated by the Local leader decision phase (Fig.3). 

[SM, LL] = LLD (SM, GL, LL, Parameters, X);

7) If the position of global leader is not updated for a predefined number of counts (Global Leader 

Limit) then apply the global leader decision phase (Section 3.1.6) to split or merge the groups.

[GL, LL] = GLD (SM, GL, LL, Parameters);

     end for

end

Fig. 7   Pseudo code of LNSMO clustering algorithm
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as an intra-cluster distance between data points and the cluster 
center to which they belong. For better clustering results mini-
mum of SWCD is preferred and calculated by Eq. 13.

Here, Pi represents cluster center of Ci and Xj represents data 
belongs to cluster Ci.

(13)f (C1,C1...CK) =

K∑

i=1

∑

Xj∈Ci

||Pi − Xj||

Fig. 8   Pseudo code of modified 
LLP with Neighbour search 
algorithm

Fig. 9   Pseudo code of modified global leader phase
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4.6 � Termination criteria

This algorithm runs for a predefined number of iterations 
and the solution found at the last iteration gives optimum 
cluster center.

5 � Algorithm implementation

The proposed algorithm was implemented with MATLAB 
and compared with a well-known meta-heuristic algorithm 
as DE [39], PSO [40], GA [41], GWO [25], and SMO [33].

5.1 � Data set

To perform experiments by the proposed algorithm author 
selects eleven data sets from the UCI repository [6] and 
the properties of these data sets are given in Table 1. The 
initial parameters of comparative algorithms are given in 
Table 2.

5.2 � Quality measurements

To analyze the clustering results of the proposed algorithm 
following quality, measures are calculated [9]. These meas-
urements show that the prediction of assigned data points to 
a particular cluster is correct as per true class or not. Larger 
the value better the clustering assignment quality.

Accuracy: It is the fraction of correctly classified to the 
total number of samples.

F- measure which account precision and recall written as,

where, TP = True Positive, TN = True negative, FP = False 
positive and FN = False negative samples.

Further intra-cluster distance in terms of SWCD Eq. 13 is 
calculated and compared with other algorithms.

5.3 � Experiment results

5.3.1 � Results and discussion based on SWCD values

Table 3 shows the best, mean, and standard deviation of 
SWCD values obtain by different algorithms over 20 inde-
pendent runs. The objective of this experiment is to check 
whether the proposed algorithm capable of produced com-
pact clustering results or not. To produce stable results each 
algorithm is repeated with 200 iterations for 20 runs. The 
SWCD results calculated here are the best, mean, and stand-
ard deviation for 20 independent runs calculated for the last 
or 200th iteration. In Table 3 bold text shows the best results 
compare to competent algorithm for SWCD value.

In the Glass dataset proposed algorithm end with a mini-
mum value of SWCD compare to all algorithms, and gives 
the optimum of mean SWCD, but suffers little with standard 

(14)Accuracy =
TP + TN

TP + TN + FP + FN

(15)F −Measure =
2 × precision × recall

precision + recall

Table 1   Properties (Data set)

Name Instances Attributes Classes

Glass 214 9 6
Cancer 283 9 2
Wine 178 13 3
Seed 210 7 3
Bupa 345 6 2
CMC 1473 9 3
Iris 150 4 3
Heart 270 13 2
Magic 19,020 10 2
HTRU2 17,898 8 2
Haberman 306 3 2

Table 2   Parameter setting

LNSMO
Population size(N): 30
Max. Iterations:200
Local leader limit: D × N
Global leader limit ∈ [N/2, 2 × N]: N
Perturbation rate(Pr): 0.1

PSO
Population size: 30
Max. Iterations:200
Inertia weight:1
C1 (Personal), C2(Global) learning coefficient:2

DE
Population size: 30
Max. Iterations:200
Lower Bound (Scaling Factor):0.2
Upper Bound (Scaling Factor): 0.8
Crossover probability: 0.2

GA
Population size: 30
Max. Iterations:200
Crossover probability:0.8
Mutation Probability:0.01

