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Abstract
Penetration of electrical vehicles and distributed generation resources in distribution networks is increasing, and it is needed 
to investigate their effect on system′s operation scheme, reliability. But the simultaneous presence of electrical vehicles 
and distributed generation resources requires meticulous planning, because lack of access to an application can reduce the 
lifetime of these technologies, leading to multiple blackouts in the power grid. Therefore, this study proposes the dynamic 
distribution network reconfiguration in the presence of distributed generation units and electrical vehicles with various objec-
tive functions including energy loss, operational cost and energy not supplied. Moreover, the time of use mechanism as a 
demand response application is introduced to enhance the power usage of subscribers. In order to generalize the proposed 
approach, Time varying electricity prices and different load levels are considered to provide accurate production planning 
of distributed generation resources and electrical vehicles in the real space of the electricity network. The inherent complex-
ity of the distribution feeder reconfiguration problem has made the presentation of solution techniques a topic of ongoing 
research. Therefore, a hybrid improved particle swarm optimization -artificial bee colony optimization algorithm has been 
presented to alleviate the complexities of the optimization problem. The resented method is tested on the 95-bus system 
and a comparison is drawn between its outcomes and that of other methods including particle swarm optimization, artificial 
bee colony optimization and enhanced gravitational search. The review of the results manifests that the proposed method is 
superior to other evolutionary algorithms.

Keywords  Demand response program · Time of use mechanism · Energy not supplied · Hybrid evolutionary algorithm · 
Reliability

1  Introduction

Growing energy demand and declining fossil fuel reserves 
together with dramatic climate change have posed tremen-
dous challenges to modern societies. Power supply through 
the transportation system is a practical and sustainable solu-
tion to address this problem and reduce dependence on fossil 
energy reserves. The development and utilization of elec-
trical vehicles (EVs) have increased significantly in recent 
years due to pollution and low operational cost [1, 2]. How-
ever, anticipating the proliferation of electrical vehicles will 
raise concerns related to unpredicted demand for charging 
and consequently their effects on the distribution network. 

The lack of any accurate plan for the charge and discharge 
for these vehicles may lead to adverse events such as over-
loading of transformers and distribution lines, elevated 
losses and operational costs in the distribution network. 
Therefore, the optimal strategy for charging and discharging 
of these vehicles, in addition to exploiting their capacity in 
the transport fleet, can exert positive effects on the network, 
including diminished losses, peak load and network voltage 
drop [3].

Distribution network reconfiguration (DNR) is an effi-
cient method to expand the penetration of distributed gen-
eration (DG) units and EVs in distribution systems. In a 
distribution network, reconfiguration is conducted using 
controllable switch management (tie-sectionalizing). In 
reconfiguration operation, distribution network feeders 
are renewed for specific goals in the distribution network 
such as loss reduction, operational cost, or improved reli-
ability through switch management. In the meanwhile, the 
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distribution network operational constraints must be main-
tained without creating an insular state in a part of the net-
work [4]. Also, considering electric vehicles and distributed 
generation sources in the network can also have positive 
effects on the network, including reducing losses, reducing 
peak load and reducing network voltage. Integrating the net-
work reconfiguration process in the presence of distributed 
generation resources and electric vehicles can have greater 
benefits than the separate presence of these units or just the 
network reconfiguration. Therefore, considering the many 
advantages of this process in the presence of these units, 
the importance of the issue becomes clear. Therefore, many 
studies have explored the DNR considering DG units and 
EVs and energy storage (ES) systems.

Some studies have looked into the problem of reconfigu-
ration in the presence of DG units in the static mode. A 
gravitational search algorithm (GSA) has been presented to 
deal with the problem of DNR considering DG units with 
the goal of enhancing reliability and reducing loss. [4]. Also, 
GSA has been used to increase the transient stability index 
and loss reduction by solving the DNR [5]. The hybrid evo-
lutionary particle swarm optimization (PSO) and shuffled 
frog leaping algorithm (SFLA) has been presented to solve 
the DNR problem considering DG units to improve the volt-
age stability index and reducing operational cost [6]. Two 
evolutionary optimization algorithms based on the initial 
population have been proposed to tackle the issue of DNR 
and optimal location of DG sources in order to reduce loss 
and operational cost [7, 8]. The DNR approach has been 
adopted according to operational and protective constraints 
in order to diminish loss for the optimal utilization of the 
distribution network with DG units [9].

The focus of the above studies is to provide evolutionary 
methods to solve the problem of the network reconfiguration 
in the presence of DG units in a static state; These studies 
have considered various objective functions such as losses 
and operational costs to solve the optimization problem and 
achieved good results in solving the single-objective prob-
lem. But there is no strategy to solve the multi-objective 
problem. Moreover, given that daily demand and electricity 
prices in actual distribution systems change over time, previ-
ous studies have failed to account for alterations in electri-
cal load and electricity prices over time for resolving the 
problem of DNR to evaluate objective functions. Finally, 
the values of objective functions for an actual distribution 
system are not optimal and acceptable.

Also, another group of studies on the network reconfigu-
ration problem considering DG units and EVs have inves-
tigated energy storage systems in dynamic forms. A gray 
wolf optimization (GWO) algorithm has been introduced 
to address the problem of DNR considering DG units con-
sidering alterations in daily electrical demand to enhance 
reliability and decrease operational cost [10]. The dynamic 

reconfiguration approach has been adopted to provide an 
optimal program for the active generation of DG resources 
and ES systems (charge and discharge) in an unbalanced dis-
tribution network to optimize the voltage stability index and 
to reduce operational cost [11]. The hybrid PSO and SFLA 
have been used to address the problem of the DNR con-
sidering DG units and energy storage systems due to daily 
electrical load variations in an attempt to reduce operational 
cost and enhance voltage stability index [12].

