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Abstract
A Wireless Sensor Network (WSN) consists of a group of energy-constrained tiny devices called sensors which have sens-
ing, processing, and communicating capabilities. These sensors are deployed in a region of interest for monitoring targets 
or detecting events, and forwarding the processed data to the sink nodes or gateways. In any wireless network scenario, 
the targets are to be covered by at least one sensor in the network in order to detect certain events. Maximizing coverage 
along with improving energy efficiency of the network is a fundamental issue in WSN. Therefore, a Biogeography Based 
Optimization (BBO) meta-heuristic technique is employed to place sensors in the region of interest. The proposed scheme 
solves a multi-objective problem using classical weighted sum approach. A fitness function is derived from combination of 
conflicting objectives, minimum interference, maximum target coverage, and selection of minimum number of sensor nodes 
along with connectivity of the network as a constraint. The scheme selects minimum number of sensors to deploy in the field 
of interest which maximizes the target coverage by minimizing the interference of sensors. The proposed scheme is tested 
on random and grid deployment scenarios. Finally, the scheme is compared with Genetic Algorithm and Random Scheme. 
The average interference energy loss on BBO-based scheme is found to be 16% less than that of the GA-based scheme, and 
60% less than that of a Random-based scheme.

Keywords  Wireless sensor networks · Biogeography-based optimization · Target coverage · Connectivity · Interference 
minimization · Optimization

1  Introduction

Recent advancement in the hardware and wireless technol-
ogy enabled the development of low cost and an energy-
constrained tiny devices known as a sensors, that commu-
nicate with each other at short distances through a wireless 
link. The collaborative settings of these tiny devices form 
a Wireless Sensor Network (WSN) [1]. In the recent past, 
WSNs have gained tremendous interest among research-
ers and industrial communities. WSNs finds a wide variety 
of applications, including precision agriculture, wild life 
monitoring, forest-fire prevention and detection, military and 

domestic surveillance systems etc. WSNs have significant 
applications in urban areas such as traffic, sewage, and air 
quality monitoring systems. The primary goal of WSNs is to 
observe and detect events in the given targets and barriers. 
One of the fundamental concerns of WSNs is to monitor or 
track events by covering required targets. There are differ-
ent types of coverages discussed in the literature like target 
coverage, area coverage, and barrier coverage [2].

Deployment of sensors in a region of interest is catego-
rized into random deployment and deterministic deploy-
ment. Placement of sensors in an inaccessible or hostile 
area allows random deployment. Placement of sensors in 
predetermined locations allows deterministic deployment or 
grid deployment [2–4].

In random deployment, locations for sensors are unevenly 
distributed, and hence some regions are highly dense, some 
regions are sparse. In the dense regions, there is a possibility 
for more sensor nodes are interfering during the sensing and 
transmitting of the data. One of the main causes for the quick 
power drain in WSNs is due to the interference of signals in 
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the wireless media. This results in message drop and requires 
message retransmission, which in turn affects the energy effi-
ciency of WSNs. Moreover, the deployed network must be 
able to monitor all the target points by preserving connectiv-
ity of the network. Therefore, It is important to minimize the 
interference of nodes during their deployment to maximize 
the coverage while maintaining network connectivity.

Due to the advancement of computational intelligence, 
scientists have adopted nature inspired techniques to solve 
real world combinatorial science and engineering problems 
such as applications in industry 4.0 [5]. These techniques 
have been adopted to solve some optimization problems 
such as k-coverage and m-connectivity [6], optimal target 
coverage problem [7], clustering [8], and node localization 
problems in WSNs [9–11]. The proposed scheme employs 
Biogeography Based Optimization (BBO) meta-heuristic 
technique, which is motivated by the study of the geograph-
ical distribution of living beings [12]. These geographic 
regions are well suited for living beings called as habitats 
or islands. The quality of habitat is determined using Habi-
tat Suitability Index (HSI). The Suitability Index Variables 
(SIVs) characterizes each habitat. The high HSI habitat 
has a high emigration rate, where as low HSI habitat has 
a high immigration rate. Therefore, low HSI habitats are 
more dynamic in their species distribution than high HSI 
habitats [12]. The BBO is considered to be a powerful search 
technique because it includes both exploration and exploita-
tion strategies [13]. It shows same characteristic of Genetic 
Algorithm (GA) and Differential Evolution (DE) in informa-
tion sharing among neighbor solutions. The BBO is adopted 
in solving combinatorial problems in WSNs such as k-cover-
age and m-connectivity [14], clustering and routing [8, 15], 
sensor node placement with interference minimization [16].

Current article focus on obtaining optimal number of sen-
sors to place in the region of interest for maximizing target 
coverage and minimizing interference of the sensors while 
maintaining connectivity of the network.

