
Vol.:(0123456789)1 3

Evolutionary Intelligence (2022) 15:1571–1585 
https://doi.org/10.1007/s12065-021-00568-z

RESEARCH PAPER

An adaptive mutation strategy for differential evolution algorithm 
based on particle swarm optimization

Abhishek Dixit1   · Ashish Mani2 · Rohit Bansal3

Received: 11 April 2020 / Revised: 22 December 2020 / Accepted: 6 January 2021 / Published online: 16 February 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Differential evolution (DE) algorithm is a very effective algorithm used for solving wide range of optimization problems. 
However, the performance of DE is dependent on the control parameters and to choose the right parameter value and tuning 
of these parameters is a challenging task. Therefore, a novel variant of differential evolution algorithm based on particle 
swarm optimization (DEPSO) is proposed to improve the overall performance of Differential evolution algorithm. In our 
proposed approach, we are using DE mutation strategy during the initial phase of evolution and therefore enlarge its search 
space possibly to the extent that helps in finding more encouraging results and thus avoid premature convergence. During 
the subsequent phase of evolution process, this value of sigmoid function reduces with the increase of number of iterations. 
In this scenario, there is a greater probability of operating PSO mutation strategy and thus this sigmoid function helps in 
improving the precision and convergence speed. The Performance of our proposed algorithm is tested with 10 benchmark 
test functions on 50 and 25 dimensions set, also tested with 11 test functions on 30- and 100-dimension test functions. We 
have also tested our proposed algorithm with 8 test functions on high dimension set as 500- and 1000-dimensions. The 
performance comparison shows that our proposed variant is giving significant improvement in convergence speed and thus 
avoiding premature convergence. Average performance of DEPSO is better than classical DE, PSO and other algorithms in 
comparison.

Keywords  Differential evolution (DE) · Particle swarm optimization (PSO) · Global optimization · Evolutionary algorithm 
(EA)

1  Introduction

Differential Evolution algorithm, proposed by Storn and 
Price [1, 2] is well known for its exploration capability using 
three control parameters as mutation, crossover and popula-
tion size (NP). In the recent years, there are various research 
work done that showcase the capability of DE in solving 
diverse optimization problems such as image segmentation 
[3, 4], pattern recognition [5, 6], and functions optimization 
[7, 8]. In all these papers, the range of recommended val-
ues of control parameters are given. The values of control 
parameters determine the efficiency of Differential evolution 
algorithm to find the optimal solution for a given problem. 
But to choose the right parameter values by trial and error is 
often time-consuming approach. The tuning of these control 
parameters is simple but specific to the problems and these 
tuned parameters varies during the evolution process [9].

Several variants of Differential evolution algorithm are 
proposed in literature suggesting the influence of these 

 *	 Ashish Mani 
	 amani@gmail.com

 *	 Rohit Bansal 
	 rohitbansaliitr@gmail.com

	 Abhishek Dixit 
	 abhishekdixitg@gmail.com

1	 Department of Computer Science, Amity School 
of Engineering and Technology, Amity University, Noida, 
Uttar Pradesh, India

2	 Department of EEE, Amity School of Engineering 
and Technology, Amity University, Noida, Uttar Pradesh, 
India

3	 Department of Management Studies, Rajiv Gandhi Institute 
of Petroleum Technology, Jais, Amethi, Uttar Pradesh, India

http://orcid.org/0000-0001-9920-2478
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-021-00568-z&domain=pdf


1572	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

parameters. Liu et al. [10] proposed Fuzzy adaptive differ-
ential evolution algorithm (fADE). In this algorithm, new 
adaptive mutation and crossover parameters based on Fuzzy 
logic have been introduced. Another novel version of Dif-
ferential evolution algorithm JADE was proposed by Zhang 
et al. [11]. This algorithm proposes a new mutation strat-
egy by adaptive control parameter with optional external 
archive. Wang et al. [12] roposed another variant of Dif-
ferential evolution algorithm by designing a new adaptive 
mutation strategy and named it as IMSaDE. This algorithm 
improves “DE/rand/2” mutation strategy. Alswaitti et al. 
[13] proposed a novel variance-based crossover strategy for 
improving the convergence rate. Ramadas et al. [14] pro-
posed a new mutation strategy and named it as FSDE. FSDE 
added two parameters for controlling mutation viz., variable 
and constant parameter. However, there still exist the prob-
lem of finding the right control parameter values and in most 
of the cases, it still depends on past experiences.

Particle swarm optimization algorithm is also considered 
to be the important and effective evolutionary algorithm. 
This algorithm was proposed by Kennedy and Eberhart [15] 
and depends on individual best, pbest and global best solu-
tion, gbest for guiding the search for global optimal solu-
tions. This algorithm is known for its faster convergence 
speed, less initialization parameters and ease of implementa-
tion in complex optimization problems [16–18]. However, 
the main demerit of PSO is falling into local optima during 
early evolution stage in comparison to other evolutionary 
algorithms and suffering from lack of population diversity 
that often leads to premature convergence during the later 
evolution stage [19, 20].

To overcome the demerits of both DE and PSO algo-
rithm, efforts have been made to maintain a better balance 
between exploration and exploitation capability of both the 
algorithms by hybridizing them, which is a growing area 
of research and its objective is to mitigate the weakness of 
individual algorithms. To balance exploration and exploita-
tion capabilities of DE and PSO, a hybrid variant named 
HCPSODE was proposed by Lin et al. [21]. In this approach, 
a chaotic map with greater Lyapunov exponent and a new 
nonlinear approach for reducing inertia weight is introduced. 
Wang et al. [22] proposed another DE and PSO hybridiza-
tion strategy that evade the suboptimal solutions proposed 
in previous approaches. In this approach, a collective muta-
tion strategy is developed for maintaining the diversity and 
convergence speed. Wang et al. [23] introduced another 
hybridization approach to maintain the DE global explora-
tion and local exploitation. In this approach, a DE mutation 
and crossover strategy is improved by adding PSO mutation 
with no additional resource required. Pérez-González et al. 
[24] proposed a greenhouse model based on PSO and DE. 
Ahmadianfar et al. [25] proposed another hybrid variant of 
DE and PSO with multi strategy that helps in exploring the 

local and global search capabilities. Dash et al. [26] pro-
posed a hybrid DEPSO for designing optimal FIR filter. 
In this approach, the DE control parameters are combined 
with fine-tuned parameters of PSO. Even though these algo-
rithms are based on ensemble approaches of DE and PSO 
that improve the exploration and exploitation capabilities 
of both the algorithms, but they require more resources to 
compute, fine-tuning of complex parameters and may lead 
to premature convergence.

In this study, an effort has been made to solve the above 
discussed problems by maintaining a better balance between 
exploration and exploitation capabilities of both the algo-
rithm by proposing an alternative hybridized variant of 
Differential evolution and PSO. In our proposed approach, 
we are using DE∕rand∕2 mutation strategy and therefore 
enlarge its search space possibly to the extent that helps in 
finding more encouraging results and thus avoid premature 
convergence. During the subsequent phase of evolution 
process, this value of sigmoid function reduces with the 
increase of number of iterations. In this scenario, there is a 
greater probability of operating PSO mutation strategy and 
thus this sigmoid function helps in improving the precision 
and convergence speed. Although DE strategy can also per-
form mutation and it help in convergence speed and preci-
sion, but this sigmoid function will ensure high precision 
and convergence speed of our proposed algorithm. In addi-
tion to this, parameters are archived and compared in each 
iteration during the evaluation process so that parameters 
are tracked and updated. This mutual cooperation between 
the self-adaptive mutation approach and parameter archival 
strategy enhances the performance of our proposed hybrid 
approach.

This proposed approach is different from past efforts as in 
previous approaches the original DE∕rand∕1 mutation strat-
egy is used with complex rules added on several features of 
hybrid structure of algorithm that results in complex hybrid 
schemes. Whereas in our approach DE∕rand∕2 strategy is 
used with sigmoid function to improve its convergence speed 
and accuracy. This makes our algorithm more simple, easy 
to implement and easily extensible. Another difference from 
previous work is in choosing the mutation strategy. In previ-
ous approaches, there has a strong randomness in an evolu-
tion process, which results in lack of requisite guidance. On 
the other hand, the proposed DEPSO approach has better 
guidance as DE∕rand∕2 mutation strategy is used in early 
stage to expand and explore in all regions and PSO is used 
in later stage to search the promising regions found during 
the initial stages and thus improving the local exploitation 
capability.