GWO
Population size: 30
Max. Iterations:200
a: Decreasing 2 to 0 linearly

SMO
Population size(N): 30
Max. Iterations:200
Local leader limit: D × N
Global leader limit ∈ [N/2, 2 × N]: N
Perturbation rate(Pr): 0.1
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deviation. For the cancer dataset LNSMO produced a mini-
mum of SWCD which is comparable with DE, but a signifi-
cant difference in mean value and standard deviation, which 
is nearer to zero. This shows the stability of the algorithm 
compares to others. For the Wine dataset LNSMO end with 
a more compact result compare to competent algorithms in 
best, mean, and standard deviation of SWCD. For Seed data 
output results are comparable with all algorithms, and better 
than DE. While standard deviation of LNSMO is nearer to 
zero and shows the higher stability of the proposed algo-
rithm. The results of the Bupa dataset show that the proposed 
algorithm is comparable with DE but with higher stability 
and for other algorithms it shows a significant difference. In 
the CMC dataset LNSMO produced a significant difference 
in all measures with too small or near to zero variation in 
SWCD. In the iris dataset, LNSMO is comparable with all 
the competent algorithms but strong in standard deviation. 
For the Heart, dataset proposed algorithm produced a sig-
nificant difference in all measures for all the algorithms, and 
comparable results with DE but a major difference in stand-
ard deviation. The bigger dataset of the Magic, the proposed 
algorithm produced better results in almost all measures for 
all the algorithms and comparable with DE. In the HTRU2 
dataset, LNSMO produced comparable results with DE but 

a significant difference in standard deviation. In the Haber-
man, dataset LNSMO produced comparable results with DE 
but the more stable result with a minimum of standard devia-
tion. In most cases, LNSMO produced a minimum value 
of SWCD with a small value of standard deviation which 
is nearer to zero, which shows the higher stability of the 
proposed algorithm against others.

5.3.2 � Result and discussion based on cluster qualities 
measures

Table 4 shows the analysis of cluster quality in terms of 
accuracy and F-measure. The objective of these simulations 
is to check the assignment of data points to a cluster is as 
per the actual class or not. The larger value of these meas-
ures is preferred for better clustering results. These results 
are derived from the simulation of 20 independent runs of 
each algorithm and each algorithm is repeated for 200 itera-
tions. In Table 4 bold text shows the best results compare 
to competent algorithm for accuracy and F-measure.

For the Glass dataset, the accuracy of LNSMO is second 
best with a small difference to GA which produces the best 
accuracy among all algorithms. However, the F-Measure 
value for the proposed algorithm is highest in all comparable 

Table 4   Mean and standard deviation of cluster quality measure for datasets

Measure GLASS CANCER Wine Seed Bupa CMC Iris Heart Magic HTRU2 Haberman

PSO Accuracy 0.7141 0.9368 0.7256 0.5665 0.5004 0.5495 0.8438 0.5008 0.4743 0.4665 0.4941
0.0497 0.4397 0.1757 0.2330 0.0088 0.0390 0.2047 0.0914 0.1159 0.1775 0.0192

F Measure 0.6001 0.9344 0.5956 0.3076 0.4376 0.3214 0.8546 0.4964 0.4825 0.3374 0.4653
0.1098 0.4381 0.2466 0.2894 0.0222 0.0591 0.3086 0.0881 0.0888 0.0728 0.0178

GWO Accuracy 0.7168 0.9405 0.7031 0.5337 0.4990 0.5368 0.8622 0.5010 0.4992 0.4492 0.4902
0.0325 0.4578 0.1788 0.1948 0.0059 0.0450 0.1814 0.0915 0.1206 0.1760 0.0174

F Measure 0.6050 0.9383 0.5669 0.2971 0.4450 0.2986 0.8793 0.5005 0.4995 0.3303 0.4616
0.0568 0.4562 0.2477 0.2919 0.0253 0.0688 0.2717 0.0881 0.0926 0.0721 0.0161