The contributions of the paper are listed below:

•	 A novel BBO-based algorithm for optimal sensors 
deployment with minimum interference and maximum 
coverage of the target points by preserving connectivity 
of the network.

•	 A novel fitness function with an elegant vector encoding 
scheme.

•	 The scheme is tested on random and grid deployment 
scenarios.

•	 The proposed algorithm is compared with Genetic Algo-
rithm and Random Scheme.

The remaining parts of the paper is organized as follows. 
Section 2 discusses related work on interference, target cov-
erage, and meta-heuristic schemes in WSN’s. The classical 

BBO is briefed in Sect. 3. Network model and preliminaries 
are summarized in Sect. 4. The detail discussion of proposed 
algorithm is presented in Sect. 5. Simulation analysis and 
comparison with other methods is shown in Sect. 6. Finally, 
Sect. 7 concludes the paper.

2 � Related work

Diverse variants of topology control based interference min-
imization solutions for WSNs are discussed in the literature. 
The author in [17] proved that minimizing receiver inter-
ference of the network is NP-hard. An optimal algorithm 
for minimizing the maximum sender interference proposed 
in [18]. The authors in [19] proposed an algorithm for mini-
mizing maximum interference as well as total interference of 
the network. Minimizing maximum and average node inter-
ference for WSN is proposed in  [20]. The authors in [21] 
presented an algorithm which produces the best sender inter-
ference spanning tree, which produces minimum interfer-
ence value for the WSN. To minimize the total interference 
of the WSNs, authors in [22] assign different power levels 
to each sensor node to form a connected graph.

There are many coverage problems addressed in the 
literature. The authors in [23] discussed a heuristic which 
produces a disjoint sensor cover. The disjoint set covers the 
entire area and only one of the disjoint is active at a given 
time. The algorithm achieves a significant improvement in 
energy saving by preserving coverage area. The authors 
in  [24] adopted an approximation algorithm, where the 
lifetime of the network is extended without considering a 
disjoint set; thus a sensor node can present in more than 
one sensor cover, and also proved that the target coverage 
problem belongs to NP-Complete class.

There are many works on target coverage problem using 
different meta-heuristic methods. The authors in [25] pro-
posed a genetic algorithm (GA) technique for wireless 
sensor node placement with required coverage. However, 
connectivity constraint is not considered in their work. The 
authors in [26] solved the coverage problem by designing 
cover optimization in the first phase and M-connected opti-
mization in the second phase.

In [27] authors proposed Gravitational Search Algorithm 
(GSA) scheme for wireless sensor node deployment in the 
network. This scheme provides l-coverage and n-connectiv-
ity in the WSN. Authors in [28] adopted territorial preda-
tor scent marking algorithm for efficient sensor placement. 
The proposed scheme achieves maximum coverage and full 
connectivity with minimum energy consumption. In [29] 
authors solved both coverage and connectivity problem 
using improved GA approach, where for a given a set of 
points, it finds the minimum number of potential positions 
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to place sensor nodes to achieve k-coverage of targets and 
m-connectivity with other sensors.

Harmony Search (HS) based scheme for wireless sensor 
node placement is proposed in [30]. The proposed scheme 
finds an optimal number of sensors and also finds optimal 
locations to place sensors to maximize the coverage area of 
the field with minimum network cost. In the paper [31], the 
authors adopted Imperialist Competitive Algorithm (ICA) 
to solve the coverage problem, In the proposed technique, 
efficient formation of cover sets are achieved by activat-
ing minimum number of sensor nodes to cover targets in 
the network. In [7] authors proposed Differential Evolu-
tion (DE) based target coverage scheme which assign the 
targets to sensors optimally to prolong lifetime of the net-
work. The authors in [32] proposed a sensor deployment for 
target coverage solution using Particle Swarm Optimization 
(PSO). In this technique mobile sensors are used for cover-
age patching.

All aforementioned meta-heuristic techniques are used 
to solve target coverage problem alone or target coverage 
with connectivity problem in WSN. However, none of them 
solve combination of interference and target coverage prob-
lem by maintaining connectivity of the WSN and hence a 
novel BBO-based meta-heuristic scheme is adopted to solve 
the said combined problem.

3 � Classical biogeography‑based 
optimization

Biogeography-Based Optimization (BBO) is a widely 
accepted meta-heuristic algorithm to solve many real world 
combinatorial problems. It is employed in solving many sci-
ence and engineering optimization problems. The algorithm 
has five stages which consist of initialization of habitats or 
vectors (here onwards habitats and vectors are used inter-
changeably) fitness calculation, migration, mutation, and 
selection. The entire process of BBO is shown in Fig. 1.

The Fig. 2 represents species abundance in a single habi-
tat, where � and � are immigration and emigration rates of 
species, respectively. The variables I and E are maximum 
immigration and emigration rates, respectively. The variable 
S0 denotes equilibrium number of species at which immigra-
tion and emigration rates are equal. The maximum number 
of species that can live in a habitat are indicated by Smax.

