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Abstract

The Vortex Search Algorithm (VSA) is a meta-heuristic algorithm that has been inspired by the vortex phenomenon proposed
by Dogan and Olmez in 2015. Like other meta-heuristic algorithms, the VSA has a major problem: it can easily get stuck in
local optimum solutions and provide solutions with a slow convergence rate and low accuracy. Thus, chaos theory has been
added to the search process of VSA in order to speed up global convergence and gain better performance. In the proposed
method, various chaotic maps have been considered for improving the VSA operators and helping to control both exploitation
and exploration. The performance of this method was evaluated with 24 UCI standard datasets. In addition, it was evaluated
as a Feature Selection (FS) method. The results of simulation showed that chaotic maps (particularly the Tent map) are able
to enhance the performance of the VSA. Furthermore, it was clearly shown the fitness of the proposed method in attaining
the optimal feature subset with utmost accuracy and the least number of features. If the number of features is equal to 36, the
percentage of accuracy in VSA and the proposed model is 77.49 and 92.07. If the number of features is 80, the percentage of
accuracy in VSA and the proposed model is 36.37 and 71.76. If the number of features is 3343, the percentage of accuracy in
VSA and the proposed model is 95.48 and 99.70. Finally, the results on Real Application showed that the proposed method

has higher percentage of accuracy in comparison to other algorithms.
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1 Introduction

The metaheuristic optimization algorithms were proposed
over the past decades and implemented extensively to the
problem of the complicated [1, 2]. The essential target in the
optimization is the candidate the problem variables to mini-
mize or maximize the objective function based on the global
and local search [3, 4]. So as to triumph over the state-of-
the-art goals in any problem, most of such algorithms were
applied as an attempt to establish an approximate technique
for attaining the optimum solution [5, 6]. A number of well-
known new nature-inspired algorithms include the Invasive
Weed Optimization (IWO) [7], the butterfly optimization
algorithm (BOA) [8], the Artificial Bee Colony (ABC) [9],
the Fruit Fly Optimization Algorithm (FOA) [10], the Firefly
Algorithm (FA) [11], the Krill Herd (KH) algorithm [12],
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the Differential Evolution (DE) algorithm [13], the Flower
Pollination algorithm (FPA) [14], etc. The distinction in
nature is an essential factor why the algorithms have an
alternate dimension of execution in delivering results [15,
16]. Besides, this factor might be the motivation behind why
a few algorithms can best item an answer for specific issues,
while others don’t. Thus, it is according to this limitation
that one algorithm is not good enough for solving every kind
of problem.

During the past decade, an arithmetic framework and
scientific branch, namely chaos, has been proposed, and
is connected deeply with different scientific fields. Chaos
involves three major dynamic properties: the quasi stochas-
tic property, being sensitive against initial conditions, and
ergodicity. The application of chaos theory in optimization
research areas has attracted a lot of attention over the recent
years. The Chaotic Optimization Algorithm (COA) [17]
is among the applications of chaos, and uses the nature of
chaos sequences. It has been indicated if random variables
are replaced with chaotic variables, the performance of COA
can be enhanced. Therefore, in the literature, there are a
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number of studies on the hybridization of chaos with other
algorithms for the purpose of improving the performance of
COA. Some instances include the chaotic ACO [18], cha-
otic DE algorithm [19, 20], chaotic KH algorithm [21, 22],
chaotic FPA [23], chaotic genetic algorithm [24, 25], chaotic
PSO [26-28], chaotic gravitational search [29-31], chaotic
bat algorithm [32], and etc.

FS is the procedure of selecting a subset of features from
an original feature set; it may be considered the most impor-
tant pre-processing instrument to solve classification issues
[33]. Figuring out a superior subset of features is a quite
complicated challenge, and is decisive in the final results of
the rates of classification error. The finalized feature subset
will retain high rates of classification accuracy. The pur-
pose is choosing an applicable subset including d features
from a set of D features (d <D) in a given dataset [34]. D
is made out of all features that are present in a given data
set; it can encompass redundant, noisy, and misleading
features. Consequently, an exhaustive search is performed
within the whole solution environment, which usually takes
a lot of time and cannot often be implemented in practice.
To remedy this FS strategy, maintaining the best subset of
d relevant features was taken into consideration. Inappro-
priate features are not only useless, but also can certainly
worsen the classification performance. If irrelevant features
are deleted, the computational efficiency can be advanced
and classification accuracy expanded.

As indicated by search techniques of feature subsets, the
current FS strategies can be classified into two classes: the
filter-based approach and the wrapper-based approach. The
filter method depends fundamentally on general qualities of
datasets to assess and choose include subsets without tak-
ing into account an uncommon learning approach. Thus,
the productivity of this methodology depends predominantly
on the dataset itself instead of on the classifier [35, 36].
The wrapper method utilizes a classification calculation to
assess feature subsets and embraces a search system to look
for ideal subsets. It often leads to better since the wrapper
approach takes into consideration a classifier with the evalu-
ation or search process [37].

Each meta-heuristic algorithm has a unique search strat-
egy. Meta-heuristic algorithms can find optimal solutions
based on its own strategy such as balance between explo-
ration and exploitation. Furthermore, VSA has advantages
such as the smaller number of parameters and easy imple-
mentation. The VSA was embedded with chaotic maps to
obtain a better compromise between exploitation and explo-
ration. This paper uses hybrid methods based on CMs with
the VSA for FS. The major contribution of the current paper
is that a CMs model of VSA has been proposed to enhance
the performance of VSA. In proposed methods, the chaotic
seek method are followed to choose the ideal characteristic
subset that maximizes the category accuracy and minimizes
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the feature subset duration. Ten one-dimensional CMs are
adopted and changed with random movement parameters
of the VSA. The performance of the proposed methods is
tested on 24 benchmark datasets. Similarly, the performance
of VSA is comparison with seven other metaheuristic algo-
rithms. Based on mean criterion, the proposed method can
obtain better solutions using the Tent Map in comparison
with other metaheuristic algorithms.
The main contributions of this paper are as follows:

e VSA and Chaotic Maps are defined to FS.

e The proposed method has a faster convergence perfor-
mance than the other algorithms. The proposed method
has better convergence results on different datasets.

e The proposed method has been evaluated with 24 UCI
standard datasets.

e The best VSA is State2 with VSAC101 that obtained by
using the Tent map.

e The proposed method has been tested on author identifi-
cation datasets

e The obtained results confirmed the validity and supe-
riority of the proposed method in comparison to other
algorithms.

The organization of this paper is as follows: Sect. 2 gives
related works about chaotic and FS. Section 3 provides an
introduction to VSA. The detailed description of the pro-
posed method has been provided in Sect. 4, while the experi-
mental results and discussion of the proposed VSA have
been provided in Sect. 5. In Sect. 6, the proposed method
has been applied on a real application (i.e., author identifi-
cation). Finally, the conclusion and future work have been
discussed in Sect. 7.

2 Related works

The Moth Swarm Algorithm (MSA) is among the most
recently-developed nature-inspired heuristics for the pur-
pose of the optimization problem. However, its shortcoming
is that it has slow convergence rate, and the Chaos theory
has been incorporated into it to eliminate this drawback.
In [38], ten CMs have been embedded within the MSA for
the purpose of finding the ideal number of prospectors to
increase exploiting the most promising solutions. The pro-
posed method was applied in solving the famous seven
benchmark test functions. The results of simulation showed
that CMs can enhance the performance of the original MSA
with regard to the convergence speed. In addition, the sinu-
soidal map was found to be the best map for enhancing the
performance of MSA.

The Cuckoo search algorithm (CSA) is a metaheuristic
algorithm that has been inspired by nature and imitates
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the obligate brood parasitic behavior of the cuckoo spe-
cies. The method has been proven to have promising over-
all performance in solving optimization problems. Chaotic
mechanisms were incorporated into CSA to make use of the
dynamic features of the chaos theory, to further improve
its search overall performance. However, in chaotic CSA
(CCSA) [39], the best CM was applied in a single search of
the new release, which restrained the exploitation capabil-
ity of the search. The researchers considered utilizing mul-
tiple CMs at the same time to perform the nearby search
inside the community of the global best solution that is
found by CSA. To attain this goal, three kinds of multiple
chaotic CSAs (MCCSA) were proposed via incorporating
several CMs into the chaotic local search (CLS) parallel in
a random or selective manner. The overall performance of
MCCSA was validated using 48 broadly-used benchmark
optimization features. The experimental results indicated
that MCCSAs are generally better than CCSAs, and the
MCCSA-P that makes use of the CMs has the best quality
among all sixteen editions of the CSAs.

In [40], a chaos-based Crow Search Algorithm (CCSA)
has been proposed to solve the fractional optimization prob-
lems (FOPs). The proposed CCSA integrated the chaos the-
ory (CT) into the CSA for the purpose of refining the global
convergence velocity and enhance the exploration/exploita-
tion inclinations. CT was utilized to track the standard CSA
parameters, which yielded four versions and the high-quality
chaotic variant was investigated. The incorporation of CT
was able to improve the overall performance of the proposed
CCSA and allow the search process to perform better speeds.
The overall performance of the CCSA method was proven
on twenty fractional benchmark problems. Furthermore, it
was further tested on a fractional monetary environmental
power dispatch problem via attempting to limit the ratio of
the overall emissions to general gasoline cost. Ultimately,
the proposed CCSA was compared with the PSO, standard
CSA, FA, Dragonfly Algorithm (DA), and GWO. In addi-
tion, the efficiency of the proposed CCSA was justified by
the non-parametric Wilcoxon signed-rank test. The experi-
mental results proved that the proposed CCSA performs
better than similar algorithms with regard to efficiency and
reliability.

