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Abstract
Pose variation is considered as one of the major challenges that degrade the performance of face recognition systems. Exist-
ing techniques address this problem from different attitudes. However, these methods may be inefficient or impractical in 
the case of single sample face recognition. This article presents an automatic patch-based pose invariant feature extraction 
method that can handle pose variations for the aforementioned case. The proposed method extracts Gabor and histograms of 
oriented gradients features from landmark-based patches. The features are then concatenated, dimensionally reduced using 
principal component analysis, fused using canonical correlation analysis, and normalized using min-max normalization. 
Experimental results carried out on the FERET database have shown the outstanding performance of the proposed method 
compared to that of the state-of-the-art approaches. The proposed approach achieved 100% and 96% and 94.5% recognition 
rates for moderate and wide pose variations, respectively.

Keywords  Patch-based feature extraction · Single sample face recognition · Pose invariant face recognition · Gabor 
magnitudes · Histograms of oriented gradients

1  Introduction

Face recognition has been widely studied by the vision com-
munity over the past few decades. The importance of this 
technology comes from its use in various applications such 
as law enforcement, security and access control. Recently, 
the research of face recognition has been directed towards 
the single sample face recognition (SSFR) [1]. However, 
recognizing human faces in the SSFR scenario is extremely 
challenging due to the presence of limited single reference 
samples in the gallery and the large sensitivity of intra-per-
son variations for instance pose, illumination, facial expres-
sion and partial occlusion in probe images. In particular, 
pose variation is considered as the most complex problem 

that changes the out-of-plane rotations of the face result-
ing in self-occluded faces [2]. Such modification alters the 
shape and appearance of faces in a way that some discrimi-
nated facial details are lost due to self-occlusion. This loss 
in information leads to severe performance degradation of 
the frontal face recognition systems. A vast amount of pose 
invariant face recognition (PIFR) approaches has been intro-
duced to address the pose variation problem from different 
perspectives. For comprehensive details on PIFR literature, 
the reader is referred to the recent surveys [2, 3]. However, 
most of the current PIFR approaches may be impractical in 
the SSFR scenario due to the reasons that are described at 
the end of Sect. 2.

The main contribution of this paper is a patch-based 
pose invariant feature extraction method that is efficiently 
applicable in the SSFR framework. The proposed method 
extracts pose invariant facial features from the landmark-
based patches located at the face organs, namely eyebrows, 
eyes, nose, and mouth, rather than the whole face image. 
Since the local patches may expose relatively small out-of-
plane rotations compared to the global image, extracting 
discriminated details from these small regions may produce 
pose invariant facial features.

The privileges of the proposed method over the existing 
PIFR methods are fourfold. In the first place, the proposed 
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method can efficiently handle moderate pose variations 
( ± 45◦ yaw) and show a significant performance under large 
poses ( ± 60◦ yaw) compared to the state-of-the-art pose 
robust feature extraction methods. In the second place, it 
does not need the abundant multi-pose training face data 
compared to the learning-based PIFR approaches. Finally, 
it is fully automatic and does not need manual landmark 
annotation.

The remaining part of this paper is organized as fol-
lows. Section 2 reviews related research attempts of PIFR 
approaches. In Sect. 3, the proposed method is described 
in detail. The experimental results carried out on a bench-
marking face database are reported in Sect. 5. Finally, the 
conclusion of this paper is outlined in Sect. 6.

2 � Related work

This section presents a review of the state-of-the-art PIFR 
approaches that addressed the pose problem from different 
points of view. According to Ding and Tao [2], the PIFR 
approaches can be classified into four categories namely, 
pose robust feature extraction, multi-view subspace learn-
ing, face synthesis, and hybrid approaches. The methods 
in the first category aim at designing face descriptors to 
extract discriminated facial features that are invariant against 
pose variations. For more details on face feature extraction 
approaches, the reader is referred to the recent survey [4]. 
The multi-view subspace learning-based methods use multi-
pose face images to establish a shared latent subspace in 
which the features of different poses are projected and then 
matched. Face synthesis methods focus on transforming face 
images from one pose to another, so two faces originally 
in different poses can be matched in the same pose. Lastly, 
hybrid methods are simply a combination of two or more of 
the previous three groups. The next paragraphs explore the 
contemporary research endeavors in these categories and 
describe their limitations in the SSFR scenario.

