
Vol.:(0123456789)1 3

Evolutionary Intelligence (2022) 15:57–79
https://doi.org/10.1007/s12065-020-00487-5

RESEARCH PAPER

A modified teaching learning metaheuristic algorithm
with opposite‑based learning for permutation flow‑shop scheduling
problem

Umesh Balande1 · Deepti shrimankar1

Received: 2 March 2020 / Revised: 18 July 2020 / Accepted: 8 August 2020 / Published online: 16 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Teaching-Learning-Based Optimization is one of the well-known metaheuristic algorithm in the research industry. Recently,
various population-based algorithms have been developed for solving optimization problems. In this paper, a random scale
factor approach is proposed to modify the simple TLBO algorithm. Modified Teaching-Learning-Based Optimization with
Opposite-Based-Learning algorithm is applied to solve the Permutation Flow-Shop-Scheduling Problem with the purpose
of minimizing the makespan. The OBL approach is used to enhance the quality of the initial population and convergence
speed. PFSSP is used extensively for solving scheduling problem, which belongs to the category of NP-hard optimization
problems. First, MTLBO is developed to effectively determine the PFSSP using the Largest Order Value rule-based random
key, so that individual job schedules are converted into discrete schedules. Second, new initial populations are generated
in MTLBO using the Nawaz–Enscore–Ham heuristic mechanism. Finally, the local exploitation ability is enhanced in the
MTLBO using effective swap, insert and inverse structures. The performance of proposed algorithm is validated using ten
benchmark functions and the Wilcoxon rank test. The computational results and comparisons indicate that the proposed
algorithm outperformed over five well-known datasets such as Carlier, Reeves, Heller, Taillards and VRF benchmark test
functions, compared to other metaheuristic algorithms. The p-value indicated the significance and superiority of the proposed
algorithm over other metaheuristic algorithms.

Keywords Evolutionary algorithms · Opposite-based learning · Permutation flow-shop scheduling problem · Teaching-
learning-based optimization

1 Introduction

Scheduling is a decision-making process, perform vital role
in services, manufacturing and production industry. It is tra-
ditionally defined as a process of allocating job sequence on
different machines that reduces the makespan (completion-
time) of a job sequence [1]. Scheduling problems are found
in many real-world industries such as textile [2], discrete
manufacturing industries [3], electronics [4], chemical [5],
production of concrete [6], manufacturing of photographic

film [7], iron and steel [8], and internet service architec-
ture [9]. Typically, scheduling problems are classified on the
basis of production environments such as single machines,
flow-shop, parallel-machines, open-shop, cyclic flow shop
and Flexible Job-Shop (FJS). PFSSP is an ultimate engag-
ing research problem in the manufacturing industry with an
objective to minimize the total completion time. It is one of
the simplified versions of the typical Flow Shop Schedul-
ing Problem (FSSP). The first PFSSP pioneering work was
carried out on two machines, with a view to minimize the
completion-time [10]. In terms of complexity estimates,
PFSSP is found to be NP hard optimization problem [11].

The approaches to solve PFSSP can be broadly grouped
into three categories: exact, heuristics and metaheuris-
tic algorithms. The exact-algorithms: dynamic-program-
ming [12], branch and bound techniques [13], and linear-
programming [14], that can be successively adopted for
solving small problems. However, these techniques do not

 * Umesh Balande
 umeshtbalande@gmail.com

 Deepti shrimankar
 dshrimankar@cse.vnit.ac.in

1 Visvesvaraya National Institute of Technology,
Nagpur 440010, India

http://orcid.org/0000-0001-9919-0761
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00487-5&domain=pdf

58 Evolutionary Intelligence (2022) 15:57–79

1 3

produce promising outcomes for large instances in reason-
able time. Therefore, heuristic techniques are generally used
for large instances. The heuristic techniques are simple, fast
and can be used to frame scheduling solutions [15]. A solu-
tion can be obtained in stipulated time using the heuristic
algorithms, but the produces outcomes may not be optimal.
Hence, metaheuristic algorithms are proposed over heu-
ristic algorithms. An existing metaheuristic algorithms for
any given problem provide balance between diversification
and intensification [16]. There are many nature-inspired
algorithms that are used to solve the PFSSP such as genetic
algorithm [17], ant colony optimization [18], differential
evolution [19], harmony search [20], firefly algorithm [21],
bat algorithm [22], cuckoo search [23], TLBO [24], grey
wolf algorithm [25], earthworm optimization algorithm [26],
monarch butterfly optimization [27], artificial bee colony
algorithm [28], jaya algorithm [29], moth search algo-
rithm [30], return-cost-based binary FFA (Rc-BBFA) [31]
etc. To overcome the problems faced by single metaheuris-
tic algorithm, recently hybridization of algorithms i.e. com-
bination of two or more local or global search algorithms
are used. This also results in increased performance of the
metaheuristic algorithms. As the hybridization algorithms
can find high-quality feasible outcomes in reasonable time,
they are recently used in research development of PFSSP.
The advantages for selection of TLBO algorithm, it is easy
to implement and easily applicable for practical applica-
tion. Selection of parameter tune problem is not here. It is
not required any mutation and crossover parameters as like
genetic algorithm. The performance of TLBO is better than
comparative other metaheuristic algorithms. The proper pre-
caution have to take for TLBO algorithm as convergence
rate is quickly that is main disadvantage of this algorithm.

In recent decades, researchers are focusing on the
hybridization of the genetic algorithm in search of mini-
mum makespan of PFSSP [32]. Hybrid Genetic Algorithm
(HGA) [33] was proposed to solve sequence independence
of PFSSP. The objective of Particle Swarm Optimization
(PSO) for PFSSP, i.e. PSOVNS [34] was to minimize the
makespan and the total-flow time. Also, the effective PSO
with local search simulated annealing algorithm was used
for PFSSP, which balance the exploitation and explora-
tion [35]. Tabu-search-algorithm (TSA) hybridized with
improved global search algorithm for solving PFSSP [36].
Hybrid Differential Evolution (HDE) algorithm combined
with greedy based local search and Individual Improving
Scheme (IIS) was developed to elevate the feasible outcomes
quality [37]. The novel Hybrid Cuckoo Search (HCS) was
proposed to minimize the makespan and total flow time for
solving PFSSP [38]. Enhanced Migrating Bird Optimiza-
tion (MBO) algorithm was also used to solve a scheduling
problem [39]. For minimizing the total flowtime, distributed
PFSSP was introduced [40]. While, Improved Migrating

Birds Optimization (IMMBO) and a Hybrid-multi-objec-
tive Discrete Artificial-Bee-Colony (HDABC) were used to
minimize the makespan [41]. Flow shop-scheduling problem
to minimize makespan by modified fruit-fly optimization
algorithm [42]

Teaching-Learning-Based Optimization (TLBO) was
suggested by Rao et al. [24]. It was inspired from the teach-
ing-learning process and it proved to be efficient. The main
advantage of using TLBO is that, it is free from any algo-
rithm-parameters. Due to its characteristics, the TLBO algo-
rithm has been gaining recognition in the research industry.
The electrochemical discharge machining technique and
electrochemical-machining mechanism have been designed
using TLBO algorithm [43]. The efficiency of TLBO algo-
rithm was tested on flow-shop and Job-Shop-Scheduling
Problem (JSSP) [44]. Shao et al. [45] applied hybrid TLBO
algorithm combined with simulated annealing for solving
PFSSP. The discrete TLBO algorithm (DTLBO) for solv-
ing flowshop rescheduling problem [46]. The probabilistic
TLBO algorithm was used to solve no-wait flow-shop sched-
uling problem (NWFSSO) with high completion-time [47].
The flexible flow shop scheduling problems were solved
using the improved TLBO and the JAYA algorithm [48]. The
Whale-Optimization-Algorithm (WOA) with a local search
approach was also used for solving PFSSP [49].

With this background, the primary contributions of this
paper are listed below:

1. MTLBO with OBL method is applied for solving PFSSP.
The OBL approach is used to enhance the quality of
initial populations (individuals). Using Largest-Order-
Value (LOV) rule based random key, MTLBO algorithm
is developed to solve PFSSP effectively by changing
individuals into discrete job sequences. Nawaz–Encore–
Ham (NEH) heuristic method is combined with discrete
job sequence to initialize a high quality and a diverse
population. Moreover, to enhance the local exploitation
ability, the effective swap, insert and inverse structures
are included into the MTLBO algorithm.

2. In order to evaluate and analyze the effectiveness of the
proposed algorithm, computational experiments are con-
ducted using ten benchmark test functions and Wilcoxon
signed-rank test.

3. Comprehensive extensive experiments are conducted
using different well-known datasets such as Carlier,
Reeves, Heller, Taillards and VRF benchmark test func-
tions.

4. To validate its performance, the MTLBO algorithm is
compared with various well-known metaheuristic algo-
rithms.

The structure of the paper is as follows: Sect. 2 presents the
description of the PFSSP. Section 3 provides the related work

59Evolutionary Intelligence (2022) 15:57–79

1 3

of basic TLBO algorithm. Section 4 describes the proposed
algorithm MTLBO. Section 5 presents computational results
and discussion and at last Sect. 6 discusses the conclusions.
The symbols used to describe the PFSSP and along with their
explanations are shown in Table 1.

2 The description of the PFSSP

In the PFSSP, the set of n jobs (j = j1, j2,… , jn) are
consecutively handled on the set of m machines
(M = M1,M2,… ,Mm) . As each machine can process only
one job at a time, the handling time for each job is deter-
mined as Pi,j = (i = 1, 2,… ., n, j = 1, 2,… ,m) . Each job is
given a task or operation on each machine and is represented
as Tj = Tj1, Tj2,… , Tjm . The sequence followed by each job
over each machine is the same. A schedule � is denoted as a
permutation (� = �1,�2,… ,�n) , where � represents set of
all permutations for n jobs. Let us assume Z(�i,m) to be the
makespan of job (�i) over the machine m. S1,�i−1,�i, indicates
initial time of job-permutation. Let us assume that P

�i,j
 repre-

sents the handling time of job (�i) over the machine j. Hence,
the PFSSP can be mathematically represented as follows:

(1)Z
(
�1, 1

)
= p

�1,1

(2)
Z(�i, 1) = Z(�i−1, 1) + p

�i,1
+ S1,�i−1,�i,

i = 2, 3,… ., n

(3)Z(�i, j) = Z(�1, j − 1) + p
�1,j

, j = 2, 3,… .,m

(4)

Z(�i, j) = max(Z(�i−1, j) + Sj,�i−1,�i,

(Z(�i, j − 1)) + p
�i,1

i = 2, 3,… ., n; j = 2, 3,… .,m

where n indicates the total number of jobs, m denotes the
machines, P represents PFSSP and Zmax is the goal to mini-
mize makespan of the last job on the last machine.

In PFSSP, main goal is minimization of the maximum
makespan, which can be determined as

The main goal of PFSSP is to determine the optimal permu-
tation from the set of all permutations:

where �opt denotes the optimal permutation.

3 Basic TLBO algorithm

Teaching-learning process is widely known since the ancient
times, where one individual (learner) tries to learn from
other individual. It has been applied in optimization of two
thermoelectric coolers [50], cluster data [51] and image
processing [52].

TLBO [24]is a population-based metaheuristic algorithm,
that has two main fundamental phases: a teacher-phase and
the learner-phase. In teacher phase of the algorithm, teacher
teaches or shares their knowledge to learners (students). In
the learning phase, the group of students or learners enhance
their knowledge through teacher or interaction among them-
selves. Figure 1 illustrates the schematic flow of basic TLBO
algorithm.