In [41], a new hybrid algorithm for solving optimization
problems based on chaotic ABC and chaotic simulated
annealing has been proposed. The chaotic ABC reveals
new locations chaotically. Chaos may additionally improve
the exploration of the search space. Really, the proposed
hybrid method affords a hybrid of nearby search accu-
racy of simulated annealing and the capacities of global
seek of ABC. Moreover, they used an exclusive method
for producing the initial population. Sincerely preliminary
populace is of brilliant significance for populace-based
techniques, because it immediately influences the rate of

convergence and nice of the outcomes. It is established
the usage of 12 benchmark functions. The effects are as
compared with those of the artificial bees’ algorithm, the
hybrid algorithm of ABC and simulated annealing and
PSO. Simulation effects display the performance of the
proposed method.

In [42], an adaptive chaotic Bacterial Foraging Optimi-
zation (BFO) is presented. The improved BFO consisted
of two new features, the adaptive chemotaxis step setting,
and the chaotic perturbation operation in all chemotactic
events. The former feature results in fast convergence rate
and the acceptable convergence accuracy in the algorithm,
while the latter further allows the search to avoid the local
optima and attain better convergence accuracy. Firstly, an
idea of adaptive exponential decease chemo taxis step is pre-
sented, in which the natural exponential function variable is
a function about the iterations and nutritive ratio between the
current bacterium position and the best bacterium position
in each iteration. Secondly, when each bacterium reaches a
new position through swim behavior, chaotic perturbation
is applied to avoid entrapping into local optima. With five
benchmark functions, Chaotic BFO is proved to have a bet-
ter performance than the original BFO and BFO with linear
deceasing chemo taxis step (BFO-LDC).

Jia et al. [43] proposed an effective memetic DE algo-
rithm (DECLS), which makes use of a CLS with a ‘shrink-
ing’ strategy. The shrinking strategy for the CLS search
space was introduced in that paper. In addition, the local
search length was determined according to the feedback of
the fitness of the objective functions in a dynamic manner
in order to save the function evaluations. Furthermore, the
parameter settings of the DECLS were adapted in the pro-
cess of evolution so as to further enhance the optimization
efficiency. The hybrid form of the DE and a CLS as well as
a parameter adaptation mechanism seemed very reasonable.
The CLS is helpful in enhancing the local search capability
of DE, whereas the parameter adaptation can improve the
global optimization quality. The CLS is helpful in improving
the optimization performance of the canonical DE through
exploring a very large search space in the early phases so
as to avoid the occurrence of premature convergence, and
exploiting a tiny region in later phases to refine the final-
ized solutions. In addition, the settings of parameters in the
DECLS were controlled adaptively to further improve the
search capability. To assess the efficiency and effectiveness
of the proposed DECLS algorithm, it was compared with
four state-of-the-art DE variants and the IPOP-CMA-ES
algorithm on a set of 20 selected benchmark functions. The
findings showed that the DECLS is significantly superior, or
at least comparable, to other optimizers with regard to the
convergence performance and solution accuracy. Further-
more, the DECLS was shown to have certain advantages in
terms of solving problems with high dimensions.

@ Springer



1780

Evolutionary Intelligence (2022) 15:1777-1808

In [44], a modified DE algorithm based on the Opposi-
tion-based Learning (OBL) and a chaotic sequence named
the OBL Chaotic DE (OBL-CDE) was proposed. The pro-
posed OBL-CDE algorithm is different from the basic DE
in two ways. The first one is related to the generation of
the initial population that follows the OBL rules, while the
second one is the dynamic adaption of the scaling factor F
through using the chaotic sequence. The numerical results
obtained by the OBL-CDE compared to the results of DE
and the opposition-based DE algorithms on 18 benchmark
functions indicated that the OBL-CDE is capable of finding
more superior solutions and maintaining reasonable conver-
gence rates at the same time.

The standard Glowworm Swarm Optimization (GSO)
shows poor ability in global search and easily gets trapped
into local optima. A Quantum GSO algorithm based on
CMs was proposed [45] in order to solve such problems.
First of all, a chaotic sequence was generated to initialize
the population. This process results in higher probability to
cover more local optimal areas, and provides the ground for
further optimization and tuning. Next, the quantum behavior
was applied to the elite population, which made it possible
for individuals to locate any position of the solution space
randomly with a certain probability. This greatly enhanced
the capability of the algorithm in global search and avoid-
ing local optima. Finally, it adopted the single dimension
loop swimming instead of the original fixed-step movement
mode. This not only improved the solution precision and
convergence speed, but also solved GSO problems that were
too sensitive to the step-size, and indirectly enhanced the
robustness of the algorithm. The simulation results indicated
that the proposed method was feasible and effective.

The Fruit Fly Algorithm (FOA) has recently been pro-
posed as a metaheuristic technique, and is inspired by the
behavior of fruit flies. Mitic et al. [46] improved the stand-
ard FOA through introducing the novel parameter in com-
bination with chaos. The performance of this chaotic FOA
(CFOA) was studied on ten famous benchmark problems
using 10 different CMs. In addition, comparison studies with
the basic FOA, FOA with Levy flight distribution, and other
recently-published chaotic algorithms were made. Statistical
findings on each optimization task showed that the CFOA
results in a very high convergence rate. In addition, CFOA
is compared with recently developed chaos enhanced algo-
rithms such as chaotic bat algorithm, chaotic-accelerated
PSO, chaotic FA, chaotic ABC, and chaotic CSA. Research
findings generally indicate that FOA with Chebyshev map
show superiority to the similar methods in terms of the reli-
ability of global optimality and the algorithm success rate.

In addition, Gandomi et al.[47] proposed a chaos-
enhanced version of the accelerated PSO. Some other
instances of chaos-enhanced metaheuristic algorithms
include the chaotic Genetic Algorithm [48], Chaotic PSO
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[49, 50], Chaotic Salp Swarm Algorithm [51], Chaotic Ele-
phant Herding Optimization (EHO) algorithm [52], Chaotic
Bat Algorithm[53], Chaotic FOA[46], Chaotic GSO Algo-
rithm [45, 54], Chaotic Black Hole algorithm [55], Cha-
otic Simulated Annealing PSO Algorithm (CSAPSO) [56],
Chaotic Social Spider Optimization Algorithm[57], Cha-
otic Bean Optimization Algorithm[58], Chaotic Quantum
CSA [59], Chaotic Antlion Algorithm[60], Chaotic Hybrid
Cognitive Optimization Algorithm[61], Chaotic Simulated
Annealing [62], Chaotic Based Quantum Genetic Algorithm
[63], Chaotic Teaching Learning Algorithm[64], Chaotic
DE algorithm [65], Chaotic Grey Wolf Optimization Algo-
rithm[66], Chaotic Fractal Search[67], Chaotic Brain Storm
Optimization Algorithm [68], Multi-Objective CCSA [69],
Chaotic Grasshopper Optimization Algorithm [70], Chaotic
Krill Herd [21, 71, 72], Chaotic DE[73], Chaotic Firefly
Algorithm [74, 75], Chaotic Starling PSO Algorithm[76],
Chaotic CCSA [77], Chaotic Grey Wolf Optimization Algo-
rithm [78] and etc. Table 1 shows a comparison of different
models of meta-heuristic algorithms based on chaotic map.

3 Vortex search algorithm

The VSA is a recent metaheuristic optimization algorithm
that changes into the stimulated mode by the vertical flow of
the stirred fluids. Its processes consist of the simplified gen-
eration phases similar to other single-solution algorithms.
The generation of VSA populations is modified to any gen-
erations with the aid of the usage of values completely shape
the modern single solution. Furthermore, the performance
of every update and seek of iteration pass at the seek space
is an essential section in rendering single-solution. Inside
the proposed VSA, this stability is performed with the aid
of using a vortex-like search pattern. The strategies of vortex
sample are simulated through some of the nested circles. The
info of VSA techniques may be in brief defined in 4 steps
as follow [79].