The proposed approach is tested on 50 and 25-dimen-
sional test functions and compared with conventional DE, 
PSO and one recently proposed variant of Differential evo-
lution algorithm Forced Strategy Differential Evolution 



1573Evolutionary Intelligence (2022) 15:1571–1585	

1 3

used for data clustering (FSDE) [14] algorithm We have 
also compared our approach with another hybrid variant of 
differential evolution and PSO (HDEPSO) [26] Further we 
have also compared our algorithm with 3 well known vari-
ants Self-Adapting Control Parameters in Differential Evolu-
tion jDE [24], self-adaptive differential evolution algorithm 
(SaDE) [27] and JADE: Adaptive Differential Evolution 
with Optional External Archive [11]. Similar to our work, 
in all these variants a new mutation strategy is developed 
based on tuning the control parameters. We have chosen 
15 benchmark test functions to evaluate the performance of 
our proposed approach. We have also performed Friedman’s 
test to validate the statistical performance of our proposed 
algorithm.

This paper is organized as follows: DE and PSO are 
briefly described in Sect. 2 and 3 respectively. Our proposed 
method is detailed out in Sect. 4. Section 5 represent the 
experimental setting. Section 6 shows the results and dis-
cussion section. Finally, Sect. 7 concludes the outcome of 
this paper.

2 � Related work

DE is a well-known evolutionary algorithm and has attracted 
various researchers in different domain due to its simplicity 
and efficiency. The values of control parameters determine 
the efficiency of differential evolution algorithm to find 
the optimal solution for a given problem. There are vari-
ous modifications which have been done in classical DE to 
improve its efficiency. Two different schemes of population 
initialization approaches have been proposed by Ali et al. 
[28]. A cluster-based population initialization approach has 
been proposed by Poikolainen et al. [29]. In this approach, 
three successive steps of pre-processing were introduced in 
order to improve the efficiency of DE. Another population 
initialization approach has been proposed by Sun et al. [30], 
that was based on novel fluctuant population approach in 
which population size is adjusted during each run.

Researchers have also worked on mutation strategy of 
differential evolution algorithm in order to improve its 
efficiency. Wang et al. [12] proposed another variant of 
Differential evolution algorithm by adaptive a new muta-
tion strategy and named it as IMSaDE. This algorithm 
improves “DE/rand/2” mutation strategy. Brest et al. [31] 
proposed a Self-Adapting Control Parameters in Differen-
tial Evolution jDE as a new variant of DE.  Qin et al. [27] 
proposed a self-adaptive differential evolution algorithm 
(SaDE). In this approach four different mutation strategies 
of DE ( DE∕rand∕1,DE∕rand − to − best∕2,DE∕rand∕2 
andDE∕current − to − rand∕1 ) are used a candidate pool 
strategy used for each individual as per the success rate 
in generating better child generation. Zhang et  al. [11] 

proposed JADE: Adaptive Differential Evolution with 
Optional External Archive as a novel mutation strategy 
asldquoDE∕current − to − pbestrdquo . In this approach the 
parameters are adjusted by archival and adaptive strategy. 
Shao et al. [32] proposed an improved utilization strategy of 
population information. In this approach best and worst vec-
tors generated during evolution phase are calculated. These 
vectors are utilized during crossover and mutation strategy 
to replace the parent vector in order to improve the perfor-
mance of DE. Annepu et al. [33] proposed a self-adaptive 
approach to improve the convergence speed based on muta-
tion factor and cross-over probability. Another approach 
proposed by Zhang et al. [34] in which a novel mutation 
approach as inter-vehicle strategy and novel single point 
crossover and route sensitive selection approach is proposed 
to improve the efficiency.

Hybridization of evolutionary algorithms are superior to 
standalone algorithm as they have the capability of over-
coming the weaknesses of individual algorithms without 
losing their advantages [35]. Sun et al. [36] hybridizes DE 
with estimation of distribution algorithm (EDA) in which 
global parameters values of EDA and DE are utilized 
to give optimized solutions. Wang et al. [37] proposed a 
hybrid approach-based DE with Nelder–Mead (NM) simplex 
search. In this approach NM local search ability is com-
bined with evolutionary search of DE to get the robust and 
effective results. Guo et al. [38] proposed an enhanced self-
adaptive differential evolution (ESADE). In this approach 
DE is hybridized with Simulated annealing during the selec-
tion operation. This hybridization improves the global search 
ability of DE. The experimental results show the improved 
performance of ESADE over other algorithms in compari-
son. Keshk et al. [39] proposed another variant of DE com-
bined with Hidden markov model. In this approach, for the 
given population HMM is used to compress the information 
and utilized the model for adjusting DE parameters. The 
comparison results show that DE-HMM hybridization algo-
rithm is giving better performance as compared with other 
algorithms in comparison.

There are many hybrid variants which combines DE with 
PSO. Tian et al. [40] proposed a hybrid variant of DE with 
PSO that utilizes mutation and crossover operators of DE 
and present a novel mutation strategy by replacing PSO’s 
velocity and position parameter. Also, a random neighbor 
individual is selected for crossover. In this approach, the 
operator selection is specified for the whole evolutionary 
cycle. Wang et al. [22] proposed hybrid variant of DE and 
PSO that ignores the suboptimal solutions proposed in 
previous approaches. In this approach, sub-population are 
generated from initial population by both DE and PSO and 
population with best particles are constituted as the initial 
population to perform DE operation. As for each iteration, 
2 sub-population are generated that increases the space 



1574	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

complexity of this algorithm. Dash et al. [26] presented an 
approach that combines DE with PSO (HDEPSO) in which 
the best features of both the algorithms are utilized. How-
ever, this approach requires more resources to compute and 
specific number of parameters are fine-tuned which may lead 
of increase in average execution time of algorithm.

3 � Differential evolution algorithm (DE)

Storn and Price [1, 2] first developed Differential evolution 
algorithm. This algorithm is utilized for solving various continu-
ous and discrete optimization problems associated in different 
domains. Being a good optimization technique, this work is also 
inspired by their basic approach. Further, in this section a detailed 
description about basic terminologies of DE is presented.

3.1 � Initiation

Let us suppose that a population NP with XI
id

 as the candidate 
solution in ith index of generation I . where i = 1, 2,… .,NP . 
Differential evolution algorithm mainly depends on muta-
tion, crossover and selection operators. We will discuss on 
these three operators in subsequent sections.

3.2 � Mutation

This is a unique operator which makes DE diverse in com-
parison to other EAs. This operator is used to generate the 
trial vector VI

id
 which is used to generate offspring. So, for 

generating VI
id

,mutation is applied w.r.t each individual 
vector. In DE this strategy is commonly represented as 
DE∕x∕y∕z where x and y are the elementary and variance 
vector respectively. z is the crossover arrangement. The DE 
mutation approaches are implemented as below.

where F is the positive constant known as scaling factor in 
the range [0, 2], mutant vector is represented as VI

id
 , mutu-

ally exclusive randomly selected integers are represented as 
XI
r1d

,XI
r2d

,XI
r3d

,XI
r4d

,XI
r5d

. The random values r1, r2, r3, r4, r5 

(1)

DE∕rand∕1 ∶

VI+1
id

= XI
r1d

+ F.
(

XI
r2d

− XI
r3d

)

DE∕best∕1 ∶

VI+1
id

= XI
best

+ F.
(

XI
r1d

− XI
r2d

)

DE∕currenttobest∕2 ∶

VI+1
id

= XI
r1d

+ F.
(

XI
best

− XI
r1d

)

+ F.
(

XI
r1d

− XI
r2d

)

DE∕best∕2 ∶

VI+1
id

= XI
best

+ F.
(

XI
r1d

− XI
r2d

)

+ F.
(

XI
r3d

− XI
r4d

)

DE∕rand∕2 ∶

VI+1
id

= XI
r1d

+ F.
(

XI
r2d

− XI
r3d

)

+ F.
(

XI
r4d

− XI
r5d

)

are chooses such that r1 ≠ r2 ≠ r3 ≠ r4 ≠ r5 ≠ i.The best 
individual selected values is represented as XI

best
 for the 

generation I.

3.3 � Crossover

Post mutation, mutation vector VI
id

 and parent vectors XI
id

 
are engaged to produce offspring also known as trail vector 
SI
id
. This process is called as crossover. Crossover is imple-

mented as below.

where Cr is the crossover rate. The value of Cr is in range 
[0, 1]. rand is a random number and value is in range [0, 1]. 
This random number guarantee that the preliminary vec-
tor SI

id
 should at the most get one member from mutation 

and this helps in avoiding the stagnation during evolution-
ary process. Although during the evolutionary process, few 
trail vector’s element due to the impact of mutation process 
may get deviated from the possible solutions space. So, to 
reset the infeasible solution.

3.4 � Selection

Selection is the process of determining the parent and offspring for 
the next generation. This process is also applied to find out which 
individual will take part in mutation process. In this process, DE 
employ greedy selection approach for evaluation of trail vectors. 
This process can be implemented by using below equation.

From the above equation, if the fitness value of explora-
tory vector SI

id
 is lesser than or equal toXI

id
 , then SI

id
 will 

replace XI
id
. The above steps is repeated until a stopping cri-

teria is met.