The species count at habitat i is given by,

where Hmax is the number of habitats. The immigration rate 
of habitat i is given by,

(1)Si = Smax ×
HSIi∑Hmax

i=1
HSIi

The emigration rate of habitat i is given by,

The essential phases of the BBO algorithm are migration 
and mutation stages as described below.

(2)�i = I ×

(
1 −

Si

Smax

)

(3)�i = E ×
Si

Smax

Fig. 1   Flowchart of classical biogeography-based optimization

Fig. 2   Species model of a single habitat in BBO
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3.1 � Migration phase

In this stage, information is shared among habitats. High fit-
ness or Habitat Suitability Index (HSI) habitat shares infor-
mation with low HSI habitat to obtain a better habitat. The 
habitats are exchanging their information using Suitability 
Index Variables (SIVs). These SIVs are moved between 
habitats using their immigration and emigration rates. Sup-
pose first habitat Hi is chosen based on its immigration rate, 
and second habitat Hj is chosen using emigration rate, then 
some SIVs are moved from Hj to Hi.

3.2 � Mutation phase

Habitats are prone to undergo sudden changes due to natural 
catastrophes. The BBO adopts SIV mutation to model these 
changes. Each habitat i is associated with a probability Pi 
to obtain mutation rate Mi . The value of the Pi is computed 
using �i and �i . The high Pi vector has less chance for muta-
tion and a low Pi vector has a high chance for mutation [12]. 
The mutation rate is computed using the following formula,

where Mmax is user-specified maximum mutation rate, Pi 
is mutation probability of ith habitat, Pmax is the maximum 
mutation probability among habitats, and Mi is the mutation 
rate of ith habitat.

4 � Network model and preliminaries

The network is formed using homogeneous nodes having 
equal energy, same sensing, and communicating capabilities. 
Initially, different potential positions for deploying sensors 
are identified randomly to monitor set of target points. The 
sensors that are deployed in identified locations forward data 
to the base station directly or via other nodes. The adopted 
network architecture for the proposed work is shown in 
Fig. 3.

4.1 � Preliminaries

Suppose P  is the set of n  potential positions 
P = {p1, p2 … , pn} which are identified positions on 
a region of interest. Let T denotes the set of k targets 
T = {t1, t2,… , tk} are to be monitored. Let S = {s1, s2 … , sm} 
denotes the set of sensors placed in selected m potential 
positions.

Let CR and SR represents the communication and sensing 
range of the wireless sensor nodes respectively. Euclidean 

(4)Mi = Mmax ×

(
1 − Pi

Pmax

)

formula is adopted to calculate distance measure between 
two points. If p = (x1, y1) and q = (x2, y2) two points on two 
dimensional plane then the distance is computed as follows:

Let �ij , �i , �i , �ij , �BS
i

 are sensing interference, target cover-
age, selection of potential positions, connectivity between 
sensors, and connectivity of base station with alteast one 
sensor respectively. And formally defined as follows:

Where Scov(sj, ti) defined as follows,

(5)distance(p, q) =

√
(x2 − x1)

2 + (y2 − y1)
2

(6)�ij =

⎧
⎪⎨⎪⎩

1 distance(si, sj) ≤ 2 × SR
∀i, ∀j, 1 ≤ i, j ≤ m

0 otherwise

(7)�i =

⎧
⎪⎨⎪⎩

1 ∃sj ∈ S, Scov(sj, ti) = 1

∀i, 1 ≤ i ≤ k and ∀j, 1 ≤ j ≤ m

0 otherwise

(8)Scov(sj, ti) =

{
1 distance(sj, ti) ≤ SR
0 otherwise

Fig. 3   An instance of a network model
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Definition 4.1.1  Sensing Interference Ratio (SIR) of the net-
work is the ratio of total sensing interference experienced by 
the network to the sum of currently deployed sensors. The 
underlying formula for SIR is given in Eq. 14.

Definition 4.1.2  Target Coverage Ratio (TCR)  of the net-
work is the ratio of the sum of target points covered by the 
sensors to the total number of target points in the region 
of interest. The underlying formula for TCR is given in 
Eq. 16.

Definition 4.1.3  Sensor to Potential Position Ratio (SPPR) 
of the network is the ratio of sum of potential positions con-
sidered for sensor placement to the total number of poten-
tial positions. The underlying formula for SPPR is given in 
Eq. 17.

5 � Proposed algorithm

Illustration 1

In this article, a BBO based optimal sensors placement with 
maximum target coverage and minimum interference algo-
rithm is proposed.