3.1 Teacher‑phase (TP)

It invokes the exploration phase of TLBO where students learn
from the teacher. In this stage, teacher attempts to enhance the
mean result of the class. For the objective function f(Z) with
N-dimensional variable, Z = (zi,1, zi,2,… , zi,N) represents the
position of ith learner (or student) solution for N-dimensional
problem. Thus, the class mean position with P learners (where
P is the size of population) is represented as

The students with the optimal value (i.e. best value) in cur-
rent generation are represented as Zteacher . The position of
each student is shown in Eq. (8)

where Zi,new and Zi,old are the ith students (learners) new and
old positions respectively. Rand is dispersed random num-
ber in the range of [0, 1]. TF is teacher-factor which decided

(5)Zmax(�) = Z
(
�n,m

)

(6)Z
(
�
opt
)
≤ Z

(
�n,m

)
for all �

(7)Zmean =

∑P

i=1
zi,1,

∑P

i=1
zi,2,… ,

∑P

i=1
zi,N

P

(8)Zi,new = Zi,old + rand(Zteacher − TF.ZMean)

Table 1 Symbols used

Symbols Explanation

n Indicate the total amount of jobs
m Indicate the as total number of machines
i Machine
j Job
Pi,j Total time required for job completion
Ti Task on each machine
� Set of all permutations of n jobs
Z(�i,m) Makespan of job �i on machine m
P PFSSP
Zmax Objective to minimize the completion time
Z(�opt) Optimal permutation

60 Evolutionary Intelligence (2022) 15:57–79

1 3

average value to be altered. TF can be any 1 or 2, it can be
generated randomly using Eq. (9) as

where TF is achieved randomly when the TLBO in range of
[1–2], where “1” represent to no raise in proficiency-level
and “2” represents to entire transmission of knowledge.

3.2 Learner‑phase (LP)

The learner-phase is an exploitation phase of TLBO algorithm,
where a learner randomly collaborates with other learners to
improve his/her proficiency. Student (Learner) Xi , learns new
things if another student Xj(j ≠ i) has more proficiency than
him/her. Learning process can be depicted mathematically as

where rand is a random number in the range of [0, 1], Zi,new
it gives the preferable feasible value.

3.3 Duplication elimination

A duplicate solution should not be kept in the population as it
may cause premature convergence of the algorithm [53, 54].
The duplication elimination strategy is given in Fig. 2.

(9)TF = round[1 + rand(0, 1){2 − 1}]

(10)Zi,new =

⎧⎪⎨⎪⎩

Zi,old + rand ∗
�
Zi − Zj

�
,

if f (Zi) ≤ f (Zj).

Zi,new = Zi,old + rand ∗
�
Zi − Zj

�
,

if f (Zi) > f (Zj).

4 Proposed MTLBO approach

In this section, the proposed MTLBO is explained with the
local search strategy for makespan minimising the makes-
pan in PFSSP. The proposed algorithm flowchart is given in
Fig. 3. The symbol and meaning of the proposed algorithm
is shown in Table 2.

4.1 Representation of solution for MTLBO
algorithm

The basic TLBO algorithm was initially proposed for solv-
ing different continuous-optimization examples. However,
the PFSSP is a discrete optimization technique. The basic
TLBO algorithm, therefore cannot be used to solve PFSSP
directly. So, the basic TLBO has to be modified using the

Fig. 1 The schematic flow diagram of basic TLBO

Population size, dimension of problem ,
number of generation.

Randomly generate solutions(populations)

Teacher phase

Learner phase

Is final results
obtained?

Obtain global outcome

No

Yes

Start

Population matrix P
learner1, learner2

Dimensional vector(M)

Is duplication
element

found in P

match found, alter learner
(learner1==learner2)

use randomize function to learner
learner2=rand[1,N]

Initialize upper and lower bound

Evaluate the learner2 End

NO

YES

Fig. 2 Elimination of duplicate solution in TLBO algorithm

61Evolutionary Intelligence (2022) 15:57–79

1 3

concept of differential evolution with random scale factor
(DERSF) [55]. This term is scaled by scale factor (R) in a
random way in the range (0.5, 1) and it is given as

To apply MTLBO to PFSSP, one of the key concerns is to
create mapping rule between job sequence and the vector
of individuals. To convert individual Zi = [zi,1, zi,2,… , zi,n]
into job permutation �i = [�i,1,�i,2,… ,�i,n] , the follow-
ing random keys (called as robust representation [56])
are used namely the Smallest Positive Value (SPV) [34],
Largest Ranked Value (LRV) [57] and Largest Order Value
(LOV) [58]. The SPV, LRV and LOV rules are used in exist-
ing research [38]. The job sequence relationship scheme
plays a vital role in the developmental mechanism of the
proposed MTLBO. If exchange of job sequence is not proper
in PFSSP, then it will increase the computational time of the
proposed algorithm.

In this study, LOV rule is utilized. LOV is a very simple
method, which is focused on random-key presentation. In LOV
rule, by ranking the individual of Zi = [zi,1, zi,2,… ., zi,n] with
decreasing order, temp job permutation sequence is generated
as �i = [�i,1, �i,2,… , �i,n] . Then a job sequence permutation is
obtained as �i = [�i,1,�i,2,… ,�i,n] using Eq. (12).

where j ∈ [1,… ., n] . In Table 3, LOV-rule is described with
an easy example (n = 6) where the solution representation
of individual vector (Zi) is obtained with job dimension,
position (location) and job permutation.

For Zi = [0.6, 0.12, 1.8, − 0.48, 1.7, − 1.06], it can be seen
that zi,3 has the largest value, and so it is selected as the first
order of a job permutation. After that zi,5 , zi,1 , zi,4 and zi,6 are
preferred as job-permutation. Hence, the job sequence �i = [3,
5, 1, 2, 4, 6] is obtained. From this formulation, the conversion

(11)R = 0.5(1 + rand(0, 1))

(12)�i�i,j
= j

using LOV rule is clear, which makes MTLBO suitable for
solving PFSSP.

4.2 Population initialization

This phase plays a vital role and it is applied uniformly and
randomly. A population vector Zi = [zi,1, zi,2,… , zi,n] is ran-
domly generated. Nawaz–Enscore–Ham (NEH) method is
used for producing good initial population. NEH is the heu-
ristic method to obtain optimal solution to the PFSSP. The
NEH steps are described below:

Step 1: All jobs are arranged in non-increasing procedure
based on their overall handling time on all machines.
Then job permutation �(i) = [�(1),�(2),… .,�(3)] is
achieved.

Step 2: Select any two jobs permutations, for examples
�(1) and �(2) . Then, all forms of permutation records
of these two jobs are calculated and then an optimal
order is taken.

Step 3: Select any job permutation �(j),(j=3,4,....,n) and
determine best permutation of jobs by assigning the
available position to which they had scheduled. The
optimal arrangement is selected from the next iteration.

The outcome created by NEH algorithm is a discrete job-
permutation. To implement the MTLBO algorithm, the job
permutation sequences are converted into individual by using
Eq. (13), the conversion process is performed as:

where INEH,i is job-index in ith dimension of job-permutation
(�). Zmax,i and Zmin,i are maximum and minimum bounds.
ZNEH,i is the individual value of given problem at the ith
dimension.

Let us consider that all job-permutation (�) achieved by
NEH heuristic approach are given as � = [2, 6, 3, 5, 1, 4].
Hence, the index of first carry on job sequence is given as
value 5, index of second carry on job sequence is given as
value 1. The index sequence (INEH,i) and individual value
(ZNEH,i) are shown in Table 4.

4.3 Opposition based learning

Many optimization techniques are developed using OBL.
OBL is used to enhance the performance and search abil-
ity to find a solution of population based algorithms [59].
Rahnamayan et al. [60] first proposed OBL strategy in an
optimization method. The main purpose of OBL is to choose

(13)
ZNEH,i = Zmin,i +

(
Zmax,i − Zmin,i

)
n

×
(
INEH,i − 1

)
i = 1, 2,… , n

Table 2 Symbols and meaning used in proposed algorithm

Symbols Meaning

NP Population size of proposed algorithm
MaxG Maximum generation or iteration
T Maximum CPU time
Znew and Znew Old and new iteration in population
OBL Opposite Based Learning.
GOBL Generalized Opposite-Based Learning
NEH Nawaz–Enscore–Ham
Zi Design variable of problem
�i Job sequence permutation
LOV Largest Order Value
DERSF Differential Evolution with Random Scale Factor

62 Evolutionary Intelligence (2022) 15:57–79

1 3

Fig. 3 Proposed MTLBO
algorithm

Read process time job on machines in matrix

Calculate mean for each design variable i.e. Zmean

evaluate objective of every individual and
determine best individual Zteacher

Is outcome better
than existing one?

Update Z old ,
Replace with Z new

do not update
 Z old

T
E
A
C
H
E
R

P
H
A
S
E

Obtained job permutation based on LOV rule

YesNo

Compare Z i,new and
Zi,old using Eq(10)
and calculate Z new

update Z new and
Zold

Optimal outcome obtained
till now

Termination
criteria met?

Randomly select two different design
variables Z i,new and Z i,old and modify

using Eq(11)

Is outcome better
than existing one?

do not Update
Zold

 Update Z old and
Znew

No Yes

No

Yes

do not update
Znew

YesNo
L
E
A
R
N
E
R

P
H
A
S
E

Initialize population size (NP), number
of design variables Zi ,

generation t=1, CPU time T=0
Apply
NEH

algorithm

Apply the local search approach to enhance the solution

Apply Re-initialization mechanism

t<MaxG

Apply GOBL
for improve

the Initial
population

63Evolutionary Intelligence (2022) 15:57–79

1 3

a better current candidate outcome by simultaneous evalu-
ation of the current outcomes and its opposite outcomes.
Mainly, OBL is applied to any population based algorithm
during two phases: initial population and evolutionary phase.
We can improve the initial population of proposed MTLBO
algorithm using OBL. The concept of OBL depends on
opposite number and opposite point.

Opposite number : Let a z ∈ [x, y] be any real number ℝ .
its opposite number zopp is given by

Opposite point: Let Y(z1, z2,… , zn) be point in N- dimen-
sional space where zi = [x, y]; . The opposite point of oppo-
site population (zopp

1
, z

opp

2
,… , z

opp
n) is given as:

4.3.1 GOBL optimization in MTLBO algorithm

The convergence rate of MTLBO algorithm can be improved
with the help of GOBL. Wang et al. [61] proposed General-
ized OBL model (GOBL). The proposed MTLBO approach
uses this method to improve the performance of algorithm.
When the premature convergence and stagnation state are
identified, re-initialization method (i.e. OBL concept) is
stimulated to avoid premature convergence in MTLBO
algorithm.

4.4 Local search approach

The local search approach is applied to improve the quality
of best scheduling (let B∗) such as

(a) In the job permutation, each job in the B∗ may have
variable dimension d, where move the job sequence to
all other (d − 1) location.

(14)zopp = x + y − z

(15)z
opp

1
= xi + yi − zi

(b) For each movement, calculate the new schedule of the
job permutation, i.e. consider B∗ = new schedule.

(c) Least search probability (LSP) is used for local search
approach.

By using the Kaveh et al. [62], the probability value P is
changed to each generation(iteration) such as

where iteration is current iteration and max_iteration is total
number of iterations required to perform the experiments.
Thus, changing the value of P improves the solution of the
outcomes.

4.5 Swap, insert and inverse operators

To enhance the performance and quality of solution for
MTLBO, some operators are chosen such as swap, insert
and inverse. These operators would enhance local search
ability [63] and improve the outcome solution. Let us ran-
domly take any two different positions m and n in a job
permutation (�), if m < u , m will be inserted at the back of
u. Otherwise, m is to be inserted in front of u. The details of
these structures are as follows:

4.5.1 Swap operator

The Fig. 4 shows the swap operation. Randomly select any
two separate locations from a job-permutation (�) such as
m and u and swap them.

4.5.2 Insert operation

In Fig. 5, randomly select any two separate locations from a
job permutation. Here job permutation (�) is removed from
position m and inserted into other position u.