3.1 Generating the initial solution

The preliminary procedure initials ‘center’ p, and ‘radius’
Io. In this phase, the initial center () can be calculated
using Eq. (1).

upperlimit + lowerlimit
2

Ho = (H
where upperlimit and lowerlimit are the bound constraints of
the problem, which can be defined in vector of d X 1 dimen-
sional-space. In addition, o is the initial radius r, generated
with Eq. (2).
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Table 1 A Comparison of Different Models of Meta-heuristic Algorithms based on Chaotic Maps

Refs Models Application Chaotic map Improved

[38] Chaotic MSA Optimization problem Sinusoidal *Convergence speed

[39] CCSA Solving optimization problems  Gaussian map *Exploration and exploitation
[40] CCSA Optimization problems Circle map *Obtaining the global optimum

[41]

Chaotic artificial bee colony and
chaotic simulated annealing

Solving optimization problems

Sinusoidal map

*accelerate the convergence
performance

*Faster convergence *better
exploration

[42] Adaptive chaotic BFO (ACBFO) Solving optimization problems  Logistic map *Convergence speed
[43] DE algorithm based on chaotic 20 benchmark functions Logistic chaotic function *Convergence performance *solu-
local search tion accuracy
[44] Opposition based Chaotic DE Benchmark function Logistic chaotic function *QObtaining the global optimum
(OCDE) *accelerate the convergence
performance
[45] Quantum GSO algorithm Solving optimization problems  Logistic chaotic function *Avoid from prematurity
based on Chaotic Sequence
(QCSGSO)
[46] Chaotic FOA Multi-mode functions Logistic chaos mapping *Convergence speed
[47] Chaos-enhanced accelerated PSO *Global optimization *three *Sinusoidal map *Singer map  *Global optimality *convergence
engineering problems speed
[48] Chaos-Genetic Algorithm Grid scheduling Logistic map *Convergence performance *solu-
tion accuracy
[49] An improved chaotic PSO algo-  Benchmark functions Logistic map *Convergence accuracy
rithm based on adaptive inertia
weight (AIWCPSO)
[50] Chaotic PSO algorithm (CS- Recommendation system Chaos methods *Global search capability; *avoid-
PSO) ing the premature convergence;
[51] Chaotic Salp Swarm Algorithm  *Global optimization; *feature ~ Logistic map *Minimizing the number of
(CSSA) selection; selected features; *maximizes
the classification accuracy;
[52] Chaotic EHO algorithm 15 benchmark functions from Tent map *Convergence speed
CEC 2013
[53] Chaotic bat algorithm Robust global optimization Thirteen different chaotic maps *Global search capability; *avoid-
ing the premature convergence;
[54] Chaotic GSO algorithm Eight standard test functions Logistic map *Convergence performance *solu-
tion accuracy
[55] Chaotic Inertia Weight Black Twenty-three benchmark func-  Logistic map *Enhance the global search
Hole Algorithm (CIWBH) tions *trade-off between exploita-
tion and exploration *better
convergence
[56] Chaotic Simulated Annealing Complex optimization problems Logistic map *Global search ability; *conver-
PSO Algorithm gence precision;
[57] Chaotic Social Spider Optimiza- Robust Clustering Logistic map *Convergence speed
tion Algorithm
[58] Chaotic bean optimization algo- CEC2014 benchmark functions  Logistic map *Global optimization
rithm (CBOA)
max (upperlimit) — min(lowerlimit) ) populations C,(s) in any iterations, where t is the t-th
60 =

2

3.2 Generating the candidate solutions

The procedure of producing candidate solutions is
applied for the purpose of rendering the generation of

iteration. The VSA is randomly generated around the
initial center p, by using a Gaussian distribution, where
Co(s) = {s1,5,.... 5, ym=1,2,3,...,n represents the
solution and » is the overall number of candidate solu-
tions. The equation of multivariate Gaussian distribution
has been shown in Eq. (3).

@ Springer
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-1
1 1 T
Pl D) = ————expd -’ Y (x—p) p (3)
Ve |zl {2 2 }

In Eq. (3) d indicates the dimension, while x is the d x 1
vector of a random variable, p indicates the dx 1 vector of
the sample mean (i.e., center), and X indicates the covariance
matrix. Equation (4) indicates that when the diagonal elements
(i.e., variances) of the X values are equal and the off-diago-
nal elements (i.e., covariance) equal zero (uncorrelated), the
resulting shape of the distribution will be spherical. Thus, the
value of X is computed through utilizing equal variances with
Zero covariance.

Z = 0" .[]xq 4)

where the representation in Eq. (4), 6° is the variance of the
distribution, I represent the d X d identity matrix and o is
the initial radius (r,) as can see in Eq. (2).

3.3 Replacement of the current solution

The replacement of the current solution is conducted for the
selection process. A solution (which is the best one) s € Cy(s)
is selected and memorized from C,(s) for the purpose of
replacing the current circle center (). Before the selection
process, it must be made sure that the candidate solutions are
inside the search spaces (Eq. (5)).

rand.(upperlimili — lowerlimili) + lowerlimiti,s;; < lowerlimit*

5 = lowerlimit' < 32 < upperlimitt
rand.(upperlimiti — lowerlimit' ) + lowerlimit' ,s;'( > upperlimit’
Q)
where k =1,2,...,nandi=1,2,...,d, and rand indicates

a random number that is distributed uniformly. VSA uses s
as a new center, and reduces the vortex size using Eq. (3) to

select the next solutions. Thus, the new set of solutions C, (s)
can be generated. If the chosen solution is better than the
best solution, it can be determined as the new best solution
and was memorized.

3.4 The radius decrement process

In the VSA, the inverse incomplete gamma function is
applied for the purpose of decreasing the radius value
during each iteration pass. The incomplete gamma func-
tion provided in Eq. (6) often arises in probability the-
ory, especially in applications that involve the chi-square
distribution.

X
y(x,a) = /e_’t“_ldm >0 (6)
0
where a> 0 is the shape parameter while x >0 is a random
variable. Similar to the incomplete gamma function, its com-

plementary I'(x, a) is usually also introduced (Eq. (7)). In
Eq. (7), (@) isa(1).

o0

[(x,a) = / e 't dta > 0 (7)
0

Table 2 describes pseudocode of VSA algorithm.

4 Proposed methods

In this section, the hybrid form of VSA and CMs will be
explained. The simple shape of the VSA consists of impor-
tant keys that can be center and radius. First, the center is
a current position from which the VSA may be evaluated

Table 2 A description of the

VSA algorithm Initializing step

Repeat

End
Output

= Algorithm parameters: Input the population size, the lower and upper bounds
= Fitness of best solution

= Center of the circle(po), Eq. (1)

=Radius of the circle (o), Eq. (2)

= Create candidate solutions within the circle by Eq. (3)

= If Exceeded, then shift values into the boundaries by Eq. (5)

= Select best solution to replace the current center

= Decrease the standard deviation (radius) for the next iteration by Eq. (7)

= Best solution found so far Sy,

@ Springer
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based on the problem search space where iterations skip.
With respect to exploration for a premier solution that has
been carried out up to now, VSA used this function to
identify the ‘center’ with the purpose of replacing a new
position of the populations. Secondly, ‘radius’ is a method
that is utilized to simplify the issues-creating a massive-
radius problem to grow to be a small-radius problem. In
extra, a Gaussian distribution is a VSA which is used to
stability the exploration and exploitation at every itera-
tion skip. However, the VSA used best a single center this
is referred to as the single strategy to generate candidate
solutions around the current great answer. However, the
disadvantages of the VSA can be not noted from the local
factor whilst it suffers from the issues that have numer-
ous neighborhood minimal values. in the equal time, the

Stepl: Initializing‘!

Algorithm
parameters

Center of the Circle
(Mu), Eq. (1)

Radius of the Circle
(r), Eq. (2)

State2: Loop with condition for Feature
Selection

Create candidate solutions within the circle by
using Gaussian distribution with standard
deviation r and center Mu, Eq. (9)

v

If Exceeded, then shift values into the
boundaries in Eq. (10)

v

Select best solution to replace the current
center

v

Center is always shifted to the best solution
found so far

v

Decrease the standard deviation (radius) for
the next iteration, Eq. (11)

radius used to update the pleasant solution have been capa-
ble of decrease the new release skip by way of the usage
of a Gaussian distribution, making it less complicated
to trap the VSA in neighborhood optima. This explains
some drawbacks of the VSA. The presented have a look
at specializes in hybridizing the VSA with the CMs. This
hybridization is referred to as the chaotic VSA which 10
CMs have been used. These 10 maps have been used in
three different locations of the VSA [74]. Figure 1 shows
flowchart of proposed method. In the first step is done
the initialization of the parameters. In the second step,
the VSA Egs. (9, 10, and 11) are optimized based on the
chaotic maps in order to FS. In the third step, the samples
are classified and at the end, the accuracy percentage is
displayed.

| Step4: Fitness Function

; |
| Best Mean ||
! |
! :
'l Worst SD 3
3 i
| Accuracy i

Selection one of the Chaotic Maps, between
states for Optimization

State 1 Chebyshev i
C11-C101 in Table (3) Circle |
[ Gauss/mouse i

Iterative i

Logistic i

C12-C102 in Table (3) [ L !
Piecewise ;

Sine i

State 3 Singer |
Sinusoidal !

C13-C103 in Table (3) H |
Tent !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1 Flowchart of Proposed Method

@ Springer



1784

Evolutionary Intelligence (2022) 15:1777-1808

In the proposed model, we combine the formulas of CMs
based on Table 3 with Egs. (3), (5), and (6). The goal is to
find the best CMs to optimize VSA. These places can be
expressed as follows:

State 1  the production of candidate solutions inside the
search circle [Eq. (9)].

State 2 If the solution is out of range, these mappings are
used to move to the desired range. (Eq. 10).

State 3 Reduced search radius using reverse gamma func-

tion and CMs [Eq. (11)].

In Table 3, the CMs formulas and methods are shown.
The optimization of the VSA based on three methods
(Statel, State2, and State3) has been done. In each method
have been used 10 CMs. So, in each run, there are 30 differ-
ent modes for a given dataset.