Given P = {p1, p2, p3,… , pn } and T = {t1, t2, t3,… , tk }, 
the objective is to choose optimal number of sensors and 
their positions such that, 

1.	 Minimize the sensing interference for the sensor net-
work.

2.	 Maximize the target point coverage of the sensor net-
work.

3.	 Minimize the selection of potential positions to deploy 
sensors in the network while preserving the connectivity 
of the network.

(9)�i =

⎧
⎪⎨⎪⎩

1 �i is selected for node deployment

∀i, 1 ≤ i ≤ n

0 otherwise

(10)�ij =

⎧
⎪⎨⎪⎩

1 ∃sj ∈ S, distance(si, sj) ≤ CR

∀i, ∀j, 1 ≤ i, j ≤ m

0 otherwise

(11)�BS
i

=

⎧
⎪⎨⎪⎩

1 ∃si ∈ S, distance(si,BS) ≤ CR

∀i, 1 ≤ i ≤ m

0 otherwise

5.1 � Representation of habitats

In the proposed technique, initial habitats are generated 
using boolean values. The number of potential positions in 
a habitat gives length of a vector. Placement of a sensor in ith 
position is indicated by a boolean value 1 and non placement 
of a sensor is indicated by a boolean value 0.

5.2 � Initialization of habitats

Each habitat represents selection of potential positions to 
place sensors. The gth generation of ith habitat having length 
n is represented as follows:

The Habitat Suitability Index(HSI) measures the fitness or 
goodness of ith habitat as indicated below:

Suppose there are 6 targets T = {t1, t2,… , t6} and 8 poten-
tial positions P = {p1, p2,… , p8} are considered as shown 
in Fig. 4a. The number of potential position is the length of 
the habitat, which is 8 as according to Fig. 4b.

Figure 4b represents a encoded habitat. The binary value 
1 in the positions p1, p2, p3, p6, p7 and p8 indicates that 
the sensor nodes are deployed on these potential positions. 
The binary value 0 in the positions p4 and p5 denotes that 
the sensor nodes are not placed on these potential positions.

5.3 � Derivation of fitness function

Objective 1 

It is to minimize SIR and is formally defined as follows:

where m is the number of position selected to deploy sensor 
nodes.

OR

Objective 2 

It is to maximize TCR​ and is formally defined as follows:

(12)Hi,g = [SIV1,i,g, SIV2,i,g, SIV3,i,g,… , SIVn,i,g]

(13)HSIi,g = f ([SIV1,i,g, SIV2,i,g, SIV3,i,g,… , SIVn,i,g])

(14)Minimize o1 =
1

m

m∑
i=1

m∑
j=i+1

�ij

(15)Maximize o1
� = 1 −

1

m

m∑
i=1

m∑
j=i+1

�ij

(16)Maximize o2 =
1

k

k∑
i=1

�i
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Objective 3

It is to minimize SPPR and is formally defined as follows:

OR

Since all the objectives are conflicting in nature, a final 
objective function(O) is devised by applying a weighted sum 
approach  [33, 34] as shown below:

Subject to

here wi is a weight variable, with 0 < wi ≤ 1, 1 ≤ i ≤ 3 , 
w1 + w2 + w3 = 1 , �ij ∈ {0, 1} , �i ∈ {0, 1} and �BS

i
∈ {0, 1}

The total interference energy loss ( ETotal
Loss

 ) of the network 
is defined as the total energy drain due to interference in the 
network and formally defined as follows:

(17)Minimize o3 =
1

n

n∑
i=1

�i

(18)Maximize o3
� = 1.0 −

1

n

n∑
i=1

�i

(19)Maximize O = w1 × o1
� + w2 × o2 + w3 × o3

�

(20)
1

m

m∑
i=j=1

�ij × �i + �BS
i

= 2

(21)ETotal
Loss

= ITotal
Count

× E
Interference

Loss

where ITotal
Count

 and EInterference

Loss
 are interference number of the 

network and the energy loss per interference respectively.

Illustration 2

Consider an optimal placement of sensors as shown in 
Fig. 4b and corresponding SIR determination and TCR 
determination are shown in Tables 1 and  2 respectively.

The variable Icnt(si) and Scov(ti) represents interference 
count of the sensor si and sensor coverage of the target ti 
respectively. The value 1 in the cell indicates that whether 
the sensor covers another sensor or target and the value 0 
indiates sensor is not covered by other sensor or target.