4 � Particle swarm optimization (PSO)

Kennedy and Eberhart [15] first proposed PSO in 1995. 
PSO is stochastic search process based on velocity-position 
scheme. In PSO, each individual particle can be represented 
as a point in dimension D of search space. From the below 
equation, ith particle position is denoted as.

(2)SI
id
=

{

VI
id
if rand ≤ Cr

XI
id
otherwise

(3)

SI
id
=

{

Xmin + rand(0, 1) ∗
(

Xmax − Xmin

)

if SI
id
∉
[

Xmax,Xmin

]

XI
id
otherwise

(4)XI+1
id

=

{

SI
id
if fun

(

SI
id

)

≤ fun
(

XI
id

)

XI
id
otherwise



1575Evolutionary Intelligence (2022) 15:1571–1585	

1 3

And velocity is signified as:

In an evolution process each particle calculate its indi-
vidual best position also known as pbest and global best 
position known as gbest and accordingly update its own 
position and velocity as per the equation below.

where c1andc2 , are the learning coefficients. r1andr2 , are in 
the range [0, 1] as a regular random number. t and t + 1 are 
the iterations in search process. d ∈ D is the dimension d in 
search space. The velocity Yt

id
 is within the velocity limits 

as Yt
id
∈
[

−Ymax, Ymax
]

5 � The proposed algorithms

We have introduced a novel hybridization approach by utiliz-
ing the merits of both Differential evolution (DE) and Parti-
cle swarm optimization (PSO) algorithm. Thus, accuracy and 
efficiency in optimization process can be improved by hybrid-
izing local search ability of PSO and global search ability of 
DE. By combining the benefits of both the algorithm, a new 
mutations strategy is proposed, and the technique is named 
as DEPSO. We have used binary particle swarm optimization 
(BPSO) where the velocity with the value of Xid, pbest and 
gbest is updated within range of [0, 1].

In our approach the main operator is DE, and PSO is 
used to improve the search capability. This helps to speed 
up the search and increase the accuracy of our algorithm. 
This method uses the DE mutation strategy in early stage to 
expand and explore in all regions and PSO is used in later 
stage to search the regions found during the initial stage and 
thus avoid the local optima and improve the local exploi-
tation capability. As an outcome, this procedure has pro-
grammed stability among global and local searching.

In our approach, we have used a unique selection prob-
ability function for DE and PSO mutation strategies.

In this equation, Imax is the maximum number of gen-
eration and I is the current generation set for the evolu-
tion process.� is the positive constant value set during the 
evaluation process. The detail of the sigmoid function and 
values are set experimentally in Sect. 6.1.1. The value of 

(5)Xi = Xi1,Xi2 … ,XiD

(6)Yi = Yi1, Yi2,…YiD

(7)
Yt+1
id

= Yt
id
+ c1 ∗ r1 ∗

(

pbest − Xt
id

)

+ c2 ∗ r2 ∗
(

gbest − Xt
id

)

(8)Xt+1
id

= Xt
id
+ Yt

id

(9)sig =
1

1 + 2e−(Imax∕I)
�

sigmoid function is large during the initial phase of evolu-
tion and probability of rand () is also large. In our proposed 
approach, we are using DE mutation strategy and therefore 
enlarge its search space possibly to the extent that to in 
finding more encouraging results and thus to evade the early 
convergence. During the subsequent phase of evolution pro-
cess, as the number of iterations increases, this value of 
sigmoid function reduces. In this scenario, there is a greater 
probability of operating PSO mutation strategy and thus 
this sigmoid function helps in improving the precision and 
convergence speed. Although DE strategy can also perform 
mutation and it help in convergence speed and accuracy, 
but this sigmoid function will ensure high precision and 
convergence speed of our proposed algorithm.

The proposed method initially starts with choosing and 
initializing the parameters of both DE and PSO. Randomly 
generated control parameters like F, Cr and inertia weight 
and sigmoid function is calculated. As a next step, per-
form mutation operation based on the sigmoid function. 
DE∕rand∕2 mutation strategy is used for calculation. PSO 
mutation strategy is also used if rand value is greater than or 
equal to rand function. In the next step crossover is applied 
and corresponding trial vector is chosen based on crossover 
rate. Finally, selection is applied, and global best and indi-
vidual best is selected, and corresponding control parameters 
are updated. The step by step explanation of our proposed 
approach is explained below. Selection of mutation strategy 
based on sigmoid function is done to speed up the conver-
gence and maintain the population diversity. Pseudo code for 
our proposed algorithm is represented below.

Step 1: Set the NP, Iteration, generation. Randomly generate 
population

Step 2: Randomly generate control params like F, Cr, inertia 
weights

Step 3: while number of iterations reaches max
For i = 1:NP
%Compute sigmoid function using Eq. (9)
sig =

1

1+2e−(Imax∕I)
�

% Mutation
Choose the random number using rand [0, 1]
If rand ≤ sig
% DE∕rand∕2 mutation strategy
VI+1

id
= XI

r1d
+ F.

(

XI
r2d

− XI
r3d

)

+ F.
(

XI
r4d

− XI
r5d

)

Else
% PSO mutation strategy
Yt+1
id

= Yt
id
+ c1*r1*

(

pbest − Xt
id

)

+ c2*r2*
(

gbest − Xt
id

)

End If
Step 5: % Crossover
For i1 = 1: Ds
SI
id
=

{

VI
id

if rand ≤ Cr

XI
id

otherwiseEnd For
Step 6: % Selection
XI+1
id

=

{

SI
id

if fun
(

SI
id

)

≤ fun
(

XI
id

)

XI
id

otherwiseEnd For
End While
Step 7: Repeat steps 3 to 6 until any stopping conditions is achieved



1576	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

6 � Experimental results

6.1 � Experimental settings

In order to evaluate the performance of our proposed 
approach, 10 standard benchmark functions listed in Appen-
dix are utilized in our experimentation. Further 11 standard 
benchmark function are used to compare our proposed algo-
rithm with 4 well known variants of Differential evolution 
algorithm. The experiments are instigated using MATLAB 
with 2.11 GHz, Intel ® Core™ i7-8650U and 16 GB of 
RAM system configuration. Various parameters which are 
used to produce results are shown in Table 1.

We have performed the experiment on our proposed tech-
nique and compared the results with classical DE [1], PSO 
[15], ABC [41] and FSDE [14], HDEPSO [26] algorithm. To 
perform our experiment, we have used 25 and 50 as dimen-
sions and population size as 100. Since both the algorithms 
are stochastic in nature so we have kept maximum number 
of evaluations as 5,000,000 and 1000 as maximum number 
of iterations. The FSDE is using VTR function with value as 
1.e−015. The scaling factor and crossover rate chosen as 0.6 
and 0.8 respectively. The velocity limits are 2, − 2 and inertia 
weight are 0.99. In the evolution stage setting up the right 
parameters is very important as performance is dependent on 
these control parameters, however choosing right parameters 
is a difficult process. In our approach values are adjusted in 
real time by monitoring the evolutionary process of each 
individual. During the process of evolution if any individual 
stagnates then the values need to be readjusted. In literature 
there is no guideline to set the values of control parameters, 
instead the random selection of values by trial and error is 
considered as the better option [42].

6.1.1 � Selection of mutation strategy

In the Eq. 9 the selection probability for mutation strategy 
and value of constant values used is studied experimentally. 
The positive value of � plays an important role in calculat-
ing the sigmoid function. The Fig. 1 shows the probabil-
ity of choosing the DE and PSO strategies. In the figure, 
to better understand the evolution process and impact of � 
during the evolution process, the entire evolution process is 
divided into initial and final stage. We can also observe that 
with the increase of � the chances of selection of DE muta-
tion strategy increases and probability of selection of PSO 
mutation strategy becomes smaller. From the figure we can 
observe that during the initial stage of evolution the chances 
of choosing DE mutation strategy increase with � ≥ 1.3. 
This ensure the population diversity and helps our proposed 
algorithm to search the maximum region. As DEPSO should 
also ensure in improving the local optima and thus conver-
gence speed or accuracy, therefore the participation of PSO 
in mutation operation should be increased. From the figure 
we can observe that for final or later stage of evolution the 
value of � ≤ 1.5 . Therefore, for our experiment to balance 
the population diversity and convergence speed we have cho-
sen the value of � as 1.4

6.2 � Result analysis

The proposed algorithm is evaluated on 10 test benchmark 
function and then the results are compared with classical 
DE, PSO, ABC, recently proposed variant of Differential 
evolution -FSDE and hybrid HDEPSO. The results are tabu-
lated in Tables 2, 3, 4 and 5. To validate the results, we have 
also conducted Friedman’s statistical test on our proposed 
algorithm DEPSO. The rank and the Friedman’s test results 
are shown in Table 6.

