
Vol.:(0123456789)1 3

Evolutionary Intelligence (2022) 15:2651–2666
https://doi.org/10.1007/s12065-021-00636-4

RESEARCH PAPER

Seeking a balance between population diversity and premature
convergence for real‑coded genetic algorithms with crossover
operator

Fakhra Batool Naqvi1 · Muhammad Yousaf Shad1

Received: 14 November 2020 / Revised: 17 March 2021 / Accepted: 29 June 2021 / Published online: 20 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The major issue for optimization with genetic algorithms (GAs) is getting stuck on a local optimum or a low computation
efficiency. In this research, we propose a new real-coded based crossover operator by using the Exponentiated Pareto distribu-
tion (EPX), which aims to preserve the two extremes. We used EPX with three the most reputed mutation operators: Makinen,
Periaux and Toivanen mutation (MPTM), non uniform mutation (NUM) and power mutation (PM). The experimental results
with eighteen well-known models depict that our proposed EPX operator performs better than the other competitive crossover
operators. The comparison analysis is evaluated through mean, standard deviation and the performance index. Significance
of EPX vs competitive is examined by performing the two-tailed t-test. Hence, the new crossover scheme appears to be
significant as well as comparable to establish the crossing among parents for better offspring.

Keywords Genetic algorithms · Global optimization · Real-coded crossover operators · Exploration and exploitation

1 Introduction

For the global optima, several other techniques have been
discussed in literature, e.g. simulated annealing (SA), dif-
ferential evolution (DE), particle swarm optimization (PSO),
ant-colony optimization (ACO), genetic algorithms (GAs)
etc. [6] . In further studies, a detailed description about
these algorithms have also been given [7–9]. Among these
algorithms, GA has been found to be the most powerful
algorithms to solve the optimization related problems [10].
In the early 1970s, professor Holland proposed the genetic
algorithms (GAs) first time, see for examples [1–5]. It is a
population based probabilistic approach, which searches the
global optima for an optimistic problem.

There are several applications of GA, such as in automatic
control, combinatorial optimization, production scheduling
problems, optimization problems, planning and design, bio-
engineering, system engineering, artificial intelligence and
6-6 parallel manipulators etc. [11–15, 55]. Also, many real

life problems have been formulated as mathematical models
to optimize their local objective functions, which further
require their global optimum solution. This optimum value
usually depends upon the decision variables that define the
objective function. GA does not ensure the exact optimum
solution, but it gives the optimal solution among the local
optimum ones. Usually the real life problems are constrained
optimization problems, but the current research deals with
unconstrained optimization problems. It may appear as:

Minimize g(y), with g ∶ Rn
→ R where, y � G. In

the large search space, the G is denoted as a n-dimen-
sional rectangular hypercube and Rn is identified by
ci ≤ yi ≤ di, i = 1, 2, 3, ..., n . For evolutionary algorithms,
the first step is to connect a bridge in the context of real
situation problem and the problem solving space through
evolutionary techniques. This step is defined as how the
possible solutions are represented and stored in a computer
language. In order to represent the candidates in the search
space, a desired encoding scheme is adapted in which each
of the chromosome is represented by the vector’s length.
Here the length of a vector is defined by the number of deci-
sion variables configuring the dimensions of search space.
Most often these variables are represented in binary codes
in the form of 0’s and 1’s.

 * Fakhra Batool Naqvi
 fakhrabatoolnaqvi@gmail.com

1 Department of Statistics, Quaid-i-Azam University,
Islamabad, Pakistan

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-021-00636-4&domain=pdf

2652 Evolutionary Intelligence (2022) 15:2651–2666

1 3

The GA with binary coding problem is that it only maps
the discrete values in the search set and this works well when
an optimization problem has moderate decision variables.
But in such cases, the accuracy of solution is compromised.
As the accuracy of solution is directly linked to encoding
length, so it results in excessive use of memory and comput-
ing which reduces the computation speed [16].

The idea of real encoding was emerged in early 90’s,
where a chromosome was interpreted in a vector of real
coded GA [17–19]. The real-coded GA also uses three
basic genetic operators i.e. selection, crossover and muta-
tion. Although, it overcomes the problem of binary coded
GA in a way that it requires continuous variables, but it may
also faces the problem of premature convergence. This may
happen due to the GA’s inability to locally exploit the infor-
mation regarding solutions in population.

GA has a major drawback that it gets stuck at local opti-
mum because of its premature convergence. It is strongly
linked with population diversity. For more selection pres-
sure, there is less population diversity, which, as a result
leads the GA to converge at the local optimum point. To
maintain the balance between population diversity and selec-
tion pressure remains a major goal and it has been addressed
by various studies [20, 21, 47, 48, 57] . We know that all
the three operators affect the GA but crossover has major
impact on it. It basically uses the information about the cur-
rent population, directing the search in other regions of that
search space. Hence, we can say that the exploration of GA
depends on the crossover operator. Thus, it is essential to
choose a suitable real-coded crossover operator to get more
accurate results.

To overcome all the discussed issues with GAs, our study
proposes an efficient crossover operator in order to come up
with the solution for complex optimization problems. The
current study is designed to have six sections. The Sect. 1
is about the introduction of GA as a tool to solve complex
optimization problems. The Sect. 2 presents the existing real
coded crossover operators. The Sect. 3 is about proposed
real coded crossover operator, whereas the Sect. 4 is about
an experimental setup. Section 5 discusses the results of the
current study while the last Sect. 6 is all about concluding
the current study findings.

2 Existing crossover operators

The performance of GA is highly affected by its opera-
tors, i.e. selection, crossover and mutation. Crossover is
an important operator to maintain a balance between the
two extremes, i.e. exploration and exploitation. In case of
real coded GA, there is a list of operators that have been
introduced in the literature. For example, Michalewicz [22]
proposed a simple crossover related to genetics suggesting

that how randomly selected genes from a parent pair are
exchanged, result in production of the offspring. Radcliffe
[23] proposed a flat crossover, which selects the genes from
two parents by using the uniform distribution to produce
an offspring. The search capabilities of this operator were
further enhanced by extending the line and intermedi-
ate crossover operators, see for example, Muhlebein and
Schlierkamp-Voosen [24]. Both of them are allowed the
exploration within a pre-decided interval beyond the parents.
Further, the above given ideas of Radcliffe, and Muhlebein
and Schlierkamp-Voosen were further generalized by Eshel-
man and Schaffer [25]. They introduced the blend crossover
operator with parameter ‘ � ’ which directs the exploration
in the interval. The interval may be in between the parent’s
genes or on the either side of the parents. It also becomes
the extended intermediate crossover for � = 0.25 . In 1991,
Wright [18] introduced the heuristic crossover (HX) based
on the fitness values of parents. Only one offspring is pro-
duced by mating of two parents and it is also biased in the
favor of relatively better parent.