Pose robust feature extraction methods extract facial 
features by either handcrafted or learning-based descrip-
tors. The handcrafted approaches use a manually designed 
descriptor to extract features from either landmark-based 
or random facial keypoints-based patches. Zhou et al. [5] 
proposed a Huffman local binary pattern (LBP) to extract 
features from landmark-based patches. The authors applied 
a divide-and-rule strategy in both representation and classi-
fication to recognize faces across pose. Huang et al. [6] com-
bined enhanced landmark-based multi-scale LBP (MSLBP) 
features with Gabor features by a proposed kernel-level 
fusion technique. Gao and Lee [7] presented a combined 
pose invariant scale invariant feature transform and person-
alized correspondence learning (PISIFT-PCL) method. The 
approach learns a generic correspondence between the poses 

to generate virtual patches from which the PISIFT features 
are extracted. The learning-based approaches extract facial 
features directly from the raw face images by machine learn-
ing techniques such as kernel-based and deep learning-based 
models. These methods learn to extract pose robust features 
by training on large-scale multi-pose face images. Duan and 
Tan [8] proposed a feature learning approach based on spa-
tial self-similarity to extract the subject related information 
from a local feature by removing its pose related details. 
Shao et al. [9] proposed a pose invariant face representation 
learning approach based on sparse many-to-one encoders 
and a deep convolutional neural network. Ding and Tao [10] 
exploited convolutional neural networks (CNNs) to extract 
complementary facial features which are then compressed 
using a three-layer stacked auto-encoder (SAE).

The multi-view subspace learning-based PIFR approaches 
divide the nonlinear manifold of multi-pose face images into 
a separated set of pose spaces. Each pose space is considered 
as a single view from which pose specific projections to a 
shared latent subspace are learned. Guo et al. [11] utilized 
graph embedding to propose a multi-view linear discrimi-
nant analysis (MiLDA) for multi-pose face recognition. Cai 
et al. [12] proposed a regularized latent least square regres-
sion (RLLSR) method to map different poses of one person 
into a single point in the latent pose free space. Wang et al. 
[13] employed deep learning to design a deeply coupled 
autoencoder networks (DCAN) method to project samples 
from two poses into one common discriminating subspace.

Face synthesis methods generate a face image with the 
desired pose using a 2D or 3D model. In the 2D category, 
the process starts by fitting a 2D model to the face image and 
then 2D geometrical transformations (e.g., piecewise affine 
and thin-plate spline) are often used to warp face images 
to the desired pose. Sagonas et al. [14] introduced a robust 
statistical frontalization (RSF) technique based on the itera-
tive procedure of both facial landmarks detection and warp-
ing to construct frontal face images. Haghighat et al. [15] 
proposed an improved version of active appearance models 
(AAM) by adopting automatic facial landmarks localization 
to enhance the AAM initialization part in the fitting proce-
dure. Gao et al. [16] employed the discriminant appearance 
models (DAM) and partial least squares (PLS) to propose a 
view-based pose normalization method. The approaches in 
the 3D category accomplish face synthesis with the aid of a 
3D model. Firstly, the 3D model is fitted to the face image 
based on facial landmarks. The face image texture is then 
mapped to the aligned 3D model. Lastly, the textured 3D 
model is rendered to the desired pose and a new synthesized 
face image is generated. Ding and Tao [17] invested a dense 
gird of 3D landmarks to design homography-based pose 
normalization (HPN) method. Deng et al. [18] developed a 
lighting-aware face frontalization approach depending on a 
five landmarks-based 3D generic model and quotient image 
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symmetry. Zhang et al. [19] adopted the use of a reference 
3D face model, occlusion localization procedure, local face 
symmetry scheme, and Poisson image editing to design a 
face frontalization method. Recently, deep learning tech-
niques have been incorporated into the 2D and 3D methods 
to achieve impressive face synthesis results. Huang et al. 
[20] proposed a deep architecture called a two-pathway gen-
erative adversarial network (TP-GAN) to synthesize a frontal 
face image exploiting the global structure and local texture 
of face image. Kan et al. [21] adopted a stacked progressive 
auto-encoders (SPAE) deep neural network to convert non-
frontal face images to frontal views in a progressive manner.

Hybrid approaches consisting of two or more frameworks 
from the aforementioned categories have also been proposed 
for PIFR. Tran et al. [22] developed a disentangled represen-
tation learning-generative adversarial network (DR-GAN) 
approach to learn a generative and discriminative represen-
tation which can be used to synthesize frontal face image. 
Peng et al. [23] exploited a 3D model to synthesize multiple 
multi-view face images from which a rich feature embed-
ding is learned by a deep neural network. Ding et al. [24] 
designed a hybrid approach based on combining a 3D-based 
frontal face synthesis, patch-based facial representation, and 
transformation dictionary-based subspace learning.

