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Abstract
The major issue for optimization with genetic algorithms (GAs) is getting stuck on a local optimum or a low computation 
efficiency. In this research, we propose a new real-coded based crossover operator by using the Exponentiated Pareto distribu-
tion (EPX), which aims to preserve the two extremes. We used EPX with three the most reputed mutation operators: Makinen, 
Periaux and Toivanen mutation (MPTM), non uniform mutation (NUM) and power mutation (PM). The experimental results 
with eighteen well-known models depict that our proposed EPX operator performs better than the other competitive crossover 
operators. The comparison analysis is evaluated through mean, standard deviation and the performance index. Significance 
of EPX vs competitive is examined by performing the two-tailed t-test. Hence, the new crossover scheme appears to be 
significant as well as comparable to establish the crossing among parents for better offspring.

Keywords Genetic algorithms · Global optimization · Real-coded crossover operators · Exploration and exploitation

1 Introduction

For the global optima, several other techniques have been 
discussed in literature, e.g. simulated annealing (SA), dif-
ferential evolution (DE), particle swarm optimization (PSO), 
ant-colony optimization (ACO), genetic algorithms (GAs) 
etc. [6] . In further studies, a detailed description about 
these algorithms have also been given [7–9]. Among these 
algorithms, GA has been found to be the most powerful 
algorithms to solve the optimization related problems [10]. 
In the early 1970s, professor Holland proposed the genetic 
algorithms (GAs) first time, see for examples [1–5]. It is a 
population based probabilistic approach, which searches the 
global optima for an optimistic problem.

There are several applications of GA, such as in automatic 
control, combinatorial optimization, production scheduling 
problems, optimization problems, planning and design, bio-
engineering, system engineering, artificial intelligence and 
6-6 parallel manipulators etc. [11–15, 55]. Also, many real 

life problems have been formulated as mathematical models 
to optimize their local objective functions, which further 
require their global optimum solution. This optimum value 
usually depends upon the decision variables that define the 
objective function. GA does not ensure the exact optimum 
solution, but it gives the optimal solution among the local 
optimum ones. Usually the real life problems are constrained 
optimization problems, but the current research deals with 
unconstrained optimization problems. It may appear as:

Minimize g(y), with g ∶ Rn
→ R where, y � G. In 

the large search space, the G is denoted as a n-dimen-
sional rectangular hypercube and Rn is identified by 
ci ≤ yi ≤ di, i = 1, 2, 3, ..., n . For evolutionary algorithms, 
the first step is to connect a bridge in the context of real 
situation problem and the problem solving space through 
evolutionary techniques. This step is defined as how the 
possible solutions are represented and stored in a computer 
language. In order to represent the candidates in the search 
space, a desired encoding scheme is adapted in which each 
of the chromosome is represented by the vector’s length. 
Here the length of a vector is defined by the number of deci-
sion variables configuring the dimensions of search space. 
Most often these variables are represented in binary codes 
in the form of 0’s and 1’s.
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The GA with binary coding problem is that it only maps 
the discrete values in the search set and this works well when 
an optimization problem has moderate decision variables. 
But in such cases, the accuracy of solution is compromised. 
As the accuracy of solution is directly linked to encoding 
length, so it results in excessive use of memory and comput-
ing which reduces the computation speed [16].

The idea of real encoding was emerged in early 90’s, 
where a chromosome was interpreted in a vector of real 
coded GA [17–19]. The real-coded GA also uses three 
basic genetic operators i.e. selection, crossover and muta-
tion. Although, it overcomes the problem of binary coded 
GA in a way that it requires continuous variables, but it may 
also faces the problem of premature convergence. This may 
happen due to the GA’s inability to locally exploit the infor-
mation regarding solutions in population.

GA has a major drawback that it gets stuck at local opti-
mum because of its premature convergence. It is strongly 
linked with population diversity. For more selection pres-
sure, there is less population diversity, which, as a result 
leads the GA to converge at the local optimum point. To 
maintain the balance between population diversity and selec-
tion pressure remains a major goal and it has been addressed 
by various studies [20, 21, 47, 48, 57] . We know that all 
the three operators affect the GA but crossover has major 
impact on it. It basically uses the information about the cur-
rent population, directing the search in other regions of that 
search space. Hence, we can say that the exploration of GA 
depends on the crossover operator. Thus, it is essential to 
choose a suitable real-coded crossover operator to get more 
accurate results.

To overcome all the discussed issues with GAs, our study 
proposes an efficient crossover operator in order to come up 
with the solution for complex optimization problems. The 
current study is designed to have six sections. The Sect. 1 
is about the introduction of GA as a tool to solve complex 
optimization problems. The Sect. 2 presents the existing real 
coded crossover operators. The Sect. 3 is about proposed 
real coded crossover operator, whereas the Sect. 4 is about 
an experimental setup. Section 5 discusses the results of the 
current study while the last Sect. 6 is all about concluding 
the current study findings.

2  Existing crossover operators

The performance of GA is highly affected by its opera-
tors, i.e. selection, crossover and mutation. Crossover is 
an important operator to maintain a balance between the 
two extremes, i.e. exploration and exploitation. In case of 
real coded GA, there is a list of operators that have been 
introduced in the literature. For example, Michalewicz [22] 
proposed a simple crossover related to genetics suggesting 

that how randomly selected genes from a parent pair are 
exchanged, result in production of the offspring. Radcliffe 
[23] proposed a flat crossover, which selects the genes from 
two parents by using the uniform distribution to produce 
an offspring. The search capabilities of this operator were 
further enhanced by extending the line and intermedi-
ate crossover operators, see for example, Muhlebein and 
Schlierkamp-Voosen [24]. Both of them are allowed the 
exploration within a pre-decided interval beyond the parents. 
Further, the above given ideas of Radcliffe, and Muhlebein 
and Schlierkamp-Voosen were further generalized by Eshel-
man and Schaffer [25]. They introduced the blend crossover 
operator with parameter ‘ � ’ which directs the exploration 
in the interval. The interval may be in between the parent’s 
genes or on the either side of the parents. It also becomes 
the extended intermediate crossover for � = 0.25 . In 1991, 
Wright [18] introduced the heuristic crossover (HX) based 
on the fitness values of parents. Only one offspring is pro-
duced by mating of two parents and it is also biased in the 
favor of relatively better parent.