A lot of approaches to generate offspring through arith-
metical crossovers were suggested by Michalewicz [26]. For
examples, one of them is to produced offspring within the
genes interval of both parents. Another one is to generate
one offspring using uniform distribution between the genes
and using the means of parents to generate the second one.
The idea of fuzzy recombination operators, which was used
with heuristic crossover as heuristic fuzzy connective based
crossovers, see for example, [27, 28]. These crossovers suc-
cessfully maintain the population’s diversity with enhanced
convergence speed. A simplex multi-parent crossover pro-
posed by Tsutsui [29] produces the offspring from the sim-
plex formed by the parent solutions. An improved version
of Genetic Diversity Evolutionary Algorithm (GeDEA)
called GeDEA-II is proposed which features a novel cross-
over operator, the Simplex-Crossover (SPX), and a novel
mutation operator, the Shrink-Mutation [56] .The simulated
binary crossover (SBX) aims to simulate binary-crossovers
making it useful for continuous search space [30]. A Gauss-
ian distribution based crossover for real-coded GA was
proposed by Tutkun [31]. Laplace crossover (LX) was sug-
gested by Deep and Thakur [32], which produces offspring
based on the Laplace distribution. Logistic crossover (LogX)
was proposed to produce more near optimal results based on
Logistic distribution [57] .

Some other crossover operators have also been proposed
with multiple descendants. Producing three offspring from
two parents using a linear crossover operator [18]. A uni-
modal normally distributed crossover operator (UNDX)
introduced by Ono and Kobayashi [33] where three parents
participate to produce two or more offspring. Later on, its
performance is enhanced by adding the uniform crossover
(UX) [34]. Another multi-parent crossover operator called

2653Evolutionary Intelligence (2022) 15:2651–2666

1 3

the Parent centric crossover (PCX) was proposed by Deb
et al. [35]. It was further modified by Sinha et al. [36]. In
the average bound crossover, four offspring are produced
and the parents are then replaced by the two best offspring
[37]. The hybrid crossover operator produces a number of
offspring using different crossover operators. Crossover
operators are classified as mean centric or parent centric if
they generate offspring near the centroid of parent or near
the parents. A detailed analysis was done by Herrera et al.
[38]. The simplex crossover, blend crossover and the uni-
modal normal distribution crossover are the mean centric
operators, whereas, LX, SBX and fuzzy recombination are
parent centric approaches.

The differential evolution crossover (DEX) has been
proposed as a multi-parent crossover operator to avoid
premature convergence. As a part of improved class of
RCGAs it uses successful parent strategy which provides
a successful alternative to parent selection during DEX
process [43]. A new hybrid strategy was applied by com-
bining the SBX and simplex crossover to effectively opti-
mize a problem [44]. Another recent variant of RCGA
is the improved real coded genetic algorithm (IRCGA)
which uses SBX to improve the convergence speed and
solution quality for dynamic economic dispatch [45].
Another idea used a multi-parent crossover operator with
a diversity operator instead of a mutation operator to solve
constrained optimization problems as well as engineering
problems [46]. A new adaptive genetic algorithm has been
proposed to maintain the balance between exploration and
exploitation. It used the arithmetic crossover operator in
a new adaptive environment [47]. For the optimization
of multi-modal test problems for real coded genetic algo-
rithm, a novel parent centric crossover operator is pro-
posed based on a log-logistic probability distribution. The
main aim of fisk crossover (FX) is trade-off between selec-
tion pressure and population diversity [48]. An improved
RCGA is defined by using a new heuristic normal distribu-
tion crossover (HNDX) which aim to direct the crossover
to the optimal crossover direction [49]. Direction based
crossover operators have also been proposed which direct
the crossover search direction to be consistent with the
optimal crossover direction [50–53]. Another condition-
ally breeding RCGA is performed by difference degree
between individuals instead of using the crossover and
mutation probability. It aimed to improve the ability of GA
to converge to the near optimal solution [54].

3 Real‑coded crossover operators: used
in this study

The operators that have been used in the current study are:

3.1 Laplace crossover (LX)

Based on Laplace distribution, Deep and Thakur [32] pro-
posed a self-adaptive parent centric crossover operator. The
Laplace distribution function is as follows.

Following the same steps as mentioned earlier, a parameter
}�i ’ is created using following formula:

Offspring are generated using following equations:

The authors suggested to assign zero value to the location
parameter of this distribution.

3.2 Simulated binary crossover (SBX)

Simulated binary crossover is among the most commonly
known crossover operator which was proposed by Deb and
Agarwal [30]. The cumulative distribution function (CDF) is
as follows:

The parameter ‘ �i ’ is generated using the following
equations:

where, m
c
� (0,∞) is the distribution index for SBX. Two off-

spring � = (�1, �2, ..., �n) and � = (�1, �2, ..., �n) are generated
from a pair of parents y = (y1, y2, ..., yn) and z = (z1, z2, ..., zn)
as follows:

(1)F(y) =

⎧
⎪⎨⎪⎩

1

2
exp(

�y−l�
m

), y ≤ l

1 −
1

2
exp(−

�y−l�
m

), y > l

(2)𝛽i =

⎧
⎪⎨⎪⎩

l − bloge(ui), ui ≤ 0.5

l + bloge(ui), ui > 0.5

(3)
{

�i = yi + �i|yi − zi|
�i = zi + �i|yi − zi|

(4)F(y) = 0.5ymc+1

(5)𝛽i =

⎧⎪⎨⎪⎩

(2ui)
1

mc+1 , ui ≤ 0.5

1

(2(1−ui))
1

mc+1

, ui > 0.5

(6)
{

�i = 0.5((yi + zi) − �i|yi − zi|)
�i = 0.5((yi + zi) − �i|yi − zi|)

2654 Evolutionary Intelligence (2022) 15:2651–2666

1 3

3.3 Heuristic crossover (HX)

This is the most common and elderly used crossover is
Heuristic crossover which was proposed by Wright [18]. It
aims to solve the constrained and unconstrained optimiza-
tion problems. It works differently from other crossover
operators as it produces a single offspring from a parent
pair. The steps to generate offspring � = (�1, �2, ..., �n) are
as follows:

1. Generate a random number ui between 0 and 1.
2. Find an offspring using following formula:

and observe the fitness of the parent z, which is not worse
than the parent y. Produced offspring will be biased in the
direction of relatively fit parent.

In case the produced offspring � ≤ yl
i
 or � ≥ yu

i
 , then

a new offspring is generated using step 2. The produced
offspring will be assigned a random value if HX fails to
produce an offspring within the constraints even after n
attempts as:

where yl
i
 and yu

i
 are the lower and upper limits of ith parent y.

3.4 Logistic crossover (LogX)

One recently proposed crossover operator based on the
Logistic distribution [57]. The CDF of Logistic distribution
is given as:

From a pa i r o f paren ts x = (x1, x2, ..., xn) and
y = (y1, y2, ..., yn) , two offspring are generated as
�i = (�1, �2, ..., �n) and �i = (�1, �2, ..., �n) using the follow-
ing steps:

1. Generate a random number u between 0 and 1.
2. The parameter �i is created by inverting the CDF of

Logistic distribution.