(16)P = 0.3

(
iteration

max _iteration

)

Table 3 Individual solutions
represented in LOV-rule

Dimension (D) 1 2 3 4 5 6

Location 0.6 0.12 1.8 − 0.48 1.7 − 1.06
Job 3 5 1 2 4 6

Table 4 Transformation of the
job-permutation (�) to the
individual vector

Dimension (D) 1 2 3 4 5 6

Permuatation by NEH 2 6 3 5 1 4
job sequence (INEH,i) 5 1 3 6 4 2
individual value (ZNEH,i) 0.6 − 1.8 − 0.6 1.2 0 − 1.2

64 Evolutionary Intelligence (2022) 15:57–79

1 3

4.5.3 Inverse operation

In Fig. 6, randomly change the subsequence between two
separate locations of a job permutation (�). By perform-
ing the inverse operation, jobs in solution � and �new are
interchanged.

4.6 Re‑initialization structure

The experiment is conducted on the proposed algorithm,
local search is used for fast convergence of the outcomes.
Thus, at some extent the algorithm outcomes are trapped in
local optimum i.e. premature convergence may occur. To
overcome this situation, re-initialization mechanism is devel-
oped. If the feasible optimal solution is not found after 40
successive generation, then reinitialize the learners (popula-
tions). The re-initialization scenario is developed and it is

given as: half of the populations are exchanged with the best
populations achieved in the earlier process and another half
of the populations are generated randomly.

4.7 Computational‑complexity of MTLBO in term
of big O notation

Let there be n jobs and m machines in PFSSP, the size of
population is p. Generally in EA the computation com-
plexity determine as of O (d ∗ p + fit ∗ p) , d is dimension
of problem, fit is fitness or cost function (here minimiza-
tion of maximum makespan is cost function). In the Initial
stage of MTLBO computational complexity of NEH O()
and remaining population generated by randomly using
OBL technique is O(0.5 * n2 mp) . The computational
complexity at initial phase is O(n2mp) + O(0.5 ∗ n2mp). In
teaching phase, due swap and local search computational

Fig. 4 Local-search using swap
operator

mm -1 m +1 uu-1 u+1

Swap

Seq

um -1 m +1 mu-1 u +1 Seq
new

Fig. 5 Local-search using insert
operator

mm -1 m +1 uu-1 u+1

insert

Seq

m +1m -1 u-1 mu u+1 Seq
new

Fig. 6 Local-search using
inverse operator

mm -1 m +1 uu-1 u+1

inverse

Seq

um -1 u-1 mm+1 u+1 Seq
new

65Evolutionary Intelligence (2022) 15:57–79

1 3

complexity is O(n2mp) . In learning phase, computational
complexity is O(n2m∕2), due the learner gets information
from teacher or exchange information themselves.

Total computation complexity of MTLBO for comput-
ing PFSSP :

O(n, m, p) = O(n2mp) + O(0.5 ∗ n2mp) + O(n2mp) +
O(0.5 ∗ n2mp)+ O(n2m∕2) ≈O(n2mp) = O(50 × 1000 n2)
= O(50000 n2)

5 Computational results and comparisons

This section represents the computational outcomes gener-
ated from the MTLBO algorithm. The MTLBO is tested
over ten standard benchmark test functions which are
taken from Liang [64]. These test functions are either uni-
modal or multimodal. The tuning for various performance
measures are calculated from various evolutionary algo-
rithms by the best, worst, mean (average) and SD (stand-
ard-deviation) outcomes [65]. The unimodal benchmark
functions validate accuracy and the convergence speed
of proposed algorithm whereas multimodal benchmark
test functions validate using the global search ability of
proposed algorithm. Then, the computational results of
MTLBO algorithm are analyzed using Wilcoxon signed
rank test method. There are various kinds of stopping
criteria in the literature of NIAs, like maximum-number
of iterations (G) , number of function evaluation (NFEs),
limit of time and tolerance. The experiment uses G (i.e.
number of generations) as stopping criteria for proposed
MTLBO algorithm.

5.1 Experimental setup

In the following computational experiments, the perfor-
mance and efficiency of MTLBO algorithm is applied on
extensively used benchmark functions. There are mainly five
well known benchmark functions such as

(a) Carlier datasets (contains eight instances) consist
of eight combinations, ranging from 11 jobs with 5
machines to 8 jobs with 8 machines [66].

(b) Reeves and Yamada benchmark datasets (contains
twenty-one instances) consist of seven combinations,
ranging from 20-jobs with 5-machines to 75-jobs with
20-machines [67].

(c) Heller datasets (contains two instances) consist of two
combinations, ranging from 20 jobs with 10 machines
to 10 jobs with 10 machines [68].

(d) Taillard datasets (contains 120 instances) consist of
twelve combinations, ranging from 20 jobs with 5
machines to 500 jobs with 20 machines [69].

(e) VRF benchmark functions [70] (each contain 240 small
and 240 large instances, which have upto 800 jobs on
60 machines) data is available at http://soa.iti.es.

The performance measure indicators for benchmark func-
tions are ARPD (Average Relative Percentage Deviation),
BRPD (Best Relative Percentage Deviation) and WRPD
(Worst Relative Percentage Deviation) [71]. They are cal-
culated in Eqs. (17), (18), and (19) respectively.

where Zopt is best makespan value, Zbest , Zi and Zworst are
makespan solutions obtained in tested algorithms. Smaller
value of ARPD indicates that the algorithm are better.

In Table 5, the given parameters are calibrate for MTLBO
by conducting several experiments. All the experimentation
and analysis of MTLBO algorithm have been implemented
on an Intel 3.40 GHz core i5 processor where MTLBO algo-
rithm was programmed with Matlab 8.4 (R2014b) under
Win7(x64) with 8 GB RAM.

5.2 Testing proposed algorithm using benchmark
functions

In this experiment, ten unconstrained benchmark functions
are tested using MTLBO algorithm for population size
(NP = 50) and dimension (D = 50). The performance of the
MTLBO is calculated by 25 independent runs over the given
ten benchmark functions. In Table 6, the effective results of
MTLBO are shows in terms of performance measures such
as best, worst, mean and SD values on different population
based algorithms.

5.2.1 Diversification and intensification of proposed
algorithm

The unimodal optimization function (for e.g. Fun2 : Schwe-
fels) is used to find the balance between diversification

(17)ARPD =
Zbest − Zopt

Zopt
.100

(18)BRPD =

n∑
i=1

(
Zi − Zopt

Zopt

)
1

n
× 100

(19)WRPD =

(
Zworst − Zopt

)
× 100

Zopt

http://soa.iti.es

66 Evolutionary Intelligence (2022) 15:57–79

1 3

(exploration) and intensification (exploitation). In the Fig. 7
indicate the convergence of diversity of population with
iterations for unimodal optimization function (i.e schwefels
function). This is applied for five metaheuristic algorithms
(i.e. GA, PSO, DE, TLBO and MTLBO). In the Fig. 7, the
graph indicates that proposed algorithm MTLBO decrease
gradually during the exploration, hence global optimal value
obtained. The solution obtained during exploitation of algo-
rithm is precise and stable.

5.2.2 Statistical analysis of proposed algorithm

To investigate the MTLBO algorithm, statistical procedure
is applied to perform analysis such as parametric and non-
parametric tests. The parametric test is based on assumptions
made during the analysis of an experiment in computational
intelligence. On the other hand, the non-parameter test is
applied when the previous conclusions are not satisfied.
Usually, this test deals with nominal or ordinal data, but it
can also be applied to continuous data by performing the
ranking based transformation.

The non-parametric test is applied to investigate the pro-
posed algorithm. There are two types of non-parametric tests
such as pair-wise comparison and multiple comparisons.
To perform analysis of the proposed algorithm, pair-wise
comparison is applied to MTLBO. In pair-wise procedure,
comparison is made between two methods (algorithms), by
obtaining p-value from one another. Wilcoxon signed rank
test is a powerful non-parametric test for the pair-wise pro-
cedure as given in [72].

In Table 7, results of Wilcoxon signed rank test for
MTLBO algorithm, with different metaheuristic algorithms
over ten benchmark functions are shown. The test is con-
ducted using 25 independent runs of the proposed algorithm,
which differs significantly from other algorithms. Table 7
records the p-value for ten unconstrained benchmark func-
tions with R+ and R− values. The R+ value indicate a sum of
rank in which the first algorithm outperform compare to the
second algorithm. R− value indicate a sum of ranks second
algorithm outperforms compared to the first algorithm. The
non significant p-value is represented in bold in Table 7.

From the Table 7, it is clear that the performance of
the MTLBO algorithm is significantly better than other
metaheuristic algorithms. Functions Fun1, Fun2, Fun3,
Fun5, Fun7 and Fun10 have significant p-value (p ≤ 0.05),
in MTLBO versus DE, whereas functions Fun4, Fun6 and
Fun9 does not have significant value.

5.3 Comparison of MTLBO algorithm on Carlier
benchmark datasets

The effectiveness of MTLBO is compared with various
metaheuristic algorithms on Carlier benchmark datasets.
Table 8, shows Carlier datasets range from Car01 to Car08
with size range from 11 × 5 to 8 × 8 . The performance of
MTLBO is calculated using BRPD, ARPD and WRPD along
with best makespan value (Zopt). The MTLBO algorithm
is compared with L-HDE [37], PSOVNS [34], DBA [73],
HBSA [74], and PSOMA [35].

From the Table 8, it is observed that performance of
proposed algorithm is better than given population based
algorithm. The effective values of MTLBO algorithm shows
better performance by using parameters of BRPD, ARPD,
WRPD and best makespan values.

5.4 MTLBO algorithm on Reeves and Heller
benchmark datasets

The effectiveness of proposed algorithm is compared with
Reeves and Heller datasets. In the Table 9 indicates Reeves
datasets range from REC001 to REC041 with size range
from 20× 5 to 75× 20. The performance of MTLBO is
calculated using BRPD, ARPD and WRPD along with best
makespan value (Zopt). The MTLBO algorithm is com-
pared with L-HDE, PSOVNS, DBA, HBSA, PSOMA, and
HCS [34]. Note that, the best values are shown in bold.

From Table 9, it is clear that the efficiency of MTLBO
is superior than given population based algorithm. The
effective values of MTLBO algorithm shows better per-
formance by using parameters of BRPD, ARPD, WRPD
and best makespan values.

Table 5 Parameter used for experiments of MTLBO algorithm

Parameter Value Remarks

Population size (NP) 50 The population size 50 is selected after several experiments
Stopping criteria (i.e. here number of genera-

tions)
1000 Maximum number of iterations used as stopping criteria for algorithm

Number of runs of each problem 25 It is used for finding best possible value for a problem
Zopt Best mean makespan found so far
LSP 0.01 Least search probability value for all benchmark function such as

Carlier, Reeves, Heller and Taillard

67Evolutionary Intelligence (2022) 15:57–79

1 3

The comparison of the mean value of BRPD, WRPD
and ARPD for the dataset Reeves is shown in (Figs. 8, 9,
10). MTLBO is compared with various population-based
algorithms, it can be seen that MTLBO algorithm achieves
best outcomes. In mean value of BRPD, the largest value
PSOVNS is 2.1665. In average value of ARPD, the largest
value on DBA is 2.5875. In mean value WRPD, the largest

value on DBA is 3.346. MTLBO shows best and effective
outcomes as compared to other population based algorithms.
Hence, MTLBO is most reliable and effective algorithm for
solving PFSSP.