A lot of approaches to generate offspring through arith-
metical crossovers were suggested by Michalewicz [26]. For 
examples, one of them is to produced offspring within the 
genes interval of both parents. Another one is to generate 
one offspring using uniform distribution between the genes 
and using the means of parents to generate the second one. 
The idea of fuzzy recombination operators, which was used 
with heuristic crossover as heuristic fuzzy connective based 
crossovers, see for example, [27, 28]. These crossovers suc-
cessfully maintain the population’s diversity with enhanced 
convergence speed. A simplex multi-parent crossover pro-
posed by Tsutsui [29] produces the offspring from the sim-
plex formed by the parent solutions. An improved version 
of Genetic Diversity Evolutionary Algorithm (GeDEA) 
called GeDEA-II is proposed which features a novel cross-
over operator, the Simplex-Crossover (SPX), and a novel 
mutation operator, the Shrink-Mutation [56] .The simulated 
binary crossover (SBX) aims to simulate binary-crossovers 
making it useful for continuous search space [30]. A Gauss-
ian distribution based crossover for real-coded GA was 
proposed by Tutkun [31]. Laplace crossover (LX) was sug-
gested by Deep and Thakur [32], which produces offspring 
based on the Laplace distribution. Logistic crossover (LogX) 
was proposed to produce more near optimal results based on 
Logistic distribution [57] .

Some other crossover operators have also been proposed 
with multiple descendants. Producing three offspring from 
two parents using a linear crossover operator [18]. A uni-
modal normally distributed crossover operator (UNDX) 
introduced by Ono and Kobayashi [33] where three parents 
participate to produce two or more offspring. Later on, its 
performance is enhanced by adding the uniform crossover 
(UX) [34]. Another multi-parent crossover operator called 
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the Parent centric crossover (PCX) was proposed by Deb 
et al. [35]. It was further modified by Sinha et al. [36]. In 
the average bound crossover, four offspring are produced 
and the parents are then replaced by the two best offspring 
[37]. The hybrid crossover operator produces a number of 
offspring using different crossover operators. Crossover 
operators are classified as mean centric or parent centric if 
they generate offspring near the centroid of parent or near 
the parents. A detailed analysis was done by Herrera et al. 
[38]. The simplex crossover, blend crossover and the uni-
modal normal distribution crossover are the mean centric 
operators, whereas, LX, SBX and fuzzy recombination are 
parent centric approaches.

The differential evolution crossover (DEX) has been 
proposed as a multi-parent crossover operator to avoid 
premature convergence. As a part of improved class of 
RCGAs it uses successful parent strategy which provides 
a successful alternative to parent selection during DEX 
process [43]. A new hybrid strategy was applied by com-
bining the SBX and simplex crossover to effectively opti-
mize a problem [44]. Another recent variant of RCGA 
is the improved real coded genetic algorithm (IRCGA) 
which uses SBX to improve the convergence speed and 
solution quality for dynamic economic dispatch [45]. 
Another idea used a multi-parent crossover operator with 
a diversity operator instead of a mutation operator to solve 
constrained optimization problems as well as engineering 
problems [46]. A new adaptive genetic algorithm has been 
proposed to maintain the balance between exploration and 
exploitation. It used the arithmetic crossover operator in 
a new adaptive environment [47]. For the optimization 
of multi-modal test problems for real coded genetic algo-
rithm, a novel parent centric crossover operator is pro-
posed based on a log-logistic probability distribution. The 
main aim of fisk crossover (FX) is trade-off between selec-
tion pressure and population diversity [48]. An improved 
RCGA is defined by using a new heuristic normal distribu-
tion crossover (HNDX) which aim to direct the crossover 
to the optimal crossover direction [49]. Direction based 
crossover operators have also been proposed which direct 
the crossover search direction to be consistent with the 
optimal crossover direction [50–53]. Another condition-
ally breeding RCGA is performed by difference degree 
between individuals instead of using the crossover and 
mutation probability. It aimed to improve the ability of GA 
to converge to the near optimal solution [54].

3  Real‑coded crossover operators: used 
in this study

The operators that have been used in the current study are:

3.1  Laplace crossover (LX)

Based on Laplace distribution, Deep and Thakur [32] pro-
posed a self-adaptive parent centric crossover operator. The 
Laplace distribution function is as follows.

Following the same steps as mentioned earlier, a parameter 
}�i ’ is created using following formula:

Offspring are generated using following equations:

The authors suggested to assign zero value to the location 
parameter of this distribution.