Table 1   Different experimental parameters with their setting values

Parameter Setting value

No of Iteration 1000
Pop size (NP) 100
Inertia weight damping ratio (w) .99
C1 2.05
C2 2.05
Velocity limits 2, − 2
Scale Factor (F) 0.6
Crossover rate (Cr) 0.8
Value to reach (VTR) 1.e−015

Dimension (D) 25, 50
Fig. 1   Probability of selection of mutation strategy



1577Evolutionary Intelligence (2022) 15:1571–1585	

1 3

We have performed our experiment on 25-dimensional 
test functions and results are shown in Tables 2 and 4. When 
we compare the best values of all the algorithms, our pro-
posed algorithm is showing better results on 7 test functions 
whereas FSDE is showing better results on only 3 test func-
tions. We have captured the mean and standard deviation 
results in Table 4. We have also performed Wilcoxon’s rank 
sum test on the obtained results and indicated performance 
comparison is added in the Table 4. We have also performed 
Friedman’s test for confirming the validity of our results. 
The results obtained from our experiment shows that when 
compared with DE, DEPSO is performing better on 9, worst 
on 1 function. DE-PSO when compared with PSO, our pro-
posed algorithm is showing better results on 7, worst on 2 
and similar results on 1 test functions. DEPSO when com-
pared with ABC, our algorithm is giving better results on 8 
and worst result on 2 test functions. When compared with 
FSDE, our proposed algorithm is showing better results on 
7 test functions, worst on 2 and similar on 1 test functions. 
Comparing HDEPSO with our algorithm shows that our 
approach is giving better results on all the test functions. 
From the results we can see that our proposed algorithm is 
performing better, and this may be due to hybridization of 
exploration and exploitation of DE and PSO in an effective 
manner. In our algorithm there is an equilibrium of global 

exploration and local exploitation during early and later 
stages of evolution, therefore showing higher convergence 
speed and robustness.

Similarly, All the algorithms are tested on 50 dimen-
sional functions and the results of best values are shown 
in Table 3. As shown in Table 3, our proposed algorithm 
is showing better results on 7 test functions and PSO is 
showing better results on 2 test functions whereas FSDE 
is showing better results only on 1 test functions. The 
mean and standard deviations are shown in Table 5. We 
have applied Wilcoxon’s rank sum test on the obtained 
results and performance of our proposed algorithm is com-
pared and indicated in + , − and ≈ as the DE-PSO show-
ing worst, better and similar performance results. We have 
also applied Friedman’s non-parametric test and results 
are shown in Table 6. This test is performed to showcase 
the validity of our results. From the results we can see that 
DEPSO when compared with DE is showing better results 
on 8 functions, showing worst results on 2 functions. Simi-
larly, DEPSO when compared with PSO is showing bet-
ter results on 7 functions, worst results on 1 and similar 
performance on 2 results. DEPSO when compared with 
ABC, our algorithm is showing better results on 11 results, 
worst results on 3 and similar results on 1 function. Now 
when compared with FSDE, our proposed algorithm is 

Table 2   Performance values 
achieved by DE, PSO, ABC, 
FSDE, HDEPSO and DEPSO 
on 10 test functions with 25D

F DE PSO ABC FSDE HDEPSO DEPSO

f1 (Sphere) 7.60E−111 3.81E−283 8.73E−25 3.28E−140 3.73E−163 5.42E−307
f2(Rosenbrock) 7.10E−30 4.93E−32 4.52E−13 3.58E−32 4.37E−11 4.93E−32
f3(Ackley) 6.22E−15 7.73E−14 1.59E−11 4.44E−15 7.99E−15 9.77E−18
f4(Griewank) 8.85E−02 7.40E−03 1.07E−01 1.48E−02 3.82E − 04 7.40E−05
f5(Quartik) 1.17E−189 5.93E−323 9.56E−30 3.25E−40 7.72E−05 4.94e−324
f6(Schwefel_2_21) 1.02E−12 4.62E−03 1.27E−05 9.91E−06 2.39E−44 1.87E−114
f7(Michalewicz)  − 9.96E + 00  − 7.40E + 00  − 4.12E + 00  − 9.69E + 00  − 1.9962  − 9.85E + 00
f8(Rastrigin) 1.99E + 00 7.76E + 01 1.33E + 01 2.15E−02 2.1E + 01 9.95E + 00
f9(Zakharov) 7.57E−05 8.57E−03 8.28E−03 2.07E−02 5.4E−04 6.12E−06
f10(Powell) 7.78E−08 8.26E−08 1.80E−05 1.49E + 01 1.39E−05 4.32E−14

Table 3   Performance values 
achieved by DE, PSO, ABC, 
FSDE, HDEPSO and DEPSO 
on 10 test functions with 50D

F DE PSO ABC FSDE HDEPSO DEPSO

f1 (Sphere) 2.15E−02 1.13E−51 1.01E + 01 1.87E−39 1.77E−52 1.82E−55
f2(Rosenbrock) 4.52E−13 4.93E−12 2.33E−16 4.44E−20 2.77E−13 6.72E−19
f3(Ackley) 2.98E + 00 2.75E−14 2.53E−01 9.68E−14 7.99E−15 2.66E−15
f4(Griewank) 6.34E−02 2.22E−15 4.02E−01 1.03E + 00 5.72E−10 8.55E−16
f5(Quartik) 1.00E−134 1.83e−322 1.05E−70 4.59E−03 3.56E−04 0.00E + 00
f6(Schwefel_2_21) 2.21E + 00 4.33E−03 6.02E + 00 8.33E + 00 5.04E−01 9.23E−03
f7(Michalewicz)  − 3.15E + 01  − 2.16E + 01  − 7.73E + 00  − 27.1994  − 1.9679  − 2.16E + 01
f8(Rastrigin) 5.97E + 02 6.57E + 01 3.15E + 02 5.54E + 01 7.45E + 03 7.36E + 01
f9(Zakharov) 4.89E + 02 2.26E−02 1.05E + 03 2.35E + 00 4.56E−02 2.13E−03
f10(Powell) 7.71E−10 3.47E−09 2.16E−05 5.40E + 01 2.27E−05 2.13E−11



1578	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

showing better results on 7 results, worst results on 1 and 
similar results on 2 function. So, we are seeing similar 
results as with 25D test functions, our proposed algorithm 
is showing better results as compared to other algorithms 
on both 50 and 25-dimensional test functions. Compared 
with HDEPSO, our proposed algorithm is showing better 
results on all the test functions. FSDE is showing slightly 
better results on 3 benchmark function on 25D and on 
50D it is showing only on 1 test function. This is because 
of their weighted mutation strategy but it is not perform-
ing on the rest as the mutation strategy converges slowly. 
However, our proposed solution is giving better results 
on 7 test functions on 25D and on 9 on 50D. This is also 
because of the sigmoid function that we have added to 
update the position value also help in increasing the veloc-
ity and in turn the search performance. Another reason is 
the updated hybrid mutation strategy of DE and PSO that 
helps algorithm to achieve population diversity as well as 
improve the convergence speed.

Figure 2 and 3 shows the best value comparison graphs 
plotted for DE, PSO, ABC, FSDE, HDEPSO and DEPSO 
on different benchmark functions having dimension 25 and 
50. Y-axis represents the best cost and X-axis represents 
the number of iterations. From graphs as well, it can be 
concluded that our algorithms curve is efficient on all the 

benchmark function. Our proposed algorithm is perform-
ing well and superior to other compared algorithm on all 
the benchmarking problems in terms of convergence rate. 
From the figures it can also be concluded that the DEPSO 
has good competency of escaping from local optimal. Plot-
ted curves also show that the function values of the DEPSO 
rapidly decreases as the number of iterations increases and 
the mutation operator accelerate the search and help the 
algorithm to obtain optimal or near optimal solution.

We have also performed statistical non-parametric Fried-
man test on our proposed approach DEPSO to validate our 
results. From the results it is evident that our proposed algo-
rithm is showing statistically better results as compared with 
other algorithms. Table 6 shows the results obtained from 
Friedman test.