The motivation of the above studies is to present newer 
evolutionary methods as well as hybrid algorithms to solve 
the problem of the network reconfiguration with the pres-
ence of DG units in a dynamic state. The predominant objec-
tive functions of these studies include operational costs and 
voltage stability index. Another point of these studies is 
to present different strategies such as Pareto front to solve 
multi-objective problem that can be seen the effect of mul-
tiple objective functions simultaneously in solving the opti-
mization problem. In the above studies, the daily electricity 
price profile has not been precisely defined. For example, the 
electricity price is usually considered fixed or split into 2 or 
3 periods of low demand, medium demand and peak demand 
over 24-h time intervals. Therefore, the optimal value may 
not be achieved to evaluate objective functions, especially 
operational costs.

In order to optimally exploit an intelligent distribution 
network considering capacitors and DG units, the dynamic 
approach of the DNR has been used to reduce network loss 
and operational costs and enhance stability [13]. A two-step 
method has been proposed to address the problem of the 
DNR considering changes in electrical charge over time 
[14]. To do so, first an optimal configuration is identified for 
each day using the harmonic search (HS) algorithm. After-
wards, to achieve the optimal configuration of feeders annu-
ally, the year is split into several smaller time periods, and 
the optimal design of feeders is obtained using the dynamic 
programming method, the goal is to reduce loss and switch-
ing cost. A genetic algorithm (GA) has been proposed to 
achieve optimal time intervals to deal with the problem of 
dynamic reconfiguration of the distribution network with 
DG units and to decrease network loss [15]. In this study, 
the period is split into several smaller time intervals in which 
network configuration is optimal in terms of network loss. 
Then, the process of network reconfiguration is applied to 
new time intervals created by the GA until the final response 
is reached. [16] presented a hybrid evolutionary method 
including exchange market and wild goat algorithms to 
resolve the DNR problem in a dynamic state, reduce loss 
and improve stability

The focus of the above studies is to provide a com-
bination of evolutionary-analytical methods to solve the 
problem of network reconfiguration with the presence of 
distributed generation units in a dynamic state. The main 
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objective function of these studies is power loss. The sali-
ent point of these studies is to provide long-term planning 
with demand and electricity price information. Also, these 
studies have not provided a strategy to solve the multi-
objective optimization problem. In the above studies, the 
final configuration of feeders in the above studies depends 
on the initial configuration. In other words, if the initial 
configuration of the network is not optimal, the topology 
of final network will be far from the optimal solution. In 
these studies, the original configuration of the network is 
obtained for a short period of time. Then, using methods 
such as dynamic planning or evolutionary algorithms, the 
final configuration of the network is achieved in the long 
term using the results of the initial configuration.

Part of studies have considered the effect of distributed 
generation resources and electrical vehicles in solving the 
dynamic network reconfiguration. [17] proposed a rand-
omized framework based on the dynamic reconfiguration 
approach of the distribution network for the optimal opera-
tion of the distribution network considering wind turbines 
and electrical vehicles to decrease loss. [18, 19] utilized 
the dynamic reconfiguration of the distribution network 
for the optimal performance of EVs in the distribution 
network in a randomized framework due to uncertainties 
pertained to the location of vehicles and battery charg-
ing mode. Moreover, to solve the randomized optimiza-
tion problem, the spider evolution algorithm has been 
employed to reduce loss and network operation cost. [20] 
presented a randomized DNR approach based on GSA 
to reduce network loss and operational cost considering 
electrical vehicles in the distribution network. They used 
Monte Carlo method to model uncertainty associated with 
load demand. [21] proposed a randomized DNR approach 
to obtain the optimal charge and discharge scheme for 
electrical vehicles due to uncertainties associated with 
electricity demand and electricity prices. Furthermore, to 
solve the randomized problem, the evolutionary optimiza-
tion algorithm called krill herd has been used to diminish 
network losses.

The purpose of these studies is to provide multi-objective 
probabilistic frameworks to solve the problem of the network 
reconfiguration in the presence of electrical vehicles in a 
dynamic state. Therefore, these studies have considered the 
uncertainty of parameters such as electricity price demand. 
In order to solve the optimization problem, evolutionary 
methods such as spider and gravity search have been used, 
and the intended objective functions include losses and 
operational costs. Moreover, In the above studies, electrical 
vehicles have classified in different fleets with each electrical 
vehicle being considered as a source of accumulated energy; 
however, some limitations of electrical vehicles including 
initial charging mode and battery capacity have not been 
considered in these studies.

Also, a small part of the studies has considered the effect 
of demand response programs in solving distribution net-
work reconfiguration problem. [2, 22] considered the impact 
of demand response programs on resolving the reconfigu-
ration problem for the purpose of enhancing the distribu-
tion system performance. One of the most common demand 
response programs used in the distribution system is the time 
of use mechanism. In this program, subscribers shift their 
usage from peak hours when electricity is more expensive to 
non-peak hours with cheaper electricity. [22] used the time 
of use mechanism related to the demand response program 
to overcome the problem of network reconfiguration due to 
daily variations of electrical load to reduce network loss and 
enhance network reliability. This mechanism has also been 
used by [2] to solve the problem of network reconfiguration 
considering DG units with the aim of reducing loss and net-
work operational cost.