3.2  Simulated binary crossover (SBX)

Simulated binary crossover is among the most commonly 
known crossover operator which was proposed by Deb and 
Agarwal [30]. The cumulative distribution function (CDF) is 
as follows:

The parameter ‘ �i ’ is generated using the following 
equations:

where, m
c
� (0,∞) is the distribution index for SBX. Two off-

spring � = (�1, �2, ..., �n) and � = (�1, �2, ..., �n) are generated 
from a pair of parents y = (y1, y2, ..., yn) and z = (z1, z2, ..., zn) 
as follows:

(1)F(y) =

⎧
⎪⎨⎪⎩

1

2
exp(

�y−l�
m

), y ≤ l

1 −
1

2
exp(−

�y−l�
m

), y > l

(2)𝛽i =

⎧
⎪⎨⎪⎩

l − bloge(ui), ui ≤ 0.5

l + bloge(ui), ui > 0.5

(3)
{

�i = yi + �i|yi − zi|
�i = zi + �i|yi − zi|

(4)F(y) = 0.5ymc+1

(5)𝛽i =

⎧⎪⎨⎪⎩

(2ui)
1

mc+1 , ui ≤ 0.5

1

(2(1−ui))
1

mc+1

, ui > 0.5

(6)
{

�i = 0.5((yi + zi) − �i|yi − zi|)
�i = 0.5((yi + zi) − �i|yi − zi|)
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3.3  Heuristic crossover (HX)

This is the most common and elderly used crossover is 
Heuristic crossover which was proposed by Wright [18]. It 
aims to solve the constrained and unconstrained optimiza-
tion problems. It works differently from other crossover 
operators as it produces a single offspring from a parent 
pair. The steps to generate offspring � = (�1, �2, ..., �n) are 
as follows: 

1. Generate a random number ui between 0 and 1.
2. Find an offspring using following formula: 

and observe the fitness of the parent z, which is not worse 
than the parent y. Produced offspring will be biased in the 
direction of relatively fit parent.

In case the produced offspring � ≤ yl
i
 or � ≥ yu

i
 , then 

a new offspring is generated using step 2. The produced 
offspring will be assigned a random value if HX fails to 
produce an offspring within the constraints even after n 
attempts as:

where yl
i
 and yu

i
 are the lower and upper limits of ith parent y.

3.4  Logistic crossover (LogX)

One recently proposed crossover operator based on the 
Logistic distribution [57]. The CDF of Logistic distribution 
is given as:

From a  pa i r  o f  paren ts  x = (x1, x2, ..., xn) and 
y = (y1, y2, ..., yn) ,  two offspring are generated as 
�i = (�1, �2, ..., �n) and �i = (�1, �2, ..., �n) using the follow-
ing steps: 

1. Generate a random number u between 0 and 1.
2. The parameter �i is created by inverting the CDF of 

Logistic distribution. 

3. For i=1,2,...,n, the offspring are given by the equation: 

(7)�i = (zi − yi)ui + zi

(8)�i = yl
i
+ (yu

i
− yl

i
)ui,

(9)F(x) =
1

(1 + exp
−(

(x−�)

s
))

(10)�i = � − sLog(
1 − u

u
)

(11)�i = 0.5[(x + y) + �i|x − y|)]

(12)�i = 0.5[(x + y) − �i|x − y|)]

3.5  Makinen, Periaux and Toivanen mutation 
(MPTM)

This mutation operator is suggested by Makinen et al. [39]. 
It was proposed to solve multidisciplinary shape optimiza-
tion problems in aerodynamics and electromagnetic. It is 
also used to solve constrained optimization problems [40]. 
The mutated individual � = (�1, �2, ..., �n) is created from an 
individual � = (�1, �2, ..., �n) as follows: 

1. A uniform random number, say u, is generated between 
0 and 1.

2. Find 

 where xl
i
 and xu

i
 are the lower and upper bounds of ith 

decision variable respectively.
3. A parameter ki is created using following formula: 

 where ‘ b’ is the index of mutation.
4. The muted solution will be created as follows: 

3.6  Non‑uniform mutation (NUM)

It is one of the most common and widely used mutation 
operator proposed by [41, 42]. In this type of mutation as 
the number of generation increases, there is decrease in the 
strength of mutation. In other words, the NUM operator uni-
formly searches for the space in the initial generations, but 
in the later generations it searches for the space locally. The 
steps to create the muted solution are: 

1. Create a uniformly distributed random number between 
0 and 1.

2. The muted solution will be: 

where ‘b’ is the parameter of mutation operator which deter-
mines the strength of mutation. ‘T’ stands for the maximum 
number of generations whereas ‘t’ represents the current 
generation number.

(13)k =
xi − (xi)

l

(xi)
u − xi

,

(14)ki =

⎧⎪⎨⎪⎩

ki − ki(
ki−ri

ki
)b, if ri < ki

ki, if ri = ki

ki + (1 − ki)(
ri−ki

1−ki
)b, if ri > ki

(15)�i = (1 − ki)x
l
i
+ kix

u
i

(16)

�i =

{
�i + (xu

i
− �i)(1 − u

(1−(t∕T))

i
)b, if ri ≤ 0.5

�i − (�i − xl
i
)(1 − u

(1−(t∕T))

i
)b, otherwise
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3.7  Power mutation (PM)

One of the most frequently used operator that uses Power 
distribution was originally proposed by Deep and Thakur 
[32]. Its density function is as follows:

with the following distribution function:

where ‘ � ’ is the index of the distribution. Following steps 
are used to find the muted solution. 

1. A random number ‘r’ is created between 0 and 1.
2. Create a random number ‘ si ’ which follows the Power 

distribution as: 

3. Create the muted solution using the following equation: 

(17)f (y) = �y�−1, 0 ≤ y ≤ 1

(18)F(y) = y�, 0 ≤ y ≤ 1

(19)si = (ri)
1∕�

(20)𝜁i =

⎧⎪⎨⎪⎩

𝜖i − si(𝜖i − yl
i
), if

yi−y
l
i

yu
i
−yi

< ri

𝜖i + si(y
u
i
− 𝜖i), if

yi−y
l
i

yu
i
−yi

≥ ri

 where ri is the uniform random number between 0 and 1 
and yl

i
 and yu

i
 are the lower and upper bounds of ith deci-

sion variable respectively.