Differential evolution algorithm maintains the constant 
parameters for the evolution however for each individual 
dynamic parameter can achieve optimized performance for 
each stage. Every optimization problem has different attrib-
utes and so it is difficult to achieve best parameter values 
therefore a strategy based on selection of dynamic selection 
of parameters will improve the performance of differential 
evolution algorithm. In our proposed approach the values of 
each individual can be adjusted based on the real time evo-
lutionary status. Therefore, individual evaluation is stagnant 

Table 4   Mean and SD for DE, PSO, ABC, FSDE, HDEPSO and DEPSO on 10 functions on 25 D

Function DE 
Mean
(std dev)

PSO 
Mean
(std dev)

ABC 
Mean
(Std Dev)

FSDE 
Mean
(std dev)

HDEPSO 
Mean
(std dev)

DEPSO 
Mean
(std dev)

f1 (Sphere) 3.14E − 06
(4.54E + 03)

2.57E − 134
(8.12E − 134)

3.42E − 22 (1.08E − 21) 4.95E − 06
(4.09E + 03)

4.70E − 161
(0.00E + 00)

2.99E − 148
(9.46E − 148)

f2 (Rosenbrock) 3.76E + 07
(2.02E + 07)

0.00E + 00
(0.00E + 00)

8.35E − 13 (2.64E − 12) 1.32E + 01
(8.84E + 06)

9.04E − 11
(1.51E − 10)

1.20E − 14
(3.79E − 14)

f3 (Ackley) 1.99E + 01
(2.66E − 01)

1.93E − 14
(6.12E − 14)

7.11E − 12 (2.25E − 11) 4.70E − 04
(4.38E + 00)

7.64E − 15
(1.12E − 15)

2.51E − 15
(7.94E − 15)

f4 (Griewank) 8.62E − 03
(2.73E − 02)

7.42E − 03
(2.35E − 02)

1.40E − 02 (4.44E − 02) 1.02E + 01
(3.35E + 00)

1.02E + 01
(3.35E + 00)

4.96E − 03
(1.57E − 02)

f5 (Quartik) 1.06E + 01
(9.47E + 00)

0.00E + 00
(0.00E + 00)

6.23E − 27 (1.97E − 26) 8.98E − 03
(3.29E + 00)

3.75E − 04
(1.83E − 04)

0.00E + 00
(0.00E + 00)

f6 (Schwefel_2_21) 1.93E + 03
(3.48E + 03)

5.08E + 03
(7.46E + 02)

7.68E − 06 (2.43E − 05) 3.00E + 03
(2.26E + 03)

3.00E + 03
(2.26E + 03)

1.03E + 04
(8.34E + 00)

f7 (Michalewicz)  − 8.94E − 01
(1.26E + 00)

3.72E − 01
(1.18E + 00)

9.34E − 02 (2.95E − 01)  − 8.74E − 01
(1.24E + 00)

 − 8.74E − 01
(1.24E + 00)

8.57E − 02
(2.71E − 01)

f8 (Rastrigin) 2.58E + 02
(2.79E + 01)

2.61E + 00
(8.26E + 00)

7.39E − 01 (2.34E + 00) 2.43E + 01
(5.05E + 01)

2.43E + 01
(5.05E + 01)

2.38E + 00
(7.54E + 00)

f9 (Zakharov) 3.88E − 09
(1.05E − 02)

2.33E − 04
(7.63E − 04)

1.43E − 02 (4.51E − 02) 7.10E − 09
(1.27E − 02)

7.10E − 09
(1.27E − 02)

4.71E − 19
(1.49E − 18)

f10 (Powell) 2.06E + 03
(1.14E + 03)

6.21E − 08
(1.96E − 07)

6.70E − 04 (2.12E − 03) 2.97E − 04
(5.67E + 02)

1.37E − 05
(2.11E − 05)

6.24E − 06
(1.97E − 05)

 −  9 7 7 7 8
≈ 0 1 0 1 2
 +  1 2 3 2 0



1579Evolutionary Intelligence (2022) 15:1571–1585	

1 3

if during the evolutionary process if any individual fails to 
produce better results in successive generations and so the 
values should be readjusted by random values by the fol-
lowing strategy.

(10)

Fi,I+1 =

{

Fi,I if ESi < ESmax

Fmin +
(

Fmax − Fmin

)

∗ rand(1,D) otherwise

(11)

Cri,I+1 =

{

Cri,I ifESi < ESmax if ESi < ESmax

Crmin +
(

Crmax − Crmin
)

∗ rand(1,D) otherwise

where Fi,I is the scaling factor andCri,I is the crossover rate 
for XI

id
 for generation I.valuesofFminandFmax are 0.5 and 1.0. 

Values of CrmaxandCrmin are 0.8 and 1.0 respectively. Values 
of rand (1, D) is in the random values in range [1, D] where 
D is the size (samples, 2). ESi is the temp value of individual 
generation and ESmax is the max or best values obtained from 
that generation. We update best value only in case of success 
to save time. if competitor is better than the best one ever, we 
will update the new best value as the temp value.

In order to handle the problem related to Population 
diversity and premature convergence, our proposed strat-
egy uses mutation operation to generate new offspring and 
then each offspring uses crossover with particle/particle as 
mentioned in Eq. (3) to generate new offspring. These newly 
generated particles are created with updated position. During 
the iteration process this new particle update their personal 
best as compared with all the other newly created offspring.

6.2.1 � Comparison with PSO, jDE, SaDE and JADE

We have further compared our DEPSO algorithm with 
Canonical PSO [43], jDE [31], SaDE [27]] and JADE [11]. 
The parameter settings for our proposed algorithm is same as 

Table 5   Mean and SD for DE, PSO, ABC, FSDE, HDEPSO and DEPSO on 10 functions on 50 D

Function DE 
Mean
(Std Dev)

PSO 
Mean
(Std Dev)

ABC 
Mean
(Std Dev)

FSDE 
Mean
(Std Dev)

HDEPSO Mean
(Std Dev)

DEPSO 
Mean
(Std Dev)

f1 (Sphere) 1.76E − 01
(5.56E − 01)

1.60E − 50
(5.06E − 50)

4.65E − 03
(1.47E − 02)

9.08E + 00
(4.26E − 01)

2.01E − 53
(1.92E − 53)

5.66E − 56
(1.79E − 55)

f2(Rosenbrock) 4.69E − 14
(1.48E − 13)

0.00E + 00
(0.00E + 00)

7.81E − 12
(2.47E − 11)

0.00E + 00
(0.00E + 00)

2.20E − 11
(6.59E − 11)

2.55E − 23 (8.07E − 23)

f3(Ackley) 1.60E − 01
(5.06E − 01)

6.59E − 12
(2.08E − 11)

1.02E − 02
(3.24E − 02)

9.54E + 05
(7.01E + 05)

7.99E − 15
(1.66E − 14)

1.16E − 15
(3.67E − 15)

f4(Griewank) 5.69E − 03
(1.80E − 02)

6.95E − 03
(2.20E − 02)

1.98E − 02
(6.25E − 02)

2.84E + 01
(2.83E + 00)

5.72E − 02
(2.74E − 01)

6.78E − 03
(1.78E − 02)

f5(Quartik) 4.61E − 127
(1.46E − 126)

0.00E + 00
(0.00E + 00)

5.70E − 71
(1.80E − 70)

0.00E + 00
(0.00E + 00)

5.58E − 04
(3.81E − 04)

0.00E + 00 (0.00E + 00)

f6(Schwefel_2_21) 8.11E − 02
(2.56E − 01)

9.48E − 03
(3.00E − 02)

1.32E − 01
(4.17E − 01)

2.97E + 00
(2.10E − 01)

2.14E − 01
(1.22E − 01)

4.90E − 03
(1.55E − 02)

f7(Michalewicz) 3.79E − 01
(1.20E + 00)

7.04E − 01
(2.23E + 00)

2.15E − 01
(6.80E − 01)

2.54E − 01
(1.27E + 02)

 − 1.97E + 00
(6.08E − 01)

4.71E − 01
(1.49E + 00)

f8(Rastrigin) 3.33E + 00
(1.05E + 01)

7.13E + 00
(2.26E + 01)

6.10E + 00
(1.93E + 01)

3.21E + 01
(3.67E − 02)

6.54E + 03
(4.15E + 02)

9.61E + 00
(3.04E + 01)

f9(Zakharov) 2.97E + 01
(9.39E + 01)

3.55E − 03
(1.12E − 02)

1.28E + 02
(4.04E + 02)

2.32E + 01
(4.23E − 01)

2.56E − 02
(1.45E − 01)

2.82E − 04
(8.93E − 03)

f10(Powell) 1.02E − 07
(3.23E − 07)

6.13E − 08
(1.94E − 07)

2.88E − 06
(9.12E − 06)

2.88E + 02
(1.29E + 01)

2.56E − 05
2.95E − 05

1.33E − 08
(4.19E − 08)

 −  8 7 8 7 8
≈ 0 2 0 2 2
 +  2 1 2 1 0

Table 6   Test Statistics using 
Friedman’s test R2 785

k 2
n 13
Q 42.76923077
df 1
p 6.15934E−11
alpha 0.05
sig yes



1580	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

mentioned in Table 1 for impartial comparison. For the algo-
rithms in comparison, parameters settings are same as men-
tioned in the original papers. For this experiment we have 
used 11 well known benchmark functions. These benchmark 
functions are same as mentioned in these original variants 
research papers. The results are calculated by running the 
algorithm over 50 independent runs for D = 30 and 100. The 
results obtained are tabulated in Table 7 and 8.