GA Accuracy 0.7276 0.9201 0.7736 0.5643 0.5010 0.5445 0.8912 0.5003 0.4599 0.4492 0.5001
0.0510 0.4573 0.1661 0.1824 0.0078 0.0429 0.1868 0.0915 0.1209 0.1767 0.0184

F Measure 0.6010 0.9389 0.6710 0.3452 0.4343 0.3085 0.9000 0.4959 0.4759 0.3302 0.4720
0.1070 0.4557 0.2240 0.2736 0.0236 0.0650 0.2800 0.0882 0.0922 0.0723 0.0171

SMO Accuracy 0.7150 0.9295 0.7261 0.5998 0.5004 0.5522 0.9009 0.4998 0.4923 0.4488 0.5000
0.0461 0.4567 0.1721 0.1529 0.0080 0.0408 0.1690 0.0920 0.1195 0.1761 0.0201

F Measure 0.6001 0.9283 0.6078 0.3967 0.4401 0.3203 0.8967 0.4955 0.4958 0.3301 0.4707
0.1023 0.4550 0.2347 0.2301 0.0236 0.0613 0.2532 0.0887 0.0913 0.0722 0.0186

DE Accuracy 0.7167 0.9368 0.7489 0.5352 0.5003 0.5423 0.8896 0.4997 0.4883 0.4478 0.4941
0.0474 0.4741 0.1479 0.2421 0.0056 0.0404 0.1443 0.0891 0.1022 0.1252 0.0192

F Measure 0.6005 0.9347 0.6240 0.3014 0.4392 0.3048 0.8910 0.4955 0.4924 0.3341 0.4653
0.0700 0.4722 0.2213 0.3630 0.0267 0.0611 0.2169 0.0859 0.0785 0.0495 0.0178

LNSMO Accuracy 0.7182 0.9649 0.7211 0.6562 0.5082 0.5537 0.9000 0.5087 0.5078 0.4923 0.5088
0.0463 0.0047 0.0159 0.1636 0.0053 0.0241 0.0420 0.0893 0.0737 0.1244 0.0200

F Measure 0.6104 0.9444 0.6997 0.4863 0.4998 0.3224 0.9006 0.5042 0.5060 0.5056 0.4725
0.0844 0.0473 0.0212 0.2456 0.0256 0.0380 0.0205 0.0861 0.0591 0.0062 0.0186
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algorithms. For the Cancer dataset, LNSMO produced a sig-
nificant difference in Accuracy which is highest among all 
comparative algorithms with smaller standard deviation. For 
F-measure proposed algorithm is comparable with others 
but smaller standard deviation. For the Wine dataset GA 
algorithm produced a significant difference in accuracy with 
LNSMO and other algorithms, but LNSMO dominated in 
F-measure with GA and other algorithms. Further proposed 
algorithm shows a smaller standard deviation in accuracy 
and F-measure compare to all the algorithms. In the Seed 
dataset, LNSMO output a higher difference in accuracy and 
F-measure compare to all the algorithms. In the Bupa dataset 
performance of LNSMO is similar to competitive algorithms 
accuracy, but the higher difference in F-measure. For the 
CMC dataset LNSMO produced similar accuracy results 
with competent algorithms. In F-measure results, LNSMO 
carries better results than GWO, GA, DE, and similar results 
with PSO and SMO. For the Iris dataset LNSMO produced 
better results than PSO, GWO and similar results compare 
to others in accuracy and F-measure. For the heart dataset 
proposed algorithm produced similar results compared to all 
algorithms in accuracy and F-measure. In the Magic data-
set, LNSMO produced better results than PSO, GA, DE, 
and similar to the remaining algorithms for accuracy. In 
F-measure results, LNSMO produced better results than GA, 
PSO and similar to remaining algorithms. For the HTRU2 
dataset proposed algorithm produced a significant difference 
in accuracy and F-measure compare to all algorithms. The 
standard deviation of the F-measure is small and nearer to 
zero which is best among all the algorithms. In the Haber-
man dataset, LNSMO produced similar results to all algo-
rithms. Overall results show that the proposed algorithm 
predicts better or similar results compared to competent 
algorithms.