4  The proposed real coded crossover 
operator based on Exponentiated Pareto 
distribution

The proposed Exponentiated Pareto crossover (EPX) oper-
ator is used in conjunction with the Makinen, Periaux and 
Toivanen mutation (MPTM). This modification give rise 
to a new crossover operator EPX-MPTM to improve the 
performance of existing crossover operators. The density 
function of Exponentiated pareto distribution is given as 
follows:

where � , 𝜃 > 0 are the location and scale parameters respec-
tively. The CDF of Exponentiated Pareto distribution is 
given as:

(21)f (t) = ��(1 − (1 + t)−�)�−1(1 + t)−(�+1)

(22)F(t) = (1 − (1 + t)−�)�

Fig. 1  Exponentiated Pareto 
distribution for different values 
of parameters, Distribution of 
offspring
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From parents k = (k1, k2, ..., kn) and l = (l1, l2, ..., ln) , 
two offspring are generated as �i = (�1, �2, ..., �n) and 
�i = (�1, �2, ..., �n) using the steps given below: 

1. Generate a random number ‘z’, where z� (0,1).
2. The parameter ‘ �i ’ is created by inverting the CDF of 

Exponentiated pareto Distribution i.e., by equating the 
area under the curve from −∞ to �i to the randomly gen-
erated number z as follows: 

(23)

F(t) = (1 − (1 + t)−�)�

z = (1 − (1 + �i)
−�)�

z1∕� = 1 − (1 + �i)
−�

1 − z1∕� = (1 + �i)
−�

(1 − z1∕�)(−1∕�) = 1 + �i

3. For i=1,2,...,n, the offspring are given by the equation: 

The shape of Exponentiated Pareto distribution is shown in 
the upper left subplot of Fig. 1. The distribution becomes sym-
metric for larger values of the parameter ‘ � ’. The upper right 
subplot of Fig. 1 clearly depicts that for a fixed value of ‘ � ’, a 
smaller value of parameter ‘ � ’ generates near the parent off-
spring while the larger value of this parameter generates far off 
parents. As we know genetic algorithm is a population based 
algorithm and the main purpose of any operator (i.e. selection, 
crossover and mutation) is to keep balance between selection 
pressure and population diversity. The long tail of the Expo-
nentiated Pareto distribution shows high population diversity 
which reduces the selection pressure and vice versa for the 
high peak. But the Exponentiated Pareto distribution main-
tains a better trade-off between the population diversity and 
selection pressure (as seen in the upper left subplot of Fig. 1).

The third subplot shows the distribution of offspring. It 
shows increase in probability of generating offspring away 
from parent. Meanwhile it also depicts that the length of 
interval, in which offspring are generated, increases with an 
increase in ‘ � ’ (the spread parameter). EPX is very explorative 
and its exploration range also increases with an increase in ‘ � ’ 
(shown by long tail in graph). In this way, the search power 
of the proposed operator in terms of probability of generating 
the offspring is high.

5  The experimental setup

In this section, experimental test is carried out with its eight-
een benchmark functions in order to validate the proposed 
algorithm. It is aimed to make its comparison with three 
other optimization algorithms.

5.1  Mathematical test functions

Eighteen benchmark test problems have been selected to test 
the performance of proposed crossover operator. These prob-
lems have different difficulty level and multi-modality. The 
problems with their essential information are summarized 
in appendix.

5.2  Algorithms for comparison

For performance evaluation of the proposed algorithm, the 
optimal fitness values of EPX-MPTM are compared with 
four other evolutionary algorithms. These are LX, SBX, 

(24)�i = ((1 − z1∕�)(−1∕�)) − 1

(25)
{

�i = 0.5[(k + l) + �i|k − l|)]
�i = 0.5[(k + l) − �i|k − l|)]

Table 1  Summary of operators used in the study

Operators used

Algorithm name Selection Crossover Mutation Elitism

EPX-MPTM Tournament EPX MPTM Yes
LX-MPTM Tournament LX MPTM Yes
SBX-MPTM Tournament SBX MPTM Yes
HX-MPTM Tournament HX MPTM Yes
LogX-MPTM Tournament LogX MPTM Yes
EPX-NUM Tournament EPX NUM Yes
LX-NUM Tournament LX NUM Yes
SBX-NUM Tournament SBX NUM Yes
HX-NUM Tournament HX NUM Yes
LogX-NUM Tournament LogX NUM Yes
EPX-PM Tournament EPX PM Yes
LX-PM Tournament LX PM Yes
SBX-PM Tournament SBX PM Yes
HX-PM Tournament HX PM Yes
LogX-PM Tournament LogX PM Yes

Table 2  Parameter settings used for GA

Parameter Settings

Representation Real
Population size 300
Crossover schemes EPX, SBX, LX, HX and LogX
Crossover probability 75%
Mutation operator MPTM, NUM, PM
Mutation rate 5%
Maximum generation 1000
Number of dimensions 30
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HX and LogX in conjunction with three mutation operators 
MPTM, NUM and PM.

5.3  Settings for comparison

In order to maintain uniformity of the testing environment, 
the population size for all the cases is made ten times to the 
number of decision variables. There are thirty independent 

runs which are made on various initial populations using 
each of the algorithm. All the GAs use tournament selection 
as a selection criteria. Elitism is applied with size one i.e., 
the best individuals are preserved in the current generation. 
The value of ‘a’ for LX is set to be zero and for HX, ‘k’ 
is 4. A maximum number of 1000 generations is the stop-
ping criteria for all the algorithms. The values of parameters 
are fixed during a complete run. The performance of the 

Table 3  Mean, standard deviation and number of succesful runs for 1000 simulated results with 30 independent runs

Problem Name EPX-MPTM LX-MPTM SBX-MPTM HX-MPTM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 3.27E+01 6 6.22E+02 0 4.02E+01 8 5.58E+02 2
(7.19E+01) (1.44E+03) (9.54E+01) (1.17E+03)

New 4.70E-06 30 1.87E-04 30 2.33E-05 30 2.37E+00 30
(1.27E-05) (3.85E-04) (4.29E-05) (1.11E+01)