For 30D problems, the performance for JADE is bet-
ter in comparison to jDE, SaDE and PSO. The jDE and 
SaDE gets 2 best solutions due to the slow convergence 
issue. PSO is performing worst and is not giving any best 
solution or second-best solution on any of the benchmark-
ing functions. This is due to the premature convergence 
issue with the PSO. JADE is giving better results because 
it shows high reliability, fast convergence and diversity 
improvement in mutation strategy. On the other hand, our 
proposed algorithm DEPSO is giving better results as 
compared to other algorithms and giving best solution on 
9 benchmarking functions. This is because our proposed 
algorithm is having good diversity due to its adaptive 
mutation strategy based on sigmoid function.

Similarly, our proposed algorithms DEPSO is giving 
better results on 100D benchmarking functions in com-
parison to jDE, SaDE, JADE and PSO. This is due to the 
mutation strategy based on sigmoid function that provides 
more diversity and high convergency speed. Other algo-
rithms except JADE are giving no better solution when 

compared with DEPSO algorithm. JADE with archive is 
giving better solution on only 2 benchmarking functions 
when compared with our proposed algorithm. But JADE 
is giving better results on jDE, SaDE and PSO algorithm. 
This is due to the adaptive parameter control mutation 
strategy that introduces population diversity in JADE.

To summarize, our proposed approach is showing better 
results than other algorithms in comparison both in terms 
of dimensionality and convergence speed. The main reason 
for giving better results are: PSO strategy for alternate 
mutation and adaptive parameter selection approach for 
DE parameters is giving more exploration ability to our 
proposed approach. Additionally, the adaptive crossover, 
scaling parameters selection and a sigmoid function are 
utilized to transform the velocity of PSO and to handle the 
multiplicity of population and convergence speed of our 
proposed approach (Table 9).

6.2.2 � Comparison on high dimensional datasets

We have also evaluated the performance of our proposed algo-
rithm on high dimensional problems (D = 500,1000) [44]. For 
this experiment we have used NP = 5000, the number of itera-
tions is 5000 and 8 test functions that includes unimodal and 
multimodal functions. The mean and standard deviation are 
calculated and summarized in Sect. 8. Experimental outcome 
indicates that our proposed algorithm is outperformed when 
compared with classical DE and PSO. This is again due to the 

Table 7   Mean and SD for PSO, SaDE, jDE, JADE and DEPSO on 11 functions on 30 D

Function Gen PSO SaDE jDE JADE w/o archive JADE with archive DEPSO

Sphere 1500 9.6E − 42
(2.7E − 41)

4.5E − 20
(6.9E − 20)

2.5E − 28
(3.5E − 28)

1.8E − 60
(8.4E − 60)

1.3E − 54
(9.2E − 54)

9.96E − 307
(0.00E + 00)

schwefel 2.22 2000 9.3E − 21
(6.3E − 20)

1.9E − 14
(1.05E − 14)

1.5E − 23
(1.0E − 23)

1.8E − 25
(8.8E − 25)

3.9E − 22
(2.7E − 21)

4.39E − 172
(0.00E + 00)

schwefel 1.2 5000 2.5E − 19
(3.9E − 19)

9.0E − 37
(5.43E − 36)

5.2E − 14
(1.1E − 13)

5.7E − 61
(2.7E − 60)

6.0E − 87
(1.9E − 86)

0.00E + 00
(0.00E + 00)

schwefel 2.21 5000 4.4E − 14
(9.3E − 14)

7.4E − 11
(1.82E − 10)

1.4E − 15
(1.0E − 15)

8.2E − 24
(4.0E − 23)

4.3E − 66
(1.2E − 65)

7.65E − 78
(5.677E − 76)

rosenbrock 3000 2.5E + 01
(3.2E + 01)

2.1E + 01
(7.8E + 00)

1.3E + 01
(1.4E + 01)

8.0E − 02
(5.6E − 01)

3.2E − 01
(1.1E + 00)

2.07E − 18
(1.94E − 15)

Step 1500 8.0E − 02 
(2.7E − 01)

0.0E + 00 
(0.0E + 00)

0.0E + 00 
(0.0E + 00)

0.0E + 00 
(0.0E + 00)

0.0E + 00 
(0.0E + 00)

5.19E − 01
(1.67E − 01)

Quartic 3000 2.5E − 03
(1.4E − 03)

4.8E − 03
(1.2E − 03)

3.3E − 03
(8.5E − 04)

6.4E − 04
(2.5E − 04)

6.8E − 04
(2.5E − 04)

5.97E − 05
(3.45E − 05)

schwefel 2.26 9000 2.4E + 03
(6.7E + 02)

4.7E + 00
(3.3E + 01)

0.0E + 00
(0.0E + 00)

0.0E + 00
(0.0E + 00)

7.1E + 00
(2.8E + 01)

4.23E + 03
(6.05E + 02)

rastrigin 1000 5.2E + 01
(1.6E + 01)

1.2E − 03
(6.5E − 04)

1.5E − 04
(2.0E − 04)

1.0E − 04
(6.0E − 05)

1.4E − 04
(6.5E − 05)

0.00E + 00
(0.00E + 00)

Ackley 2000 4.6E − 01
(6.6E − 01)

4.3E − 14
(2.6E − 14)

4.7E − 15
(9.6E − 16)

4.4E − 15
(0.0E + 00)

4.4E − 15
(0.0E + 00)

7.99E − 15
(1.72E − 15)

griewank 3000 1.1E − 02
(1.6E − 02)

0.0E + 00
(0.0E + 00)

0.0E + 00
(0.0E + 00)

0.0E + 00
(0.0E + 00)

2.0E − 04
(1.4E − 03)

2.78E − 09
(1.65E − 08)



1581Evolutionary Intelligence (2022) 15:1571–1585	

1 3

co-operation strategy between DE and PSO which is working 
efficiently on high dimensional problems.

We have also calculated the average run time of each algo-
rithm to demonstrate the computational complexity of our 
proposed algorithm. Table 10 shows the average run time of 
DE, PSO, ABC, FSDE, HDEPSO and our proposed DEPSO 
approach on 10 benchmark functions. From the table we can 
see that our approach has the better time complexity in com-
parison to other approaches. We can also confirm from the 
various experiments including higher dimensional data, that 
our approach is computationally faster and effective.

7 � Conclusion

Differential evolution algorithm is dependent on its muta-
tion and crossover approach. To improve this, a hybrid 
variant of DE and PSO is proposed in this paper. Initially 
our proposed algorithm starts with DE mutation strat-
egy to improve the exploration capability and in the later 
stage, mutation approach of PSO is applied. This will 
help in increasing the convergence speed of our proposed 
approach. We have also used dynamic parameter selection 

approach, and this help DE-PSO to handle multiple opti-
mization problems effectively.

The proposed DE-PSO algorithm is compared with con-
ventional DE, PSO, ABC, FSDE and HDEPSO algorithm 
on 25, 50-dimensional test functions. The results show that 
our proposed algorithm is giving better results in com-
parison to other algorithms. We have further compared 
our DEPSO algorithm with Canonical PSO, jDE, SaDE 
and JADE on 30 and 100-dimensional test functions. Our 
proposed approach is showing better results than other 
algorithms in comparison both in terms of dimensionality 
and convergence speed. To further establish the robustness 
and effectiveness of our proposed algorithm, we have also 
evaluated the performance of our proposed algorithm on 
high dimensional problems (D = 500, 1000). We have also 
performed Friedman’s test to statistically shows the perfor-
mance of our proposed algorithm. We have also calculated 
the average run time of each algorithm to demonstrate the 
computational complexity of our proposed algorithm.

In the future work, we are planning to implement this 
algorithm in feature selection to improve the accuracy of 
clustering algorithm. Apply this algorithm on motion esti-
mation to develop video coding application is also another 
area of exploration.