Despite the significant progress in PIFR research, most of 
the reported approaches may not be applicable in the strict 
SSFR condition for a number of reasons. Firstly, the perfor-
mance of handcrafted pose robust feature extraction methods 
under large pose yaw ± 60◦ is still limited. Secondly, the 
learning-based pose robust feature extraction, multi-view 
subspace learning, and deep learning-based approaches 
require ample multi-pose training face images which are not 
available in the case of SSFR. Thirdly, face synthesis meth-
ods need to fit a 2D or 3D model to the face image in order 
to generate a face with the desired pose. The fitting process, 

however, may be time-consuming and computationally 
expensive. Moreover, some face synthesis approaches may 
require manual landmark annotation which is not feasible in 
real-world applications. They may also produce undesirable 
artifacts such as stretching due to inaccurate estimation of 
shape or pose parameters of the 2D or 3D model. These arti-
facts distort the face appearance and subsequently degrade 
the extracted features affecting the performance.

3 � Proposed approach

In this section, the proposed patch-based pose invariant 
feature extraction method is described in detail. The main 
steps of the proposed approach include landmark detection, 
patch extraction, Gabor/HOG feature extraction, dimension 
reduction, feature fusion, and normalization. The diagram 
in Fig. 1 illustrates these steps. The details of each step are 
elaborated in the next subsections.

3.1 � Landmark detection and patch extraction

Each face image is converted to the gray-scale. Then, 68 
landmarks are detected using the constrained local neural 
field (CLNF) detection algorithm [25]. Only 51 landmarks 
located at the facial components, namely eyebrows, eyes, 
nose, and mouth, are used to determine patches. Each land-
mark represents the centroid of a patch P(x, y) whose spa-
tial size is predefined empirically for each dataset. Thus, 
51 patches are segmented for patch-based local feature 
extraction. Due to the fact that local patches exhibit small 
pose variations compared to the global image, patch-based 
local feature extraction can produce features that are robust 
against pose variations.

Fig. 1   The proposed patch-based pose invariant feature extraction method
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3.2 � Gabor/HOG feature extraction

Gabor filter [26, 27] and histograms of oriented gradients 
(HOG) [28] methods were adopted for local feature extrac-
tion. According to their original articles, Gabor and HOG 
features are robust against facial expression and illumination 
variations, respectively. To address the pose variation, Gabor 
magnitudes and HOG features were extracted from the 51 
patches rather than the entire image.

Gabor features are extracted from each patch as follows. 
40 Gabor filters of 5 scales and 8 orientations are defined 
as in (1)

where u and v define the scale and orientation, respec-
tively, x� = x cos �v + y sin �v , y� = −x sin �v + y cos �v , 
fu = fmax∕2

(u∕2) , and �v = v�∕8 . The common parameters 
used for face recognition are � = � =

√
2 and fmax = 0.25 . 

Gabor features are extracted by filtering the patch P(x, y) 
with the Gabor filter �u,v(x, y) as in (2)

where Gu,v(x, y) is the complex filtering output that is 
composed of real R(Gu,v(x, y)) and imaginary I(Gu,v(x, y)) 
parts. The magnitude Mu,v(x, y) of filtering operation can be 
defined as in (3)

All the 40 magnitude responses are downsampled by factor 
5 and concatenated to form the Gabor feature vector of a 
single patch. All the Gabor vectors of 51 local patches are 
concatenated to construct the Gabor features of the global 
face image.

HOG features are extracted from each patch as follows. 
The gradient filter [−1, 0, 1] is used to compute the hori-
zontal gradient Gx(x, y) and vertical gradient Gy(x, y) of the 
patch. The magnitude |G(x, y)| and angle �(x, y) of the gradi-
ent are defined as in (4) and (5), respectively

The patch is divided into cells, and each cell has 4 × 4 pixels. 
Then, a histogram of 10 evenly spaced orientation bins rang-
ing from 0◦ − 180◦ is computed. Every bin is incremented 
by 1 when the magnitude (|G(x, y)|) whose angle (�(x, y)) 
belongs to the same bin. A block is formed by combining 

(1)�u,v(x, y) =
f 2
u

���
e−((f

2
u
∕�2)x� 2+(f 2

u
∕�2)y� 2)ej2�fux

�

(2)Gu,v(x, y) = P(x, y) ∗ �u,v(x, y)

(3)Mu,v(x, y) =

√
R(Gu,v(x, y))

2 + I(Gu,v(x, y))
2

(4)|G(x, y)| =
√

Gx(x, y)
2 + Gy(x, y)

2

(5)�(x, y) = arctan

(
Gy(x, y)

Gx(x, y)

)

every four connected cells. The histograms of cells can be 
normalized in the block by L2 − Hys (Lowe-style clipped L2 
norm) normalization method. The combination of all histo-
grams constructs the HOG feature vector of the patch. All 
HOG vectors from all local patches are concatenated to form 
the HOG feature vector of the global image.