Chaos is described as a phenomenon. Any exchange
of its preliminary scenario might also purpose non-linear
change for future behavior. Chaos optimization is one of
the optimization models for search algorithms. The primary
idea behind it is too seriously change parameters/variables
from the chaos to the solution area. It relies upon for look-
ing out of the global optimum on chaotic motion properties
including ergodicity, regularity, and stochastic properties.
The major advantages of chaos are speedy convergence and
functionality for warding off local minima. CMs have a form
of determinate in which no random factors are applied. In
this paper, 10 distinguished non-invertible unidimensional

Table 3 CMs and proposed methods

maps were adopted to attain chaotic sets. The adopted CMs
have been defined in Table 3, where g denotes the index
of the chaotic sequence p, and p, is the g™ number in the
chaotic sequence. The remaining parameters including d, c,
and p are considered as the control parameters, determining
the chaotic behavior of the dynamic system. The initial point
pp was set to 0.7 for all CMs, as the initial values for CMs
may have a great influence of fluctuation patterns on CMs.
In this paper, ten different CMs were applied for the opti-
mization process. These maps are Chebysheyv, circle, gauss/
mouse, iterative, logistic, piecewise, sine, singer, sinusoidal,
and tent [74].

Descriptions of State 1, State 2, and State 3 are as follows:
State 1 VSA generates candidate solutions using just a
single ‘center’ (p). The generation of ‘center’ is
then transformed to new center when iterations
pass through the limitation of upper and lower
bound of problems. This mechanism has some
problems. One of such problems is that VSA tends
to be trapped in local minima when suffering from
a local point of minimum problems. To overcome
this, the CMs of candidate solution VSA was
proposed.

In this method, chaos maps are used to generate candidate
solutions. Several neighbor solutions C,(s), (¢ indicates the
iteration index and is t=0 at initial stages) were generated
randomly around the initial center y,, in the d-dimensional

ID Map Definition Range Statel State2 State3
Chebyshev map Pyr1 = cos(qcof1 (Pq)) -1D Cl1 Cl12 Cl13
2 Circlemap Pyt =mod(p,+d - (£ )sin 2ap,),1),c=05andd =02 @D €2 2
3 Gauss/mouse map 1, Py = 0 0,1) C31 C32 C33
Pgr1 = 1 i
q ol )’ otherwise
4 Iterative map — sin (r_n) c=07 (-L1) C41 C42 C43
Pgsi o ) =0
Logistic map Pgs1 = cpq(l _pq), c=4 0,1) C51 C52 C53
Piecewise map [Z3) <p, <l 0,1) Co61 C62 C63
1’7 =Y
p,—1
q —py —
o ,05<p, <1-11=04
. t1-1<p,<1
7 Sine map Pyr1 = j_; sin (;;pq), c=4 0,1) C71 C72 C73
Singer map Pys1 = H(1.86p, — 23.31p§ + 28.75p3] - 13.302875}73,/4 =1.07 0,1) C81 C82 C83
Sinusoidal map Pgt1 = Cp; sin (;;,—pq), c=23 0,1) 91 C92 C93
10 Tent map ”_q’pq <07 0,1) C101 C102 C103
P =14 W
a+l ?(1 —pq),pq207
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space by using a Gaussian distribution and CMs. Here,
Co(s) = {sl, AT ,sm}m =1,2,3, ..., nrepresents the solu-
tions, and n represents the total number of candidate solutions.
In Eq. (9), the formula of the proposed method is given.

-1
1 1 T
exps —=(cm— ) (ecm — p) C
= { > > } )

where d represents the dimension, cm is the d X 1 vector of a
CMs variable, p is the d X 1 vector of sample mean (center),
and X is the covariance matrix.

plxlp) =

State 2 If the solution is out of range, these mappings
are used to move to the desired range. During
the selection phase, a solution (i.e., the best one),
s € Cy(s)is selected and memorized from Cy(s) for
the purpose of replacing the current circle center
u,. Before the selection phase, it must be made
sure that the candidate solutions are inside the
search boundaries. To attain this goal, the solu-
tions that exceed the boundaries are shifted into
the boundaries, as in Eq. (10). The VSA combined
with chaotic sequences is described in Eq. (10).
In Eq. (10), Cm(i) is the obtained value of chaotic
map at j™ iteration.

Cm; * (upperlimit[ - lowerlimit‘) + lowerlimit‘,s;; < lowerlimit’
s = lowerlimit’ < s;( < upperlimiti (10)

Cmy; * (upperlimiti — lowerlimit’ ) + lowerlimit’ ,x;{ > upperlimit’

State 3 Reduced search radius using reverse gamma func-
tion and CMs. In the VSA, the inverse incomplete
gamma function is used for the purpose of decreas-
ing the value of the radius during each iteration
pass. The incomplete gamma function has been
given in Eq. (11).

cm

y(x.a) = /e_’t“_'dta >0 (11)

0

where a> 0 is known as the shape parameter and cm >0 is
a CMs variable.

In the current study, the chaotic VSA has been imple-
mented as an FS algorithm based on the wrapper method.
In VSA, a chaotic sequence is embedded in the search
iterations, and the optimal feature subset that describes the
dataset is selected using VSA. The FS strategy is aimed at

improving the classification efficiency, reducing the length
of feature subset, and reducing the computational costs.

4.1 Fitness function

At each iteration, every point position is evaluated the
use of a special fitness function fit. The data are ran-
domly divided into extraordinary components, especially
training and testing datasets by using the m-fold tech-
niques. Goal standards are used for assessment, which
are classification accuracy and the number of selected
features. The followed fitness function equation hybrids
the two standards into one by means of setting a weight
factor as in Eq. (12). a is the class accuracy calculated
with the aid of dividing the variety of efficiently labeled
instances over the full variety of instances. K-nearest
neighbor (KNN) [80] is the used classifier in which k
equals to three with suggesting absolute distance. KNN
is one in every of supervised learning algorithms which
rely on classifying new instance based totally on distance
from the new sample to the training samples. The KNN
classifier predicts the class of the testing sample through
calculating and sorting the distances between the testing
sample and each one of the training samples. Such a pro-
cess is repeated until each datum in the dataset has been
selected once as the testing sample. What is meant by the
classification accuracy of a feature subset is the ratio of
the number of samples that have been predicted correctly
to that of all the samples. In this paper, KNN has been
used for determining the fitness of the selected features.
The selection of K and distance method was decided
based on trial and error. L is the length of the selected
feature subset, L, is the total number of features, and f is
the weighted factor which has value in [0, 1]. § is used to
control the importance of classification accuracy and the
number of selected features. Since improving accuracy
is the primary goal for any classifier, the weight factor is
usually set to values near 1 [81]. In this paper, § was set
to 0.8. The best solution is maximizes the classification
accuracy and minimizes the number of selected features
[81].

Fit=maximize<a+ﬂx (l - %)) (12)

s

5 Result and discussion

In this section, first a summary of the main characteristics
of the implemented datasets will be discussed. Second,
the proposed methods (Statel, State2 and State3) using
different CMs will be investigated. Third, comparisons
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will be made between VSA and the proposed method
based on FS. Finally, to emphasize the advantages of the
proposed method compared to other algorithms, different
experiments will be described and the obtained results
will thoroughly be discussed.

5.1 Datasets description

Twenty-four benchmark datasets from different types
including medical/biology and business were used in the
experiments. Four datasets (21, 22, 23, and 24) were related
to the identification and classification of the text author.
The datasets were collected from the UCI machine learn-
ing repository [82]. A short description of each one of the
adopted datasets has been presented in Table 4. As it can be
observed, the used datasets involve missing values in some
records. In the current study, all such missing values were
replaced by the median value of all known values of a given
feature class. The mathematical definition of the median
method has been defined in Eq. (13). §;; parameter is the
missing value for j” feature of a given i class W. For miss-
ing categorical values, the most appeared value for a feature
given class is replaced with the missing value.

Table 4 Dataset description

5;; = median;.; ey s,

J 13)

Four different statistical measurements—including the
worst, the best, the mean fitness value, and the standard devi-
ation (SD) were adopted. In the current study, this test was
used to evaluate the performance of each CM and determine
the best one. The worst, the best, the mean fitness value, and
the SD are mathematically defined as follows:

Best = maxM™BS, (14)
Worst = min'™®BS, (15)
1 tMax
M = BS:
= Max ; ! 10
)

BS is the best score gained so far for each iteration.