5.3.3 � Convergence results

Figure 10 depicts the convergence plots for all eleven data-
sets between iterations and SWCD results. Overall results 
from Fig. 10 show that DE takes more iteration to converge. 
SMO algorithm does not trap to local search space but gives 
sub-optimum results. LNSMO predicts the minimum value 
of SWCD in less iteration and other algorithms converge 
prematurely with a higher value of SWCD. Figure 10a for 
the glass dataset reveals that the proposed algorithm makes 
a clearer boundary between premature algorithms and DE 
which take more iterations to converge. SMO does not fall 
to the local optimum but gives a high value of SWCD. 
Indirectly it shows that our algorithm is capable to balance 
between exploration and exploitation characteristics. Fig-
ure 10b depicts the convergence results for Cancer clearly 

shows that LNSMO takes half of the iterations to converge 
compare to DE. From Fig. 10c of wine, (d) seed, (e) Bupa, 
and (f) CMC data proposed algorithm converge faster than 
DE with a smaller value of SWCD, While SMO reveal the 
same convergence pattern of LNSMO but with higher value 
of SWCD. From Fig. 10 (g) Iris, (h) Heart, and (i) Magic, 
It is clear that LNSMO converges faster than DE and other 
algorithms converge prematurely and SMO follows the same 
characteristic of LNSMO but the high value of SWCD. From 
Fig. 10j of the HTRU2 dataset PSO, GWO and GA con-
verge sharply with a higher value of SWCD while DE takes 
more iterations to compare to LNSMO. From Fig. 10k of the 
Haberman dataset PSO, GWO and GA converge prematurely 
with a higher value of SWCD while LNSMO converges 
faster than DE. Overall results show that LNSMO converges 
faster than DE and other algorithms stuck to premature con-
vergence, While SMO follows the same characteristic of 
LNSMO but with a higher value of SWCD.

5.3.4 � Time complexity

Table  3 shows the CPU time in seconds for different 
algorithms to complete 20 runs. It shows that traditional 
algorithm like DE, GA, PSO, and GWO takes lesser time 
compare to the proposed algorithm but they produced sub-
optimum value in SWCD result. On the other side, SMO 
does not trap to local optimum but takes more time. The 
reason behind more time taken by SMO is that it executes 
six different phases to balance exploration and exploitation. 
Our proposed algorithm produced better results compare to 
SMO with the addition of a very small time cost.

5.3.5 � Comparison with recently published algorithms

In this comparison following algorithms are selected from 
the literature. VDEO [7], which is derived from DE involves 
the calculation of the variance of each feature and optional 
crossover strategy. AMADE [8] is the hybridization of a 
memetic algorithm with an adaptive DE mutation operator. 
PSOPC [5], in which hybridization of PSO is done with 
crossover operator and polygamous selection. GLPSOK 
[9], which is the hybridization of PSO-K-means algorithm 
with Gaussian estimation and Levy flight. WOAC [10], in 
which recently developed whale optimization is proposed 
for the clustering problem. KMCLUST [11], In which cen-
troid obtain by a k-means algorithm is feed to the MBCO. 
TEABC_elite [12], in which K-means and chaotic parame-
ters are combined with the previously proposed EABC_elite 
algorithm.

Table 5 shows the comparison between LNSMO and the 
recently published algorithm for best, mean, and standard 
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Fig. 10   Convergence plot for a Glass, b Cancer, c Wine, d Seed, e Bupa, f CMC, g Iris, h Heart, i Magic, j HTRU2, k Haberman
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Fig. 10   (continued)
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deviation of SWCD results. In the table, bold values show 
better results compare to other algorithms. For the Glass 
dataset, AMADE produced better results in terms of the 
best and standard deviation of SWCD. TEABC_elite pro-
duced a better result in the mean value of SWCD. But our 
proposed algorithm produced comparable results in all 
quality measures with AMADE and TEABC_elite. For 
Cancer dataset proposed and the PSOPC algorithm pro-
duced similar results in best and mean values of SWCD 
with negligible standard deviation. In the Wine dataset, 
the proposed and the PSOPC algorithm produced similar 
results in the best value of SWCD while the proposed algo-
rithm produced a better result in the mean value of SWCD. 
In Bupa dataset, the proposed and PSOPC produced similar 
results in the mean and best value of SWCD while both 
produced a negligible standard deviation of SWCD. In 
CMC dataset proposed and PSOPC algorithm produced 
a similar value of best SWCD. But proposed algorithm 
produced better results in the mean and standard devia-
tion of SWCD compare to PSOPC and other algorithms. 
For the Iris dataset, KMCLUST produced better results of 
best and mean value of SWCD compare to all algorithms. 