In Table 10, Heller datasets have two instances such as
Hel1 and Hel2 with the size range 20 × 10 and 10 × 10 .
Hamdi et al. [75] determined the upper and lower bound of

Table 6 The comparison results
of GA, PSO, DE, HS, TLBO,
MTLBO (D = 50)

Functions Parameters GA PSO DE HS TLBO MTLBO

 Fun1 Best 0 1.000E−08 1.000E−08 1.000E−08 0 0
Worst 0 1.000E−08 1.000E−08 1.000E−08 0 0
Mean 0 1.000E−08 1.000E−08 1.000E−08 0 0
SD 0 1.000E−08 1.000E−08 1.000E−08 0 0

 Fun2 Best 1.744E+05 1.145E+05 2.070E+05 7.753E+05 1.088E+05 5.863E+04
Worst 1.050E+06 8.660E+05 9.740E+05 9.247E+05 2.063E+05 9.088E+04
Mean 4.760E+05 3.063E+05 4.720E+05 8.737E+05 1.684E+05 7.437E+04
SD 2.138E+05 4.192E+05 1.630E+05 5.234E+05 1.850E+04 1.023E+04

 Fun3 Best 2.553E+06 2.104E+05 9.010E+03 1.608E+04 5.415E+03 3.102E+03
Worst 8.438E+08 3.655E+06 1.990E+04 3.718E+04 1.235E+04 6.113E+03
Mean 1.057E+08 8.226E+05 7.880E+03 2.781E+04 7.084E+04 3.543E+03
SD 1.493E+08 7.674E+05 2.830E+03 6.128E+03 3.594E+04 1.954E+03

 Fun4 Best 4.901E−01 3.450E+02 3.230E+02 1.460E+04 2.971E+02 1.520E+02
Worst 3.450E+01 2.250E+02 3.660E+03 5.031E+04 8.562E+02 4.163E+02
Mean 3.330E+00 9.923E+01 1.380E+03 2.983E+04 6.578E+02 3.766E+02
SD 4.883E+00 5.447E+01 8.140E+02 1.007E+04 1.760E+02 8.700E+01

 Fun5 Best 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0
Worst 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0
Mean 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0
SD 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0

 Fun6 Best 3.657E+01 2.060E+01 4.340E+01 3.293E+01 1.750E+01 8.050E+00
Worst 9.707E+01 8.856E+01 4.340E+01 5.563E+01 4.337E+01 2.763E+00
Mean 4.723E+01 5.427E+01 4.340E+01 4.457E+01 4.073E+01 2.963E+00
SD 1.402E+01 2.034E+01 4.340E+01 5.984E+00 6.959E+00 2.390E−01

 Fun7 Best 1.513E+01 5.600E+01 6.730E−02 5.995E+02 3.074E+01 1.065E+01
Worst 1.043E+02 1.770E+02 9.090E+00 1.301E+03 5.547E+01 2.198E+01
Mean 4.165E+01 1.670E+02 9.960E−01 9.090E+02 4.963E+01 2.397E+01
SD 1.834E+01 5.518E+02 1.940E+00 2.196E+02 5.314E+00 2.764E+00

 Fun8 Best 2.307E+01 2.111E+01 2.100E+01 4.553E+01 2.099E+01 9.674E+00
Worst 2.425E+01 5.012E+00 2.120E+01 6.189E+01 2.110E+01 1.199E+01
Mean 2.119E+01 3.606E+00 2.110E+01 5.396E+01 2.107E+01 9.760E+00
SD 3.985E−02 7.355E−01 4.150E−01 1.680E−01 2.715E−02 1.375E−02

 Fun9 Best 5.212E+01 9.598E+01 1.870E+01 9.339E+01 5.644E+01 2.287E+01
Worst 7.770E+01 1.333E+02 7.110E+01 8.447E+02 6.255E+01 3.186E+01
Mean 7.431E+01 1.136E+02 2.730E+01 6.154E+01 6.089E+01 3.053E+01
SD 3.967E+00 8.869E+00 7.550E+00 1.260E+01 1.661E+00 6.530E−01

 Fun10 Best 2.713E−02 9.560E−03 1.930E−07 8.966E−03 7.396E−03 3.452E−03
Worst 4.385E−01 1.684E−02 4.440E−02 7.937E−02 2.710E−02 1.721E−03
Mean 1.047E−01 9.840E−02 1.700E−02 5.664E−02 1.763E−02 8.760E−03
SD 7.093E−02 9.845E−02 1.140E−02 9.903E−03 6.850E−03 2.360E−03

68 Evolutionary Intelligence (2022) 15:57–79

1 3

these datasets. The MTLBO is also compared with NEH,
DSOMA [76] and SG [11]. It can be seen from the outcomes
that MTLBO achieves better value for upper bound for Hel1
and Hel2 problems.

5.5 MTLBO algorithm on Taillard benchmark
dataset

The comparison of the MTLBO with basic TLBO and other
metaheuristic algorithms are carried out using Taillards

benchmark functions [69]. The problem size of Taillard
benchmark functions range from 20 × 5 to 500 × 20 . The
minimum and maximum bounds of Taillard’s test function
are given in OR-Library (i.e. Eric Taillard’s webpage).

5.5.1 Comparison of MTLBO with basic TLBO

To validate the performance of MTLBO, the experimental
outcomes and comparison of the proposed algorithm with

Table 7 Wilcoxon signed rank test for p-value comparing MTLBO with various EAs over ten benchmark functions (p ≤ 0.05)

Funtions Parameter MTLBO versus GA MTLBO versus PSO MTLBO versus DE MTLBO versus HS MTLBO
versus
TLBO

Fun1 p-value 8.31E−05 8.06E−05 6.20E−04 8.34E−05 9.80E−04
R+ 210 210 188 210 210
R− 68 68 79 68 79

Fun2 p-value 8.31E−05 8.31E−05 1.20E−04 8.31E−05 3.20E−04
R+ 210 210 156 210 168
R− 68 68 74 68 71

Fun3 p− value 3.04E−02 1.43E−02 2.20E−04 2.22E−03 2.41E−03
R+ 156 168 156 122 122
R− 74 71 74 83 83

Fun4 p−value 3.99E−02 3.99E−02 6.56E−01 3.99E−02 3.99E−02
R+ 168 168 119 168 168
R− 71 71 206 71 71

Fun5 p-value 8.31E−05 8.31E−05 5.50E−04 8.34E−05 9.80E−04
R+ 210 210 156 210 156
R− 68 68 74 68 74

Fun6 p-value 9.94E−03 9.94E−03 6.09E−01 9.94E−03 NA
R+ 122 122 119 122 NA
R− 83 83 206 83 NA

Fun7 p-value 8.31E−05 8.31E−05 8.31E−05 8.31E−05 8.31E−05
R+ 210 210 210 210 210
R− 68 68 68 68 68

Fun8 p-value 8.31E−05 1.52E−03 3.13E−03 8.31E−05 8.31E−05
R+ 210 122 126 210 210
R− 68 83 145 68 68

Fun9 p-value 8.31E−05 8.31E−05 1.44E−01 9.60E−04 4.30E−03
R+ 210 210 126 156 122
R- 68 68 145 74 83

Fun10 p-value 8.31E−05 8.31E−05 7.35E−02 8.31E−05 4.60E−03
R+ 210 210 126 210 122
R− 68 68 145 68 83

69Evolutionary Intelligence (2022) 15:57–79

1 3

basic TLBO for Taillard benchmark test functions are shown
in Table 11. The performance measure indicators such as
BRPD, ARPD and WRPD are given in Table 11.

MTLBO algorithm outperforms the basic TLBO algo-
rithm on all Taillard benchmark functions. The total average
values for ARPD, BRPD and WRPD of MTLBO are 0.830,
3.717 and 6.118 which are better than basic TLBO algorithm
tested values.

The convergence plots of basic TLBO and MTLBO algo-
rithms are listed in Fig. 11. For plotting the graph, makespan
versus Taillard benchmark function (such as TA010, TA030,
TA050, TA070, TA090 and TA0110) are used. From these
graphs, it can be indicated that the proposed algorithm con-
verges faster than basic TLBO algorithm. As the iterations
increase, MTLBO hardly finds accurate solutions, but by
embedding the local search operator into MTLBO, it can
achieve better performance.

5.5.2 Comparison of MTLBO with other EAs

In this subsection, the proposed MTLBO algorithm is com-
pared with IG1 [77], IG2 [77], HDDE [78] and TLBO algo-
rithms using Taillard benchmark test functions. The perfor-
mance is measured using ARPD indicator. Table 12 shows
comparison of proposed algorithm over population based
algorithms with respect to ARPD. The MTLBO algorithm
obtained lowest average value i.e. 0.83 for ARPD, which is
better than IG1 (2.31), IG2 (2.27), HDDE (4.51) and TLBO
(3.11).

Later on, the proposed MTLBO algorithm is compared
with GA [79], HPSO [78], ATPPSO [80] and NCS [81]
on the Taillard benchmark test functions. The computa-
tion results achieved by GA, HPSO, ATPPSO and NCS are
indicated in Table 13. The performance measure indicators
such as Mean and ARPD (Average relative error) are also

Table 8 Comparison of
MTLBO algorithm on Carlier
benchamark datasets

Problem Size Zopt DE PSOVNS DBA HBSA PSOMA MTLBO

Car01 11 × 5 7038 BRPD 0 0 0 0 0 0
ARPD 0 0 0 0 0 0
WRPD 0 0 0 0 0 0

Car02 13 × 4 7166 BRPD 0 0 0 0 0 0
ARPD 0 0 0 0 0 0
WRPD 0 0 0 0 0 0

Car03 12 × 5 7312 BRPD 0 0 0 0 0 0
ARPD 0.0369 0.42 0.397 0.06 0 0
WRPD 0.7385 1.189 1.19 1.19 0 0

Car04 14 × 4 8003 BRPD 0 0 0 0 0 0
ARPD 0 0 0 0 0 0
WRPD 0 0 0 0 0 0

Car05 10 × 6 7720 BRPD 0 0 0 0 0 0
ARPD 0.5285 0.039 0 0 0.018 0
WRPD 1.3083 0.389 0 0 0.375 0

Car06 8 × 9 8505 BRPD 0 0 0 0 0 0
ARPD 0.3821 0.076 0 0 0.114 0
WRPD 0.7643 0.764 0 0 0.764 0

Car07 7 × 7 6590 BRPD 0 0 0 0 0 0
ARPD 0.5341 0 0 0 0 0
WRPD 2.868 0 0 0 0 0

Car08 8 × 8 8366 BRPD 0 0 0 0 0 0
ARPD 0.0645 0 0 0 0 0
WRPD 0.6455 0 0 0 0 0

70 Evolutionary Intelligence (2022) 15:57–79

1 3

Table 9 Comparison of
MTLBO algorithm on Reeves
benchmark datasets

Problem Size Zopt DE PSOVNS DBA PSOMA HBSA HCS MTLBO

REC001 20 × 5 1247 BRPD 0 0.16 0 0 0 0 0
ARPD 0 0.168 0.08 0.144 0.14 0.016 0
WRPD 0 0.321 0.16 0.16 0.16 0.1602 0

REC003 20 × 5 1109 BRPD 0 0 0 0 0 0 0
ARPD 0 0.158 0.081 0.189 0.08 0 0
WRPD 0 0.18 0.18 0.721 0.18 0 0

REC005 20 × 5 1242 BRRD 0.2415 0.242 0.241 0.242 0.24 0.2415 0
ARPD 0.2415 0.249 0.241 0.249 0.24 0.2415 0
WRPD 0.2415 0.42 0.241 0.402 0.24 0.2415 0

REC007 20 × 10 1566 BRPD 0 0.702 0 0 0 0 0
ARPD 0 1.095 0.575 0.986 0.46 0 0
WRPD 0 1.405 1.149 1.149 1.15 0 0

REC009 20 × 10 1537 BRPD 0 0 0 0 0 0 0
ARPD 0.026 0.651 0.638 0.621 0.07 0 0
WRPD 0.026 1.366 2.407 1.691 0.65 0 0

REC011 20 × 10 1431 BRPD 0 0.071 0 0 0 0 0
ARPD 0 1.153 1.167 0.129 0 0 0
WRPD 0 2.656 2.655 0.978 0 0 0

REC013 20 × 15 1930 BRPD 0 1.036 0.415 0.259 0.1 0 0
ARPD 0.2746 1.79 1.461 0.893 0.53 0.1917 0
WRPD 0.7772 2.643 3.782 1.502 1.14 0.3109 0

REC015 20 × 15 1950 BRPD 0 0.769 0.154 0.051 0.05 0 0
ARPD 0.5231 1.487 1.226 0.628 0.64 0.1128 0
WRPD 1.1795 2.256 2.103 1.076 1.18 0.4615 0

REC017 20 × 15 1902 BRPD 0 0.999 0.368 0 0 0 0
ARPd 0.3628 2.453 1.277 1.33 1 0.1157 0
WRPD 0.9464 3.365 2.154 2.155 2.16 0.4732 0