From a methodological perspective, the DNR in a 
dynamic state is a complex and non-convex problem. Also, 
considering the effect of DG sources and electrical vehicles 
simultaneously can increase this complexity. Thus, it is nec-
essary to present an efficient method to overcome complexi-
ties of this problem. Therefore, mathematical algorithms are 
not suited for solving this complex optimization problem 
due to their limitations. Evolutionary methods are used 
for solving engineering optimization problems due to their 
features such as simple implementation and low computa-
tional volume [23, 24]. Most of the investigated studies have 
considered the problem as a single-objective problem and 
have not presented a strategy for solving the multi-objective 
problem. In the Multi-objective strategies, there are methods 
to satisfy all objective functions such as the weighting factor 
and Pareto fronts, because in the multi-objective optimiza-
tion problems, we deal with a set of responses (Pareto front) 
rather than an optimal solution. For this purpose, a reposi-
tory has been considered to store non-dominated solutions 
[25, 26].

The main presented ideas of the article to address the 
shortcomings of previous studies are as follows:

•	 Presenting a dynamic multi-objective model for feeder 
reconfiguration of the distribution network by consid-
ering the changes in electricity demand and electricity 
price in the presence of DG unis and EVs, and the most 
important feature of the proposed model is independence 
of the final topology of feeders from the primary topol-
ogy.

•	 Applying the time of use mechanism as one of the 
demand response programs for dynamic distribution 
network reconfiguration to improve the performance of 
the distribution system.

•	 Considering the energy not supplied (ENS) index as a 
function of the reliability objective and improving this 
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index by solving the problem of the distribution network 
reconfiguration in the presence of DG units and EVs.

•	 Presenting a hybrid IPSO-ABCO algorithm to address 
the complexity of the dynamic distribution network 
reconfiguration problem, as well as introducing a new 
mutation strategy to increase the search ability and popu-
lation diversity of the proposed algorithm.

•	 Presenting a multi-objective strategy based on domi-
nance concept for obtaining non-dominated solutions, 
as well as, a fuzzy strategy is provided for having the 
same objective functions and recognizing the compro-
mise solution.

This study is organized as follows: Section II discusses 
the problem definition including problem variables, problem 
constraints, objective functions, and multi-objective problem 
solving strategies. The simulation and conclusion results are 
presented in the Sections III and IV, respectively.

2 � Problem formulation

Objective functions, problem constraints, and time of use 
mechanisms have been used in this section:

2.1 � Objective functions

In this study, the objective functions include minimization 
of energy loss, energy not supplied and network operational 
cost.

2.1.1 � Energy loss

Energy loss [12] is calculated from Equation (1).

where Ri and It
i
 are the impedance and actual current of ith 

line at time t. Nbrch indicates the number of network lines.

2.1.2 � Energy not supplied

The energy not supplied (ENS) is obtained from Equation 
(2):

(1)f1 =

24∑
t=1

Nbrch∑
i=1

Ri
||Ii,h||2

(2)ENSi = Pi

∑
i,j∈V ,i≠j

(Ui,j + U
i,j
)

where V is the set of buses fed by a feeder Ui,j and Ui,j are 
the repair time (hours per year) and the compensation time 
(hours per year) for the branches related to bus i �i,j and di,j 
are the failure rate and line length, respectively; ti,j and ti,j are 
the average repair time and the average line recovery time 
between the ith and jth buses, respectively.[27]. The final 
equation of the energy not supplied in the whole network 
is estimated without accounting for the reference node of 
Eq. (3):

2.1.3 � Operational cost

The operational cost in this study was calculated from the 
following equation:

where Pt
DG,j

 and Pt
Sub,s

 are the active power of jth distributed 
generator (DG) unit and sth sub-station at time t, respec-
tively. Pricet

DG,j
 and Pricet

Sub,s
 are the purchase price of elec-

tricity from jth DG unit and sth sub-station at time t, respec-
tively. Pricet

Sw,k
 is switching cost at time t. Nsw and Nsub 

represent the number of switches and sub-stations, respec-
tively. St0

k
 a and St

k
 represent the primary and secondary sta-

tus of the kth switch at time t, respectively.

2.2 � Problem constraints

2.2.1 � Radiality constraint

The radiality constraint of network radius is calculated from 
Equation (5):

where Nbus and Nsource represent the number of buses and 
network sub-stations, respectively.

2.2.2 � Load flow equations

The constraints of load flow equations are calculated from 
Equations (6-7):

(3)f2(x) =

NBus∑
i=2

ENSi

(4)f3(X) =

24

∑(
NDG∑
j=1

Pricet
DG,j

Pt
DG,j

+

Nsub∑
s=1

Pricet
Sub,s

Pt
Sub,s

+

Nsw∑
k=1

Pricet
Sw,k

|||S
t
k
− St0

k

|||
)

t=1

(5)Nt
branch

= NBus − Nsource

(6)Pt
j
=

NBus∑
i=1

Vt
i
Vt

j
Yij cos

(
�ij − δt

i
+ δt

j

)
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where Pt
j
 and Qt

j
 are active and reactive powers injected by 

the network in the ith bus at time t, respectively. Yij is the 
amplitude and �ij is the angle of ith voltage at time t. Yij and 
�ij are the magnitude and branch admittance angle between 
buses i and j, respectively.

2.2.3 � Buss voltage range

where Vmin and Vmax show the minimum and maximum 
allowable values of ith bus voltage at time t.