ID Dataset Missing values No. of features No. of classes No. of instances Type
Dataset] ~ Chess No 36 2 3196 Game
Dataset2  Poker hand No 10 10 25,010 Game
Dataset3  Germen credit No 24 2 1000 Business
Dataset4  Credit approval Yes 15 2 690 Business
Dataset5  Cylinder bands Yes 40 2 512 Physical
Dataset6  Abalone No 8 29 4177 Life
Dataset7  Glass identification No 10 6 214 Physical
Dataset8  Letter recognition No 17 26 20,000 Computer
Dataset9 ~ Waveform No 21 3 5000 Physical
Datasetl0 Zoo No 18 2 101 Life
Datasetl1l Wisconsin Diagnosis Breast Cancer (WBCD) No 32 2 596 Clinical
Datasetl2 Mice Protein Expression Data set (MPED) Yes 82 8 1080 Clinical
Datasetl3 Parkinson’s Disease Detection Data set (PDD) No 23 2 197 Clinical
Datasetl4 Cardiotocography No 23 3 2126 Clinical
Datasetl5 Hepatitis Yes 19 2 155 Clinical
Datasetl6 Lung cancer Yes 56 3 32 Clinical
Datasetl7 Single proton emission computed tomography No 44 2 267 Clinical
(SPECT)
Dataset18 Thoracic surgery No 17 2 470 Clinical
Dataset19 Statlog (heart) No 13 2 270 Clinical
Dataset20 Indian Liver Patient Dataset No 10 2 583 Clinical
Dataset2] WebKB No 2350 4 4199 Computer
Dataset22 Cadel2 No 5340 12 40,983 Computer
Dataset23 Reuters 21,578 — R8 No 3343 8 7674 Computer
Dataset24 Reuter_50_50 No 2340 50 5000 Computer
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5.2 Analysis and discussion

For evaluation of methods on different datasets of four cri-
teria (worst, best, mean and SD) have been used. In Table 5,
30 modes and the VSA with the mentioned criteria are inves-
tigated. Proposed Method (Statel) is equal to VSACI1 to
VSACI101 modes, Proposed Method (State2) is equal to
VSACI12 to VSAC102 modes, and Proposed Method (State3)
is equal to VSAC13 to VSAC103 modes. With regard to the
results, it can be stated that Proposed Method (State2) has
better results. Proposed Method (State2) with VSAC101
mode offers best result than other modes using Tent map.
The main target of this test is to evaluate the efficiency of
VSA with different chaotic maps and define the optimal cha-
otic map (Tables 6, 7, 8).

5.3 Comparisons between VSA and proposed
method based on FS

In Table 9 and Fig. 2, the results of the VSA and the Pro-
posed Method are shown based on the FS. We chose the
Proposed Method in order to FS because it had a high per-
centage of accuracy. Based on the results, it can be said that
the Proposed Method in 19 datasets is better than the VSA.

5.4 Comparison and evaluation

Comparison of the Proposed Method with GA, PSO, ABC,
BOA, IWO, FPA, and FA algorithms has been performed to
evaluate the efficiency. In Table 10, the control parameters
of the algorithms are expressed.

The comparison of the Proposed Method with the PSO,
ABC, BOA, IWO, GA, FA, FPA, and VSA was performed
according to the worst criteria. According to Table 11 and
Fig. 3, it is clear that the results of other algorithms are
worse than the Proposed Method.

In Table 12, the comparison of the Proposed Method with
PSO, ABC, BOA, IWO, GA, FA, FPA, and VSA was per-
formed based on the best criteria. According to Table 12 and
Fig. 3, it is clear that the results of the Proposed Method are
better than other algorithms.

In Table 13, the comparison of the Proposed Method with
PSO, ABC, BOA, IWO, GA, FA, FPA, and VSA was per-
formed based on the mean criteria. According to Table 13
and Fig. 3, it is clear that the results of the Proposed Method
are better than other algorithms.

To sum up, the results and discussion of this paper dem-
onstrate that integrating CMs to the VSA is definitely benefi-
cial. The reason why that the Proposed Method outperforms
all the other algorithms is that the Tent chaotic map assists
this algorithm to highly emphasize exploration in the initial
steps of optimization and reduced search radius.

6 Real application: author identification

Author identification, is a stylometric problem that tries to
identify a copied text belonging to an original author [85,
86]. With ever-increasing volume of documents uploaded
to the internet, new methods for analyzing and extracting
data and knowledge are needed. In order to prevent plagia-
rism and copying copyrighted materials, the best solution
is to use authorship identification. Every writer has his/her
own writing style in manuscripts that he/she writes, and the
writer’s style can be identified in other papers [87]. Author-
ship identification is one of the up-to-date problems in the
field of natural language processing. Author identification, is
an effort to show the writer’s personal characteristics, based
on a piece of linguistic information [88] such that various
manuscripts written by various authors can be distinguished.
Humans possess certain writing patterns for using a lan-
guage in their writings, which act like figure prints of the
writer (writer print); these patterns are specific to the writ-
ers [89].

Authors in [90] have proposed an approach known as the
stylometric approach to deal with the problem of Author
Identification. There are four different steps in this approach:

e Calculation of word frequencies to find the most frequent
words in the entire corpus.

e Calculation of normalized frequency. This is done by
dividing the frequency of the most frequent word in that
document to the total number of words in entire corpus.

e Using Z-score method.

e Calculation of distance table by finding distance between
two matrices.

Therefore, since the text is converted into numeric repre-
sentation (feature extraction), classification, and clustering
techniques of machine learning can be implemented on it.
The Reuter_50_50 data set is used for experiments. There
are 50 authors and 50 documents per each author in this
dataset. Thus, both training corpus and test corpus contains
2500 texts. These corpuses do not overlap with each other.
By applying stylometry approach and n-gram features to the
author identification problem an accuracy of about 85% of
that of SVM classifier is achieved which is a higher accuracy
in comparison to Delta and KNN classifier.

Dissimilarity Counter Method (DCM), DCM-Voting,
and DCM-Classifier have been applied in [91] to the
problem of Author Identification. Once the representation
spaces are selected, similarity measures such as Euclidean
distance, correlation coefficient, and Cosine can be used to
compare the documents and then, the document author can
be identified using one of the above-mentioned approaches
(DCM, DCM-voting, or DCM-Classifier). DCM only uses
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Table 9 Results of the VSA and

Datasets VSA Proposed method
the proposed method based on
the FS Feature Accuracy (%) Time(sec) Feature Accuracy (%) Time(sec)
count-total count-select

Dataset1 36 44.2472 2.3244 25 56.5962 2.105
Dataset2 10 48.4139 1.5936 8 67.549 0.7746
Dataset3 24 91.6334 1.0279 11 87.8578 2.2247
Dataset4 15 63.7899 1.6667 8 64.9167 0.175
Dataset5 36 77.4904 1.7881 19 92.073 1.1341
Dataset6 8 60.3178 1.6666 6 62.4584 1.191
Dataset7 10 72.4666 1.941 6 81.1022 2.4077
Dataset8 16 71.3516 3.5829 8 96.3686 2.6418
Dataset9 21 87.4691 1.1463 9 96.3448 2.1726
Dataset10 16 82.3352 0.0883 7 90.1066 0.456
Dataset11 30 98.4868 2.5427 16 98.7271 0.3067
Dataset12 80 36.3746 0.1836 53 71.7682 0.9082
Dataset13 22 54.9418 2.5736 13 50.01 0.8355
Dataset14 22 35.7599 0.5076 17 59.9471 2.2448
Dataset15 20 88.6538 2.1595 8 80.2569 1.2598
Dataset16 57 36.5519 2.3174 13 43.957 0.5924
Dataset17 45 45.2476 3.066 23 93.6619 1.7498
Dataset18 17 60.1896 34182 6 58.0906 0.0865
Dataset19 13 69.6363 2.7172 7 92.9925 2.6428
Dataset20 10 82.1821 1.1213 6 83.4601 1.9857
Dataset21 2350 48.185 0.9042 1200 90.7128 1.4438
Dataset22 5340 84.1727 1.245 2341 83.7111 2.7264
Dataset23 3343 95.4847 3.8613 1845 99.7029 0.8341
Dataset24 2340 47.1271 0.6734 800 50.26194 1.3153

Bold values is to show the best-obtained value in the comparisons

the similarities between Victoria representations of docu-
ments in one space to solve a problem p of P. In the other
two DCM-based approaches, it is possible to hybrid dif-
ferent representation spaces. In the case of DCM-voting
approach, this is done using a voting technique and as
for the DCM-classifier, it can be performed through a
supervised learning method which requires the definition
of predictive features. During evaluation of the challenge
PAN-CLEF 2013, it is observed that DCM-classifier has
the best performance only on the Greek corpus with 85%,
and the two other approaches i.e. DCM-voting and DCM-
classifier obtain the best results or equivalent to the winner
of the competition for all evaluation measures (F1, preci-
sion and recall) on all the corpora.

The General Impostors Method (GENIM) which took
part in the PAN’ 13 authorship identification competition has
been evaluated in [92]. The basis of this model is the com-
parison made between the given documents and a number
of external (impostor) documents, and since there are two
stages in their method, the performance had to be meas-
ured and parameters needed to be optimized at each step.
25-33 percent of the training documents of each language

@ Springer

were used for measuring and optimizing IM, whereas the
rest were used for evaluation of GENIM. For the IM evalu-
ation set, 3 or 4 documents were used as seed documents
to retrieve the web impostor. The test accuracy is equal to
75.3%.

Blocks containing 140, 280, and 500 characters were
investigated. The feature set contains conventional features
like syntactic, lexical, application specific features, and
some new features that are extracted from n-gram analy-
sis. Moreover, the proposed approach has a mechanism
for handling issues related to unbalanced dataset. It also
uses Support Vector Machine (SVM) for data classification
and uses Information Gain and Mutual Information as a
FS strategy. The proposed approach was evaluated experi-
mentally using the Enron email and Twitter corpuses. The
results of this evaluation were very promising including
an Equal Error Rate (EER) changing between 9.98% and
21.45%, for different block sizes [93].