3. For i=1,2,...,n, the offspring are given by the equation:

(7)�i = (zi − yi)ui + zi

(8)�i = yl
i
+ (yu

i
− yl

i
)ui,

(9)F(x) =
1

(1 + exp
−(

(x−�)

s
))

(10)�i = � − sLog(
1 − u

u
)

(11)�i = 0.5[(x + y) + �i|x − y|)]

(12)�i = 0.5[(x + y) − �i|x − y|)]

3.5 Makinen, Periaux and Toivanen mutation
(MPTM)

This mutation operator is suggested by Makinen et al. [39].
It was proposed to solve multidisciplinary shape optimiza-
tion problems in aerodynamics and electromagnetic. It is
also used to solve constrained optimization problems [40].
The mutated individual � = (�1, �2, ..., �n) is created from an
individual � = (�1, �2, ..., �n) as follows:

1. A uniform random number, say u, is generated between
0 and 1.

2. Find

 where xl
i
 and xu

i
 are the lower and upper bounds of ith

decision variable respectively.
3. A parameter ki is created using following formula:

 where ‘ b’ is the index of mutation.
4. The muted solution will be created as follows:

3.6 Non‑uniform mutation (NUM)

It is one of the most common and widely used mutation
operator proposed by [41, 42]. In this type of mutation as
the number of generation increases, there is decrease in the
strength of mutation. In other words, the NUM operator uni-
formly searches for the space in the initial generations, but
in the later generations it searches for the space locally. The
steps to create the muted solution are:

1. Create a uniformly distributed random number between
0 and 1.

2. The muted solution will be:

where ‘b’ is the parameter of mutation operator which deter-
mines the strength of mutation. ‘T’ stands for the maximum
number of generations whereas ‘t’ represents the current
generation number.

(13)k =
xi − (xi)

l

(xi)
u − xi

,

(14)ki =

⎧⎪⎨⎪⎩

ki − ki(
ki−ri

ki
)b, if ri < ki

ki, if ri = ki

ki + (1 − ki)(
ri−ki

1−ki
)b, if ri > ki

(15)�i = (1 − ki)x
l
i
+ kix

u
i

(16)

�i =

{
�i + (xu

i
− �i)(1 − u

(1−(t∕T))

i
)b, if ri ≤ 0.5

�i − (�i − xl
i
)(1 − u

(1−(t∕T))

i
)b, otherwise

2655Evolutionary Intelligence (2022) 15:2651–2666

1 3

3.7 Power mutation (PM)

One of the most frequently used operator that uses Power
distribution was originally proposed by Deep and Thakur
[32]. Its density function is as follows:

with the following distribution function:

where ‘ � ’ is the index of the distribution. Following steps
are used to find the muted solution.

1. A random number ‘r’ is created between 0 and 1.
2. Create a random number ‘ si ’ which follows the Power

distribution as:

3. Create the muted solution using the following equation:

(17)f (y) = �y�−1, 0 ≤ y ≤ 1

(18)F(y) = y�, 0 ≤ y ≤ 1

(19)si = (ri)
1∕�

(20)𝜁i =

⎧⎪⎨⎪⎩

𝜖i − si(𝜖i − yl
i
), if

yi−y
l
i

yu
i
−yi

< ri

𝜖i + si(y
u
i
− 𝜖i), if

yi−y
l
i

yu
i
−yi

≥ ri

 where ri is the uniform random number between 0 and 1
and yl

i
 and yu

i
 are the lower and upper bounds of ith deci-

sion variable respectively.

4 The proposed real coded crossover
operator based on Exponentiated Pareto
distribution

The proposed Exponentiated Pareto crossover (EPX) oper-
ator is used in conjunction with the Makinen, Periaux and
Toivanen mutation (MPTM). This modification give rise
to a new crossover operator EPX-MPTM to improve the
performance of existing crossover operators. The density
function of Exponentiated pareto distribution is given as
follows:

where � , 𝜃 > 0 are the location and scale parameters respec-
tively. The CDF of Exponentiated Pareto distribution is
given as:

(21)f (t) = ��(1 − (1 + t)−�)�−1(1 + t)−(�+1)

(22)F(t) = (1 − (1 + t)−�)�

Fig. 1 Exponentiated Pareto
distribution for different values
of parameters, Distribution of
offspring

2656 Evolutionary Intelligence (2022) 15:2651–2666

1 3

From parents k = (k1, k2, ..., kn) and l = (l1, l2, ..., ln) ,
two offspring are generated as �i = (�1, �2, ..., �n) and
�i = (�1, �2, ..., �n) using the steps given below:

1. Generate a random number ‘z’, where z� (0,1).
2. The parameter ‘ �i ’ is created by inverting the CDF of

Exponentiated pareto Distribution i.e., by equating the
area under the curve from −∞ to �i to the randomly gen-
erated number z as follows:

(23)

F(t) = (1 − (1 + t)−�)�

z = (1 − (1 + �i)
−�)�

z1∕� = 1 − (1 + �i)
−�

1 − z1∕� = (1 + �i)
−�

(1 − z1∕�)(−1∕�) = 1 + �i

3. For i=1,2,...,n, the offspring are given by the equation:

The shape of Exponentiated Pareto distribution is shown in
the upper left subplot of Fig. 1. The distribution becomes sym-
metric for larger values of the parameter ‘ � ’. The upper right
subplot of Fig. 1 clearly depicts that for a fixed value of ‘ � ’, a
smaller value of parameter ‘ � ’ generates near the parent off-
spring while the larger value of this parameter generates far off
parents. As we know genetic algorithm is a population based
algorithm and the main purpose of any operator (i.e. selection,
crossover and mutation) is to keep balance between selection
pressure and population diversity. The long tail of the Expo-
nentiated Pareto distribution shows high population diversity
which reduces the selection pressure and vice versa for the
high peak. But the Exponentiated Pareto distribution main-
tains a better trade-off between the population diversity and
selection pressure (as seen in the upper left subplot of Fig. 1).

The third subplot shows the distribution of offspring. It
shows increase in probability of generating offspring away
from parent. Meanwhile it also depicts that the length of
interval, in which offspring are generated, increases with an
increase in ‘ � ’ (the spread parameter). EPX is very explorative
and its exploration range also increases with an increase in ‘ � ’
(shown by long tail in graph). In this way, the search power
of the proposed operator in terms of probability of generating
the offspring is high.

5 The experimental setup

In this section, experimental test is carried out with its eight-
een benchmark functions in order to validate the proposed
algorithm. It is aimed to make its comparison with three
other optimization algorithms.

5.1 Mathematical test functions

Eighteen benchmark test problems have been selected to test
the performance of proposed crossover operator. These prob-
lems have different difficulty level and multi-modality. The
problems with their essential information are summarized
in appendix.

5.2 Algorithms for comparison

For performance evaluation of the proposed algorithm, the
optimal fitness values of EPX-MPTM are compared with
four other evolutionary algorithms. These are LX, SBX,

(24)�i = ((1 − z1∕�)(−1∕�)) − 1

(25)
{

�i = 0.5[(k + l) + �i|k − l|)]
�i = 0.5[(k + l) − �i|k − l|)]

Table 1 Summary of operators used in the study

Operators used

Algorithm name Selection Crossover Mutation Elitism

EPX-MPTM Tournament EPX MPTM Yes
LX-MPTM Tournament LX MPTM Yes
SBX-MPTM Tournament SBX MPTM Yes
HX-MPTM Tournament HX MPTM Yes
LogX-MPTM Tournament LogX MPTM Yes
EPX-NUM Tournament EPX NUM Yes
LX-NUM Tournament LX NUM Yes
SBX-NUM Tournament SBX NUM Yes
HX-NUM Tournament HX NUM Yes
LogX-NUM Tournament LogX NUM Yes
EPX-PM Tournament EPX PM Yes
LX-PM Tournament LX PM Yes
SBX-PM Tournament SBX PM Yes
HX-PM Tournament HX PM Yes
LogX-PM Tournament LogX PM Yes

Table 2 Parameter settings used for GA

Parameter Settings

Representation Real
Population size 300
Crossover schemes EPX, SBX, LX, HX and LogX
Crossover probability 75%
Mutation operator MPTM, NUM, PM
Mutation rate 5%
Maximum generation 1000
Number of dimensions 30

2657Evolutionary Intelligence (2022) 15:2651–2666

1 3

HX and LogX in conjunction with three mutation operators
MPTM, NUM and PM.