The fitness value of the vector is computed using the 
Eq. 19 is given by,

O1 = w1 × o�
1
+ w2 × o2 + w3 × o�

3
 ,  where  w1 = 0.3,

w2 = 0.4, w3 = 0.3 and o�
3
= 1.0 −

m

n

= 1.0 −
6

8

O1 = 0.3 × 1 + 0.4 × 1.0 + 0.3 × 0.25 = 0.775 , here o′
1
 , o2 

are taken from Tables 1 and  2.
The non optimal sensor placement of sen-

sors vector is shown in Fig.  4c. The fitness value 
of vector computed using the Eq.  19 is given by, 
O2 = 0.3 × 0.33 + 0.4 × 0.67 + 0.3 × 0.25 = 0.442,  here o′

1
 

and o2 are taken from Tables 3 and  4 respectively. where 
w1 = 0.3, w2 = 0.4, w3 = 0.3 and o�

3
= 1.0 −

m

n
= 1.0 −

6

8
Since it is a maximization problem, the habitat having 

fitness value O1 = 0.775 is better than that of the habitat 
having fitness value O2 = 0.442 . The computed interference 
energy loss for the network with non optimal sensor nodes 

Fig. 4   An instance of vector 
encoding
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placement using Eq. 21 is 0.08 Joule and which is ideally 
zero in the network with optimal sensor nodes placement.

5.4 � Migration

In this stage, habitats Hi and Hj are selected stochastically 
based on immigration rate �i and emigration rate �j respec-
tively. After choosing habitats a random number is gener-
ated between (0, 1). If the random number is less than �i , 
then migration is performed between habitats. To perform 

the migration, a random position is selected between (1, n), 
and SIV are shifted from habitat Hj to habitat Hi from the 
selected position to the last position of habitat Hj.

5.5 � Mutation

This process involves the selection of a vector based on 
mutation probability of respective vector. Once the habitat 
is selected, check for value at the position, if the value is 1 
then it is changed to 0; otherwise to 1.

Table 1   Optimal sensor nodes 
placement (SIR determination)

Sensors Sensors and positions Icnt(si)

p1 p2 p3 p6 p7 p8

s1 s2 s3 s4 s5 s6

s1 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0

 o1� = 1 −
1

m

∑m

i=1

∑m

j=i+1
�ij = 1

Table 2   Optimal sensor nodes 
placement (TCR determination)

Targets Sensors and positions Scov(ti)

p1 p2 p3 p6 p7 p8

s1 s2 s3 s4 s5 s6

t1 1 0 0 0 0 0 1
t2 0 1 0 0 0 0 1
t3 0 0 1 0 0 0 1
t4 0 0 0 1 0 0 1
t5 0 0 0 0 1 0 1
t6 0 0 0 0 0 1 1

o2 =
1

k

∑k

i=1
�i = 1

Table 3   Non optimal sensor 
nodes placement (SIR 
determination)

Sensors Sensors and positions Icnt(si)

p1 p2 p3 p4 p5 p8

s1 s2 s3 s4 s5 s6

s1 0 0 0 1 0 0 1
s2 0 0 0 1 0 0 1
s3 0 0 0 0 1 0 1
s4 0 0 0 0 0 0 0
s5 0 0 0 0 0 1 1
s6 0 0 0 0 0 0 0

 o1� = 1 −
1

m

∑m

i=1

∑m

j=i+1
�ij = 0.33
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5.6 � Pseudo‑code of BBO‑based sensor placement algorithm
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The proposed scheme is depicted in Algorithm  1. The 
algorithm consists of two main stages. They are the migra-
tion process (lines 18–29) and the mutation process (lines 
30–36). Initially, the bestfitness and Mmax are set to value 0 and 
value 0.2 respectively (line 1). The habitats are initialized 
with 0’s and 1’s (lines 2–4). The initial iteration is set to 1 
(line 5) and the entire procedure for the BBO is presented 
(lines 6–38). Firstly, fitness computation for each habitat and 
selection of best habitat that has highest fitness value are 
performed (lines 7–11). The species count of each habitat is 
calculated (lines 12–14). Next, immigration rate and emigra-
tion rate are computed for each habitat (lines 15–17). In lines 
18-29, the migration procedure is presented. Each habitat 
Hi , a associated habitat Hj is selected based on emigration 
rate to perform SIV’s migration from habitat Hj to habitat 
Hi (lines 18-19). In this process, a random number is gener-
ated (line 20). If the generated random number is less than 
the emigration rate of habitat Hj (line 21), then a random 
position p1 is selected in habitat Hj (line 22). Next, all SIV’s 
from position p1 to position n are moved from habitat Hj to 
habitat Hi (lines 23-26). In lines 30-36, a habitat mutation 
procedure is presented. Firstly, immigration rate and emi-
gration rate of the each habitat is used to compute its muta-
tion probability (line 30). A habitat Hi is selected which has 
maximum mutation probability ( pmax ). A random number 
is generated (line 32). If the generated random number is 

less than the maximum mutation probability, then a random 
position p2 is selected in habitat Hi (lines 33-34). Next, if 
the value of the position p2 is 1, then replace it is with 0; 
othewise it is with 1 (line 35). Goto line 6 and repeat the pro-
cess till the maximum iteration is reached and the algorithm 
terminates. Finally, the habitat with best solution is selected 
for placing sensors (line 39).