REC019 30 × 10 2093 BRPD 0.2867 1.529 0.573 0.43 0.29 0.1433 0
ARPD 0.7023 2.099 0.929 1.313 0.81 0.5638 0.247
WRPD 1.2422 2.532 2.023 2.102 1.29 0.7645 0.282

REC021 30 × 10 2017 BRPD 0.6445 1.487 1.438 1.437 0.69 0.2975 0
ARPD 1.2791 1.671 1.671 1.596 1.5 1.1651 0.112
WRPD 1.4378 2.033 2.231 1.636 1.83 1.4378 0.109

REC023 30 × 10 2011 BRPD 0.3481 1.343 0.796 0.596 0.45 0.248 0
ARPD 0.4276 2.106 1.173 1.31 1.28 0.4625 0.202
WRPD 0.4973 2.884 2.381 2.038 3.08 0.4973 0.317

REC025 30 × 15 2513 BRPD 0.5571 2.388 1.632 0.835 0.4 0.2786 0
ARPD 1.0824 0.16 2.921 2.085 1.29 0.8754 0.034
WRPD 1.6315 0.168 3.94 3.233 2.43 0.154 0.122

REC027 30 × 15 2373 BRPD 0.2528 1.728 1.011 1.348 0.25 0.2528 0
ARPD 0.8512 2.463 1.419 1.605 1.27 0.8175 0.061
WRPD 1.2221 3.203 2.298 2.402 2.57 1.0535 0.121

REC029 30 × 15 2287 BRPD 0.8308 1.968 1.049 1.442 0.57 0.0875 0
ARPD 1.0494 3.109 2.58 1.888 1.42 0.8833 0
WRPD 1.443 4.067 3.935 2.492 2.97 1.1369 0

REC031 50 × 10 3045 BRPD 0.427 2.594 2.299 1.51 0.43 0.263 0.214
ARPD 0.644 3.232 3.392 2.254 1.91 0.8998 0.202
WRPD 0.92 4.237 4.532 2.692 2.66 1.3793 0.214

REC033 50 × 10 3114 BRPD 0 0.835 0.61 0 0 0 0
ARPD 0.244 1.007 0.728 0.645 0.59 0.5652 0
WRPD 0.835 1.477 1.734 0.834 1.28 0.8349 0

71Evolutionary Intelligence (2022) 15:57–79

1 3

presented in Table 13. The best outcomes of the benchmark
functions are indicated in bold.

In Table 13, MTLBO obtains the best computational
outcomes with respect to all the given metaheuristic algo-
rithms. The MTLBO algorithm obtained lowest total mean
ARPD (i.e. 0.8) which is superior value than HPSO (2.74),

ATPPSO (1.94), GA (4.31), and NCS (1.24). The perfor-
mance of proposed algorithm significantly superior out-
comes over Taillard benchmark test function. The mean
values of proposed algorithm are within the lower and upper
bound given as OR-Library.

Table 9 (continued) Problem Size Zopt DE PSOVNS DBA PSOMA HBSA HCS MTLBO

REC035 50 × 10 3277 BRPD 0 0 0 0 0 0 0

ARPD 0 0.038 0.037 0 0 0 0

WRPD 0 0.092 0.092 0 0 0 0
REC037 75 × 20 4951 BRPD 2.565 4.383 3.373 2.101 1.92 1.636 1.643

ARPD 3.001 4.949 4.872 3.537 2.93 2.2541 1.852
WRPD 3.555 5.736 5.979 4.039 4.2 2.5045 2.286

REC039 75 × 20 5087 BRPD 1.73 2.85 2.28 1.553 0.9 0.806 0.654
ARPD 1.832 3.371 3.851 2.426 1.88 1.2463 0.811
WRPD 2.005 3.951 5.347 2.83 3.38 1.553 0.914

REC041 75 × 20 4960 BRPD 2.661 4.173 3.81 2.641 1.69 1.4516 0.986
ARPD 3.35 4.867 5.095 3.684 2.72 2.1532 1.684
WRPD 3.77 5.585 6.532 4.052 3.55 2.4597 2.451

Table 10 Comparison of
MTLBO algorithm on Heller
benchmark datasets

Problems Size Max bound NEH DSOMA SG MTLBO

Hel1 20 × 10 516 518 631 515 515
Hel2 10 × 10 136 141 150 137 135

Table 11 Results achieved by
MTLBO and TLBO for Taillard
benchmark datasets

Problems Size TLBO MTLBO

ARE BRE WRE ARE BRE WRE

TA001–TA010 20 × 5 0.780 1.976 4.987 0.000 1.314 4.786
TA010–TA020 20 × 10 1.520 2.996 4.345 0.880 2.964 3.987
TA020–TA030 20 × 20 2.080 5.231 10.654 0.240 4.987 9.886
TA030–TA040 50 × 5 0.200 2.123 5.321 0.000 2.077 4.342
TA040–TA050 50 × 10 5.030 3.802 8.098 1.920 3.786 7.674
TA050–TA060 50 × 20 6.860 3.621 7.210 2.830 3.564 6.987
TA060–TA070 100 × 5 0.750 1.090 1.978 0.060 0.870 1.046
TA070–TA080 100 × 10 1.570 4.099 6.045 0.620 3.990 5.876
TA080–TA090 100 × 20 5.960 8.099 9.065 2.210 7.786 8.954
TA090–TA100 200 × 10 4.780 2.188 5.023 0.520 2.098 4.988
TA100–TA110 200 × 20 4.080 6.791 8.102 3.060 6.596 7.987
TA110–TA120 500 × 20 3.720 4.678 7.105 1.660 4.567 6.909
Average 2.738 3.891 6.494 0.830 3.717 6.118

72 Evolutionary Intelligence (2022) 15:57–79

1 3

In Table 14, the proposed algorithm compared total
flowshop time criterion over Taillard benchmark problems
which taken from http://www.cs.colos tate.edu/sched /gener
ator. MTLBO compared with PSO and RSA [82] . The
mimumium and average results obtained by MTLBO is sig-
nificantly superior than PSO and RSA.

To analyze the performance of MTLBO algorithm over
other evolutionary algorithms, Wilcoxon sign ranked test
was conducted by using achieved ARPD value. Table 15
shows significant p-value of proposed algorithm over other
evolutionary algorithms. From these experimental outcomes,
it is observed that MTLBO algorithm is more effective and
significant than GA, HPSO, ATPPSO and NCS. It is to be
noted that the p-value in this experiment is shown in bold
letters for below 0.05 value.

Fig. 7 Convergence graph of population diversity of unimodal func-
tion (fun2: Schwefels) for metaheuristic algorithms (D = 50)

Table 12 Comparison of
MTLBO with other population
based algorithms on basis
of ARPD using Taillard
Benchmark datasets

Problem PS(J X M) IG1 IG2 HDDE TLBO MTLBO

Ta010 20 × 05 0.39 0.46 1.49 0.78 0
Ta020 20 × 10 0.48 0.62 1.53 1.52 0.88
Ta030 20 × 20 0.31 0.32 1.23 2.08 0.24
Ta040 50 × 05 2.71 2.99 5.69 0.20 0
Ta050 50 × 10 3.24 3.23 5.63 5.03 1.92
Ta060 50 × 20 2.88 2.54 5.04 6.86 2.83
Ta070 100 × 05 3.82 3.56 7.22 0.75 0.06
Ta080 100 × 10 3.34 3.48 6.67 1.57 0.62
Ta090 100 × 20 3.03 2.82 4.41 5.96 2.21
Ta0100 200 × 10 3.85 3.63 6.91 4.78 0.52
Ta0110 200 × 20 2.31 2.20 4.34 4.08 3.06
Ta0120 500 × 20 1.32 1.33 3.93 3.72 1.66
Average 2.31 2.27 4.51 3.11 0.83

Fig. 8 Comparison of mean value of BRPD on Reeves benchmark
datasets

Fig. 9 Comparison of mean value of ARPD on Reeves benchmark
datasets

http://www.cs.colostate.edu/sched/generator
http://www.cs.colostate.edu/sched/generator

73Evolutionary Intelligence (2022) 15:57–79

1 3

5.6 MTLBO algorithm on VRF benchmark datasets

New benchmark test functions such as VRF_hard_small
benchmark and VRF_hard_large benchmark are proposed
in [70]. These benchmark functions are selected to perform
experiments on PFSSP. These functions consist of 240 small

instances and 240 large instances, with upto 800 jobs on
60 machines. The small instances have following combina-
tions of n = number of jobs, m = number of machines i.e. n
= [10, 20, 30, 40, 50, 60] and m = [5, 10, 15, 20] and large
instances consist of n = [100, 200, 300, 400, 500, 600, 700,
800] and m = [20, 40, 60].

The stopping criterion to perform VRF benchmark func-
tion is evaluated with maximum running CPU time as follows

where t indicates the amount of time (t = 5 ms). Each of the
instance runs at least 25 times to obtain the best outcomes.

To measure the effectiveness of the metaheuristic method,
ARPD is calculated for each instance as in Eq. (17).

The computational results of the MTLBO over differ-
ent metaheursitic algorithms with VRF small instance are
given in the Table 16. The best outcomes of the experi-
mental are shown in bold letters. The performance of
MTLBO is calculated using ARPD and SD values. In
Table 16, the average value for MTLBO with VRF small
instances for ARPD and SD are 0.10 and 0.03 respectively.
From Table 16, it is observed that ARPD and SD value of
MTLBO is superior than DPSO, GA-VNS, HDE and HPSO
algorithms.

The computational results of MTLBO over differ-
ent metaheursitic algorithms with VRF Large instances
are given in the Table 17. The best outcomes of the

(20)Maximum running CPU time = (n.(m∕2).t)

Fig. 10 Comparison of mean value of WRPD on Reeves benchmark
datasets

Table 13 Comparison of MTLBO algorithm with other evolutionary algorithms over Taillard benchmark problems

Problems Size GA HPSO ATPPSO NCS MTLBO

ARPD Mean ARPD Mean ARPD Mean ARPD Mean ARPD Mean

Ta010 20 × 05 2.49 1135.6 0.68 1278 0.22 1110.4 0.00 1108 0 1108
Ta020 20 × 10 2.63 1632.8 1.94 1587.5 1.09 1608.3 0.94 1606 0.9 1598
Ta030 20 × 20 2.73 2237.5 1.44 2307 0.72 2193.6 0.28 2184 0.2 2180
Ta040 50 × 05 1.21 2815.7 0.08 2724 0.02 2782.5 0.00 2782 0 2782
Ta050 50 × 10 5.24 3225.5 3.09 3053.6 2.97 3156.1 2.16 3131.2 1.9 3085
Ta060 50 × 20 6.73 4008.6 5.46 3944.6 3.92 3903.2 2.78 3860.6 2.8 3752
Ta070 100 × 05 0.95 5372.3 0.75 5493 0.43 5344.9 0.08 5326 0.1 5324
Ta080 100 × 10 3.62 6056.3 1.57 5913.3 0.94 5900.1 0.79 5891.4 0.6 5844
Ta090 100 × 20 7.40 6910.3 5.86 6598.5 3.99 6690.6 2.62 6602.8 2.2 6430
Ta0100 200 × 10 3.28 11025.6 4.88 10796.9 1.60 10846.2 0.55 10734 0.5 10675
Ta0110 200 × 20 8.70 12269.5 3.98 11,832.1 4.39 11,783 3.06 11,633.6 3.1 11,284
Ta0120 500 × 20 6.76 28,245 3.12 27,282 2.98 27,246.5 1.66 26,897.2 1.7 26,453
Average 4.31 2.74 1.94 1.24 0.8

74 Evolutionary Intelligence (2022) 15:57–79

1 3

Table 14 Comparision of
MTLBO on total flowshop
time criterion over Taillard
benchmark problems