But results produced by the proposed algorithm are nearer 
to other and KMCLUST algorithms. For the Haberman 
dataset, VDEO, PSOPC, and the proposed algorithm pro-
duced similar results with negligible standard deviation. 
From overall observation, it is concluded that the proposed 
algorithm produced better or similar results with previ-
ously published algorithms. In Table 5 bold text shows the 
best results compare to competent algorithm for SWCD 
measure.

Table 6 shows the comparison of LNSMO with a pre-
viously published algorithm for accuracy. The proposed 
algorithm produced better accuracy in Glass, Wine, Bupa, 
and CMC datasets for all the algorithms, and similar results 
with the Cancer and Iris dataset. For the Haberman dataset, 
the accuracy of the proposed algorithm is comparable with 
published results.In Table 6 bold text shows the best results 
compare to competent algorithm for accuracy measure.

5.4 � Statistical significance analysis

For testing of the best algorithm, an unpaired t-test is per-
formed based on mean SWCD between best and second-best 

Table 5   Comparison with recently published algorithms over best, mean, and standard deviation of SWCD

SWCD GLASS CANCER Wine Bupa CMC Iris Haberman

VDEO [7] Best 210.4 2964.41 16,292.43 – – 96.54 2566.99
Mean 213.62 2964.43 16,293.56 – – 96.54 2566.99
Std 1.99 0.02 0.87 – – 0 0

AMADE [8] Best 210.17 2964.393 16,292.28 – 5532.404 96.544 –
Mean 211.214 2964.522 16,292.82 – 5532.62 96.549 –
Std 1.174 0.091 0.395 – 0.423 0.004 –

PSOPC [5] Best 210.433 2964.387 16,292.18 9851.721 5532.185 96.6555 2566.989
Mean 219.28 2964.387 16,292.54 9851.721 5532.197 96.6555 2566.989
Std 11.32426 4.67E − 13 0.60747 3.66E − 05 0.011096 2.92E − 14 9.33E − 13

GLPSOK [9] Best – – – – – – –
Mean 215.14 – 16,295 – 5532.3 96.655 –
Std 1.6923 – 8.9799 – 0.24391 3.74E-14 –

WOAC [10] Best – – – – – – –
Mean 231.2912 3036.12 16,295.00 – 5539.72 96.7993 –
Std 4.51 0.2 0.72 – 0.79 0.1 –

KMCLUST
[11]

Best 215.23 2971.01 16,400.00 – 5,678.40 95.19 –
Mean 221 2995.43 21,479.00 – 5,684.60 95.98 –
Std 13.1 2.14 41.66 – 1.99 3.46 –

TEABC_elite [12] Best – – – – – – –
Mean 210.75 2965.41 16,293.2 – 5534.2 96.65 –
Std 3.14 9.76 3.27 – 1.81 0.0031 –

LNSMO Best 210.464 2964.387 16,292.18 9851.721 5532.185 96.65548 2566.989
Mean 212.768 2964.387 16,292.44 9851.721 5532.185 96.65548 2566.989
Std 2.12 4.70E-09 0.466 4.60E-09 7.64E-06 4.36E-09 3.04E-09
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algorithms. Confidence Interval (CI) between the two means 
is calculated based on data size equal to 20 and 95% of con-
fidence level. In hypothesis testing, a two-tailed P-value of 
the t-test is the probability of finding extreme results when 
the null hypothesis for a given test is true. The smaller value 
of P supports an alternative hypothesis [42].