3.3 � Dimension reduction

Each of Gabor and HOG vectors has a high dimension 
which may slow down the performance. Many state-of-the-
art approaches have been proposed for feature selection and 
dimension reduction [29–31]. However, these techniques have 
not been proved efficient for face recognition. A recent study 
[15] has shown that the use of principal component analysis 
(PCA) [32] with Gabor and HOG features yields significant 
face recognition performance. Hence, in the proposed method, 
the dimensional size of one-type vectors is reduced by PCA. 
Let the set of N feature vectors Γ1, Γ2, … , ΓN be a training 
set. The average vector ΓA of this set is defined as in (6)

The difference between each training vector and the average 
vector is defined as in (7)

The matrices A = [Φ1 Φ2 … ΦN] and L = ATA are con-
structed. Then, N eigenvectors ei and eigenvalues of the 
matrix L are calculated. The eigenspace sl can be defined 
as in (8)

The eigenspace represents a basis set from which the weights 
wk can be obtained. The authors in [32] argued that a smaller 
N

′ dimensional eigenspace is sufficient to obtain weights. 
Only the N ′ eigenvectors with the highest eigenvalues are 
selected to generate the N ′ eigenspace. Each feature vector Γ 
is projected into the N ′ eigenspace to find its weight as in (9)

where k = 1, … , N
� and wk is the contribution weight of kth 

eigenspace sk . The resulted weights are grouped to construct 
the reduced feature vector ΩT = [w1, w2, … , wN

� ].

3.4 � Feature fusion and normalization

The reduced Gabor and HOG vectors are then fused by 
canonical correlation analysis (CCA) [33] to yield a more 

(6)ΓA =
1

N

N∑

n=1

Γn

(7)Φn = Γn − ΓA (n = 1, 2, … , N)

(8)sl =

N∑

k=1

elkΦk (l = 1, … , N)

(9)wk = sT
k
(Γ − ΓA)
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discriminated and robust feature vector. Let X ∈ ℝ
p×n 

and Y ∈ ℝ
q×n are matrices of two feature sets from two 

different modalities. Let Sxx ∈ ℝ
p×p and Syy ∈ ℝ

q×q are 
the within-sets covariance matrices of X and Y. Let 
Sxy ∈ ℝ

p×q is the between-set covariance matrix (note 
that Syx = ST

xy
 ). CCA aims to find the linear combinations, 

X∗ = WT
x
X and Y∗ = WT

y
Y  , that maximize the pair-wise 

correlations across the two feature sets. The transformation 
matrices, Wx and Wy , are found by solving the eigenvalue 
equations defined in (10) and (11), respectively

where Ŵx and Ŵy are the eigenvectors and Λ2 is the diagonal 
matrix of eigenvalues or squares of the canonical correla-
tions. The non-zero eigenvalues in each equation are then 
sorted in descending order. The transformation matrices, Wx 
and Wy , consist of the sorted eigenvectors corresponding to 
the non-zero eigenvalues. Thus, X∗ and Y∗ are calculated 
and known as canonical variates. Feature-level fusion is per-
formed either by concatenating or adding the transformed 
feature vectors as defined in (12) and (13), respectively

where Z1 and Z2 are called the canonical correlation dis-
criminant features. In this paper, the summation method 
defined in (13) is used. Finally, the fused vectors are nor-
malized using min-max normalization.

4 � Parameters settings

For the proposed method, there are two main parameters 
(i.e. the patch size and the number of eigenfaces) and other 
auxiliary parameters (i.e. Gabor filter’s scale and orientation 
and HOG’s cell size, block size, and bins number) need to 
be tuned for better recognition performance. The value of 
patch size is empirically set depending on the dataset. The 
eigenfaces’ number is set to the number of training classes 
for optimal performance. In the experiments, the patch size 
was set to 40 × 40 pixels and the eigenfaces’ number was 
set to 200 for the FERET b-series [34] dataset. Gabor fil-
ter’s scale and orientation were set to 5 and 8, respectively. 