5.3 Settings for comparison

In order to maintain uniformity of the testing environment,
the population size for all the cases is made ten times to the
number of decision variables. There are thirty independent

runs which are made on various initial populations using
each of the algorithm. All the GAs use tournament selection
as a selection criteria. Elitism is applied with size one i.e.,
the best individuals are preserved in the current generation.
The value of ‘a’ for LX is set to be zero and for HX, ‘k’
is 4. A maximum number of 1000 generations is the stop-
ping criteria for all the algorithms. The values of parameters
are fixed during a complete run. The performance of the

Table 3 Mean, standard deviation and number of succesful runs for 1000 simulated results with 30 independent runs

Problem Name EPX-MPTM LX-MPTM SBX-MPTM HX-MPTM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 3.27E+01 6 6.22E+02 0 4.02E+01 8 5.58E+02 2
(7.19E+01) (1.44E+03) (9.54E+01) (1.17E+03)

New 4.70E-06 30 1.87E-04 30 2.33E-05 30 2.37E+00 30
(1.27E-05) (3.85E-04) (4.29E-05) (1.11E+01)

Greiwank 3.51E-02 22 2.43E-01 12 4.18E-02 22 1.93E-01 2
(5.03E-02) (3.08E-01) (6.57E-02) (2.95E-01)

Cosine Mixture -3.00E+00 30 -3.00E+00 30 -3.00E+00 30 -2.9732 30
(8.88E-06) (7.63E-05) (1.62E-05) (1.04E-01)

Brown 4.18E-07 30 3.42E-05 30 2.91E-06 30 1.28E-05 30
(1.13E-06) (4.42E-05) (9.08E-06) (2.04E-05)

Generalized1 4.09E-08 30 7.04E-06 30 7.97E-07 30 7.80E-03 30
(8.67E-08) (6.67E-06) (1.82E-06) (3.01E-02)

Generalized2 7.67E-05 30 3.00E-03 30 2.20E-03 30 8.60E-03 30
(1.95E-04) (7.60E-03) (4.60E-03) (2.33E-02)

Sphere 7.76E-06 30 2.81E-04 30 9.68E-06 30 4.19E-05 30
(1.55E-05) (4.93E-04) (2.06E-05) (6.47E-05)

New 13 2.03E-06 30 6.54E-04 30 5.60E-06 30 2.53E+00 30
(2.57E-06) (1.10E-03) (7.02E-06) (9.80E+00)

Hyper Ellipsoid 4.76E-05 30 2.80E-03 30 2.45E-04 30 1.10E-03 30
(9.88E-05) (7.10E-03) (5.58E-04) (2.40E-03)

LevyMount1 1.65E-06 30 2.51E-05 30 1.80E-06 30 4.88E-02 30
(3.27E-06) (3.70E-05) (6.85E-06) (1.34E-01)

LevyMount2 7.79E-06 30 7.17E-05 30 6.30E-03 30 6.70E-03 30
(1.23E-05) (1.80E-04) (9.10E-03) (2.57E-02)

Ellipsoidal 5.31E+00 6 5.03E+02 0 8.68E+00 2 1.34E+03 0
(1.48E+01) (1.23E+02) (1.49E+01) (2.97E+02)

Dejong’s 1.28E+01 0 1.40E+01 0 1.48E+01 0 1.37E+01 0
(8.46E+00) (7.55E+00) (6.80E+00) (8.66E+00)

Rosenbrock 1.84E-01 20 6.58E+00 12 1.57E+00 22 1.98E-01 10
(3.83E-01) (1.13E+01) (6.68E+00) (3.89E-01)

step 6.24E-09 30 1.57E-02 26 9.92E-07 30 1.01E-02 30
(9.58E-09) (2.80E-02) (2.07E-06) (1.21E-02)

Rastrigin 1.85E+00 24 2.14E+01 14 3.97E+00 10 9.48E+01 6
(4.00E+00) (2.83E+01) (3.94E+00) (6.31E+01)

Neumair 1.80E+01 30 2.69E+01 30 2.18E+01 30 3.47E+01 28
(3.12E+00) (1.38E+01) (1.48E+01) (6.25E+01)

2658 Evolutionary Intelligence (2022) 15:2651–2666

1 3

proposed algorithm has been evaluated on each test function
based on the statistics from 30 independent runs. A run is
said to be successful if the objective function value varies
not more than 5% of its optimal value in the run. In this way,
performance index has been computed.

6 Results and discussion

In this section, comparison of the proposed operators
EPX-MPTM, EPX-NUM and EPX-PM is performed with
other crossover operators in groups of three i.e., (HX-
MPTM, LX-MPTM, SBX-MPTM), (HX-NUM, LX-NUM,
SBX-NUM) and (HX-PM, LX-PM, SBX-PM). The muta-
tion operator is same in each of these groups to maintain

Table 4 Mean, standard deviation and number of succesful runs for 1000 simulated results with 30 independent runs

Problem name EPX-NUM LX-NUM SBX-NUM HX-NUM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 1.27E+01 0 4.87E+04 0 6.10E+01 12 8.25E+03 12
(1.43E+01) (7.71E+04) (1.07E+02) (1.89E+04)

New 1.43E-06 30 3.94E+00 4 2.39E-06 30 3.69E-01 26
(2.16E-06) (3.57E+00) (5.60E-06) (9.76E-01)

Greiwank 2.70E-02 24 2.18E-02 24 1.03E-01 20 2.37E-01 16
(3.01E-02) (2.37E-02) (8.93E-02) (4.07E-01)

Cosine Mixture -3.00E+00 0 -1.51E+00 30 -3.00E+00 30 -2.2683 30
(1.45E-06) (3.97E-01) (2.13E-05) (1.10E+00)

Brown 4.14E-11 30 4.03E-07 30 5.86E-06 30 4.11E-04 30
(4.51E-11) (5.67E-07) (1.17E-05) (6.49E-04)

Generalized1 7.89E-07 30 3.47E-01 8 3.20E-05 30 5.21E-01 24
(1.50E-06) (3.54E-01) (1.17E-04) (7.71E-01)

Generalized2 1.70E-03 30 6.85E-02 18 9.50E-03 28 1.42E-01 16
(3.90E-03) (9.24E-02) (1.75E-02) (2.46E-01)

Sphere 2.09E-10 30 1.64E-08 30 1.06E-05 30 2.23E-04 30
(3.44E-10) (3.88E-08) (1.67E-05) (5.97E-04)

New 13 8.45E-04 30 1.03E+02 0 3.12E-01 24 8.17E+01 0
(2.40E-03) (5.08E+01) (6.75E-01) (4.49E+01)

Hyper Ellipsoid 8.18E-05 30 3.00E-01 8 9.35E-04 30 3.98E-02 30
(1.61E-04) (2.54E-01) (3.10E-03) (1.34E-01)