The confidence interval and P-value of each dataset are 
used to interpret a significant level of the proposed LNSMO 
algorithm with the second-best algorithm. The results are 
highly statically significant (HSS) when P ≤ 0.01. If P ≤ 0.05 
statically significant (SS), and when P > 0.10 not statically 
significant (NSS).

Table 7 shows the result of the unpaired t-test between the 
best and second-best algorithm based on the mean of SWCD 
results. For all the dataset two-tailed P-value is less than 0.01 
means, LNSMO is highly statically significant compared to 
all second-best algorithms except Bupa and Magic dataset. 
In Bupa and Magic dataset, P-value is less than 0.05 means, 
LNSMO is statically significant compared to the second-best 
algorithm DE.

6 � Conclusion and future perspective

In this paper search process of the spider monkey opti-
mization algorithm is improved with a local neighbour 
search method. To refined search space, the neighbour 
search is embedded with the local leader phase of SMO. 
Further global leader phase of the proposed algorithm is 
improved with a chaotic factor. The proposed LNSMO 
algorithm is applied to the clustering problem when the 
number of clusters known before. It is compared with 
the five traditional algorithms like PSO, GA, SMO, DE, 
and GWO, and tested on eleven data sets. The simulation 
results reveal that LNSMO outperforms with comparative 
algorithms in terms of SWCD, cluster quality measures, 
and convergence results for all the datasets. Statically 
unpaired t-test demonstrated that the proposed LNSMO 
algorithm is statistically significant. Further proposed 
LNSMO algorithm is compared with seven recently 
published hybrid meta-heuristic algorithms in which 
LNSMO produced better or similar results in SWCD and 
accuracy. Further LNSMO gives optimum results with a 
reasonable time cost.

Table 6   Comparison with 
recently published algorithms 
based on Accuracy

Accuracy GLASS CANCER Wine Bupa CMC Iris Haberman

VDEO [7] 0.5133 0.9649 0.7191 0.9 0.5196
AMADE [8] 0.6308 0.96486 0.719 – 0.4562 0.9 –
PSOPC [5] – 0.96486 0.714 0.4956 0.3211 0.9 0.5196
GLPSOK [9] 0.5352 – 0.71685 – 0.39443 0.9 –
WOAC [10] – – – – – – –
KMCLUST [11] – – – – – – –
TEABC_elite [12] – – – – – – –
LNSMO 0.7182 0.9649 0.7211 0.5082 0.5537 0.9 0.5088

Table 7   An unpaired t-test 
between best and second-best 
algorithm

Second
Best

Data set SE t CI P
(two-tailed)

Significance

PSO Glass 1.211  − 4.535 [− 7.94293 − 3.04044]  < 0.001 HSS
DE Cancer 2.627  − 6.534 [− 22.4799 − 11.8446]  < 0.0001 HSS
SMO Wine 1.007  − 11.247 [− 13.3631 − 9.28643]  < 0.0001 HSS
GWO Seed 0.014  − 77.095 [− 1.08381 − 1.02835]  < 0.0001 HSS
DE Bupa 1.416  − 3.443 [− 7.74399 − 2.0094] 0.015 SS
GA CMC 0.334  − 31.169 [− 11.0724 − 9.72184]  < 0.0001 HSS
SMO Iris 0.009  − 49.898 [− 0.454966 − 0.4194]  < 0.0001 HSS
DE Heart 0.505  − 5.794 [− 3.95056 − 1.90485]  < 0.0001 HSS
DE Magic 783.200  − 3.477 [− 4308.89 − 1137.62] 0.03 SS
DE Htru2 80.810  − 2.429 [− 358.397 − 89.2541]  < 0.01 HSS
DE Haberman 0.002  − 2.833 [− 0.009659 − 0.0016]  < 0.01 HSS
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In the future proposed LNSMO algorithm can be 
extended with automatic data clustering when the number 
of the clusters is not known before. It is also extended with 
a multi-objective approach and parallel computing. In the 
future proposed algorithm, LNSMO can be applied to gene 
expression, image segmentation, etc.
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