Greiwank 3.51E-02 22 2.43E-01 12 4.18E-02 22 1.93E-01 2
(5.03E-02) (3.08E-01) (6.57E-02) (2.95E-01)

Cosine Mixture -3.00E+00 30 -3.00E+00 30 -3.00E+00 30 -2.9732 30
(8.88E-06) (7.63E-05) (1.62E-05) (1.04E-01)

Brown 4.18E-07 30 3.42E-05 30 2.91E-06 30 1.28E-05 30
(1.13E-06) (4.42E-05) (9.08E-06) (2.04E-05)

Generalized1 4.09E-08 30 7.04E-06 30 7.97E-07 30 7.80E-03 30
(8.67E-08) (6.67E-06) (1.82E-06) (3.01E-02)

Generalized2 7.67E-05 30 3.00E-03 30 2.20E-03 30 8.60E-03 30
(1.95E-04) (7.60E-03) (4.60E-03) (2.33E-02)

Sphere 7.76E-06 30 2.81E-04 30 9.68E-06 30 4.19E-05 30
(1.55E-05) (4.93E-04) (2.06E-05) (6.47E-05)

New 13 2.03E-06 30 6.54E-04 30 5.60E-06 30 2.53E+00 30
(2.57E-06) (1.10E-03) (7.02E-06) (9.80E+00)

Hyper Ellipsoid 4.76E-05 30 2.80E-03 30 2.45E-04 30 1.10E-03 30
(9.88E-05) (7.10E-03) (5.58E-04) (2.40E-03)

LevyMount1 1.65E-06 30 2.51E-05 30 1.80E-06 30 4.88E-02 30
(3.27E-06) (3.70E-05) (6.85E-06) (1.34E-01)

LevyMount2 7.79E-06 30 7.17E-05 30 6.30E-03 30 6.70E-03 30
(1.23E-05) (1.80E-04) (9.10E-03) (2.57E-02)

Ellipsoidal 5.31E+00 6 5.03E+02 0 8.68E+00 2 1.34E+03 0
(1.48E+01) (1.23E+02) (1.49E+01) (2.97E+02)

Dejong’s 1.28E+01 0 1.40E+01 0 1.48E+01 0 1.37E+01 0
(8.46E+00) (7.55E+00) (6.80E+00) (8.66E+00)

Rosenbrock 1.84E-01 20 6.58E+00 12 1.57E+00 22 1.98E-01 10
(3.83E-01) (1.13E+01) (6.68E+00) (3.89E-01)

step 6.24E-09 30 1.57E-02 26 9.92E-07 30 1.01E-02 30
(9.58E-09) (2.80E-02) (2.07E-06) (1.21E-02)

Rastrigin 1.85E+00 24 2.14E+01 14 3.97E+00 10 9.48E+01 6
(4.00E+00) (2.83E+01) (3.94E+00) (6.31E+01)

Neumair 1.80E+01 30 2.69E+01 30 2.18E+01 30 3.47E+01 28
(3.12E+00) (1.38E+01) (1.48E+01) (6.25E+01)
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proposed algorithm has been evaluated on each test function 
based on the statistics from 30 independent runs. A run is 
said to be successful if the objective function value varies 
not more than 5% of its optimal value in the run. In this way, 
performance index has been computed.

6  Results and discussion

In this section, comparison of the proposed operators 
EPX-MPTM, EPX-NUM and EPX-PM is performed with 
other crossover operators in groups of three i.e., (HX-
MPTM, LX-MPTM, SBX-MPTM), (HX-NUM, LX-NUM, 
SBX-NUM) and (HX-PM, LX-PM, SBX-PM). The muta-
tion operator is same in each of these groups to maintain 

Table 4  Mean, standard deviation and number of succesful runs for 1000 simulated results with 30 independent runs

Problem name EPX-NUM LX-NUM SBX-NUM HX-NUM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 1.27E+01 0 4.87E+04 0 6.10E+01 12 8.25E+03 12
(1.43E+01) (7.71E+04) (1.07E+02) (1.89E+04)

New 1.43E-06 30 3.94E+00 4 2.39E-06 30 3.69E-01 26
(2.16E-06) (3.57E+00) (5.60E-06) (9.76E-01)

Greiwank 2.70E-02 24 2.18E-02 24 1.03E-01 20 2.37E-01 16
(3.01E-02) (2.37E-02) (8.93E-02) (4.07E-01)

Cosine Mixture -3.00E+00 0 -1.51E+00 30 -3.00E+00 30 -2.2683 30
(1.45E-06) (3.97E-01) (2.13E-05) (1.10E+00)

Brown 4.14E-11 30 4.03E-07 30 5.86E-06 30 4.11E-04 30
(4.51E-11) (5.67E-07) (1.17E-05) (6.49E-04)

Generalized1 7.89E-07 30 3.47E-01 8 3.20E-05 30 5.21E-01 24
(1.50E-06) (3.54E-01) (1.17E-04) (7.71E-01)

Generalized2 1.70E-03 30 6.85E-02 18 9.50E-03 28 1.42E-01 16
(3.90E-03) (9.24E-02) (1.75E-02) (2.46E-01)

Sphere 2.09E-10 30 1.64E-08 30 1.06E-05 30 2.23E-04 30
(3.44E-10) (3.88E-08) (1.67E-05) (5.97E-04)

New 13 8.45E-04 30 1.03E+02 0 3.12E-01 24 8.17E+01 0
(2.40E-03) (5.08E+01) (6.75E-01) (4.49E+01)

Hyper Ellipsoid 8.18E-05 30 3.00E-01 8 9.35E-04 30 3.98E-02 30
(1.61E-04) (2.54E-01) (3.10E-03) (1.34E-01)

LevyMount1 4.41E-07 30 4.86E-02 16 6.97E-06 30 1.33E-01 26
(4.17E-07) (5.38E-02) (1.38E-05) (2.04E-01)