2.2.4 � Feeder current

where It
f ,i

 and IMax
f ,i

 are current amplitude at time t and the 
maximum current of ith feeder, respectively.

2.2.5 � Transformer constraint

where It
trns,i

 and IMax
trns,i

 are current amplitude at time t and the 
maximum allowable current of ith transformer, respectively.

2.2.6 � Modeling related to DG units

where Pmin
DG

 and Pmax
DG

 are the minimum and maximum output 
power of ith DG unit at time t, respectively.

2.2.7 � Electrical vehicles constraints

An electrical vehicle could be either charged or discharged 
in an hour. The constraints of electrical vehicles [1, 3] can be 
expressed as follows:

(7)Qt
j
=

�
���∑
i=1

Vt
i
Vt

j
Yijsin

(
�ij − δt

i
+ δt

j

)

(8)Vmin ≤ Vt
i
≤ Vmax

(9)
|||I

t
f ,i

||| ≤ IMax
f ,i

i = 1, 2,… ,Nfeeder

(10)
|||I

t
trns,i

||| ≤ IMax
trns,i

i = 1, 2,… ,Ntransformer

(11)Pmin
DG

≤ Pt
DG,i

≤ Pmax
DG

, i = 1, 2,… ,NDG

(12)
SOCt

l
= SOCt−1

l
+ �ch,lP

t
ch,l

× Δt −
1

�dis,l
Pt
dis,l

× Δt

Δt = 1 hour, l = 1, 2,… ,NEVs

(13)SOCmin
l

≤ SOCt
l
≤ SOCmax

l

where SOCt
l
 is the charge status of the lth unit at time t. Pt

ch,l
 

and Pt
dis,l

 are the charge and discharge of the lth unit at time 
t, respectively. SOCmax

l
 is the maximum charge status and 

SOCmin
l

 is the minimum charge status of lth unit at time t . 
Pmax
ch,l

 and Pmax
dis,l

 are the maximum charge and discharge of the 
lth unit at time t, respectively.

3 � Time of use mechanism

Demand response refers to a set of measures taken to modify 
energy usage pattern in order to boost system stability and 
hamper price rise, particularly at peak network loads. Partici-
pants in the demand response program (DRP) are subscrib-
ers who, instead of reducing consumption, are responsible for 
modifying their energy usage patterns to diminish their costs, 
which ultimately results in lower electricity usage. In general, 
DRPs can be split into two sections: incentive programs and 
price-based programs [22, 28].

In this paper, one of the DRPs called time of use mecha-
nism has been used to alter the consumers’ usage pattern to 
improve system performance. Mathematical modeling of the 
time of use mechanism is presented in (16)–(18). Based on this 
mechanism, the total modified energy cannot exceed a fixed 
value (assuming 15% of the base demand). In addition, a bal-
ance must be struck between the increase and drop of overall 
power over a particular period.

where PMDF
t,i

 is the modified demand of the ith feeder at time 
t after applying the time of use mechanism. PTOU

t,i
 and PINI

t,i
 

represent surge or drop in the demand for this mechanism 
and the initial demand values in ith feeder at time t with-
out the time of use mechanism, respectively. TOUmax is the 
maximum speed of demand surge or drop in this mechanism.

4 � Multi‑objective problem strategy

In this section, the multi-objective optimization strategy is 
presented.

(14)Pt
ch,l

≤ Pmax
ch,l

(15)Pt
dis,l

≤ Pmax
dis,l

(16)PMDF
t,i

= PTOU
t,i

+ PINI
t,i

(17)
|||P

TOU
t,i

||| ≤ TOUmax × PINI
t,i

(18)
T∑
t=1

PTOU
t,i

= 0
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In a multi-objective problem [29, 30] where there are con-
tradictory goals, the problem is formulated as follows:

where Gi(X) and Hj(x) are equal and unequal constraints, 
respectively; n and x are the number of objective functions 
and the vector of the optimization variables, respectively. 
Pareto optimization method works for multi-objective prob-
lems based on domination. The vector X1 dominate X2 pro-
vided that the following conditions are satisfied [29, 30]:

Given that the objective functions are in different ranges; 
fuzzy sets are implemented to substitute each objective func-
tion with a 0-1 value. Accordingly, the fuzzy membership 
function �i for each objective function would be:

where fmax
i

 is the upper limit and fmin
i

 is the limit of the 
objective function. These values are calculated separately 
by the optimization of each objective function. The value of 
the normalized membership function [12] for each member 
amongst responses is obtained from Equation (23):

where m and n are non-dominated solution numbers and 
objective functions, respectively. βk represents the kth 
weight of objective function and �k value is chosen by the 
operator according to the degree of importance of each 
objective function [30].

5 � Hybrid improved particle swarm 
optimization‑artificial bee colony 
optimization algorithm

This section describes the IPSO, ABCO and hybrid IPSO-
ABCO algorithm.