LevyMount1 4.41E-07 30 4.86E-02 16 6.97E-06 30 1.33E-01 26
(4.17E-07) (5.38E-02) (1.38E-05) (2.04E-01)

LevyMount2 1.10E-03 30 1.67E-01 22 5.10E-03 30 3.06E-02 28
(3.00E-03) (3.02E-01) (6.80E-03) (1.01E-01)

Ellipsoidal 1.57E-07 30 6.92E-04 30 4.09E-01 24 1.27E+03 0
(1.92E-07) (8.55E-04) (1.39E+00) (3.03E+02)

Dejong’s 1.41E+01 0 1.62E+01 0 1.46E+01 0 1.63E+01 0
(7.00E+00) (1.03E+01) (9.75E+00) (6.98E+00)

Rosenbrock 4.32E+01 2 1.15E+03 0 6.72E+01 0 1.27E+01 18
(2.95E+01) (2.74E+03) (3.38E+01) (3.55E+00)

step 6.74E-32 30 1.55E-11 30 5.18E-12 30 1.43E-32 30
(2.56E-31) (3.74E-11) (5.89E-12) (5.54E-32)

Rastrigin 8.43E+00 0 7.46E+01 0 5.60E+00 0 1.46E+02 0
(2.22E+00) (1.55E+01) (4.60E+00) (1.87E+01)

Neumair 1.43E+03 6 2.89E+02 20 5.83E+02 2 5.23E+01 28
(1.47E+03) (2.68E+02) (2.64E+02) (1.40E+02)

2659Evolutionary Intelligence (2022) 15:2651–2666

1 3

uniformity of the comparison process. Results are ana-
lyzed in three different ways. EPX operator performed
better than other crossover operators in most of the test
problems. It is also compared with the LogX operator
using each of three mutation operators . Results showed
that the proposed operator is more efficient in function
optimization as compared to the other crossover opera-
tors. The Table 1 shows the summary of operators used

in the study (Table 1. The parameter settings used for the
GA are shown in Table 2.

Table 5 Mean, standard deviation and number of succesful runs for 1000 simulated results with 30 independent runs

Problem name EPX-PM LX-PM SBX-PM HX-PM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 6.05E+04 0 9.29E+06 0 8.31E+04 0 4.07E+07 0
(1.83E+05) (6.35E+06) (8.86E+04) (1.96E+07)

New 2.40E-03 30 6.44E+01 0 2.47E-02 28 1.17E+02 0
(4.30E-03) (3.43E+01) (3.57E-02) (5.13E+01)

Greiwank 3.15E-01 0 1.54E+01 0 3.15E-01 8 3.39E+01 0
(3.41E-01) (7.77E+00) (2.62E-01) (9.12E+00)

Cosine Mixture -2.99E+00 30 -2.84E+00 30 -3.00E+00 30 -9.62E-01 30
(6.00E-03) (1.94E-01) (5.90E-03) (3.46E-01)

Brown 7.88E-04 30 2.34E-01 24 8.30E-03 30 1.28E+00 4
(1.60E-03) (1.32E-01) (6.80E-03) (4.32E-01)

Generalized1 1.39E-05 30 4.37E-02 26 6.09E-05 30 5.64E-01 10
(1.92E-05) (5.48E-02) (1.24E-04) (9.02E-01)

Generalized2 3.30E-03 30 4.83E-01 4 3.60E-03 30 9.71E-01 0
(4.30E-03) (3.62E-01) (6.30E-03) (4.09E-01)

Sphere 7.87E-04 30 3.08E+00 0 5.20E-03 30 1.08E+01 0
(1.20E-03) (1.98E+00) (1.03E-02) (3.13E+00)

New 13 4.92E-01 10 6.44E+01 0 5.21E-01 18 1.17E+02 0
(5.24E-01) (3.43E+01) (5.75E-01) (5.13E+01)

Hyper Ellipsoid 1.06E-01 22 4.35E+01 0 3.78E-01 10 1.34E+02 0
(2.37E-01) (4.62E+01) (6.53E-01) (4.56E+01)

LevyMount1 2.89E-05 30 1.14E-01 8 6.38E-04 30 3.98E-01 0
(4.89E-05) (8.70E-02) (6.99E-04) (2.18E-01)

LevyMount2 1.90E-03 30 2.63E-01 0 5.60E-03 30 1.02E+00 2
(4.00E-03) (2.76E-01) (7.20E-03) (5.86E-01)

Ellipsoidal 5.18E-01 8 4.38E+02 0 8.12E+00 0 1.48E+03 0
(9.47E-01) (1.47E+02) (1.18E+01) (3.73E+02)

Dejong’s 1.25E+01 0 1.56E+01 0 1.46E+01 0 1.26E+02 0
(8.82E+00) (8.73E+00) (1.02E+01) (6.65E+01)

Rosenbrock 3.30E+02 0 9.80E+04 0 3.16E+02 0 1.09E+06 14
(3.55E+02) (2.34E+05) (1.76E+02) (1.19E+06)

step 1.70E-13 30 0.00E+00 30 1.08E-11 30 2.23E+03 28
(6.60E-13) (0.00E+00) (4.18E-11) (8.64E+03)

Rastrigin 7.21E+00 0 5.37E+01 0 4.22E+00 0 1.44E+02 0
(3.20E+00) (2.85E+01) (1.83E+00) (1.67E+01)

Neumair 2.44E+03 0 1.28E+05 4 3.19E+03 0 2.75E+05 18
(2.42E+03) (8.52E+04) (1.76E+03) (1.01E+05)

2660 Evolutionary Intelligence (2022) 15:2651–2666

1 3

6.1 First way of analysis

6.1.1 EPX‑MPTM vs LX‑MPTM, SBX‑MPTM, HX‑MPTM

The average value of the objective function, stand-
ard error and the number of successful runs are listed
in Table 3. Results indicate that the proposed operator,
EPX-MPTM, has a smaller value of the mean objective
function in all problems. The proposed operator has 100

% success rate in twelve problems while the other opera-
tors solve only ten problems. None of the GAs could solve
P14 in all runs.

6.1.2 EPX‑NUM vs LX‑NUM, SBX‑NUM, HX‑NUM

The proposed operator EPX-NUM is also compared with
other crossover operators in conjunction with NUM mutation
operator. In 15 problems, the EPX-NUM shows more near

Table 6 Mean, standard deviation and number of succesful runs of LogX and EPX for 1000 simulated results with 30 independent runs

Problem name EPX-MPTM LogX-MPTM EPX-NUM LogX-NUM

Mean Successful Mean Successful Mean Successful Mean Successful

(S.D) runs (S.D) runs (S.D) runs (S.D) runs

Cigar 3.27E+01 6 4.30E+02 0 1.27E+01 0 2.04E+05 0
(7.19E+01) (3.53E+02) (1.43E+01) (1.25E+05)

New 4.70E-06 22 1.20E-03 30 1.43E-06 30 1.17E+01 0
(1.27E-05) (2.00E-03) (2.16E-06) (7.68E+00)

Greiwank 3.51E-02 30 2.07E-01 8 2.70E-02 24 1.22E+00 0
(5.03E-02) (2.14E-01) (3.01E-02) (1.73E-01)

Cosine Mixture -3.00E+00 30 -3.00E+00 30 -3.00E+00 0 -2.79E+00 30
(8.88E-06) (3.66E-04) (1.45E-06) (1.62E-01)