Table 8   Mean and SD for PSO, SaDE, jDE, JADE and DEPSO on 11 functions on 100 D

Function Gen PSO SaDE jDE JADE w/o archive JADE with archive DEPSO

Sphere 2000 6.0E − 11
(2.5E − 10)

2.9E − 08
(3.2E − 08)

5.0E − 15
(1.7E − 15)

1.2E − 48
(1.5E − 48)

5.4E − 67
(1.6E − 66)

3.26E − 120
(4.83E − 119)

Schwefel 2.22 3000 2.8E − 04
(1.3E − 03)

1.7E − 05
(3.8E − 06)

4.1E − 15
(1.1E − 15)

1.2E − 26
(2.0E − 26)

2.2E − 37
(2.5E − 37)

0.00E + 00
(0.00E + 00)

Schwefel 1.2 8000 1.2E + 02
(6.7E + 01)

2.4E − 13
(5.2E − 13)

5.4E − 02
(2.7E − 02)

1.2E − 26
(2.0E − 26)

2.2E − 37
(2.5E − 37)

1.77E − 46
(3.80E − 46)

Schwefel 2.21 15,000 4.9E + 01
(2.5E + 01)

1.1E + 00
(4.0E − 01)

3.1E − 09
(5.9E − 10)

1.9E − 02
(1.5E − 02)

3.2E − 71
(8.3E − 71)

1.03E − 97
(8.76E − 85)

Rosenbrock 6000 9.2E − 03
(2.6E − 03)

9.4E + 01
(4.0E–01)

7.2E + 01
1.1E + 01)

5.6E–01
(1.4E + 00)

4.0E–01
(1.2E + 00)

1.82E − 16
(4.19E − 14)

Step 1500 4.7E + 01
(7.9E + 01)

0.0E + 00
(0.0E + 00)

0.0E + 00
(0.0E + 00)

1.6E − 01
(3.7E − 01)

0.0E + 00
(0.0E + 00)

9.16E − 04
(3.92E + 00)

Quartic 6000 1.3E + 02
(4.8E + 01)

1.0E − 02
(4.9E − 03)

8.1E − 03
(9.0E − 04)

1.1E − 03
(2.1E − 04)

7.8E − 04
(1.4E − 04)

9.33E − 05
(4.56E − 05)

Schwefel 2.26 9000 9.4E + 03
1.2E + 03)

1.1E − 10
0.0E + 00)

1.1E − 10
(0.0E + 00)

1.1E − 10
(0.0E + 00)

1.1E − 10
(0.0E + 00)

1.82E + 04
(2.57E + 03)

Rastrigin 3000 3.4E + 02
(4.4E + 01)

9.1E − 03
(1.8E − 03)

2.1E − 04
(2.1E − 04)

1.9E − 01
(3.8E − 02)

2.0E − 01
(3.7E − 02)

0.00E + 00
(0.00E + 00)

Ackley 3000 2.6E + 00
(6.8E − 01)

2.1E − 07
(1.0E − 07)

9.9E − 14
(2.0E − 14)

8.9E − 15
(2.1E − 15)

8.0E − 15
(0.0E + 00)

5.95E − 14
(8.48E − 14)

Griewank 3000 8.8E − 02
(2.5E − 01)

8.6E − 13
(8.2E − 13)

0.0E + 00
0.0E + 00)

3.9E − 04
(2.0E − 03)

1.5E − 04
(1.0E − 03)

3.22E − 15
(4.00E − 15)



1582	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

Appendix

Formula Ranges Optimal

f1(x) =
n
∑

i=1

x2
i

[− 100, 100] 0

f2(x) =
n−1
∑

i=1

�

100(xi+1 − x2
i
)2 + (xi − 1)2

� [− 10, 10] 0

f3(x) = −20 exp

�

−0.2

�

1

n

n
∑

i=1

x2
i

�

− exp

�

1

n

n
∑

i=1

cos 2�xi

�

+ 20 + e
[− 32.32] 0

f4(x) =
1

4000

n
∑

i=1

x2
i
−

n
∏

i=1

cos
�

x
√

i

�

+ 1
[− 600, 600] 0

f5 =
n
∑

i=1

ix4 + random(0, 1)
[− 1.28, 1.28] 0

f6(x) = max
{

|

|

xi
|

|

, 1 ≤ xi ≤ D
}

[− 100, 100]  − 4.18

f7(x) =
n
∑

i=1

[x2
i
− 10 cos

�

2�xi
�

+ 10]
[− 5.12, 5.12] 0

f8(x) =
n
∑

i=1

x2
i  + 

+(
n
∑

i=1

0.5ixi)
2

+(
n
∑

i=1

0.5ixi)
4

[− 5, 10] 0

f9(x) =
n
∑

i=1

sin
�

xi
�

sin20
�

ix2
i

�

� [0, π] 9.66015

f10(x) =
n∕4
∑

i=1

⎡

⎢

⎢

⎢

⎢

⎣

(x4i−3
+10x4i−2)

2

+5(x4i−1)
2

+(x4i−2 − 2x4i−1)
4

+10(x4i−3 − x4i)
4

⎤

⎥

⎥

⎥

⎥

⎦

[− 4.5] 0

Table 9   Mean and SD for PSO, DE and DEPSO on Unimodal and 
Multimodal functions with D-500 and 1000

Function Dim(D) DE 
Mean
(Std Dev)

PSO 
Mean
(Std Dev)

DEPSO 
Mean
(Std Dev)

Sphere 500
1000

5.23E + 03
(8.71E + 03)
6.27E + 03
(9.16E + 03)

3.53E + 03
(1.71E + 03)
2.67E + 03
(1.16E + 03)

6.92E + 02
(3.39E + 03)
8.47E + 02
(4.08E + 03)

Schwefel’s 
2.22

500
1000

5.00E − 01
(2.14E − 03)
5.00E − 01
(1.58E − 02)

2.00E − 01
(4.14E − 03)
5.00E − 01
(1.58E − 02)

3.51E − 03
(8.19E − 06)
5.00E − 01
(1.58E − 02)

Schwefel’s 
2.21

500
1000

3.96E − 01
(1.18E − 01)
9.10E − 03
(8.33E − 03)

9.96E − 02
(1.34E − 01)
1.10E − 03
(3.13E − 03)

5.00E − 03
(1.13E − 06)
3.19E − 04
(2.32E − 03)

Schwefel 500
1000

 − 5.06E + 03
(0.0E + 00)
 − 8.51E + 03
(0.0E + 00)

 − 4.06E + 03
(0.0E + 00)
 − 6.51E + 03
(0.0E + 00)

 − 2.10E + 03
(0.0E + 00)
 − 1.15E + 04
(0.0E + 00)

Rastrigin 500
1000

1.85E + 02
(3.81E + 01)
2.00E + 02
(3.29E + 01)

5.85E + 02
(1.83E + 01)
1.00E + 02
(2.29E + 01)

5.75E + 01
(6.09E + 01)
4.79E + 01
(5.54E + 01)

Ackley 500
1000

1.05E + 01
(5.31E + 00)
1.17E + 01
(4.86E + 00)

5.01E + 01
(1.51E + 00)
7.71E + 01
(6.84E + 00)

1.30E + 00
(3.57E + 00)
1.26E + 00
(3.65E + 00)

Griewank 500
1000

4.20E + 02
(2.03E + 02)
5.09E + 02
(2.03E + 02)

2.24E + 02
(3.02E + 02)
2.09E + 02
(1.03E + 02)

1.57E + 01
(7.66E + 01)
1.88E + 01
(8.37E + 01)

Rosenbrock 500
1000

8.88E + 06
(1.90E + 07)
8.65E + 06
(1.79E + 07)

4.84E + 06
(2.19E + 07)
5.61E + 06
(1.79E + 06)

7.87E + 05
(6.75E + 06)
6.14E + 05
(5.83E + 06)

Table 10   Average execution 
time on benchmark functions

Function DE PSO ABC FSDE HDEPSO DEPSO

f1 (Sphere) 3.9632 3.9234 10 6.5 4.65 3.7943
f2(Rosenbrock) 11.8317 7.9096 7.9113 12.4852 8.34 7.9002
f3(Ackley) 18.9 12.638 12.4852 11.8317 12.476 5.58
f4(Griewank) 6.2748 6.2409 6.8626 8.79 7.546 5.3823
f5(Quartik) 9.84 6.8 7.9002 9.3 8.342 6.2
f6(Schwefel_2_21) 9.9478 10.267 10.0569 7.3456 9.456 6.64
f7(Michalewicz) 6.8 6.74 6.876 5.9432 7.567 5.2
f8(Rastrigin) 9.84 7.1071 6.8626 6.45 8.3456 6.1338
f9(Zakharov) 8.7228 8.1109 8.7228 9.6 7.435 6.26
f10(Powell) 6.45 10.679 10.5832 6.94 8.435 6.34



1583Evolutionary Intelligence (2022) 15:1571–1585	

1 3

Fig. 2   Best value comparison graph of Sphere, Rosenbrock, Ackley, Griewank, Quartik, Schwefel_2_21, Michalewicz, Rastrigin, Zakharov, 
Powell on 25 D



1584	 Evolutionary Intelligence (2022) 15:1571–1585

1 3

References

	 1.	 Storn R, Price K (1995) Differential evolution: a simple and 
efficient adaptive scheme for global optimization over continu-
ous spaces. Int Comput Sci Inst Technol Rep TR-95–012

	 2.	 Storn R, Price K (1997) Differential evolution: a simple and effi-
cient heuristic for global optimization over continuous spaces. 
J Global Optim 11(4):341–359

	 3.	 Ayala HVH, Santos FMD, Mariani VC, Coelho LDS (2019) 
Image thresholding segmentation based on a novel beta differ-
ential evolution approach. Expert Syst Appl 42(4):2136–2142