(19)
Minf(x) =

[
f1(x), f2(x),… .fn(x)

]T
,Gi(X) ≤ 0,Hi(x) = 0

(20)∀i ∈
{
1, 2,…Nobj

}
, fi
(
X1

)
≤ fi

(
X2

)

(21)∃j ∈
{
1, 2,…Nobj

}
, fj
(
X1

)
< fj

(
X2

)

(22)�i(x) =

⎧⎪⎨⎪⎩

1fi(X) ≤ fmin
i

0fi(X) ≥ fmax
i

fmax
i

−fi(X)

fmax
i

−fmin
i

fmin
i

≤ fi(X) ≤ fmax
i

(23)N�j =

∑n

k=1
�k × �jk(x)∑m

j=1

∑n

k=1
�k × �jk(x)

5.1 � Improved particle swarm optimization method

The PSO is one of the evolutionary algorithms first used by 
Eberhart and Kennedy to optimize types of problems in the 
field of engineering [31]. In this algorithm, each particle 
is counted as a possible answer to the optimization prob-
lem in which the particles find the best place using prior 
experiences and the best particle in the whole population. 
The position and velocity of particles in each repetition is 
updated by Equations (24-25):

where Xk
i
 , Vk

i
 are the position and velocity of ith particle 

at kth iteration, c1 and c2 are positive constants, r1 and r2 are 
random numbers in [0, 1]. pbk

i
 and gbk represent personal 

fitness and the best value of all optimal personal fitness at 
kth iteration. Also, W is the inertia weight, which drops from 
1 to 0 according to Equation (26):

where iter and itermax are current and maximum iteration 
number.Wmax and Wmin are the minimum and maximum 
boundaries of W[32, 33].

Mutation is a process to improve the performance of an 
algorithm to increase the likelihood of achieving a global 
optimal solution. In PSO algorithm, this process can mod-
ify the velocity and position of each particle to avoid being 
trapped in the local optimum. In IPSO, a new mutation is 
as follows:

where r3 and r4 are random numbers in [0,1], l can assume 
1 or 2. Mk mean value of the position relative to the total 
population in the previous iteration. If the new ith individual 
has a better position than ith individual in the current popula-
tion, the new vector will replace it in the next population.

(24)Vk+1
i

= WVk
i
+ c1r1

(
pbk

i
− xk

i

)
+ c2r2

(
gbk − xk

i

)

(25)Xk+1
i

= Xk
i
+ Vk+1

i

(26)W = Wmax −
Wmax −Wmin

itermax
⋅ iter

(27)Xk+1
i,new1

= Xk
i
+ r1

(
gbk − lMk

)
,…Xk+1

i,new2
= Xk

i
+ r2ΔXi

(28)ΔXi =

⎧⎪⎨⎪⎩

r3 ⋅
�
Xk
i
− Xk

j

�
iff
�
Xk
i

�
≥ f

�
Xk
j

�

r4 ⋅
�
Xk
j
− Xk

i

�
iff
�
Xk
j

�
≤ f

�
Xk
i

� i ≠ j

(29)Xk+1
i,new

=

⎧⎪⎨⎪⎩

Xk+1
i,new1

iff
�
Xk+1
i,new2

�
≥ f

�
Xk+1
i,new1

�

Xk+1
i,new2

iff
�
Xk+1
i,new2

�
≤ f

�
Xk+1
i,new1

�
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5.2 � Artificial bee colony optimization method

ABCO is one of the population-based algorithms, which 
was first introduced by Karboga in 2005 [34]. This algo-
rithm is inspired by the behavior of honey bees, the bees 
in ABCO consists of three groups: employed, onlooker 
and scout. Employed bees, regardless of the desirability 
of each food source, are merely responsible to look for 
food sources. In the first step, the initial population is 
randomly assigned according to Eq. (30):

where i = 1, 2,… , SN  (SN is the number of food 
sources), j = 1, 2,… ,D (D is the number of parameters) . 
Xmin

j
 and Xmax

j
 are the minimum and maximum values of 

parameter j , respectively. Each employed bee goes to the 
new location ( Vij) from its current location ( Xij) according 
to Eq. (31):

The honey bees remain in the dance zone to make 
a decision regarding the selection of a food source are 
called onlooker bees. These bees are informed about the 
food sources by employed bees through a special dance. 
The value of a food source is calculated according to 
Equation (32):

where fiti is the fitness value of the food source searched by 
employed bees, which is expressed as Equation (33):

where f
(
Xi

)
 is the cost function. After onlooker bees are 

dispersed in food sources, food sources are examined. As 
long as nectar is extracted from the food sources, the bees 
continue to examine the food source level, but when a food 
source ceases to reveal any improvement after certain rounds 
of monitoring, it will be considered as a depleted source. 
The goal of this process is to eliminate local minimums and 
to obtain a better response for the search space. The pseudo-
codes of the IPSO and ABCO methods are shown in Figs. 1 
and 2, respectively.

(30)Xij = Xmin
j

+ rand
(
Xmax
j

− Xmin
j

)

(31)Vij = Xij + �ij

(
Xij − Xkj

)

(32)Pi =
fiti∑SN

j=1
fitj

(33)fiti =

{ 1

1+f (Xi)
f
(
Xi

)
≥ 0

1 +
|||f
(
Xi

)|||f
(
Xi

)
< 0

Fig. 1   The pseudo-code of IPSO method

Fig. 2   The pseudo-code of ABCO method
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5.3 � Hybrid optimization method

To overcome various defects of PSO and ABCO, a hybrid 
algorithm, which is combination of IPSO and ABCO is 
proposed. IPSO can greatly enhance search functional-
ity and ABCO helps prevent any local optimal solution. 
In addition, the local ABCO search capability may even 
improve the accuracy of the IPSO, if the global solution 
is not far away. The flowchart of IPSO-ABCO algorithm 
is shown in Fig. 3.

6 � Simulation results and analysis

In this section, first the validation of the proposed method 
in optimizing a sample objective function is performed and 
after providing the parameters of optimization methods and 

test network specifications, the proposed method is used 
to solve the problem of dynamic feeder reconfiguration in 
the absence and presence of DG units, EVs and demand 
response program.