Brown 4.18E-07 30 4.32E-05 30 4.14E-11 30 5.40E-02 14
(1.13E-06) (5.14E-05) (4.51E-11) (2.95E-02)

Generalized1 4.09E-08 30 3.65E-05 30 7.89E-07 30 1.00E-02 28
(8.67E-08) (4.20E-05) (1.50E-06) (2.64E-02)

Generalized2 7.67E-05 30 3.56E-05 30 1.70E-03 30 6.29E-02 18
(1.95E-04) (5.55E-05) (3.90E-03) (5.86E-02)

Sphere 7.76E-06 30 2.69E-04 30 2.09E-10 30 7.39E-02 14
(1.55E-05) (2.25E-04) (3.44E-10) (4.95E-02)

New 13 2.03E-06 30 7.38E-04 30 8.45E-04 30 2.74E-01 16
(2.57E-06) (8.59E-04) (2.40E-03) (3.74E-01)

Hyper Ellipsoid 4.76E-05 30 6.80E-03 28 8.18E-05 30 1.06E+00 0
(9.88E-05) (1.31E-02) (1.61E-04) (7.03E-01)

LevyMount1 1.65E-06 30 4.27E-05 30 4.41E-07 30 9.60E-03 28
(3.27E-06) (6.37E-05) (4.17E-07) (2.66E-02)

LevyMount2 7.79E-06 30 4.55E-05 30 1.10E-03 30 6.45E-02 14
(1.23E-05) (4.02E-05) (3.00E-03) (4.99E-02)

Ellipsoidal 5.31E+00 6 1.98E+01 0 1.57E-07 30 9.92E+00 0
(1.48E+01) (6.54E+00) (1.92E-07) (6.00E+00)

Dejong’s 1.28E+01 0 1.78E+01 0 1.41E+01 0 1.73E+01 0
(8.46E+00) (7.79E+00) (7.00E+00) (9.39E+00)

Rosenbrock 1.84E-01 20 2.46E+00 4 4.32E+01 2 1.23E+03 0
(3.83E-01) (7.19E+00) (2.95E+01) (5.67E+02)

step 6.24E-09 30 5.06E-02 16 6.74E-32 30 1.20E+01 0
(9.58E-09) (4.54E-02) (2.56E-31) (6.67E+00)

Rastrigin 1.85E+00 24 2.99E-02 22 8.43E+00 0 2.08E+01 0
(4.00E+00) (2.87E-02) (2.22E+00) (5.67E+00)

Neumair 1.80E+01 30 6.41E+01 28 1.43E+03 6 1.33E+04 0
(3.12E+00) (6.45E+01) (1.47E+03) (6.59E+03)

2661Evolutionary Intelligence (2022) 15:2651–2666

1 3

optimal results than other crossover operator i.e., LX-NUM,
SBX-NUM and HX-NUM. In other three problems, there is
not much difference in the results (Table 4).

6.1.3 EPX‑PM vs LX‑PM, SBX‑PM, HX‑PM

Table 5 shows the mean, standard deviation and the number
of successful runs for third group of comparison. The pro-
posed operator outperforms the other crossover operators in
all problems except P4. EPX produces more optimal results
than the other crossover operators. From the above compari-
son, it can be concluded that on the basis of mean, standard
deviation (S.D) and successful rate, EPX worked efficiently
with MPTM, NUM and PM operators. It resulted in more
near optimal results than other crossover operators in most
of the test problems.

6.1.4 EPX‑MPTM vs LogX‑MPTM, EPX‑NUM vs LogX‑NUM
and EPX‑PM vs LogX‑PM

The proposed EPX is compared with LogX operator in con-
junction with MPTM, NUM and PM as mutation operators
(Tables 6 and 7). Results show the better performance of
EPX in terms of less average and standard deviation values.
The EPX solves all problems successfully than the LogX
operator as indicated by the successful runs mentioned in
tables 6 and 7.

6.2 Second way of analysis

The second way of analysis is to compare the relative per-
formance of all the GAs simultaneously. The performance
index (PI) is calculated in the following manner:

where

where i = 1, 2, ...,Np ; Sri is the number of successful runs
of ith problem; Tri is the total number of runs of ith problem;
Mf i is the mean objective function value of ith problem; Lmf i
is the least mean objective function value of ith problem; Sf i
is the standard deviation of ith optimization problem; Lsf i
is the least standard deviation value among all GAs of ith
optimization problem and Np is the total number of problems
analyzed.

(26)PI =
1

Np

NP∑
i=1

(t1�
i
1
+ t2�

i
2
+ t3�

i
3
)

(27)�i
1
=

Sri

Tri

(28)�i
2
=

Mf i

Lmf i

(29)�i
3
=

Sf i

Lsf i

Table 7 Mean, standard
deviation and number of
succesful runs of LogX and
EPX for 1000 simulated results
with 30 independent runs

Problem name LogX-PM EPX-PM

Mean SD Successful
runs

Mean SD Suc-
cessful
runs

Cigar 8.56E+04 7.07E+04 0 6.05E+04 1.83E+05 0
New 5.37E+00 8.09E+00 6 2.40E-03 4.30E-03 30
Greiwank 1.05E+00 9.40E-02 0 3.15E-01 3.41E-01 0
Cosine Mixture -2.98E+00 4.32E-02 30 -2.99E+00 6.00E-03 30
Brown 1.40E-03 1.20E-03 30 7.88E-04 1.60E-03 30
Generalized1 9.10E-03 2.78E-02 28 1.39E-05 1.92E-05 30
Generalized2 2.64E-02 5.77E-02 30 3.30E-03 4.30E-03 30
Sphere 2.96E-02 4.34E-02 24 7.87E-04 1.20E-03 30
New 13 2.23E-02 1.75E-02 28 4.92E-01 5.24E-01 10
Hyper Ellipsoid 3.72E-01 4.07E-01 4 1.06E-01 2.37E-01 22
LevyMount1 8.60E-03 2.73E-02 28 2.89E-05 4.89E-05 30
LevyMount2 1.73E-02 1.74E-02 28 1.90E-03 4.00E-03 30
Ellipsoidal 1.42E+01 5.52E+00 0 5.18E-01 9.47E-01 8
Dejong’s 9.28E+00 7.70E+00 0 1.25E+01 8.82E+00 0
Rosenbrok 1.06E+02 9.53E+01 0 3.30E+02 3.55E+02 0
step 9.02E-126 3.49E-125 30 1.70E-13 6.60E-13 30
Rastrigin 2.07E+01 1.28E+01 0 7.21E+00 3.20E+00 0
Neumair 5.44E+03 5.57E+03 0 2.44E+03 2.42E+03 0

2662 Evolutionary Intelligence (2022) 15:2651–2666

1 3

t1, t2 and t3 are the weights assigned to successful runs,
mean objective function value and the standard deviation
of the objective function value respectively. Same weights
are assigned to two terms at a time so that the behavior of
PI can be easily analyzed. The following three cases are
considered here:

Case 1: t1 = w , t2 = t3 =
1−w

2
, 0 ≤ w ≤ 1

Case 2: t2 = w , t1 = t3 =
1−w

2
, 0 ≤ w ≤ 1

Case 3: t3 = w , t1 = t2 =
1−w

2
, 0 ≤ w ≤ 1

From Fig. 2, it is evident that the proposed crosso-
ver operator i.e., EPX outperforms the other crossover
operators.