6 � Simulation and discussion

This section discusses performance analysis of the proposed 
scheme and gives comparative analysis with other schemes. 
The experiments are carried out using MATLAB 2018a on 
an Intel(R) Core(TM) i5-8250U CPU@1.60 GHz 1.80 GHz 
and 8 GB RAM running on Microsoft Windows 10, 64-bit 
operating system, x64-based processor.

A WSN is created with n number of potential posi-
tions and k number of target points. A 300 × 300 network 
field is created and sink is placed at the center of the field 
(150, 150). The potential positions and target points are ran-
domly generated on the field. The parameter values for the 
WSN is mentioned in Table 5.

The proposed technique is compared with Random 
scheme and GA based scheme for performance compari-
sons. In Random scheme, the potential positions to deploy 
sensors to cover the given target points are identified ran-
domly using uniform distribution. If the identified potential 
positions form the connected network, then these potential 
positions are considered for placing sensors. The SIR and 
TCR are computed for these sensors. The GA algorithm is a 
optimization technique or heuristic solution-search method 
proposed by John Holland. The main components of the GA 
algorithms are the chromosome representation, the fitness 
function evaluation, cross over, mutation, and selection [35]. 
We adopted single-point cross over and roulette wheel selec-
tion method in this algorithm.

The parameter settings for heuristic techniques are 
decided as follows. The 200 potential positions and 200 

Table 4   Non optimal sensor 
nodes placement (TCR 
determination)

Targets Sensors and positions Scov(ti)

p1 p2 p3 p4 p5 p8

s1 s2 s3 s4 s5 s6

t1 1 0 0 0 0 0 1
t2 0 1 0 0 0 0 1
t3 0 0 1 0 0 0 1
t4 0 0 0 0 0 0 0
t5 0 0 0 0 0 0 0
t6 0 0 0 0 0 1 1

o2 =
1

k

∑k

i=1
�i = 0.67

Table 5   Simulation parameters

Parameters Values

WSN field size 300 × 300 m2

Sink position (150, 150)
Target points 50–200
Potential positions 100 − 200

Sensing range 10 m
Communication range 50 m
Initial Energy of node 2 Joule
Per interference energy loss 0.02  Joule
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Table 7   Weight values and 
multi-objective results (potential 
positions = 200 and targets = 
200)

Weight values BBO GA

w1 w2 w3 SIR TCR​ SPPR SIR TCR​ SPPR

0.45 0.1 0.45 0.9704 0.9617 0.7780 1.0808 0.9580 0.7903
0.40 0.2 0.40 0.9735 0.9620 0.7853 1.1056 0.9583 0.7923
0.35 0.3 0.35 0.9776 0.9626 0.7910 1.1103 0.9586 0.8060
0.30 0.4 0.30 0.9809 0.9646 0.7970 1.1175 0.9606 0.8186
0.25 0.5 0.25 0.9889 0.9650 0.8050 1.1238 0.9614 0.8257
0.20 0.6 0.20 1.0103 0.9653 0.8113 1.1297 0.9623 0.8326
0.15 0.7 0.15 1.0953 0.9663 0.8236 1.1324 0.9628 0.8360
0.10 0.8 0.10 1.1076 0.9670 0.8260 1.1331 0.9631 0.8386
0.05 0.9 0.05 1.1093 0.9673 0.8286 1.1397 0.9636 0.8423

Table 8   BBO multi-objective results (normalized)

BBO BBO (normalized results)

SIR
−1 TCR​ SPPR

−1
SIR

−1 TCR​ SPPR
−1

1.0305 0.9617 1.2853 0.3501 0.3323 0.3446
1.0272 0.9620 1.2733 0.3489 0.3324 0.3414
1.0229 0.9626 1.2642 0.3474 0.3326 0.3390
1.0194 0.9646 1.2547 0.3475 0.3333 0.3364
1.0112 0.9650 1.2422 0.3435 0.3334 0.3331
0.9898 0.9653 1.2325 0.3362 0.3335 0.3305
0.9129 0.9663 1.2142 0.3101 0.3339 0.3256
0.9028 0.9670 1.2106 0.3066 0.3341 0.3246
0.9015 0.9673 1.2068 0.3062 0.3342 0.3236

Table 9   GA multi-objective results (normalized)

GA GA (normalized results)