LevyMount2 1.10E-03 30 1.67E-01 22 5.10E-03 30 3.06E-02 28
(3.00E-03) (3.02E-01) (6.80E-03) (1.01E-01)

Ellipsoidal 1.57E-07 30 6.92E-04 30 4.09E-01 24 1.27E+03 0
(1.92E-07) (8.55E-04) (1.39E+00) (3.03E+02)

Dejong’s 1.41E+01 0 1.62E+01 0 1.46E+01 0 1.63E+01 0
(7.00E+00) (1.03E+01) (9.75E+00) (6.98E+00)

Rosenbrock 4.32E+01 2 1.15E+03 0 6.72E+01 0 1.27E+01 18
(2.95E+01) (2.74E+03) (3.38E+01) (3.55E+00)

step 6.74E-32 30 1.55E-11 30 5.18E-12 30 1.43E-32 30
(2.56E-31) (3.74E-11) (5.89E-12) (5.54E-32)

Rastrigin 8.43E+00 0 7.46E+01 0 5.60E+00 0 1.46E+02 0
(2.22E+00) (1.55E+01) (4.60E+00) (1.87E+01)

Neumair 1.43E+03 6 2.89E+02 20 5.83E+02 2 5.23E+01 28
(1.47E+03) (2.68E+02) (2.64E+02) (1.40E+02)
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uniformity of the comparison process. Results are ana-
lyzed in three different ways. EPX operator performed 
better than other crossover operators in most of the test 
problems. It is also compared with the LogX operator 
using each of three mutation operators . Results showed 
that the proposed operator is more efficient in function 
optimization as compared to the other crossover opera-
tors. The Table 1 shows the summary of operators used 

in the study (Table 1. The parameter settings used for the 
GA are shown in Table 2.

Table 5  Mean, standard deviation and number of succesful runs for 1000 simulated results with 30 independent runs

Problem name EPX-PM LX-PM SBX-PM HX-PM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 6.05E+04 0 9.29E+06 0 8.31E+04 0 4.07E+07 0
(1.83E+05) (6.35E+06) (8.86E+04) (1.96E+07)

New 2.40E-03 30 6.44E+01 0 2.47E-02 28 1.17E+02 0
(4.30E-03) (3.43E+01) (3.57E-02) (5.13E+01)

Greiwank 3.15E-01 0 1.54E+01 0 3.15E-01 8 3.39E+01 0
(3.41E-01) (7.77E+00) (2.62E-01) (9.12E+00)

Cosine Mixture -2.99E+00 30 -2.84E+00 30 -3.00E+00 30 -9.62E-01 30
(6.00E-03) (1.94E-01) (5.90E-03) (3.46E-01)

Brown 7.88E-04 30 2.34E-01 24 8.30E-03 30 1.28E+00 4
(1.60E-03) (1.32E-01) (6.80E-03) (4.32E-01)

Generalized1 1.39E-05 30 4.37E-02 26 6.09E-05 30 5.64E-01 10
(1.92E-05) (5.48E-02) (1.24E-04) (9.02E-01)

Generalized2 3.30E-03 30 4.83E-01 4 3.60E-03 30 9.71E-01 0
(4.30E-03) (3.62E-01) (6.30E-03) (4.09E-01)

Sphere 7.87E-04 30 3.08E+00 0 5.20E-03 30 1.08E+01 0
(1.20E-03) (1.98E+00) (1.03E-02) (3.13E+00)

New 13 4.92E-01 10 6.44E+01 0 5.21E-01 18 1.17E+02 0
(5.24E-01) (3.43E+01) (5.75E-01) (5.13E+01)

Hyper Ellipsoid 1.06E-01 22 4.35E+01 0 3.78E-01 10 1.34E+02 0
(2.37E-01) (4.62E+01) (6.53E-01) (4.56E+01)

LevyMount1 2.89E-05 30 1.14E-01 8 6.38E-04 30 3.98E-01 0
(4.89E-05) (8.70E-02) (6.99E-04) (2.18E-01)

LevyMount2 1.90E-03 30 2.63E-01 0 5.60E-03 30 1.02E+00 2
(4.00E-03) (2.76E-01) (7.20E-03) (5.86E-01)

Ellipsoidal 5.18E-01 8 4.38E+02 0 8.12E+00 0 1.48E+03 0
(9.47E-01) (1.47E+02) (1.18E+01) (3.73E+02)

Dejong’s 1.25E+01 0 1.56E+01 0 1.46E+01 0 1.26E+02 0
(8.82E+00) (8.73E+00) (1.02E+01) (6.65E+01)

Rosenbrock 3.30E+02 0 9.80E+04 0 3.16E+02 0 1.09E+06 14
(3.55E+02) (2.34E+05) (1.76E+02) (1.19E+06)

step 1.70E-13 30 0.00E+00 30 1.08E-11 30 2.23E+03 28
(6.60E-13) (0.00E+00) (4.18E-11) (8.64E+03)

Rastrigin 7.21E+00 0 5.37E+01 0 4.22E+00 0 1.44E+02 0
(3.20E+00) (2.85E+01) (1.83E+00) (1.67E+01)

Neumair 2.44E+03 0 1.28E+05 4 3.19E+03 0 2.75E+05 18
(2.42E+03) (8.52E+04) (1.76E+03) (1.01E+05)
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6.1  First way of analysis

6.1.1  EPX‑MPTM vs LX‑MPTM, SBX‑MPTM, HX‑MPTM

The average value of the objective function, stand-
ard error and the number of successful runs are listed 
in Table 3. Results indicate that the proposed operator, 
EPX-MPTM, has a smaller value of the mean objective 
function in all problems. The proposed operator has 100 

% success rate in twelve problems while the other opera-
tors solve only ten problems. None of the GAs could solve 
P14 in all runs.