In [94], by using a cluster-based classification approach, a
model is presented for email authorship identification (EAI).
Contributions of this paper are as follows: a) Developing a
new model for email authorship identification. b) Evaluation



Evolutionary Intelligence (2022) 15:1777-1808 1797
=@e VA e=ge== Proposed Method = @e oVSA  e=ge= Proposed Method
a Data Setl Cc Data Setl
Data Setzﬁ_ismo ,,,,777_7?3':3 Set2 DataSet24 4 __ Data Set2
Data Set23 - Data Set3 Data Set23 35 Data Set3
00— P
Data Set22 - Data Set4 Data Set22 'Y 3— Data Set4
4000 \
DataSet21 \, Data Set5 Data Set21 Data Set5
Datasetzo [/ v\ “’w,‘ Data Set6 Data Set20 | Data Set6
| i \ (
| | \ \ | | \
v
\‘ \' ‘ |I \ ‘\‘ ‘»i |
Data Set19 \: \: /A O S N -t Data Set19 | | DataSet7
| / f ] |
| | / | | I |
\‘ | — / | ‘s
DataSetl® | | o /| Dataset8 Data Set18 | Data Set8
DataSet17 . e T / DataSet9 Data Set17 Data Set9
“,\ : E ~— s , /
et Set1f ™ ' Data set1o Data Set16 ~— Data Set10
Deta Set15 ™ " Dataset1l Data Set15 Data Set11
. Data Set14 Data Set12

Data Setl3

= @e = VEA e=ge== Proposed Method

b Data Setl
Data Set24 100

_ Data Set2

Data Setl ™.

Data Setl5

Fig.2 a Feature Count-Total. b Accuracy (%). ¢ Time (sec)

of using additional features together with basic stylometric
features for email authorship identification as well as content
features that are based on Info Gain FS. On the Enron data-
set, the proposed model achieved accuracies of 94, 89, and
81 percent for 10, 25, and 50 authors, respectively. Whereas,
on real email dataset constructed by authors, it attained an
accuracy of 89.5%.

A large number of researches only focus on enhanc-
ing predictive accuracy and do not pay much attention to
intrinsic value of the collected evidence. In this paper, a
customized associative classification approach, which is a
well-known data mining technique, is applied to the author-
ship attribution problem. This method models the features

Data Setl3

of writing style which are unique to a person. Then, it meas-
ures the associativity level of these features and generates
an instinctive classifier. In this research, it is also concluded
that a more accurate write print can also be provided by
applying modifications on the rule pruning and ranking
system described in the popular Classification by Multiple
Association Rule (CMAR) algorithm. More convincing evi-
dences can be provided for a court of law by eliminating
patterns common amongst different authors since it leads
to fairly unique and easy-to-understand write prints. Since
this customized abandonment counter method is helpful in
solving the problem of the e-mail authorship attribution, it
can be used as a powerful tool against cybercrimes. The
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Table 10 Control parameters of the algorithms

Algorithms Description Parameters Value

GA [83] Crossover rate Pc 0.9
Generation Ng 200
Mutation rate Pm 0.01
PSO [84]  Acceleration coefficients Cl 1.5
Acceleration coefficients C2 1.5
Random number R1 0.5
Random number R2 0.5
Inertia weight (linearly (w) 0.6t00.3
decreases)
ABC [9] Employed bees Ne 50
Onlooker bees No 50
Scout bee Ns 50
Random number ) 0.5
BOA [8] Flight distance Step, 0.05
Random number Rand 0.02
Linearly decreases a 2-0
IWO [7] Minimum number of seeds Smin 0
Maximum number of seeds Smax 5
Final value of standard devia- ofinal 0.001
tion
Initial value of standard devia-  cinitial 3
tion
FPA [14]  Step size scaling factor Y 0.01
Switch probability between P 0.4
Local and Global pollination
Randomization o 0.2
Attractiveness of a firefly B 1
FA [11] Absorption coefficient Y 1

effectiveness of the presented approach is verified by the
results obtained through experiments [95].

An effort is made by authors in [96] to identify the author
of articles written in Arabic. They introduced a new data-
set which is composed of 12 features and 456 samples of 7
authors. Furthermore, to distinguish different authors from
each other, powerful classification techniques were hybrids
with the proposed dataset in their approach. The obtained
results revealed that the proposed dataset was very success-
ful and achieved a classification performance accuracy of
82% in the hold-out tests. They also conducted some exper-
iments with two well-known classifiers namely the SVM
and functional trees (FT) in order to show the efficiency
of the proposed feature set. The reported an accuracy of
82% with the FT approach and holdout testing which con-
firmed robustness of the proposed feature set. Moreover, an
accuracy of 100% has been achieved in one of the classes.
They also conducted some test on FT by using tenfold cross
validation and the proposed approach retained its accuracy
to some extent.

@ Springer

One of the classifiers which have been extensively used
for language processing is the Naive Bayes classifiers.
Nevertheless, the event model used which can remarkably
affect the classifier performance is not often mentioned.
So far, Naive Bayes (NB) classifiers have never been used
for authorship attribution in Arabic. Thus, they proposed
to apply these classifiers to this problem, taking into con-
sideration various event models such as simple NB, multi-
nomial NB (MNB), multi-variant Bernoulli NB (MBNB),
and Multi-variant Poisson NB (MPNB). The MBNB prob-
ability estimation is dependent on whether a feature exists
or not, whereas MNB and MPNB a probability estimation
is dependent on the frequency of the feature. The mean and
standard deviation of the features form the basis of probabil-
ity estimation in the NB model. The performances of these
models are evaluated using a large Arabic dataset taken from
books written by 10 different authors. Then, they are com-
pared with other methods. The obtained results reveal that
MBNB outperforms other techniques and is able to identify
the author of a text with an accuracy of 97.43%. In addition,
these results show that MNB and MBNB can be considered
as a good choice for authorship attribution [97].

In [98], authorship identification methods were applied
to messages of Arabic web forum. In this study, syntactic,
lexical, structural, and content-specific writing style features
were used to identify the authors. Some of the problematic
characteristics of Arabic language were addressed in order to
present a model with an acceptable degree of classification
accuracy for authorship identification. SVM had a better per-
formance than C4.5 and compared to English performance,
the overall accuracy for Arabic was lower. These results
were in consistence with previous researches. Finally, as
future work, the authors proposed to analyze the differences
between these two languages by evaluating the key features
as determined by decision trees. Highlighting the linguistic
differences between English and Arabic languages provides
further insight into possible technique for enhancing the per-
formance of authorship discrimination methodologies in an
online, multilingual setting. The results showed accuracies
of 85.43 and 81.03 for SVM and C4.5, respectively.

In [99], they developed an authorship visualization known
as Write prints which can be used for identification of indi-
viduals based on their writing style. Unique writing style
patterns are created through this visualization. These pat-
terns can be distinguished in a similar way that fingerprint
biometric systems work. Write prints provide an approach
which is based on component analysis and utilizes a dynamic
feature-based sliding window algorithm. This makes them
very suitable for visualizing authorship across larger groups
of messages. The performance of visualization across mes-
sages taken from three different Arabic and English forums
was evaluated and compared with the performance of
SVM. This comparison indicated that Write prints show
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Table 11 Comparison of the Datasets PSO ABC BOA IWO GA FA  FPA  VSA  Proposed Method

proposed method with other

algorithms based on the worst Datasetl 11652 13169 12795 12116 13078 1.0623 13221 1.151  1.3021

criterion Dataset2  1.0134 0.8357 1.0904 0.7935 0.859 0.9388 09091 1.0718 1.0804
Dataset3  1.1403 09748 1.0289 1.0323 1.0699 1.0364 1.0189 1.0692 1.0699
Datasetd 12313 1.2398 1.0536 1.3387 1.0844 1076 11111 1.1463 1.3387
Dataset5  1.1624 11992 1.0705 1.19  1.0613 1.1965 1.0762 1.1983 1.1083
Dataset6  0.5866 0.7323 0.7112 0472 07894 0.6187 0.7379 0.502 0.7874
Dataset7 11565 1.2648 12797 1.4996 1.1722 14984 14836 1.0209 1.4984
Dataset8 12758 1.0955 1.0956 1.1194 12625 11351 1.1704 1.1696 1.2758
Dataset9  1.1248 1.0839 1.1775 1.1833 1.0772 12775 1264 1.0373 12375
Datasetl0 1.2866 1.1589 1.167 13825 1.2842 12472 12791 13497 1.2825
Datasetll 1243 1327 12921 13961 1.6147 13582 13734 12358 1.3961
Datasetl2 14566 13633 14114 12155 1.2255 15031 12839 1.4008 1.2255
Datasetl3 12436 1.1973 1.0512 12454 1.0363 12885 1.4906 13004 1.3204
Datasetld 12653 1.1884 12394 13543 13115 12894 13822 13922 1.1644
Datasetl5 1.1821 12728 13882 1.4679 1.4981 1.3427 14981 14827 13181
Datasetl6 14262 1.0759 1.6764 12535 13716 1.5304 15123 0.8414 1.3264
Datasetl7 12562 1.1611 1.1055 12166 1.031 1.0767 09641 1369 1.0169
Datasetl8 13983 14124 12653 1303 1.0773 12703 1.0404 1467 1.1167
Datasetl9 1.1328 0.9997 0.9467 1.0967 0.9658 0.9974 1.198 1.1236 1.1208
Dataset20 0944  1.0662 1.2361 1.1814 09685 1.0653 1.1904 1.1242 1.0361
Dataset2]  1.6487 1.4398 1.0724 12875 1.6143 1631 1.1727 1.7802 1.1802
Dataset22 13458 1.6606 1.7973 1.1826 1.3905 1.0926 1.8201 1.1224 1.0201
Dataset23  1.154  1.0374 09335 1.9864 1.0774 0.8664 14506 1.2632 1.1206
Dataset24  1.0724 1.1301 1.1549 0.8827 07526 1.1974 1.8704 09771 1.1974

Bold values is to show the best-obtained value in the comparisons

an excellent classification performance and provide better
results than SVM in many instances. They also concluded
that visualization can be used to identify cyber criminals and
can help users authenticate fellow online members to prevent
cyber fraud. Accuracies of 68.92 and 87.00 were obtained
for Write prints and SVM, respectively.