(10)S−1
xx
SxyS

−1
yy
SyxŴx = Λ2Ŵx

(11)S−1
yy
SyxS

−1
xx
SxyŴy = Λ2Ŵy

(12)Z1 =

(
X∗

Y∗

)
=

(
WT

x
X

WT
y
Y

)
=

(
Wx 0

0 Wy

)T(
X

Y

)

(13)Z2 = X∗ + Y∗ = WT
x
X +WT

y
Y =

(
Wx

Wy

)T(
X

Y

)

HOG’s cell size, block size, and bins number were set to 
4 × 4 pixels, 2 × 2 cells, and 10, respectively.

5 � Experiments and results

In this section, an experimental evaluation of the proposed 
method is presented. The experiments were conducted on 
the publicly available database namely, FERET [34]. Two 
statistical classifiers, namely k nearest neighbor (kNN) 
with city-block distance function and support vector 
machine (SVM) were used to classify the proposed patch-
based pose invariant features using a single sample per 
person. The experiments were implemented using MAT-
LAB R2016a on a Windows 10 Professional laptop with 
Intel Core i7-3630QM CPU 2.4 GHz and 16 GB RAM. 
The b-series images of the FERET face database were used 
to evaluate the performance of the proposed method in 
comparison with several state-of-the-art approaches [5, 7, 
8, 14–16, 21] that solved the pose variation problem from 
different perspectives. The b-series images in the FERET 
database are of size 256 × 384 pixels and were collected 
for 200 subjects. A subset of nine samples consisting of 
one frontal and eight pose varied images per subject were 
selected in the experiments. The frontal image is labeled 
as ba and holds a face in neutral conditions. The remain-
ing eight non-frontal images include faces in different 
poses with + 60◦ , + 45◦ , + 30◦ , + 15◦ , − 15◦ , − 30◦ , − 45◦ 
and − 60◦ in yaw. These pose varied images are labeled 
as bb, bc, bd, be, bf, bg, bh and bi, respectively. Figure 2 
shows face images of a sample subject. The size of patch 
was set to 40 × 40 pixels. Each subject in the gallery was 
represented by a single frontal face image ba, whereas 
the eight pose varied images bb-bi were presented in the 
testing operation. Table 1 reports the recognition rates 
of the proposed method and the peer approaches where 
the results of competed methods were transferred directly 
from their original papers. As can be seen in the table, 
the proposed method showed a comparable or better per-
formance compared to the peer methods. The proposed 
scheme achieved 100% accuracy for pose variations with 
yaw between + 45◦ and − 30◦ as shown by the percent-
ages highlighted in bold in the table. In the wide pose yaw 
± 60◦ , the proposed method achieved 96% and 94.5% rates 
outperforming the peer methods. This outstanding per-
formance is due to the extraction of discriminated facial 
features from landmark-based patches located at the face 
organs rather than the entire face image. The experimen-
tal results under this constrained condition suggest that 
the proposed method is effective for a wide range of pose 
variations within ± 60◦ yaw.
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6 � Conclusion

In this paper, a patch-based pose invariant feature extrac-
tion method is presented for single sample face recog-
nition. This technique can be adopted to develop a face 
recognition system for large-scale identification applica-
tions, such as driver license, national ID card, or passport 
identification system in which only one training sample per 
person is enrolled in the database. The proposed approach 
consists of CLNF-based landmark detection, patch extrac-
tion, Gabor and HOG-based feature extraction, PCA-based 
dimension reduction, CCA-based feature fusion, and min-
max normalization. The implementation of the proposed 
scheme was accomplished using MATLAB tool, and the 
performance was tested using FERET b-series database. 
The evaluation metric, namely recognition rate was used 
to evaluate the performance of the proposed framework 
in comparison with the recent approaches. Experimen-
tal results have shown the excellent performance of the 
proposed method under a wide range of pose variations. 
From the simulation results, it is evident that the pro-
posed technique achieved 100% and 96% and 94.5% rec-
ognition rates for moderate and wide pose variations, 
respectively. Although the proposed feature extraction 
method demonstrated excellent performance results in 

pose variations with − 45◦ and ± 60◦ yaw, it still cannot 
reach 100% accuracy. This is the limitation of the currently 
proposed method, which leads to further investigations. In 
the future, the possibility to improve the performance of 
the proposed method under large pose variations in semi-
profile and profile face images will also be investigated.
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