6.1 � Evaluation of the hybrid IPSO‑ABCO to optimize 
the benchmark function

The standard objective function for optimization is used 
to validate the IPSO-ABCO and PSO methods. This sec-
tion shows the function of the IPSO-ABCO to minimize 
the Lévi function (a complex function with several local 
Optima) with two decision variables. The simulation is done 
in MATLAB R2016b environment using a core-i7 processor 
laptop with 2.4 GHz clock frequency and 8.0 GB of RAM. 
The formulation of this function is as follows:

Fig. 3   Flowchart of the hybrid algorithm



57Evolutionary Intelligence (2023) 16:49–66	

1 3

The 3-D surface of Lévi function with two decision 
variables is shown in Fig. 4. It should be noted that both 
decision variables and are bounded in [−4, +4]. The 
results of the proposed IPSO-ABCO and PSO algorithms 

(34)
f (x, y) = sin2 3�x + (x − 1)2

(
1 + sin2 3�y

)
+ (y − 1)2

(
1 + sin2 2�y

) for solving the Lévi function in two-dimensional spaces 
are shown in the following Figs. 5 and 6, respectively. It is 
clear from Fig. 6b, that after the final iteration, all particles 
are focused on a global optimum. While in Fig. 5b, there 
are solutions that are away from the global optimal even 
in the final replication. The results show the capability 
of exploitation and the high exploration capability of the 

Fig. 4   3-D surface of Lévi func-
tion (a) After the first iteration, 
(b) After the final iteration

Fig. 5   Results of PSO algorithm 
for optimizing the Lévi func-
tion, (a) After the first iteration, 
(b) After the final iteration
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IPSO-ABCO algorithm, it is noteworthy that the iteration 
number and the population size of IPSO-ABCO and PSO 
algorithms are considered 30 and 10 to optimize the Lévi 
function.

6.2 � Test system (IEEE 95‑node distribution network)

To solve the optimization problem for the reconfiguration 
of distribution network in a dynamic framework, the 95-bus 
test network [35, 36] is used which as shown in Fig. 7. The 
study period considered for solving the proposed problem 
is 24 h. In this section, a combination of IPSO and ABCO 
has been used for single- and multi-objective optimization. 
Moreover, the results are compared with PSO, GSA, and 
ABCO algorithms. In the 95-bus test system, five scattered 
generation units (diesel generators) with a capacity of 1000 
kW have been used in buses 34, 25, 10, 6 and 45. Also, 
five electrical vehicles with 120 kW have been installed in 
buses 41, 88, 85, 63 and 33. The cost of purchasing electric-
ity from DG units and the switching cost are $ 0.042 per 
kW and $ 0.041 per switching, respectively. Figs. 8 and 9 

show the average load profile and electricity price over 24 
h. The amount of energy loss, operational cost and ENS 
before the reconfiguration are 35.55869 kW, $145329.91 and 
355.556 kWh per year, respectively. The optimization prob-
lem is resolved in two parts. In the first part, only dynamic 
reconfiguration is applied to the network, and in the second 
part, the network reconfiguration is implemented consid-
ering DGs units, electrical vehicles and demand response 
program. In order to shown the mechanism and ability of 
the proposed algorithms to solve the optimization problem, 
the values of the parameters related to these algorithms are 
depicted in Table 1.

6.3 � Solving the optimization problem 
in the absence of DG units and EVs

In this section, the problem of dynamic reconfiguration is 
resolved in the absence of scattered generation resources and 
electrical vehicles. One of the objectives of this section is to 
display the ability of the proposed algorithm in resolving the 
reconfiguration optimization problem (Fig. 10)

Fig. 6   Results of IPSO-ABCO 
algorithm for optimizing the 
Lévi function
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6.3.1 � Results discussion

Table 2 lists the outcomes of optimization of the objec-
tive functions of this study along with the proposed hybrid 
algorithm. The best results obtained from the proposed 

IPSO-ABCO algorithm are highlighted in Tables 2, 3 and 
4 and Tables 6, 7 and 8. Tables 3 and 4 display the out-
comes of optimization of ENS and operational cost objec-
tive functions and with various algorithms in 20 separate 

Fig. 7   Single-line diagram of 95-node test system

Fig. 8   Average Electricity 
demand for the 24-hour interval
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experiments. The optimal topology of switches for the opti-
mization ENS objective function is shown in Table 5.

As shown by the results of the Tables 3 and 4, the pro-
posed IPSO-ABCO algorithm has yielded better responses 
compared to other algorithms. Also, the objective functions 
of energy loss, ENS and operational cost have dropped by 6, 
10 and 4 percent compared to the initial values, respectively. 
The convergence curve of energy loss optimization by IPSO-
ABCO, PSO, ESGA and ABCO algorithms is depicted in 
Fig .10, based on this figure, the proposed IPSO-ABCO 
converges on an optimal solution before other evolutionary 
methods.

6.4 � Solving the optimization problem 
in the presence of DG units, EVs and demand 
response program

In this section, the problem of dynamic reconfiguration 
in the presence of DG units and EVs has been resolved as 
single and multi-objective problems. Also, the effect of the 
time of use mechanism on the demand response program has 
been considered in evaluating the dynamic reconfiguration 

optimization. This program is executed for all network 
buses.

6.4.1 � Results discussion

Table 6 lists the results of optimizing the objective func-
tions obtained from the proposed hybrid algorithm and other 
algorithms in the absence and presence of demand response 
program.