In [100], they introduced approaches to deal with imbal-
anced multi-class textual datasets. The main idea behind
their approach is to divide the training texts into text sam-
ples based on the class size thus, a fairer classification model
could be generated. Therefore, it becomes possible to divide
majority classes into less and longer samples and minority
classes into many shorter samples. They used text sampling
techniques to form a training set based on a desirable dis-
tribution over the classes. By text sampling, they developed
new synthetic data that artificially caused the training size
of a class to increase. A series of authorship identification
experiments were conducted by these researchers on dif-
ferent multiclass imbalanced cases belonging to two text
corpora of two languages; newspaper reportage in Arabic
and newswire stories in English. Properties of the presented
techniques were revealed by the results obtained through
these experiments. They also tested four methods to deal
with the problem of class imbalance [100]:

e The first method: To under-sample majority classes based
on training texts. The same amount of text which was
equal to the base was used. No modification is applied to
the length of each text.

e The second method: To Under-sample majority classes
based on training text lines. All the training texts for a
particular author were merged to form a big text. Assum-
ing that x;, represents the size (in text lines) of the
shortest big file then, the first x,,,;,, text lines of each big
file were segmented into text samples of length a (in text
lines). It is worth noting that there was as least one com-
plete sentence in each text line in both corpora. It was
concluded that smaller values (such as 2 or 3) lead to
better results.

e The third method: Re-balancing the dataset by text sam-
ples of varying length. As was mention earlier in this
paper, one big file is generated for each author by concat-
enation of training texts. In other words, the length of text
sample is equal to xi/k (where, k is predefined param-
eter). Short text samples belong to minority authors and
long text samples belong to majority authors. Therefore,
a balanced dataset is generated which consists of k text
samples per class. Experiments were conducted for
k=10, 20, and 50. It is noteworthy that each text line
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Fig.3 Result of comparison a The worst criterion. b The best criterion. ¢ The mean criterion

of the training corpus is used exactly once in the text
samples.

e The fourth method: Re-balancing the dataset through text
re-sampling. A big file is generated for each author once
again. Assuming that x represents the text-length (in text
lines) of the ith author and xmax is the longest file then,
for each author, k +x,,,./X; text samples are generated
each of which consisting of xi/k. Therefore, based on the
length of the big file, a variable number of text samples
are generated for each author. Nonetheless, the relation-
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ship is inversed now. Longer text samples are generated
for the majority classes but a large number of short text
samples are generated for the minority classes.

Using a data set extracted from Arabic novels, they the
modified this to two sets of words AFW54 and AFW65,
with 11 words eliminated [101]. These two sets were used
convert several Arabic texts into frequency vectors. They
carried out a performance evaluation on these word sets
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Table 12 Comparison of the Datasets PSO ABC BOA IWO GA FA  FPA  VSA  Proposed Method

proposed method with other

algorithms based on the best Datasetl 12178 1.2977 1.1785 13271 1.1248 13193 1.1703 13125 1.3425

criterion Dataset2  1.0049 1011 09677 1.0707 1.0007 1.0669 1.0093 1.0633 1.0833
Dataset3 13354 13319 12486 12042 1271 12486 13494 13764 1.3494
Datasetd 14182 12193 13134 13666 13154 13457 13129 14819 1.4182
Datasets 13251 13573 12022 12551 1.1989 1.1362 1.1206 13422 1.3673
Dataset6  0.8806 0.6019 0.8504 0.6873 0.6848 0.5194 0.7076 0.9001 0.9031
Dataset7  1.6409 14838 14203 1.6609 15315 16245 14666 17136 1.6609
Dataset8 12302 1.1222 13725 1.1426 12599 1.1481 13451 1.4027 1.4047
Dataset9 13527 13663 13565 1.3902 12539 13352 12761 13717 1.3902
Datasetl0  1.5953 14125 14442 15566 14284 13015 12941 13567 1.5966
Datasetll  1.6458 1.4675 14298 1.5415 1.6417 1276 17019 1.6149 1.7019
Datasetl2 17133 17001 14547 14802 17619 12872 13965 1.7329 1.7610
Datasetl3  1.6127 1208 12482 12267 12807 13122 14292 13327 1.6227
Datasetl4 14605 15531 1.5892 12713 14945 14966 14835 15378 1.5892
Datasetl5 14354 1.8054 13415 1.5058 13346 16282 15713 15591 1.8154
Datasetl6 17259 13034 15922 1.0983 17772 10201 14102 1.6328 1.8328
Datasetl7 16531 1.7521 1.6948 1.1967 17978 1.673 18108 14214 1.8108
Datasetl8 17742 13852 1.6935 17389 1.6448 15793 17353 15856 1.7742
Dataset19 13372 13511 14452 13507 14515 12678 1.1654 1.0718 1.6515
Dataset20 14412 14441 12213 1.1804 12992 14351 12057 1.2681 1.5441
Dataset2]  1.0257 1.1663 1.4461 12206 1.3912 1.1613 14962 1.6151 1.6151
Dataset22 13227 1.0865 16166 144 12056 1731 10597 17058 1.7031
Dataset23  1.1935 1426 12313 12189 09236 101 09433 1.0665 1.4466
Dataset24 12898 09603 12427 1.3963 12943 1.1029 1.1937 1.1191 1.3963

Bold values is to show the best-obtained value in the comparisons

through experiments which used a hybridization of an EA
and LDA to generate a classifier. Then, they fed unseen
data to that classifier in order to test it. The obtained per-
formance was apparently consistent with results of author-
ship attribution researches performed on other languages.
It is arguable that AFW54 is a more suitable choice nev-
ertheless; such a claim cannot be made with any statis-
tical significance. For the cases considered here, only a
small number of investigations are reported for evaluating
the appropriate ‘chunk’ size. In real-world applications
this will be probably dependent on several factors, but
they have identified at least about 1,000 characterization
of function word usage for Arabic authors. Through this
work, they have confirmed that the concept of function
words translates properly into the Arabic language. In
other words, various authors use this set of words in vari-
ous ways, and this enables us to recognize stylistic features
of individual authors and use them to distinguish between
different authors [101].

High dimensional datasets bring about more computa-
tional challenges. One of the problems with high dimen-
sional datasets is that in most cases, all features of data
are not crucial for the knowledge implicit in the data [85,

102]. Consequently, in most occasions, reduction in the
dimensions of data is a favored subject. Often, many of
candidate features for learning are irrelevant and super-
fluous and degrade the efficiency of the learning algo-
rithm [103, 104]. Learning accuracy and teaching speed
may be worsening with superfluous features. Therefore,
choosing the corresponding necessary features in preproc-
essing phase is essentially important. In this section, for
identifying the author, at the first stage, the frequency of
words is obtained using the method TF-IDF [105]. At the
second stage, each feature is weighted [106]. At the third
stage, using metaheuristic algorithms, FS is performed.
At the fourth stage, classification is performed via KNN
[106].

Furthermore, we used the accuracy as the evaluation
measure. This accuracy is calculated as:

TP+ TN

A = * 100
CUracy = TP T TN + FP + FN (22)

In the case that TP represents the number of authors who
are in the positive class while, TN indicates the number of
authors who are in the negative class. Furthermore, FP is
the number of authors falsely was considered as positive
class by the model and FN is the number of authors falsely
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Table 13 Comparison of the

. Datasets PSO ABC BOA IWO GA FA FPA VSA Proposed Method

Proposed Method with other

algorithms based on the mean Datasetl 13916 1.1978 13929 13897 1.2765 13521 1.1941 13898 1.3929

criterion Dataset2 09622 1.0635 09613 09978 1.0673 1.0438 1.0089 0.9741 1.0673
Dataset3 1.1495 13674 1.1479 1.1516 12789 1.1939 13617 1.1515 1.3717
Datasetd 1.5543 12753 12469 1.2985 1.4039 12656 12512 13383 1.4019
Dataset5 1.0945 1.1002 123701 1.1344 13232 1.1146 13776 1.1253 1.3776
Dataset6  0.9357 0.9499 0.6947 0.7346 0.8517 0.6554 0.9393 0.8642 0.9393
Dataset7 1.5092 13172 13024 1.6366 1.4551 14772 13768 14806 1.6366
Dataset8 1.1491 12448 1.1641 1.1609 12675 1.2762 12003 1.1581 1.2762
Dataset9 12819 12329 1.3252 1.1997 1.2909 12488 12102 1.1581 1.3152
Datasetl0 12122 13358 1.4584 14552 14227 12478 1.4237 12327 14584
Datasetll 1.6026 13283 15601 1.6014 1.5996 1.4536 15107 13743 1.6214
Datasetl2 12846 14074 14251 12414 15571 13214 1.3231 15242 1.5271
Dataset3 1.5899 15719 15801 14036 1.3117 12544 15519 14592 1.5811
Datasetl4 13798 15262 14221 14781 12758 1.4304 13609 13481 1.5662
Datasetls 14311 15769 14087 13936 1.3683 1.4963 1.6504 1.6188 1.6504
Datasetl6 09593 1.6964 1.1033 1.0707 1.0311 1.6315 13922 1.6179 1.6964
Datasetl7 12304 14441 1.1709 1.5863 1.5396 1.6017 1.6124 15419 1.6224
Datasetl8 14723 14846 1.6506 1.3603 1.4505 15661 14996 13536 1.6706
Datasetl9 1.0788 12331 12337 12852 1.0904 12745 13522 1.0931 1.3622
Dataset20 13175 1.1659 12635 13272 1.1213 1.1434 12574 12245 1.3272
Dataset2] 0.8526 0.8718 1.1197 0.8701 1.3629 1.4002 12535 09912 1.4032
Dataset22 0.8526 0.8718 1.1197 0.8701 1.3629 1.4002 12535 09912 1.4082
Dataset23 13227 12502 09458 1.1709 1.2078 13314 0.8971 13211 1.3414
Dataset24 0.9655 1.0916 12229 09476 0.9983 1.1743 0.9823 12059 1.2429

Bold values is to show the best-obtained value in the comparisons

was considered as negative class by the model, even though
they were positive.