6.3 Third way of analysis

The student’s t test has also been applied to test the hypoth-
esis that whether the mean of proposed operator is smaller
than the other three GAs. It further investigate whether the
mean of the proposed algorithm is more close to the optimal
value than the other crossover operators. Results are shown
in Table 8.

The GA convergence performed on P9 (Axis parallel
hyper ellipsoid) is shown in Figs. 3, 4, 5. LX and HX take
more generations to converge i.e. have more population
diversity and SBX converges too quickly because of more
selection pressure. EPX works more effectively than LogX
operator as it attains the global optima while maintaining
the balance between exploration and exploitation. It can be

Fig. 2 a PI when t1=w and t2 = t3=(1-w)/2, b PI when t2=w and t1 = t3=(1-w)/2, c PI when t3=w and t1 = t2=(1-w)/2.

2663Evolutionary Intelligence (2022) 15:2651–2666

1 3

analyzed on any test problem for all competing selection
strategies (Table 8).

7 Conclusion

In this paper, we proposed a new real coded GA, the ”Expo-
nentiated Pareto” crossover. It is used in conjunction with
MPTM, NUM and PM mutation operators. Graphical rep-
resentation shows that the proposed operator generates near
parent offspring for a smaller value of the spread parameter.
The problem dimensions are fixed to be 30 as used in earlier
studies.

For the sake of analysis, the GAs are categorized into
three groups. In the first group, the EPX operator is com-
pared with other crossover operators in conjunction with
MPTM mutation operator, the second group compares the
varying crossover operators with NUM mutation operator
and the third group use the PM mutation operator with the
four varying crossover operators.

Three kind of analysis have been performed. In the first
way of analysis, the optimal fitness values of the EPX opera-
tor are compared with other crossover operators. The mean
and standard deviation results show that the EPX operator
is more efficient then the other crossover operators. It has
100% success rate in almost all problems.

The second kind of analysis is carried out by using the
performance index. Figure 2 shows that the EPX operator

Table 8 t-Statistic result

t-Statistic result

Function name EPX vs LX EPX vs SBX EPX vs HX

Cigar 1 1 1
New 1 0 1
Greiwank 1 1 1
Cosine mixture 0 0 1
Brown 1 1 1
Generalized1 1 0 1
Generalized2 1 1 1
Sphere 1 1 1
New 13 1 1 1
Hyper ellipsoid 1 0 1
LevyMount1 1 1 1
LevyMount2 1 1 1
Ellipsoidal 1 0 1
Dejong’s 0 0 1
Rosenbrock 1 1 1
step 1 1 0
Rastrigin 1 1 1
Neumair 1 1 1

Fig. 3 GA Convergence with
EPX-MPTM and other crosso-
ver operators for P9

2664 Evolutionary Intelligence (2022) 15:2651–2666

1 3

Fig. 4 GA Convergence with
EPX-NUM and other crossover
operators for P9

Fig. 5 GA Convergence with
EPX-PM and crossover opera-
tors for P9

2665Evolutionary Intelligence (2022) 15:2651–2666

1 3

outperforms the other crossover operators. Finally, the sig-
nificant t-test results support our hypothesis that the EPX
provides more near optimal results.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12065- 021- 00636-4.

References

 1. Holland J (1975) Adaptation in natural and artificial systems: an
introductory analysis with application to biology. Control and
Artificial Intelligence. MIT press, Cambridge

 2. Zheng SR, Lai JM, Liu GL, Gang T (2006) Improved real coded
hybrid genetic algorithm. Comput Appl 26(8):1959–1962

 3. Liu HH, Cui C, Chen J (2013) An improved genetic algorithm
for solving travel salesman problem. Trans Beijing Inst Technol
33(4):390–393

 4. Jingi W, Yang X, Lei C (2012) The application of GA-based PID
parameter optimization for the control of superheated steam tem-
perature. In: International conference on machine learning and
cybernetics. vol 3, pp 835–839

 5. Golberg DE (1989) Genetic algorithms in search, optimization,
and machine learning. Addison-Wesley Publishing Company,
Boston

 6. Deb K (2001) Nonlinear goal programming using multi-objective
genetic algorithms. J Op Res Soc 52(3):291–302

 7. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Sci 220(4598):671–680

 8. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a
practical approach to global optimization. Springer Science and
Business Media, Berlin

 9. Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence. Else-
vier, Netherlands

 10. Bäck T, Schwefel HP (1993) An overview of evolutionary algo-
rithms for parameter optimization. Evol Comput 1(1):1–23

 11. Chen CT, Wu CK, Hwang C (2008) Optimal design and control
of CPU heat sink processes. IEEE Trans Compon Packag Technol
31(1):184–195

 12. Chen CT, Chuang YC (2010) An intelligent run-to-run control
strategy for chemical-mechanical polishing processes. IEEE Trans
Semicond Manuf 23(1):109–120

 13. Dyer JD, Hartfield RJ, Dozier GV, Burkhalter JE (2012) Aero-
space design optimization using a steady state real-coded genetic
algorithm. Appl Math Comput 218(9):4710–4730

 14. Tsai CW, Lin CL, Huang CH (2010) Microbrushless DC motor
control design based on real-coded structural genetic algorithm.
IEEE/ASME Trans Mech 16(1):151–159

 15. Valarmathi K, Devaraj D, Radhakrishnan TK (2009) Real-coded
genetic algorithm for system identification and controller tuning.
Appl Math Model 33(8):3392–3401

 16. Goldberg DE (1990) Real-coded genetic algorithms, virtual alpha-
bets and blocking. University of Illinois at Urbana Champaign,
Champaign

 17. Lawrence D (1991) Handbook of genetic algorithms. Van Nos-
trand Reinhold

 18. Wright AH (1991) Genetic algorithms for real parameter optimi-
zation. Found Genet Algorithms 1:205–218

 19. Janikow CZ, Michalewicz Z (1991) An experimental comparison
of binary and floating point representations in genetic algorithms.
ICGA

 20. Hussain A, Muhammad YS (2020) Trade-off between exploration
and exploitation with genetic algorithm using a novel selection
operator. Complex Intell Sys 6(1):1–14

 21. Eiben AE, Schut MC, de Wilde AR (2006) Is self-adaptation of
selection pressure and population size possible?–A case study.
In: Parallel problem solving from nature-PPSN IX, pp 900–909

 22. Michalewicz Z, Logan T, Swaminathan S (1994) Evolutionary
operators for continuous convex parameter spaces. In Proceedings
of the 3rd annual conference on evolutionary programming, PP
84–97

 23. Radcliffe NJ (1991) Equivalence class analysis of genetic algo-
rithms. Complex Syst 5(2):183–205

 24. Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models
for the breeder genetic algorithm in continuous parameter opti-
mization. Evol Comput 1(1):25–49

 25. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms
and interval-schemata. Found Genet Algorithms 2:187–202

 26. Michalewicz Z, Janikow CZ (1991) Handling constraints in
genetic algorithms. ICGA 151–157

 27. Voigt HM (1992) Fuzzy evolutionary algorithms. International
Computer Science Institute

 28. Voigt HM, Mühlenbein H, Cvetkovic D (1995) Fuzzy recombina-
tion for the breeder genetic algorithm. In: Proceedings of sixth
international conferene on genetic algorithms