Tables 7 and 8 draw comparisons between the results 
of energy loss optimization and ENS objectives from the 
algorithm presented in this study and other algorithms. 
The optimization results are obtained from 20 separate 
experiments. The optimal topology of switches, the opti-
mal generation of distributed generation sources and elec-
trical vehicles for optimization of the objective function 
of energy losses are shown in Table 9 and Figs. 11 and 12.

According to the results of Tables 6, 7 and 8, it is evident 
that answers provided by the presented hybrid algorithm 
are superior to other algorithms. A comparison of the opti-
mization results in the two simulation cases suggests that 
considering the effect of distributed generation sources and 

Fig. 9   Average electricity price 
for the 24-hour interval

Fig. 10   Convergence plot of 
energy loss optimization by dif-
ferent algorithms
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electrical vehicles has modified the objective functions of 
energy loss and ENS from 33359.36 kWh and 323.74 kWh /
year to 31445 kWh and 294.46 kWh / year. Also, the demand 
response program along with the effect of distributed gen-
eration sources and electrical vehicles have decreased the 
objective functions of energy loss, ENS by 23, 35 percent 
compared to the initial values, respectively.

According to Figs. 11 and 12, the maximum and mini-
mum power output of distributed generation units is related 
to 16 to 20 hours with 19862 kW and 21 to 24 hours with 
7649 kW. In addition, the maximum charge and discharge of 
electrical vehicles belong to 16 to 20 hours with 185 kW and 

11 to 15 hours with 205 kW. Also, the condition of network 
radiality per hour according to the dynamic configuration of 
the network has been satisfied in Table 9.

According to the results of Table 1, the objective func-
tions are contradictory. In other words, all three functions 
have not improved at the same time. For example, the value 
of the ENS objective function in optimization of the ENS 
objective function is 323.74 kWh/ year while the objective 
functions of operational cost and energy loss in this opti-
mization are $ 142845.45 and 38145.26 kWh, respectively.

Since the concept of single-objective optimization cannot 
optimize the problem of multiple objectives, the concept 
of Pareto optimization is used. Figs. 13 and 14 show the 
Pareto optimal fronts for two- and three-objective optimiza-
tion. The compromise response is also shown in red in each 
Pareto-front.

According to Figs.13 and 14, the value of objective func-
tions in response to the compromise response related of 
Figs. 13 and 14 corresponds to the optimal value of objec-
tive functions. This slight difference indicates the that the 
proposed method is capable of solving the multi-objective 
optimization problem. In addition, the value of the objec-
tive functions in compromise response of Fig. 14, including 
energy loss, ENS, and operational cost declined by 12, 16, 
and 4 percent of their initial values, respectively.

7 � Conclusion

Increasing the high penetration rate of distributed genera-
tion (DG) units in distribution networks and also consid-
ering the simultaneous effect of these units with electrical 
vehicles (EVs) in order to improve the performance of the 
distribution system, has created challenges such as reliability 
and economic issues for system operator. For this purpose, 
the multi-objective problem of dynamic reconfiguration of 

Table 1   Parameters of the 
proposed algorithms

Parameters IPSO-ABCO PSO ESGA ABCO

Population size 1100 1100 1100 1100
Maximum iteration 100 100 100 100
c
1
 and c

2
1/2 1/2 – –

r
1
 and r

2
Random number in [0, 1] Random number in [0,1] – –

r
3
 and r

4
Random number in [0, 1] Random number in [0,1] – –

l 1 – – –

Table 2   Best results of the 
IPSO-ABCO algorithm for 
different objective functions

Objective functions Energy LOSS (kWh) Operational cost ($) ENS (kWh/year) CPU time (s)

Energy Loss (kWh) 33359.36 141789.65 348.84 241
Operational Cost ($) 35686.45 140107.31 336.98 295
ENS (kWh/year) 38145.26 142845.62 323.74 567

Table 3   Results of different methods for ENS objective function for 
20 trials

Algorithms ENS (kWh/year)

Best Mean Worst Standard 
deviation

ABCO 346.32 355.23 366.56 4.96
ESGA 339.53 345.56 356.51 4.35
PSO 331.72 335.65 347.25 3.89
IPSO-ABCO 323.74 326.51 330.52 3.26

Table 4   Results of different methods for operational cost objective 
function for 20 trials

Algorithms Operational Cost ($)

Best Mean Worst Standard 
deviation

ABCO 140686.32 140757.23 140832.56 51.39
ESGA 140465.32 140526.23 140594.56 49.88
PSO 140289.72 140336.41 140391.85 48.15
IPSO-ABCO 140107.31 140153.51 140205.65 46.64
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distribution network in the presence of DG units and EVs is 
solved by considering the demand response program.

The objective functions in this study included ENS, 
energy loss and operational cost. The problem limitations 
include preservation of distribution network radial topology, 
buses voltage, lines current and transformers capacity. A 

new and powerful method, called IPSO-ABCO is pro-
vided to solve the dynamic network reconfiguration in 
the single and multi-objective frameworks, the proposed 
approach is applied on 95-node test system. Based on the 
simulation results, the presented method is superior to other 