6.1 Reuter_50_50 dataset

In this subsection, the Proposed Method and other algo-
rithms are applied to Reuter_50_50 datasets. The dataset
contains 2500 documents and 50 writers (https://archive.
ics.uci.edu/ml/datasets/reuter_50_50). The results from
the discussed algorithms and the results from other papers
are presented in Table 14 and Fig. 4. The results show that
the proposed method has a better identification accuracy
compared to other algorithms. Moreover, BOA and FPA
have also better identification accuracy compared to other
algorithms.

6.2 PAN dataset

These datasets consist of scientific documents in Greek,
English, and Spanish, and from 2011 until now, a new
dataset has been added to the existing ones every year
(https://pan.webis.de). The results from the discussed
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Table 14 Comparison of proposed method with other algorithms on
Reuter_50_50 datasets

# Algorithms Accuracy (%)
1 GA 82

2 PSO 87.91
3 ABC 86

4 BOA 88.13
5 WO 87.01
6 FPA 88

7 FA 85.6
8 SVA 88.2
9 Delta [90] 67

10 KNN [90] 69

11 SVM [90] 85

12 Proposed method 89.3

algorithms and the results from other papers on these
datasets are evaluated in Table 15 and Fig. 4. Identifica-
tion accuracy of proposed method for PAN11, PAN12,
PAN13, PAN14, PAN15, and PAN16 are 84%, 80.9%,
81.3%, 82.12%, 83.25%, and 81.79%, respectively.
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Table 15 Comparison of #  Dataset PANII  PANI2  PANI3  PANI4  PANIS  PANIG6
proposed method with other
algorithms on PAN datasets Method
1 GA 73 72 75 74 76 69
2 PSO 81.5 78.3 79.5 80.11 79.78 78.01
3 ABC 80.1 78.8 77.6 80.1 79.9 79.32
4 BOA 80.14 79.35 80.82 81.24 80.3 81
5 IWO 76 74.3 79 80.1 81.2 79
6 FPA 81.01 78.51 79.08 79.03 78.4 77
7 FA 80 76.5 77.3 79 77.02 78.6
8 SVA 83 78.3 76.9 78.1 83 80.9
9 DCM [91] - - 74.4 - - -
10 DCM-voting [91] - - 78.1 - - -
11 DCM-classifier [91] - - 76 - - -
12 Best result [92] - - 75.3 - - -
13 Proposed method 84 80.9 81.3 82.12 83.25 81.79
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Moreover, identification accuracies of DCM models are
less than other algorithms. The algorithms BOA, ABC
and IWO have better identification accuracies compared
to the algorithms GA, PSO, FPA, and FA.

6.3 Enron email dataset

This dataset is collected and prepared by CALO project (a
cognitive assistant that learns and organizes). This dataset
includes comments of 150 users who are CEOs of Enron
(https://www.cs.cmu.edu/~enron/). The results from the
proposed method and the results from other papers on
Enron Email dataset are presented in Table 16 and Fig. 4.
The results show that the accuracy and error rate in pro-
posed method are 95.04 and 11.68, respectively. Accuracy
in the algorithms PSO, BOA and FPA are 91.02, 93.01,
and 90.78, respectively. The accuracy and error rate in
ABC algorithm are 90.02 and 15.2, respectively. Among
other models, the model CCM-10 has a better accuracy,
and the lowest accuracies are seen in the models Naive
Bayes and Bayes Net.

6.4 Arabic scripts

This dataset consists of 30 documents from 10 authors. The
author was chosen from the website, (http://www.alwaragq.
net) and their names are: Aljahedh, Alghazali, Alfarabi,
Almas3ody, Almeqrezi, Altabary, Altow7edy, Ibnaljawzy,
Ibnrshd, and Ibnsena. The results from the proposed method
and the results from other papers on these datasets are pre-
sented in Table 17 and Fig. 4. The identification accuracy
of proposed method model is 93.24%, which is better than
other models.

According to the experiments results, it is concluded that
the Proposed Method has a better performance than other
models in terms of identification accuracy. According to
Tables 15, 16, 17 the proposed method in benchmark func-
tions is the closest to minimum compared to the algorithms
FPA, IWO, BOA, ABC, PSO, GA, and FA. Moreover, the
proposed method has a better accuracy in the author identifi-
cation problem. The rate of accuracy of ABC, BOA and pro-
posed method is indicated in Table 17. The results revealed
that the proposed method outperformed to the other models
that is ABC and BOA models. The percentage of proposed
method is 93.24%. Consequently, the percentage of ABC is
91.00% and it is 92.51% for BOA model.

Table 16 Comparison of

. # Algorithms Accuracy (%) Error rate
proposed method with other
algorithms on enron email 1 GA 85.06 22
dataset 2 PSO 91.02 12
3 ABC 90.02 15.2
4 BOA 93.01 12.3
5 WO 89.03 17.32
6 FPA 90.78 13
7 FA 88.05 20.3
8 SVA 93.89 10.98
9 Linear(SVM) [93] - 18.86
10 Linear(SVM-LR) [93] - 15.34
11 Polynomial3(SVM-LR) [93] - 19.20
12 Polynomial5(SVM-LR) [93] - 28.47
13 Gaussian(SVM-LR) [93] - 46.01
14 CEAIL: CCM-10 [94] 94 -
15 CEAIL: CCM-25 [94] 89 -
16 CEAIL: CCM-50 [94] 81 -
17 Author miner-AM [95] 68.19 -
18 Naive bayes [95] 79.08 -
19 Bayes net [95] 79.56 -
20 Classification by multiple association rule-CMAR [95] 88.47 -
21 Classification by association-CBA [95] 84.18 -
22 J48 [95] 89.45 -
23 Classification by multiple association rule for authorship 90.08 -
attribution-CMARAA [95]
24 Proposed method 95.04 11.68
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Table 17 Comparison of proposed method with other algorithms on
Arabic scripts

# Algorithms Accuracy (%)
1 GA 85

2 PSO 90.9
3 ABC 91

4 BOA 92.51
5 WO 90.8
6 FPA 89

7 FA 86.3
8 SVA 92.8
9 Functional trees [96] 79.3
10 SVM [96] 82.0
11 NB [97] 82.30
12 MNB [97] 92.03
13 MBNB [97] 97.43
14 MPNB [97] 87.40
15 Decision trees (C4.5) [98] 81.03
16 SVM [98] 85.43
17 SVM [99] 87.00
18 Write print [99] 68.92
19 SVM [100] 93.60
20 LDA [101] 87.63
21 Proposed method 93.24

7 Conclusion and feature works

We proposed three State based on the hybrid of chaotic and
VSA in this paper for FS. State2 compared with Methodl,
Method3, and VSA where it had better values. We also used
State2 to FS and text author identification. This paper is
accompanied by using 10 CMs to enhance the overall per-
formance and precision of the VSA. VSA is introduced to
one of the challenge problems, especially FS. The proposed
methods have been evaluated on 24 benchmark datasets.
Four precise evaluation standards are followed in this paper.
These standards are worst, best, mean, and SD. Similarly,
the performance of Proposed Method is compared with the
popular and maximum current other algorithms. These algo-
rithms are PSO, ABC, BOA, IWO, GA, FA, FPA, and VSA.
The experimental effects show that State2 outperforms the
other algorithms in terms of best and mean fitness.

Moreover, the outcomes displayed that the Proposed
Method (State2) with Tent map can drastically enhance
VSA in terms of classification overall performance, sta-
bility exceptional, number of FS, and convergence speed.
Moreover, the outcomes showed that Tent map turned into
the satisfactory map. Therefore, the following conclusion
can be drawn:

e The CMs improve the section of exploration because they
change the radius of value search, helping the trapped
masses to release themselves from local minima.

e The CMs are permitted to adaptively adjust exploration
and exploitation by the proposed method. As it were, the
Proposed Method (Statel) encourages VSA to transit grad-
ually from the exploration stage to the exploitation stage.

Essential work on the integration of CMs with the addi-
tion of other metaheuristic algorithms will be considered.
VSA’s performance on more problematic science and
real-world engineering problems will be applied in future
verification.
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