Problems PSO RSA MTLBO

MIN Average MIN Average MIN Average

20 × 20 34,518 35,026.50 32,443 33,770.60 32,273 33,570.40
20 × 20 33,243 34,039.80 32,166 33,406.90 31,892 33,362.20
20 × 20 35,489 36,207.80 35,066 35,610.70 34,752 35,610.50
20 × 20 32,234 32,836.50 30,915 31,925.50 30,112 31,621.50
20 × 20 35,086 35,471.40 34,354 35,027.40 33,786 34,786.80
50 × 20 136,668 138,212.60 139,522 142,179.60 138,986 142,111.20
50 × 20 136,262 140,163.70 141,745 142,899 141,672 141,765
50 × 20 138,031 142,076.30 145,079 146,329.20 144,872 145,984.80
50 × 20 134,550 137,505.70 139,607 140,680.70 138,211 140,113.70
50 × 20 135,915 138,541.90 140,990 142,256 134,651 141,986
100 × 20 428,602 433,439.20 428,602 433,439.20 428,032 433,112.90
100 × 20 430,677 434,747.60 430,677 434,747.60 430,654 433,211.90
100 × 20 417,704 426,910.40 417,704 426,910.40 417,702 425,872.40
100 × 20 418,411 427,356.90 418,411 427,356.90 418,409 426,112.90
100 × 20 416,454 424,499.50 416,454 424,499.50 416,454 423,212.20
200 × 20 1,421,104 1,440,869 1,421,104 1,440,869 1,421,104 1,440,762
200 × 20 1,447,880 1,463,356 1,447,880 1,463,356 1,447,878 1,463,119
200 × 20 1,462,239 1,479,747 1,462,239 1,479,747 1,462,239 1,479,117
200 × 20 1,434,704 1,450,640 1,434,704 1,450,640 1,434,702 1,450,081
200 × 20 1,434,687 1,456,151 1,434,687 1,456,151 1,434,687 1,455,113

experiments is shown in bold letters. The performance of
MTLBO algorithm is calculated using ARPD and SD val-
ues. In Table 17, the average value of the MTLBO with
VRF small instances for ARPD and SD are 2.61 and 0.14
respectively. From Table 17, it is observed that obtained
results using ARPD and SD value for MTLBO algorithm
are statistically better than DPSO, GA-VNS, HDE and
HPSO algorithms.

6 Conclusion

This paper proposed a Modified Teaching Learning Based
Optimization with Opposite Based Learning approach to
find solution of Permutation Flow-Shop Scheduling Prob-
lem. OBL approach is used to enhance the quality of the

initial population and convergence speed. MTLBO is devel-
oped to determine the PFSSP efficiently using the Largest
Order Value rule-based random-key, to change an individual
into discrete job schedules. Based on Nawaz–Enscore–Ham
heuristic mechanism, the new initial populations are gener-
ated in MTLBO. To enhance the local exploitation ability,
the effective swap, insert and inverse structures are incorpo-
rated into the MTLBO.

The statistical result and analysis of the MTLBO based
on ten benchmark functions and Wilcoxon signed rank test
shows the effectiveness of the algorithm. The computational
results over five well-known benchmark functions such
as Carlier, Reeves, Heller, Taillard and VRF benchmark
instances set indicates that MTLBO is the most powerful and
convenient method to solve PFSSP. The performance meas-
ures of the proposed algorithm are calculated using ARPD,

75Evolutionary Intelligence (2022) 15:57–79

1 3

Fig. 11 Convergence plot of makespan over MTBLO and metaheuristic algorithms on Taillard functions

Table 15 The p-value obtained by MTLBO versus other metaheuris-
tic algorithms (p ≤ 0.05)

Metaheuristic algorithms p-value

MTLBO versus HPSO 3.224E−03
MTLBO versus GA 3.220E−03
MTLBO versus ATPPSO 8.675E−04
MTLBO versus NCS 2.210E−03

BRPD, and WRPD over all datasets. The performance of
MTLBO is tested against state-of-the-art algorithms. It is
observed that MTLBO algorithm works effectively in most
of the cases. Thus, by conducting Wilcoxon signed test, it is
proved that MTLBO algorithm is much more effective than
other metaheuristic algorithms. The future research direction
focus on hybrid flow shop scheduling and multi-objective
flow shop problems.

76 Evolutionary Intelligence (2022) 15:57–79

1 3

Table 16 Comparison of
MTLBO algorithm with other
evolutionary algorithms over
VRF hard small benchmark (t
= 5 ms)

Instances DPSO GA-VNS HDE HPSO MTLBO

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

10 × 05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 × 05 0.02 0.03 0.01 0.02 0.04 0.05 0.01 0.03 0.00 0.00
20 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.18 0.00 0.00
20 × 15 0.01 0.01 0.00 0.00 0.00 0.00 0.40 0.30 0.00 0.00
20 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.22 0.00 0.00
30 × 05 0.18 0.14 0.25 0.15 0.34 0.21 0.17 0.22 0.07 0.04
30 × 10 0.14 0.15 0.09 0.08 0.18 0.24 0.42 0.41 0.00 0.00
30 × 15 0.11 0.13 0.01 0.01 0.11 0.10 0.32 0.37 0.01 0.01
30 × 20 0.17 0.12 0.02 0.01 0.13 0.09 1.02 0.32 0.00 0.00
40 × 05 0.53 0.21 0.87 0.26 1.00 0.28 0.09 0.32 0.22 0.03
40 × 10 0.31 0.22 0.39 0.18 0.48 0.22 2.18 0.40 0.06 0.04
40 × 15 0.21 0.19 0.24 0.14 0.25 0.16 2.02 0.48 0.00 0.00
40 × 20 0.22 0.13 0.18 0.11 0.25 0.15 1.76 0.47 0.00 0.00
50 × 5 0.69 0.23 0.39 0.26 1.36 0.36 1.74 0.38 0.32 0.11
50 × 10 0.44 0.19 0.76 0.24 0.67 0.26 2.57 0.40 0.16 0.05
50 × 15 0.36 0.21 0.69 0.21 0.58 0.25 2.38 0.51 0.08 0.03
50 × 20 0.34 0.16 0.65 0.25 0.58 0.19 2.39 0.49 0.00 0.00
60 × 05 1.02 0.26 2.11 0.33 1.75 0.31 2.37 0.49 0.50 0.15
60 × 10 0.71 0.25 1.37 0.25 1.08 0.25 2.97 0.39 0.26 0.12
60 × 15 0.52 0.25 1.34 0.26 0.95 0.24 3.00 0.57 0.45 0.08
60 × 20 0.51 0.22 1.07 0.28 0.89 0.27 3.07 0.47 0.23 0.04
Average 0.27 0.13 0.44 0.13 0.44 0.15 1.23 0.31 0.10 0.03

Table 17 Comparison of
MTLBO algorithm with other
evolutionary algorithms over
VRF hard large benchmark (t
= 5 ms)

Instances DPSO GA-VNS HDE HPSO MTLBO

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

100 × 20 1.09 0.25 0.89 0.20 1.86 0.23 4.98 0.43 0.51 0.07
100 × 40 0.95 0.28 0.75 0.31 1.60 0.20 4.97 0.45 0.32 0.14
100 × 60 0.84 0.25 0.74 0.26 1.43 0.18 4.28 0.47 0.72 0.24
200 × 20 2.38 0.21 2.45 0.33 3.90 0.26 4.95 0.42 1.05 0.14
200 × 40 2.36 0.31 2.05 0.30 3.41 0.25 4.92 0.43 0.93 0.10
200 × 60 1.84 0.24 1.75 0.30 3.24 0.24 5.13 0.62 0.79 0.12
300 × 20 3.18 0.28 3.27 0.25 4.54 0.36 5.53 0.64 1.51 0.14
300 × 40 2.81 0.25 2.82 0.24 4.16 0.37 5.67 0.60 1.56 0.13
300 × 60 2.61 0.21 2.51 0.28 4.11 0.43 5.36 0.65 1.78 0.20
400 × 20 3.88 0.25 4.00 0.28 5.02 0.78 5.95 0.63 1.87 0.13
400 × 40 3.43 0.33 3.33 0.18 4.60 0.54 6.97 0.72 2.76 0.12
400 × 60 3.24 0.20 4.78 0.29 4.87 0.58 6.95 0.73 1.97 0.11
500 × 20 4.60 0.24 3.98 0.97 4.76 0.52 6.54 0.71 2.03 0.15
500 × 40 4.08 0.28 3.09 0.37 5.87 0.64 6.43 0.74 5.89 0.15
500 × 60 3.82 0.24 3.87 0.67 5.12 0.86 7.86 0.79 2.17 0.13
600 × 20 5.21 0.26 5.98 0.54 5.67 0.83 7.96 0.81 2.76 0.14
600 × 40 4.90 0.26 4.76 0.87 4.83 0.63 7.65 0.79 5.15 0.19
600 × 60 4.60 0.27 4.87 0.26 6.45 0.92 7.78 0.82 3.76 0.14
700 × 20 6.60 0.32 4.76 0.56 5.65 0.65 8.56 0.89 3.08 0.15
700 × 40 5.54 0.22 5.76 0.87 4.87 0.52 8.96 0.88 5.79 0.15
700 × 60 5.49 0.30 4.88 0.45 4.56 0.48 9.76 0.94 4.89 0.19
800 × 20 6.88 0.27 5.67 0.27 6.35 0.84 9.98 0.94 3.87 0.14
800 × 40 6.37 0.25 4.87 0.76 6.76 0.96 9.65 0.97 3.98 0.15
800 × 60 6.06 0.22 4.39 0.65 4.87 0.63 7.87 0.94 3.56 0.10
Average 3.87 0.26 3.59 0.44 4.52 0.54 6.86 0.71 2.61 0.14

77Evolutionary Intelligence (2022) 15:57–79

1 3

References

 1. Pinedo ML (2016) Scheduling: theory, algorithms, and systems.
Springer, Berlin. https ://doi.org/10.1007/978-1-4614-2361-4

 2. Grabowski J, Pempera J (2000) Sequencing of jobs in some
production system. Eur J Oper Res 125(3):535–550. https ://doi.
org/10.1016/S0377 -2217(99)00224 -6

 3. Du W, Tang Y, Leung SYS, Tong L, Vasilakos AV, Qian F (2018)
Robust order scheduling in the discrete manufacturing indus-
try: a multiobjective optimization approach. IEEE Trans Ind Inf
14(1):253–264. https ://doi.org/10.1109/TII.2017.26640 80

 4. Hidri L, Gharbi A (2017) New efficient lower bound for the
hybrid flow shop scheduling problem with multiprocessor tasks.
IEEE Access 5:6121–6133. https ://doi.org/10.1109/ACCES
S.2017.26961 18

 5. Bargaoui H, Driss OB, Ghédira K (2017) Towards a distrib-
uted implementation of chemical reaction optimization for the
multi-factory permutation flowshop scheduling problem. Proce-
dia Comput Sci 112:1531–1541. https ://doi.org/10.1016/j.procs
.2017.08.057

 6. Deng F, He Y, Zhou S, Yu Y, Cheng H, Wu X (2018) Compressive
strength prediction of recycled concrete based on deep learning.
Constr Build Mater 175:562–569

 7. Cho HM, Jeong IJ (2017) A two-level method of production
planning and scheduling for bi-objective reentrant hybrid flow
shops. Comput Ind Eng 106:174–181. https ://doi.org/10.1016/j.
cie.2017.02.010

 8. Pan QK (2016) An effective co-evolutionary artificial bee
colony algorithm for steelmaking-continuous casting schedul-
ing. Eur J Oper Res 250(3):702–714. https ://doi.org/10.1016/j.
ejor.2015.10.007

 9. Zhang Y, Wang J, Liu Y (2017) Game theory based real-time
multi-objective flexible job shop scheduling considering envi-
ronmental impact. J Clean Prod 167:665–679. https ://doi.
org/10.1016/j.jclep ro.2017.08.068

 10. Johnson SM (1954) Optimal two and three stage production sched-
ules with setup times included. Naval Res Logist Q 1(1):61–68.
https ://doi.org/10.1002/nav.38000 10110

 11. Ruiz R, Stützle T (2008) An iterated greedy heuristic for the
sequence dependent setup times flowshop problem with makespan
and weighted tardiness objectives. Eur J Oper Res 187(3):1143–
1159. https ://doi.org/10.1016/j.ejor.2006.07.029