SIR
−1 TCR​ SPPR

−1
SIR

−1 TCR​ SPPR
−1

0.9252 0.9580 1.2653 0.3658 0.3323 0.3457
0.9045 0.9583 1.2621 0.3576 0.3324 0.3448
0.9007 0.9586 1.2407 0.3561 0.3325 0.3389
0.8949 0.9606 1.2216 0.3538 0.3332 0.3338
0.8898 0.9614 1.2111 0.3518 0.3334 0.3309
0.8852 0.9823 1.2011 0.3499 0.3337 0.3282
0.8831 0.9628 1.1962 0.3491 0.3339 0.3268
0.8825 0.9631 1.1925 0.3489 0.3340 0.3258
0.8774 0.9636 1.1872 0.3469 0.3342 0.3244

target points are used to find appropriate simulation param-
eters. A population size of 100 habitats and 100 generations 
are considered for the experiments and verified experimen-
tally that these generic parameter values are enough for 
proper convergence of the proposed algorithm. However, 
the control parameter mutation probability Mmax for BBO 
method is adopted from [14] and also verified with different 
values of Mmax and confirmed that results are comparatively 
better for Mmax = 0.2 . It is observed in the literature that the 
control parameter like mutation rate for GA is set between 

Table 6   Parameter settings for BBO and GA

Algorithm Parameters Values

BBO Population size 100
Maximum iteration 100
Mutation probability 0.2

GA Population size 100
Maximum iteration 100
Crossover probability 0.2
Mutation probability 0.02

0.01 to 0.05. Therefore, the mutation rate is set to 0.02 and 
varied the crossover rate from 0.1 to 0.9 and confirmed 
through repeated experiments that the result is better when 
crossover rate is 0.2. The final parameter settings for heu-
ristic methods for the simulations are mentioned in Table 6.

In the Eq. 19, the second component (TCR) is the maxi-
mization component and other two components(SIR and 
SPPR) are the minimization components. Therefore, weight 
of second component w2 is varied from 0.1 to 0.9 in steps 
of 0.1 and accordingly equal weights are assigned to w1 
and w3 to decide appropriate weight values. The results are 
computed for 15 instances of experiments for each set of 

weight values for w1 , w2 and w3 and mean result is tabulated 
in Table 7. The multi-objective results for BBO and GA 
approaches are presented in normalized form in Tables 8 
and  9 respectively using the Eq. 22.

here xi denotes each data value and n represents number of 
data values present.

(22)
xi
normalized =

xi�∑n

1
xi
2
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The Pareto solution  [33] for SIR, TCR, and SPPR on 
different weight values is shown in Fig. 5. It is required 
note that the selection of weight values in a precise and 
accurate manner is very difficult, even for someone famil-
iar with the problem domain [36]. Therefore, we adopted 
weight values w1 = 0.3 , w2 = 0.4 and w3 = 0.3 in both heu-
ristic methods for simulations.

6.1 � Result and analysis

This Section details the result analysis of the experiments 
that are carried out.

The experiments are performed using same data on all three 
algorithms. The 30 instances of experiments are carried out for 
each set of targets to handle the random nature of these algo-
rithms. Figure 6 shows the performance analysis of BBO-based 
scheme when the number of target points increase from 50 to 
200. The 30 instances of experiments are carried out on each 
set of target points and the graph is drawn by taking the best 
and mean of the results. Here, 200 potential positions are iden-
tified to deploy sensors. It is observed from the graph that the 
BBO_SIR increases when the number of target points increase. 
It is because of more number of potential positions are selected 
to place sensors, which gives scope for more interference of 
signals. The simulations are performed on grid and random 
scenarios as shown in Figs. 7 and 8. The Figs. 9 and 10 illus-
trates the best and mean comparison of SIR and TCR for grid 
and random scenarios respectively when target points increase 
from 25 to 100. The 30 instances of the experiments are carried 
out on each set of target points and graph is drawn by taking 
best and mean of the results. In these experiments, 100 potential 
positions are identified to deploy sensors. In both the graph, it is 

Fig. 5   Pareto solutions for SIR, TCR and SPPR on different weight values
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Fig. 6   Performance of proposed scheme
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observed that the best and mean Grid_SIR is zero, which is to 
indicates no sensors are interfering with each other due to the 
fact that potential positions are identified on grid cross points. 
It is also seen that the Random_SIR increases as the number 
of target points increase. Grid_TCR is better than that of the 
Random_TCR because the targets are optimally covered in grid 
scenario as compared to random scenario.

The comparison results for SIR for different values of tar-
gets is tabulated in Table 10 as best, worst, mean, standard 
deviation, and 95% Confidence Interval (CI). It is observed 
that in all algorithms SIR is increases with increase in target 
points. It is due to more number of sensors are required to 
cover as number of target point increases and hence more 
scope for interference. Similarly, the comparison results for 
TCR for different values of targets is tabulated in Table 11 as 

best, worst, mean, standard deviation, and 95% Confidence 
Interval (CI). It is noted that the TCR decreases as number of 
target points increase in all algorithms. It is also observed that 
the BBO_TCR decreases when number of targets increase.