Table 5   List of switches for 
ENS optimization

LL Load level

L.L Open switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 4 7 79 39 26 35 67 65 54 31 30
2 77 7 15 39 47 34 61 62 55 32 83
3 4 40 15 22 49 84 67 65 85 32 30
4 77 5 15 81 82 51 67 86 72 87 28
5 77 43 15 22 26 52 67 65 73 71 30
6 4 78 15 37 48 84 66 65 54 75 29
7 77 41 15 22 49 35 19 64 85 87 30
8 4 43 10 39 26 84 66 64 85 32 30
9 4 43 15 39 49 34 19 65 85 32 30
10 69 7 15 39 82 84 18 65 53 32 30
11 77 43 15 39 26 35 19 56 85 32 28
12 4 40 15 22 49 35 19 65 85 75 83
13 77 43 15 39 49 35 67 65 73 32 83
14 4 5 15 20 49 34 19 64 85 71 30
15 77 7 15 22 26 34 66 64 54 76 27
16 68 5 15 39 26 52 67 65 85 76 30
17 4 7 15 81 26 52 19 65 54 75 30
18 4 7 79 39 49 52 19 65 85 75 30
19 77 7 15 81 49 35 67 60 54 75 30
20 3 7 79 39 49 52 67 86 85 32 30
21 77 43 15 81 26 52 80 65 55 75 30
22 77 43 10 38 82 51 66 86 85 32 83
23 4 43 10 39 49 35 66 65 55 75 30
24 4 5 15 81 82 52 19 64 54 75 30

Table 6   Results of IPSO-
ABCO and other algorithms for 
different objectives optimization 
without and with applying TOU

Objective function Algorithms Before applying TOU After applying TOU CPU time (s)
Best solution Best solution

Energy Loss (kWh) ABCO 32448.75 30281.75 219
ESGA 32050.54 29868.95 237
PSO 31686.42 29420.41 226
IPSO-ABCO 31445.65 29165.23 241
ABCO 140128.15 140649.83 249

Operational Cost ($) ESGA 140285.33 140469.83 286
PSO 138878.23 138642.25 265
IPSO-ABCO 139539.46 138535.15 299
ABCO 319.35 290.12 546

ENS (kWh/year) ESGA 313.45 283.15 586
PSO 308.35 278.89 556
IPSO-ABCO 294.46 274.65 599
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evolutionary methods in single- and multi-objective optimi-
zation problems

The primary findings of the study are as follows:
• The proposed algorithm is able to resolve single 

and multi-objective problems without considering their 
complexities.

• The effect of DG units of EVs on solving the optimiza-
tion problem reduces energy loss, ENS and operational cost.

• Considering ENS as an indicator of stability provides 
a safe and desirable condition for the network operation.

• Considering the time of use mechanism, in addition 
to changing the usage pattern of subscribers, enhance the 
performance of the distribution system due to the reduction 
of energy loss and operational cost.

Some suggestions for future studies of this research are 
as follows:

•	 Protection constraints, reconfigure the feeder topology 
in the distribution network may challenge the distribu-
tion network protection system and cause changes in the 
status of the protection relays.

Table 7   Results of different methods for energy loss objective func-
tion for 20 trials

Algorithms Energy loss (kWh)

Best Mean Worst Standard 
Deviation

ABCO 30281.75 30346.52 30415.28 65.74
ESGA 29868.95 29926.15 29988.25 61.25
PSO 29420.41 29471.45 29529.29 52.33
IPSO-ABCO 29165.23 29210.23 29256.41 46.22

Table 8   Results of different methods for ENS objective function for 
20 trials

Algorithms ENS (kWh/year)

Best Mean Worst Standard 
deviation

ABCO 290.64 298.26 311.35 4.13
ESGA 283.45 289.41 298.19 3.87
PSO 278.64 283.21 290.54 3.35
IPSO-ABCO 272.51 274.23 281.15 3.15

Table 9   List of switches for 
energy loss optimization

LL Load level

L.L Open switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 70 7 79 22 82 33 19 86 55 87 30
2 4 7 79 22 82 52 67 65 85 32 83
3 77 43 15 22 26 35 80 86 53 32 30
4 4 40 15 22 26 52 80 86 55 87 27
5 4 7 15 22 82 84 19 56 85 32 30
6 70 7 15 81 49 84 80 86 85 87 28
7 77 7 15 22 26 84 19 86 55 32 83
8 4 43 15 39 26 84 19 86 85 71 30
9 77 7 15 22 82 50 19 86 85 32 30
10 70 78 15 39 82 35 19 86 53 32 83
11 70 43 15 22 82 35 80 86 55 87 30
12 70 78 15 81 82 35 19 65 85 32 30
13 70 78 15 81 26 35 19 86 85 87 28
14 77 43 15 39 26 52 19 86 55 32 83
15 4 43 79 22 26 84 80 86 55 32 30
16 77 78 15 39 26 35 19 65 85 87 30
17 4 43 15 22 26 35 67 86 85 87 83
18 77 43 79 22 82 35 19 86 85 32 27
19 70 78 15 22 26 84 19 86 55 32 30
20 4 43 15 22 82 84 80 86 85 76 30
21 77 7 79 39 26 84 80 86 55 31 30
22 77 78 15 22 49 35 19 65 74 87 30
23 4 78 15 81 82 84 19 86 85 32 83
24 70 7 15 39 82 35 80 86 85 87 30
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•	 Distribution network security, with the advancement of 
technology and automation in smart distribution net-
works, some operational issues such as energy man-
agement may face challenges such as cyber threats. 
Therefore, considering this restriction in the distribution 

network application issues, such as reconfiguration the 
distribution network, will create safe conditions for the 
operation of the network.

Fig. 11   Active power of DGs 
for energy loss optimization

Fig. 12   Active power of EVs 
during charging / discharging 
for energy loss optimization

Fig. 13   Pareto-front for 
optimizing energy loss and 
operational cost
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