 12. Ozolins A (2017) Improved bounded dynamic programming algo-
rithm for solving the blocking flow shop problem. Central Eur J
Oper Res. https ://doi.org/10.1007/s1010 0-017-0488-5

 13. Toumi S, Jarboui B, Eddaly M, Rebaï A (2017) Branch-and-bound
algorithm for solving blocking flowshop scheduling problems with
makespan criterion. Int J Math Oper Res 10(1):34–48. https ://doi.
org/10.1504/IJMOR .2017.08074 3

 14. Selen WJ, Hott DD (1986) A mixed-integer goal-programming
formulation of the standard flow-shop scheduling problem. J Oper
Res Soc 37(12):1121–1128. https ://doi.org/10.1057/jors.1986.197

 15. Grabowski J, Wodecki M (2004) A very fast tabu search algorithm
for the permutation flow shop problem with makespan criterion.
Comput Oper Res 31(11):1891–1909. https ://doi.org/10.1016/
S0305 -0548(03)00145 -X

 16. Xu J, Zhang J (2014) Exploration-exploitation tradeoffs in
metaheuristics: survey and analysis. In: Proceedings of the
33rd Chinese control conference, pp 8633–8638. https ://doi.
org/10.1109/ChiCC .2014.68964 50

 17. Goldberg DE, Holland JH (1988) Genetic algorithms and
machine learning. Mach Learn 3(2):95–99. https ://doi.
org/10.1023/A:10226 02019 183

 18. Dorigo M, Blum C (2005) Ant colony optimization theory:
a survey. Theoret Comput Sci 344(2):243–278. https ://doi.
org/10.1016/j.tcs.2005.05.020

 19. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces.
J Global Optim 11(4):341–359. https ://doi.org/10.1023/A:10082
02821 328

 20. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimi-
zation algorithm: Harmony search. SIMULATION 76(2):60–68.
https ://doi.org/10.1177/00375 49701 07600 201

 21. Yang XS (2009) Firefly algorithms for multimodal optimization.
In: Proceedings of the 5th International Conference on Stochas-
tic Algorithms: Foundations and Applications, Springer-Verlag,
Berlin, Heidelberg, SAGA’09, pp 169–178

 22. Yang XS (2010) A new metaheuristic bat-inspired algorithm.
Springer, Berlin, pp 65–74

 23. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algo-
rithm: a metaheuristic approach to solve structural optimization
problems. Eng Comput 29(1):17–35. https ://doi.org/10.1007/
s0036 6-011-0241-y

 24. Rao R, Savsani V, Vakharia D (2011) Teaching learning based
optimization: a novel method for constrained mechanical design
optimization problems. Comput Aided Des 43(3):303–315. https
://doi.org/10.1016/j.cad.2010.12.015

 25. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61. https ://doi.org/10.1016/j.adven gsoft
.2013.12.007

 26. Wang GG, Deb S, Coelho L (2015a) Earthworm optimization
algorithm: a bio-inspired metaheuristic algorithm for global opti-
mization problems. Int J Bioinspir Comput 12:1–22

 27. Wang GG, Deb S, Cui Z (2015b) Monarch butterfly optimization.
Neural Comput Appl. https ://doi.org/10.1007/s0052 1-015-1923-y

 28. Karaboga D, Basturk B (2007) Artificial bee colony (abc) optimi-
zation algorithm for solving constrained optimization problems.
In: Foundations of fuzzy logic and soft computing. Springer, Ber-
lin, pp 789–798

 29. Rao R (2016) Jaya: a simple and new optimization algorithm for
solving constrained and unconstrained optimization problems. Int
J Ind Eng Comput 7(1):19–34

 30. Wang GG (2016) Moth search algorithm: a bio-inspired
metaheuristic algorithm for global optimization problems. Memet
Comput. https ://doi.org/10.1007/s1229 3-016-0212-3

 31. Zhang Y, fang Song X, wei Gong D, (2017) A return-cost-
based binary firefly algorithm for feature selection. Inf Sci
418–419:561–574. https ://doi.org/10.1016/j.ins.2017.08.047

 32. Reeves CR (1995) A genetic algorithm for flowshop sequencing.
Comput Oper Res 22(1):5–13. https ://doi.org/10.1016/0305-
0548(93)E0014 -K, genet ic Algor ithms

 33. Mirabi M, Fatemi Ghomi SMT, Jolai F (2014) A novel hybrid
genetic algorithm to solve the make-to-order sequence-depend-
ent flow-shop scheduling problem. J Ind Eng Int 10(2):57. https
://doi.org/10.1007/s4009 2-014-0057-7

 34. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2007) A
particle swarm optimization algorithm for makespan and total
flowtime minimization in the permutation flowshop sequenc-
ing problem. Eur J Oper Res 177(3):1930–1947. https ://doi.
org/10.1016/j.ejor.2005.12.024

 35. Liu D, Tan KC, Goh CK, Ho WK (2007) A multiobjective
memetic algorithm based on particle swarm optimization. IEEE
Trans Syst Man Cybern Part B (Cybern) 37(1):42–50. https ://
doi.org/10.1109/TSMCB .2006.88327 0

 36. Gao J, Chen R, Deng W (2013) An efficient tabu search
algor ithm for the distr ibuted permutation f lowshop

https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1016/S0377-2217(99)00224-6
https://doi.org/10.1016/S0377-2217(99)00224-6
https://doi.org/10.1109/TII.2017.2664080
https://doi.org/10.1109/ACCESS.2017.2696118
https://doi.org/10.1109/ACCESS.2017.2696118
https://doi.org/10.1016/j.procs.2017.08.057
https://doi.org/10.1016/j.procs.2017.08.057
https://doi.org/10.1016/j.cie.2017.02.010
https://doi.org/10.1016/j.cie.2017.02.010
https://doi.org/10.1016/j.ejor.2015.10.007
https://doi.org/10.1016/j.ejor.2015.10.007
https://doi.org/10.1016/j.jclepro.2017.08.068
https://doi.org/10.1016/j.jclepro.2017.08.068
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1016/j.ejor.2006.07.029
https://doi.org/10.1007/s10100-017-0488-5
https://doi.org/10.1504/IJMOR.2017.080743
https://doi.org/10.1504/IJMOR.2017.080743
https://doi.org/10.1057/jors.1986.197
https://doi.org/10.1016/S0305-0548(03)00145-X
https://doi.org/10.1016/S0305-0548(03)00145-X
https://doi.org/10.1109/ChiCC.2014.6896450
https://doi.org/10.1109/ChiCC.2014.6896450
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00521-015-1923-y
https://doi.org/10.1007/s12293-016-0212-3
https://doi.org/10.1016/j.ins.2017.08.047
https://doi.org/10.1016/0305-0548(93)E0014-K,%20genetic%20Algorithms
https://doi.org/10.1016/0305-0548(93)E0014-K,%20genetic%20Algorithms
https://doi.org/10.1007/s40092-014-0057-7
https://doi.org/10.1007/s40092-014-0057-7
https://doi.org/10.1016/j.ejor.2005.12.024
https://doi.org/10.1016/j.ejor.2005.12.024
https://doi.org/10.1109/TSMCB.2006.883270
https://doi.org/10.1109/TSMCB.2006.883270

78 Evolutionary Intelligence (2022) 15:57–79

1 3

scheduling problem. Int J Prod Res 51(3):641–651. https ://doi.
org/10.1080/00207 543.2011.64481 9

 37. Liu Y, Yin M, Gu W (2014) An effective differential evolu-
tion algorithm for permutation flow shop scheduling problem.
Appl Math Comput 248:143–159. https ://doi.org/10.1016/j.
amc.2014.09.010

 38. Li X, Yin M (2013) A hybrid cuckoo search via lévy flights for
the permutation flow shop scheduling problem. Int J Prod Res
51(16):4732–4754. https ://doi.org/10.1080/00207 543.2013.76798
8

 39. Sioud A, Gagné C (2018) Enhanced migrating birds optimization
algorithm for the permutation flow shop problem with sequence
dependent setup times. Eur J Oper Res 264(1):66–73. https ://doi.
org/10.1016/j.ejor.2017.06.027

 40. Fernandez-Viagas V, Perez-Gonzalez P, Framinan JM (2018) The
distributed permutation flow shop to minimise the total flow-
time. Comput Ind Eng 118:464–477. https ://doi.org/10.1016/j.
cie.2018.03.014

 41. Meng T, Pan QK, Li JQ, Sang HY (2018) An improved migrat-
ing birds optimization for an integrated lot-streaming flow shop
scheduling problem. Swarm Evol Comput 38:64–78. https ://doi.
org/10.1016/j.swevo .2017.06.003

 42. Han Y, Gong D, Li J, Zhang Y (2016) Solving the blocking flow
shop scheduling problem with makespan using a modified fruit fly
optimisation algorithm. Int J Prod Res 54(22):6782–6797. https ://
doi.org/10.1080/00207 543.2016.11776 71

 43. Baykasolu A, Hamzadayi A, Köse SY (2014) Testing the perfor-
mance of teachinglearning based optimization (tlbo) algorithm
on combinatorial problems: flow shop and job shop schedul-
ing cases. Inf Sci 276:204–218. https ://doi.org/10.1016/j.
ins.2014.02.056

 44. Xie Z, Zhang C, Shao X, Lin W, Zhu H (2014) An effective hybrid
teachinglearning-based optimization algorithm for permutation
flow shop scheduling problem. Adv Eng Softw 77:35–47. https ://
doi.org/10.1016/j.adven gsoft .2014.07.006

 45. Shao W, Pi D, Shao Z (2016) A hybrid discrete optimization algo-
rithm based on teachingprobabilistic learning mechanism for no-
wait flow shop scheduling. Knowl Based Syst 107:219–234. https
://doi.org/10.1016/j.knosy s.2016.06.011

 46. qing Li J, ke Pan Q, Mao K, (2015) A discrete teaching-learn-
ing-based optimisation algorithm for realistic flowshop resched-
uling problems. Eng Appl Artif Intell 37:279–292. https ://doi.
org/10.1016/j.engap pai.2014.09.015

 47. Shao W, Pi D, Shao Z (2017) An extended teaching-learning
based optimization algorithm for solving no-wait flow shop
scheduling problem. Appl Soft Comput 61:193–210. https ://doi.
org/10.1016/j.asoc.2017.08.020

 48. Buddala R, Mahapatra SS (2017) Improved teaching-learning-
based and jaya optimization algorithms for solving flexible
flow shop scheduling problems. J Ind Eng Int 1:1. https ://doi.
org/10.1007/s4009 2-017-0244-4

 49. Abdel-Basset M, Manogaran G, El-Shahat D, Mirjalili S (2018) A
hybrid whale optimization algorithm based on local search strat-
egy for the permutation flow shop scheduling problem. Future
Gener Comput Syst 85:129–145. https ://doi.org/10.1016/j.futur
e.2018.03.020

 50. Rao RV, Patel V (2013) Multi-objective optimization of two stage
thermoelectric cooler using a modified teachinglearning-based
optimization algorithm. Eng Appl Artif Intell 26(1):430–445.
https ://doi.org/10.1016/j.engap pai.2012.02.016

 51. Satapathy SC, Naik A (2011) Data clustering based on teaching-
learning-based optimization. In: Panigrahi BK, Suganthan PN,
Das S, Satapathy SC (eds) Swarm, evolutionary, and memetic
computing. Springer, Heidelberg, pp 148–156

 52. Jin H, Wang Y (2014) A fusion method for visible and infrared
images based on contrast pyramid with teaching learning based

optimization. Infrared Phys Technol 64:134–142. https ://doi.
org/10.1016/j.infra red.2014.02.013

 53. Rao RV, Patel V (2013) An improved teaching-learning-based
optimization algorithm for solving unconstrained optimization
problems. Sci Iran 20(3):710–720. https ://doi.org/10.1016/j.scien
t.2012.12.005

 54. Waghmare G (2013) Comments on a note on teachinglearning-
based optimization algorithm. Inf Sci 229:159–169. https ://doi.
org/10.1016/j.ins.2012.11.009