Fig. 3   Best value comparison graph of Sphere, Rosenbrock, Ackley, Griewank, Quartik, Schwefel_2_21, Michalewicz, Rastrigin, Zakharov, 
Powell on 50 D



1585Evolutionary Intelligence (2022) 15:1571–1585	

1 3

	 4.	 Cervantes-Sanchez F, Cruz-Aceves I, Hernandez-Aguirre A, 
Solorio-Meza S, Cordova-Fraga T, Aviña-Cervantes JG (2018) 
Coronary artery segmentation in X-ray angiograms using gabor 
filters and differential evolution. Appl Radiat Isot 138:18–24

	 5.	 Hou Y, Zhao L, Lu H (2018) Fuzzy neural network optimization 
and network traffic forecasting based on improved differential 
evolution. Future Gen Comput Syst 81:425–432

	 6.	 Wang T, Liu C, Wang L, Ma B, Gu X (2018) Evolution modeling 
with multi-scale smoothing for action recognition. J Vis Commun 
Image Represent 55:778–788

	 7.	 Civicioglu P, Besdok E (2019) Bernstain-search differential evolu-
tion algorithm for numerical function optimization. Expert Syst 
Appl 138:112831

	 8.	 Zhang Q, Zou D, Duan N, Shen X (2019) An adaptive differential 
evolutionary algorithm incorporating multiple mutation strate-
gies for the economic load dispatch problem. Appl Soft Comput 
78:641–669

	 9.	 Qin A, Huang V, Suganthan P (2009) Differential evolution algo-
rithm with strategy adaptation for global numerical optimization. 
IEEE Trans Evolu Comput 13(2):398–417

	10.	 Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution 
algorithm. Soft Comput 9(6):448–462

	11.	 Zhang J, Sanderson AC (2009) JADE: adaptive differential evo-
lution with optional external archive. IEEE Trans Evol Comput 
13(5):945–958

	12.	 Wang S, Li Y, Yang H, Liu H (2018) Self-adaptive differential 
evolution algorithm with improved mutation strategy. Soft Com-
put 22(10):3433–3447

	13.	 Alswaitti M, Albughdadi M, Isa NAM (2019) Variance-based dif-
ferential evolution algorithm with an optional crossover for data 
clustering. Appl Soft Comput 80:1–17

	14.	 Ramadas M, Abraham A, Kumar S (2019) FSDE-Forced Strategy 
Differential Evolution used for data clustering. Journal of King 
Saud University - Computer and Information Sciences 31:52–61

	15.	 Kennedy J and Eberhart R (1995) Particle swarm optimization in 
IEEE international conference on neural networks

	16.	 Prajapati A, Chhabra JK (2018) A particle swarm optimi-
zation-based heuristic for software module. Arab J Sci Eng 
43:7083–7094

	17.	 Junxiang L, Jianqiao C (2019) Solving time-variant reliability-
based design optimization by PSO-t-IRS: a methodology incor-
porating a particle swarm optimization algorithm and an enhanced 
instantaneous response surface. Reliab Eng Syst Saf 191:106580

	18.	 Matos J, Faria RP, Nogueira IB, Loureiro JM, Ribeiro AM (2019) 
Optimization strategies for chiral separation by true moving bed 
chromatography using particles swarm optimization (PSO) and 
new parallel PSO variant. Comput Chem Eng 123:344–356

	19.	 Xie XF, Zhang WJ, Yang ZL (2002) A dissipative particle swarm 
optimization. Congr Evolu Comput 2:1456–1461

	20.	 Clerc M, Kennedy J (2002) The particle swarm - explosion, stabil-
ity, and convergence in a multidimensional complex space. IEEE 
Trans on Evolu Comput 6(1):58–73

	21.	 Lin G, Zhang J, Liu Z (2016) Hybrid particle swarm optimization 
with differential evolution for numerical and engineering optimi-
zation. Int J Autom Comput 15(1):103–114

	22.	 Wang H, Zuo LL, Liu J, Yi WJ, Niu B (2018) Ensemble particle 
swarm optimization and differential evolution with alternative 
mutation method. Nat Comput 11655:1–1

	23.	 Wanga S, Li Y, Yang H (2019) Self-adaptive mutation differential 
evolution algorithm based on particle swarm optimization. Appl 
Soft Comput J 81:105496

	24.	 Pérez-González A, Begovich-Mendoza O, Ruiz-León J (2018) 
Modeling of a greenhouse prototype using PSO and differential 
evolution algorithms based on a real-time LabViewTM applica-
tion. Appl Soft Comput 62:86–100

	25.	 Ahmadianfar I, Khajeha Z, Asghari-Pari S-A, Chu X (2019) 
Developing optimal policies for reservoir systems using a multi-
strategy optimization algorithm. Appl Soft Comput 80:888–903

	26.	 Dash J, Dam B, Swain R (2019) Design and implementation of 
sharp edge FIR filters using hybrid differential evolution particle 
swarm optimization. AEU - International Journal of Electronics 
and Communications 114:344–356

	27.	 Qin A, Suganthan P (2005) Self-adaptive differential evolution 
algorithm for numerical optimization. In: Proceedings of IEEE 
congress on evolutionary computation, IEEE. Edinburgh, Scot-
land, UK

	28.	 Ali M, Pant M, Abraham A (2013) Unconventional initializa-
tion methods for differential evolution. Appl Math Comput 
219(9):4474–4494

	29.	 Poikolainen I, Neri F, Caraffini F (2015) Cluster-based popula-
tion initialization for differential evolution frameworks. Inf Sci 
297:216–235

	30.	 Sun G, Xu G, Gao R, Liu J (2019) A fluctuant population strategy 
for differential evolution. Evol Intell

	31.	 Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a compara-
tive study on numerical benchmark problems. IEEE Trans Evol 
Comput 10(6):646–657

	32.	 Shao C, Cai Y, Fu S, Li J, Luo W (2018) An enhanced utilization 
mechanism of population information for differential evolution. 
Evol Intell

	33.	 Annepu V, Rajesh A (2019) Implementation of self adaptive muta-
tion factor and cross-over probability based differential evolution 
algorithm for node localization in wireless sensor networks. Evol 
Intell 12:469–478

	34.	 Zhang X, Zhang X (2020) A set-based differential evolution algo-
rithm for QoS-oriented and cost-effective ridesharing. Appl Soft 
Comput 96:106618

	35.	 Xin B, Chen J, Zhang J, Fang H, Peng ZH (2012) Hybridizing 
differential evolution and particle swarm optimization to design 
powerful optimizers: a review and taxonomy. IEEE Trans Syst 
Man Cybern Syst 42(5):744–767

	36.	 Sun J, Zhang Q, Tsang EPK (2005) DE/EDA: a new evolutionary 
algorithm for global optimization. Inf Sci 169(3–4):249–262

	37.	 Wang L, Ye Xu, Lingpo Li (2011) Parameter identification of 
chaotic systems by hybrid Nelder-Mead simplex search and dif-
ferential evolution algorithm. Expert Systems with Applications 
38(4):3238–3245

	38.	 Guo H, Li Y, Li J, Sun H, Wang D, Chen X (2014) Differential 
evolution improved with self-adaptive control parameters based 
on simulated annealing. Swarm Evol Comput 19:52–67

	39.	 Keshk M, Singh H, Abbass H (2018) Automatic estimation of 
differential evolution parameters using hidden markov models. 
Evol Intell 10:77–93

	40.	 Tian G, Ren Y, Zhou M (2016) Dual-objective scheduling of res-
cue vehicles to distinguish forest fires via differential evolution 
and particle swarm optimization combined algorithm. IEEE Trans 
Intell Trans Syst 18(11):3009–3021

	41.	 Karaboga D (2010) Artificial bee colony algorithm”. Scholarpe-
dia. Swarm Evol Comput 5(3):6915

	42.	 Nasimul N, Danushka B, Hitoshi I (2006) An adaptive differen-
tial evolution algorithm. In IEEE Transaction on. Evolutionary 
Computation

	43.	 Trelea I (2003) The particle swarm optimization algorithm: 
convergence analysis and parameter selection. Inf Process Lett 
85(6):317–325

	44.	 Liu Y, Yao X, Zhao Q, Higuchi T (2001) Scaling up fast evolu-
tionary programming with cooperative coevolution. South Korea, 
No.01TH8546), Seoul


	An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization
	Abstract
	1 Introduction
	2 Related work
	3 Differential evolution algorithm (DE)
	3.1 Initiation
	3.2 Mutation
	3.3 Crossover
	3.4 Selection

	4 Particle swarm optimization (PSO)
	5 The proposed algorithms
	6 Experimental results
	6.1 Experimental settings
	6.1.1 Selection of mutation strategy

	6.2 Result analysis
	6.2.1 Comparison with PSO, jDE, SaDE and JADE
	6.2.2 Comparison on high dimensional datasets


	7 Conclusion
	References