Figures 11 and  12 depicts the performance comparisons 
of the BBO-based scheme, GA-based scheme, and Random-
based scheme for SIR and TCR respectively. Here, number 
of target points increases from 50 to 200. The 30 instances 
of experiments are carried out for each set of target points. 
The best and mean of these results are depicted in the graph. 
In these experiments, 200 potential positions are identified 
to deploy sensors. It is observed that the SIR is low in BBO-
based scheme as compared to the other scheme and TCR is 
better than that of the other schemes. Figure 13 illustrates the 
number of selected positions between BBO-based scheme, 
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Fig. 8   Scenario 2: candidate positions are random
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Fig. 9   Best performance on grid and random scenario
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Fig. 10   Mean performance on grid and random scenario
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GA-based scheme, and Random scheme when number of 
target points increase from 50 to 200. The 30 instances of 
experiments are carried out to obtain results. The graph 
shows the best and mean of these results. In these experi-
ments, 200 potentials positions are identified to deploy sen-
sors. It is observed that the number of selected positions to 
place sensors are less in BBO-based scheme as compared 
with other schemes. The BBO-based scheme outperforms 
the GA-based scheme due to the premature convergence 

Table 10   Comparison results 
for SIR (30 instance of 
experiments are conducted )

Targets Parameters BBO_SIR GA _SIR Random_SIR

50 Best 0.6321 0.6529 0.7984
Worst 0.6872 0.7548 0.9921
Mean 0.6596 0.7257 0.933
SD 0.0169 0.0209 0.0390
95% CI [0.6537, 0.6655] [0.7181, 0.7333] [0.9197, 0.9463]

100 Best 0.7015 0.7898 0.9128
Worst 0.7842 0.8465 1.0861
Mean 0.7431 0.8215 1.0229
SD 0.0193 0.0155 0.0440
95% CI [0.7363, 0.7499] [0.8161, 0.8269] [1.0074, 1.0384]

150 Best 0.8068 0.8942 1.0617
Worst 0.9025 0.9678 1.842
Mean 0.8593 0.9329 1.1815
SD 0.0281 0.0189 0.158121629
95% CI [0.8495, 0.8691] [0.9263, 0.9395] [1.1259, 1.2371]

200 Best 0.9321 0.9806 1.142
Worst 1.0787 1.2386 1.956
Mean 0.9813 1.1201 1.3443
SD 0.0414 0.0578 0.2097
95% CI [0.9667, 0.9959] [1.1003, 1.1399] [1.2705, 1.4181]

Table 11   Comparison results for TCR (30 instance of experiments 
are conducted)

Targets Parameters BBO_TCR GA _TCR Random_TCR

50 Best 1 1 1
Worst 0.98 0.98 0.92
Mean 0.9927 0.9813 0.9707
SD 0.0098 0.0036 0.0179
95% CI [0.9893, 

0.9961]
[0.9796, 

0.983]
[0.9647, 

0.9767]
100 Best 0.99 0.98 0.98

Worst 0.97 0.96 0.9
Mean 0.978 0.9665 0.9633
SD 0.0071 0.0052 0.0440
95% CI [0.9755, 

0.9805]
[0.9648, 

0.9682]
[0.9587, 

0.9679]
150 Best 0.98 0.98 0.9733

Worst 0.96 0.95 0.88
Mean 0.9742 0.9623 0.9533
SD 0.0038 0.0067 0.0199
95% CI [0.9724, 

0.976]
[0.9599, 

0.9647]
[0.9463, 

0.9603]
200 Best 0.98 0.97 0.97

Worst 0.965 0.945 0.86
Mean 0.9665 0.9605 0.9508
SD 0.0023 0.0078 0.0181
95% CI [0.9657, 

0.9673]
[0.9576, 

0.9634]
[0.9425, 

0.9591]
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Fig. 11   SIR performance comparions between BBO, GA, and ran-
dom schemes
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behavior of the GA over BBO. Finally, Fig. 14 depicts per-
formance of the average network energy loss due to interfer-
ence when number of target points increases from 50 to 200. 
In these experiments, 200 potential positions are identified 
to deploy sensors. Figure 14 shows average energy loss in 
network of BBO-based scheme is better than that of other 
schemes. It is also noted that the average energy loss in net-
work due to interference in BBO-based scheme is 16% less 
than that of GA-based scheme and 60% less than that of the 
Random-based scheme.

7 � Conclusion

In this paper, optimal sensors placement BBO-based scheme 
is proposed with a combined goal of maximized target cov-
erage and minimized interference while maintaining connec-
tivity of the network. An elegant vector encoding for habitat 
representation and novel fitness function is formulated for 
the proposed scheme. Working of the proposed scheme is 
illustrated with suitable example. The performance study 
of sensing interference ratio and target coverage ratio on 
grid and random scenarios were conducted. A comparison 
study of the BBO-based scheme with other scheme was car-
ried out. The least energy loss due to interference in BBO-
based scheme confirms its superiority over other schemes. 
In future, a fuzzy model can be incorporated to find better 
results.
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