6.1.2  EPX‑NUM vs LX‑NUM, SBX‑NUM, HX‑NUM

The proposed operator EPX-NUM is also compared with 
other crossover operators in conjunction with NUM mutation 
operator. In 15 problems, the EPX-NUM shows more near 

Table 6  Mean, standard deviation and number of succesful runs of LogX and EPX for 1000 simulated results with 30 independent runs

Problem name EPX-MPTM LogX-MPTM EPX-NUM LogX-NUM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 3.27E+01 6 4.30E+02 0 1.27E+01 0 2.04E+05 0
(7.19E+01) (3.53E+02) (1.43E+01) (1.25E+05)

New 4.70E-06 22 1.20E-03 30 1.43E-06 30 1.17E+01 0
(1.27E-05) (2.00E-03) (2.16E-06) (7.68E+00)

Greiwank 3.51E-02 30 2.07E-01 8 2.70E-02 24 1.22E+00 0
(5.03E-02) (2.14E-01) (3.01E-02) (1.73E-01)

Cosine Mixture -3.00E+00 30 -3.00E+00 30 -3.00E+00 0 -2.79E+00 30
(8.88E-06) (3.66E-04) (1.45E-06) (1.62E-01)

Brown 4.18E-07 30 4.32E-05 30 4.14E-11 30 5.40E-02 14
(1.13E-06) (5.14E-05) (4.51E-11) (2.95E-02)

Generalized1 4.09E-08 30 3.65E-05 30 7.89E-07 30 1.00E-02 28
(8.67E-08) (4.20E-05) (1.50E-06) (2.64E-02)

Generalized2 7.67E-05 30 3.56E-05 30 1.70E-03 30 6.29E-02 18
(1.95E-04) (5.55E-05) (3.90E-03) (5.86E-02)

Sphere 7.76E-06 30 2.69E-04 30 2.09E-10 30 7.39E-02 14
(1.55E-05) (2.25E-04) (3.44E-10) (4.95E-02)

New 13 2.03E-06 30 7.38E-04 30 8.45E-04 30 2.74E-01 16
(2.57E-06) (8.59E-04) (2.40E-03) (3.74E-01)

Hyper Ellipsoid 4.76E-05 30 6.80E-03 28 8.18E-05 30 1.06E+00 0
(9.88E-05) (1.31E-02) (1.61E-04) (7.03E-01)

LevyMount1 1.65E-06 30 4.27E-05 30 4.41E-07 30 9.60E-03 28
(3.27E-06) (6.37E-05) (4.17E-07) (2.66E-02)

LevyMount2 7.79E-06 30 4.55E-05 30 1.10E-03 30 6.45E-02 14
(1.23E-05) (4.02E-05) (3.00E-03) (4.99E-02)

Ellipsoidal 5.31E+00 6 1.98E+01 0 1.57E-07 30 9.92E+00 0
(1.48E+01) (6.54E+00) (1.92E-07) (6.00E+00)

Dejong’s 1.28E+01 0 1.78E+01 0 1.41E+01 0 1.73E+01 0
(8.46E+00) (7.79E+00) (7.00E+00) (9.39E+00)

Rosenbrock 1.84E-01 20 2.46E+00 4 4.32E+01 2 1.23E+03 0
(3.83E-01) (7.19E+00) (2.95E+01) (5.67E+02)

step 6.24E-09 30 5.06E-02 16 6.74E-32 30 1.20E+01 0
(9.58E-09) (4.54E-02) (2.56E-31) (6.67E+00)

Rastrigin 1.85E+00 24 2.99E-02 22 8.43E+00 0 2.08E+01 0
(4.00E+00) (2.87E-02) (2.22E+00) (5.67E+00)

Neumair 1.80E+01 30 6.41E+01 28 1.43E+03 6 1.33E+04 0
(3.12E+00) (6.45E+01) (1.47E+03) (6.59E+03)
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optimal results than other crossover operator i.e., LX-NUM, 
SBX-NUM and HX-NUM. In other three problems, there is 
not much difference in the results (Table 4).

6.1.3  EPX‑PM vs LX‑PM, SBX‑PM, HX‑PM

Table 5 shows the mean, standard deviation and the number 
of successful runs for third group of comparison. The pro-
posed operator outperforms the other crossover operators in 
all problems except P4. EPX produces more optimal results 
than the other crossover operators. From the above compari-
son, it can be concluded that on the basis of mean, standard 
deviation (S.D) and successful rate, EPX worked efficiently 
with MPTM, NUM and PM operators. It resulted in more 
near optimal results than other crossover operators in most 
of the test problems.

6.1.4  EPX‑MPTM vs LogX‑MPTM, EPX‑NUM vs LogX‑NUM 
and EPX‑PM vs LogX‑PM

The proposed EPX is compared with LogX operator in con-
junction with MPTM, NUM and PM as mutation operators 
(Tables 6 and 7). Results show the better performance of 
EPX in terms of less average and standard deviation values. 
The EPX solves all problems successfully than the LogX 
operator as indicated by the successful runs mentioned in 
tables 6 and 7.

6.2  Second way of analysis

The second way of analysis is to compare the relative per-
formance of all the GAs simultaneously. The performance 
index (PI) is calculated in the following manner:

where

where i = 1, 2, ...,Np ; Sri is the number of successful runs 
of ith problem; Tri is the total number of runs of ith problem; 
Mf i is the mean objective function value of ith problem; Lmf i 
is the least mean objective function value of ith problem; Sf i 
is the standard deviation of ith optimization problem; Lsf i 
is the least standard deviation value among all GAs of ith 
optimization problem and Np is the total number of problems 
analyzed.