 29. Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recom-
bination with simplex crossover in real coded genetic algorithms.
In: Proceedings of the 1st annual conference on genetic and evo-
lutionary computation, vol 1, pp 657–664

 30. Deb K, Agrawal RB (1995) Simulated binary crossover for con-
tinuous search space. Complex Syst 9(2):115–148

 31. Tutkun N (2009) Optimization of multimodal continuous func-
tions using a new crossover for the real-coded genetic algorithms.
Expert Syst Appl 36(4):8172–8177

 32. Deep K, Thakur M (2007) A new crossover operator for real coded
genetic algorithms. Appl Math Comput 188(1):895–911

 33. Ono I, Kita H, Kobayashi S (2003) A real-coded genetic algorithm
using the unimodal normal distribution crossover. In: Advances
in evolutionary computing, pp 213–237

 34. Ono I, Kita H, Kobayashi S (1999) A robust real-coded genetic
algorithm using unimodal normal distribution crossover aug-
mented by uniform crossover: Effects of self-adaptation of crosso-
ver probabilities. In: Proceedings of the 1st annual conference on
genetic and evolutionary computation. vol 1, pp 496–503

 35. Deb K, Anand A, Joshi D (2002) A computationally efficient evo-
lutionary algorithm for real-parameter optimization. Evol Comput
10(4):371–395

 36. Sinha A, Tiwari S, Deb K (2005) A population-based, steady-
state procedure for real-parameter optimization. IEEE Congr Evol
Comput 1:514–521

 37. Ling SH, Leung FH (2007) An improved genetic algorithm with
average-bound crossover and wavelet mutation operations. Soft
Comput 11(1):7–31

 38. Herrera F, Lozano M, Sanchez AM (2003) A taxonomy for the
crossover operator for real-coded genetic algorithms: An experi-
mental study. Int J Intell Syst 18(3):309–338

 39. Mäkinen RA, Périaux J, Toivanen J (1999) Multidisciplinary
shape optimization in aerodynamics and electromagnetics using
genetic algorithms. Int J Numer Methods Fluids 30(2):149–159

 40. Miettinen K, Mäkelä MM, Toivanen J (2003) Numerical com-
parison of some penalty-based constraint handling techniques in
genetic algorithms. J Global Optim 27(4):427–446

 41. Michalewicz Z (2013) Genetic algorithms+ data structures= evo-
lution programs. Springer Science and Business Media, Berlin

 42. Michalewicz Z (1995) Genetic algorithms, numerical optimiza-
tion, and constraints. In: Proceedings of the sixth international
conference on genetic algorithms. vol 195, pp 151–158

 43. Ali MZ, Awad NH, Suganthan PN, Shatnawi AM, Reynolds RG
(2018) An improved class of real-coded Genetic Algorithms for
numerical optimization. Neurocomput 275:155–166

https://doi.org/10.1007/s12065-021-00636-4

2666 Evolutionary Intelligence (2022) 15:2651–2666

1 3

 44. Jin YF, Yin ZY, Shen SL, Zhang DM (2017) A new hybrid real-
coded genetic algorithm and its application to parameters identi-
fication of soils. Inverse Probl Sci Eng 25(9):1343–1366

 45. Pattanaik JK, Basu M, Dash DP (2018) Improved real coded
genetic algorithm for dynamic economic dispatch. J Electr Syst
Inf Technol 5(3):349–362

 46. Elsayed SM, Sarker RA, Essam DL (2014) A new genetic algo-
rithm for solving optimization problems. Eng Appl Artif Intell
27:57–69

 47. Al-Naqi A, Erdogan AT, Arslan T (2013) Adaptive three-dimen-
sional cellular genetic algorithm for balancing exploration and
exploitation processes. Soft Comput 17(7):1145–1157

 48. Ahmad I, Almanjahie IM (2020) A novel parent centric crossover
with the log-logistic probabilistic approach using multimodal test
problems for real-coded genetic algorithms. Math Probl Eng 2020.
https:// doi. org/ 10. 1155/ 2020/ 28745 28

 49. Wang J, Cheng Z, Ersoy OK, Zhang P, Dai W, Dong Z (2018)
Improvement analysis and application of real-coded genetic algo-
rithm for solving constrained optimization problems. Math Probl
Eng 2018. https:// doi. org/ 10. 1155/ 2018/ 57608 41

 50. Chuang YC, Chen CT, Hwang C (2015) A real-coded genetic
algorithm with a direction-based crossover operator. Inf Sci
305:320–348

 51. Das AK, Pratihar DK (2019) A directional crossover (DX) opera-
tor for real parameter optimization using genetic algorithm. Appl
Intell 49(5):1841–1865

 52. Das AK, Pratihar DK (2020) A direction-based exponential
crossover operator for real-coded genetic algorithm. In: Singh

B, Roy A, Maiti D (eds) Recent advances in theoretical, applied,
computational and experimental mechanics. Lecture Notes in
Mechanical Engineering. Springer, Singapore

 53. Chuang YC, Chen CT, Hwang C (2016) A simple and efficient
real-coded genetic algorithm for constrained optimization. Appl
Soft Comput 38:87–105

 54. Zhao Y, Cai Y, Cheng D (2017) A novel local exploitation scheme
for conditionally breeding real-coded genetic algorithm. Multimed
Tools Appl 76(17):17955–17969

 55. Rolland L, Chandra R (2016) The forward kinematics of the 6–6
parallel manipulator using an evolutionary algorithm based on
generalized generation gap with parent-centric crossover. Robot-
ica 34(1):1

 56. Da Ronco CC, Benini E (2013) A simplex crossover based evo-
lutionary algorithm including the genetic diversity as objective.
Appl Soft Comput 13(4):2104–2123

 57. Naqvi FB, Yousaf Shad M, Khan S (2021) A new logistic distribu-
tion based crossover operator for real-coded genetic algorithm. J
Stat Comput Simul 91(4):817–835

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2020/2874528
https://doi.org/10.1155/2018/5760841

	Seeking a balance between population diversity and premature convergence for real-coded genetic algorithms with crossover operator
	Abstract
	1 Introduction
	2 Existing crossover operators
	3 Real-coded crossover operators: used in this study
	3.1 Laplace crossover (LX)
	3.2 Simulated binary crossover (SBX)
	3.3 Heuristic crossover (HX)
	3.4 Logistic crossover (LogX)
	3.5 Makinen, Periaux and Toivanen mutation (MPTM)
	3.6 Non-uniform mutation (NUM)
	3.7 Power mutation (PM)

	4 The proposed real coded crossover operator based on Exponentiated Pareto distribution
	5 The experimental setup
	5.1 Mathematical test functions
	5.2 Algorithms for comparison
	5.3 Settings for comparison

	6 Results and discussion
	6.1 First way of analysis
	6.1.1 EPX-MPTM vs LX-MPTM, SBX-MPTM, HX-MPTM
	6.1.2 EPX-NUM vs LX-NUM, SBX-NUM, HX-NUM
	6.1.3 EPX-PM vs LX-PM, SBX-PM, HX-PM
	6.1.4 EPX-MPTM vs LogX-MPTM, EPX-NUM vs LogX-NUM and EPX-PM vs LogX-PM

	6.2 Second way of analysis
	6.3 Third way of analysis

	7 Conclusion
	References