(26)PI =
1

Np

NP∑
i=1

(t1�
i
1
+ t2�

i
2
+ t3�

i
3
)

(27)�i
1
=

Sri

Tri

(28)�i
2
=

Mf i

Lmf i

(29)�i
3
=

Sf i

Lsf i

Table 7  Mean, standard 
deviation and number of 
succesful runs of LogX and 
EPX for 1000 simulated results 
with 30 independent runs

Problem name LogX-PM EPX-PM

Mean SD Successful 
runs

Mean SD Suc-
cessful 
runs

Cigar 8.56E+04 7.07E+04 0 6.05E+04 1.83E+05 0
New 5.37E+00 8.09E+00 6 2.40E-03 4.30E-03 30
Greiwank 1.05E+00 9.40E-02 0 3.15E-01 3.41E-01 0
Cosine Mixture -2.98E+00 4.32E-02 30 -2.99E+00 6.00E-03 30
Brown 1.40E-03 1.20E-03 30 7.88E-04 1.60E-03 30
Generalized1 9.10E-03 2.78E-02 28 1.39E-05 1.92E-05 30
Generalized2 2.64E-02 5.77E-02 30 3.30E-03 4.30E-03 30
Sphere 2.96E-02 4.34E-02 24 7.87E-04 1.20E-03 30
New 13 2.23E-02 1.75E-02 28 4.92E-01 5.24E-01 10
Hyper Ellipsoid 3.72E-01 4.07E-01 4 1.06E-01 2.37E-01 22
LevyMount1 8.60E-03 2.73E-02 28 2.89E-05 4.89E-05 30
LevyMount2 1.73E-02 1.74E-02 28 1.90E-03 4.00E-03 30
Ellipsoidal 1.42E+01 5.52E+00 0 5.18E-01 9.47E-01 8
Dejong’s 9.28E+00 7.70E+00 0 1.25E+01 8.82E+00 0
Rosenbrok 1.06E+02 9.53E+01 0 3.30E+02 3.55E+02 0
step 9.02E-126 3.49E-125 30 1.70E-13 6.60E-13 30
Rastrigin 2.07E+01 1.28E+01 0 7.21E+00 3.20E+00 0
Neumair 5.44E+03 5.57E+03 0 2.44E+03 2.42E+03 0
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t1, t2 and t3 are the weights assigned to successful runs, 
mean objective function value and the standard deviation 
of the objective function value respectively. Same weights 
are assigned to two terms at a time so that the behavior of 
PI can be easily analyzed. The following three cases are 
considered here:

Case 1: t1 = w , t2 = t3 =
1−w

2
,        0 ≤ w ≤ 1

Case 2: t2 = w , t1 = t3 =
1−w

2
,        0 ≤ w ≤ 1

Case 3: t3 = w , t1 = t2 =
1−w

2
,        0 ≤ w ≤ 1

From Fig. 2, it is evident that the proposed crosso-
ver operator i.e., EPX outperforms the other crossover 
operators.

6.3  Third way of analysis

The student’s t test has also been applied to test the hypoth-
esis that whether the mean of proposed operator is smaller 
than the other three GAs. It further investigate whether the 
mean of the proposed algorithm is more close to the optimal 
value than the other crossover operators. Results are shown 
in Table 8.

The GA convergence performed on P9 (Axis parallel 
hyper ellipsoid) is shown in Figs. 3, 4, 5. LX and HX take 
more generations to converge i.e. have more population 
diversity and SBX converges too quickly because of more 
selection pressure. EPX works more effectively than LogX 
operator as it attains the global optima while maintaining 
the balance between exploration and exploitation. It can be 

Fig. 2  a PI when t1=w and t2 = t3=(1-w)/2, b PI when t2=w and t1 = t3=(1-w)/2, c PI when t3=w and t1 = t2=(1-w)/2.
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analyzed on any test problem for all competing selection 
strategies (Table 8).

7  Conclusion

In this paper, we proposed a new real coded GA, the ”Expo-
nentiated Pareto” crossover. It is used in conjunction with 
MPTM, NUM and PM mutation operators. Graphical rep-
resentation shows that the proposed operator generates near 
parent offspring for a smaller value of the spread parameter. 
The problem dimensions are fixed to be 30 as used in earlier 
studies.

For the sake of analysis, the GAs are categorized into 
three groups. In the first group, the EPX operator is com-
pared with other crossover operators in conjunction with 
MPTM mutation operator, the second group compares the 
varying crossover operators with NUM mutation operator 
and the third group use the PM mutation operator with the 
four varying crossover operators.

Three kind of analysis have been performed. In the first 
way of analysis, the optimal fitness values of the EPX opera-
tor are compared with other crossover operators. The mean 
and standard deviation results show that the EPX operator 
is more efficient then the other crossover operators. It has 
100% success rate in almost all problems.

The second kind of analysis is carried out by using the 
performance index. Figure 2 shows that the EPX operator 

Table 8  t-Statistic result

t-Statistic result

Function name EPX vs LX EPX vs SBX EPX vs HX

Cigar 1 1 1
New 1 0 1
Greiwank 1 1 1
Cosine mixture 0 0 1
Brown 1 1 1
Generalized1 1 0 1
Generalized2 1 1 1
Sphere 1 1 1
New 13 1 1 1
Hyper ellipsoid 1 0 1
LevyMount1 1 1 1
LevyMount2 1 1 1
Ellipsoidal 1 0 1
Dejong’s 0 0 1
Rosenbrock 1 1 1
step 1 1 0
Rastrigin 1 1 1
Neumair 1 1 1

Fig. 3  GA Convergence with 
EPX-MPTM and other crosso-
ver operators for P9
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Fig. 4  GA Convergence with 
EPX-NUM and other crossover 
operators for P9

Fig. 5  GA Convergence with 
EPX-PM and crossover opera-
tors for P9
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outperforms the other crossover operators. Finally, the sig-
nificant t-test results support our hypothesis that the EPX 
provides more near optimal results.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12065- 021- 00636-4.
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