 55. Das S, Konar A, Chakraborty UK (2005) Two improved differ-
ential evolution schemes for faster global search. In: Proceedings
of the 7th annual conference on genetic and evolutionary compu-
tation. GECCO ’05. ACM, New York, pp 991–998. https ://doi.
org/10.1145/10680 09.10681 77

 56. Bean JC (1994) Genetic algorithms and random keys for sequenc-
ing and optimization. ORSA J Comput 6(2):154–160. https ://doi.
org/10.1287/ijoc.6.2.154

 57. Li X, Yin M (2013) An opposition-based differential evolution
algorithm for permutation flow shop scheduling based on diver-
sity measure. Adv Eng Softw 55:10–31. https ://doi.org/10.1016/j.
adven gsoft .2012.09.003

 58. Qian B, Wang L, Hu R, Wang WL, Huang DX, Wang X (2008)
A hybrid differential evolution method for permutation flow-shop
scheduling. Int J Adv Manuf Technol 38(7):757–777. https ://doi.
org/10.1007/s0017 0-007-1115-8

 59. Tizhoosh HR (2005) Opposition-based learning: a new scheme
for machine intelligence. In: International conference on compu-
tational intelligence for modelling, control and automation and
international conference on intelligent agents, web technologies
and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701.
https ://doi.org/10.1109/CIMCA .2005.16313 45

 60. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-
based differential evolution. IEEE Trans Evol Comput 12(1):64–
79. https ://doi.org/10.1109/TEVC.2007.89420 0

 61. Wang H, Wu Z, Rahnamayan S, Kang L (2009) A scalability test
for accelerated de using generalized opposition-based learning.
In: 2009 ninth international conference on intelligent systems
design and applications, pp 1090–1095. https ://doi.org/10.1109/
ISDA.2009.216

 62. Kaveh A, Ghazaan MI (2017) Enhanced whale optimization algo-
rithm for sizing optimization of skeletal structures. Mech Based
Des Struct Mach 45(3):345–362. https ://doi.org/10.1080/15397
734.2016.12136 39

 63. Hansen P, Mladenovi N (2001) Variable neighborhood search:
principles and applications. Eur J Oper Res 130(3):449–467. https
://doi.org/10.1016/S0377 -2217(00)00100 -4

 64. Liang J, Qu B, Suganthan P, G A, (2013) Problem definitions
and evaluation criteria for the CEC 2013 special session on real-
parameter optimization. Technical report 201212, Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou,
China and Nanyang Technological University, Singapore, pp 3–18

 65. Eiben A, Smit S (2011) Parameter tuning for configuring and ana-
lyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31.
https ://doi.org/10.1016/j.swevo .2011.02.001

 66. Carlier J, Pinson E (1989) An algorithm for solving the job-shop
problem. Manage Sci 35(2):164–176. https ://doi.org/10.1287/
mnsc.35.2.164

 67. Reeves CR, Yamada T (1998) Genetic algorithms, path relinking,
and the flowshop sequencing problem. Evol Comput 6(1):45–60.
https ://doi.org/10.1162/evco.1998.6.1.45

 68. Heller J (1960) Some numerical experiments for an m Œ j flow
shop and its decision-theoretical aspects. Oper Res 8(2):178–184.
https ://doi.org/10.1287/opre.8.2.178

 69. Taillard E (1993) Benchmarks for basic scheduling problems.
Eur J Oper Res 64(2):278–285. https ://doi.org/10.1016/0377-
2217(93)90182 -M

https://doi.org/10.1080/00207543.2011.644819
https://doi.org/10.1080/00207543.2011.644819
https://doi.org/10.1016/j.amc.2014.09.010
https://doi.org/10.1016/j.amc.2014.09.010
https://doi.org/10.1080/00207543.2013.767988
https://doi.org/10.1080/00207543.2013.767988
https://doi.org/10.1016/j.ejor.2017.06.027
https://doi.org/10.1016/j.ejor.2017.06.027
https://doi.org/10.1016/j.cie.2018.03.014
https://doi.org/10.1016/j.cie.2018.03.014
https://doi.org/10.1016/j.swevo.2017.06.003
https://doi.org/10.1016/j.swevo.2017.06.003
https://doi.org/10.1080/00207543.2016.1177671
https://doi.org/10.1080/00207543.2016.1177671
https://doi.org/10.1016/j.ins.2014.02.056
https://doi.org/10.1016/j.ins.2014.02.056
https://doi.org/10.1016/j.advengsoft.2014.07.006
https://doi.org/10.1016/j.advengsoft.2014.07.006
https://doi.org/10.1016/j.knosys.2016.06.011
https://doi.org/10.1016/j.knosys.2016.06.011
https://doi.org/10.1016/j.engappai.2014.09.015
https://doi.org/10.1016/j.engappai.2014.09.015
https://doi.org/10.1016/j.asoc.2017.08.020
https://doi.org/10.1016/j.asoc.2017.08.020
https://doi.org/10.1007/s40092-017-0244-4
https://doi.org/10.1007/s40092-017-0244-4
https://doi.org/10.1016/j.future.2018.03.020
https://doi.org/10.1016/j.future.2018.03.020
https://doi.org/10.1016/j.engappai.2012.02.016
https://doi.org/10.1016/j.infrared.2014.02.013
https://doi.org/10.1016/j.infrared.2014.02.013
https://doi.org/10.1016/j.scient.2012.12.005
https://doi.org/10.1016/j.scient.2012.12.005
https://doi.org/10.1016/j.ins.2012.11.009
https://doi.org/10.1016/j.ins.2012.11.009
https://doi.org/10.1145/1068009.1068177
https://doi.org/10.1145/1068009.1068177
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1016/j.advengsoft.2012.09.003
https://doi.org/10.1016/j.advengsoft.2012.09.003
https://doi.org/10.1007/s00170-007-1115-8
https://doi.org/10.1007/s00170-007-1115-8
https://doi.org/10.1109/CIMCA.2005.1631345
https://doi.org/10.1109/TEVC.2007.894200
https://doi.org/10.1109/ISDA.2009.216
https://doi.org/10.1109/ISDA.2009.216
https://doi.org/10.1080/15397734.2016.1213639
https://doi.org/10.1080/15397734.2016.1213639
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.1287/mnsc.35.2.164
https://doi.org/10.1287/mnsc.35.2.164
https://doi.org/10.1162/evco.1998.6.1.45
https://doi.org/10.1287/opre.8.2.178
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M

79Evolutionary Intelligence (2022) 15:57–79

1 3

 70. Vallada E, Ruiz R, Framinan JM (2015) New hard benchmark for
flowshop scheduling problems minimising makespan. Eur J Oper
Res 240(3):666–677. https ://doi.org/10.1016/j.ejor.2014.07.033

 71. Zhao F, Liu Y, Zhang Y, Ma W, Zhang C (2017) A hybrid har-
mony search algorithm with efficient job sequence scheme and
variable neighborhood search for the permutation flow shop
scheduling problems. Eng Appl Artif Intell 65:178–199. https ://
doi.org/10.1016/j.engap pai.2017.07.023

 72. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tuto-
rial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms.
Swarm Evol Comput 1(1):3–18. https ://doi.org/10.1016/j.swevo
.2011.02.002

 73. Luo Q, Zhou Y, Xie J, Ma M, Li L (2014) Discrete bat algorithm
for optimal problem of permutation flow shop scheduling. Sci
World J

 74. Lin Q, Gao L, Li X, Zhang C (2015) A hybrid backtracking search
algorithm for permutation flow-shop scheduling problem. Comput
Ind Eng 85:437–446. https ://doi.org/10.1016/j.cie.2015.04.009

 75. Hamdi Imen (2015) Upper and lower bounds for the permutation
flowshop scheduling problem with minimal time lags. Optim Lett
9(3):465–482. https ://doi.org/10.1007/s1159 0-014-0761-7

 76. Davendra D, Bialic-Davendra M (2013) Scheduling flow
shops with blocking using a discrete self-organising migrat-
ing algorithm. Int J Prod Res 51(8):2200–2218. https ://doi.
org/10.1080/00207 543.2012.71196 8

 77. Ribas I, Companys R, Tort-Martorell X (2011) An iterated greedy
algorithm for the flowshop scheduling problem with block-
ing. Omega 39(3):293–301. https ://doi.org/10.1016/j.omega
.2010.07.007

 78. Wang L, Pan QK, Tasgetiren MF (2011) A hybrid harmony search
algorithm for the blocking permutation flow shop scheduling
problem. Comput Ind Eng 61(1):76–83. https ://doi.org/10.1016/j.
cie.2011.02.013

 79. Nearchou AC (2004) A novel metaheuristic approach for the flow
shop scheduling problem. Eng Appl Artif Intell 17(3):289–300.
https ://doi.org/10.1016/j.engap pai.2004.02.008

 80. Zhang C, Ning J, Ouyang D (2010) A hybrid alternate two phases
particle swarm optimization algorithm for flow shop scheduling
problem. Comput Ind Eng 58(1):1–11. https ://doi.org/10.1016/j.
cie.2009.01.016

 81. Wang H, Wang W, Sun H, Cui Z, Rahnamayan S, Zeng S (2017)
A new cuckoo search algorithm with hybrid strategies for flow
shop scheduling problems. Soft Comput 21(15):4297–4307. https
://doi.org/10.1007/s0050 0-016-2062-9

 82. Deb S, Tian Z, Fong S, Tang R, Wong R, Dey N (2018) Solv-
ing permutation flow-shop scheduling problem by rhinoceros
search algorithm. Soft Comput 22(18):6025–6034. https ://doi.
org/10.1007/s0050 0-018-3075-3

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ejor.2014.07.033
https://doi.org/10.1016/j.engappai.2017.07.023
https://doi.org/10.1016/j.engappai.2017.07.023
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.cie.2015.04.009
https://doi.org/10.1007/s11590-014-0761-7
https://doi.org/10.1080/00207543.2012.711968
https://doi.org/10.1080/00207543.2012.711968
https://doi.org/10.1016/j.omega.2010.07.007
https://doi.org/10.1016/j.omega.2010.07.007
https://doi.org/10.1016/j.cie.2011.02.013
https://doi.org/10.1016/j.cie.2011.02.013
https://doi.org/10.1016/j.engappai.2004.02.008
https://doi.org/10.1016/j.cie.2009.01.016
https://doi.org/10.1016/j.cie.2009.01.016
https://doi.org/10.1007/s00500-016-2062-9
https://doi.org/10.1007/s00500-016-2062-9
https://doi.org/10.1007/s00500-018-3075-3
https://doi.org/10.1007/s00500-018-3075-3

	A modified teaching learning metaheuristic algorithm with opposite-based learning for permutation flow-shop scheduling problem
	Abstract
	1 Introduction
	2 The description of the PFSSP
	3 Basic TLBO algorithm
	3.1 Teacher-phase (TP)
	3.2 Learner-phase (LP)
	3.3 Duplication elimination

	4 Proposed MTLBO approach
	4.1 Representation of solution for MTLBO algorithm
	4.2 Population initialization
	4.3 Opposition based learning
	4.3.1 GOBL optimization in MTLBO algorithm

	4.4 Local search approach
	4.5 Swap, insert and inverse operators
	4.5.1 Swap operator
	4.5.2 Insert operation
	4.5.3 Inverse operation

	4.6 Re-initialization structure
	4.7 Computational-complexity of MTLBO in term of big O notation

	5 Computational results and comparisons
	5.1 Experimental setup
	5.2 Testing proposed algorithm using benchmark functions
	5.2.1 Diversification and intensification of proposed algorithm
	5.2.2 Statistical analysis of proposed algorithm

	5.3 Comparison of MTLBO algorithm on Carlier benchmark datasets
	5.4 MTLBO algorithm on Reeves and Heller benchmark datasets
	5.5 MTLBO algorithm on Taillard benchmark dataset
	5.5.1 Comparison of MTLBO with basic TLBO
	5.5.2 Comparison of MTLBO with other EAs

	5.6 MTLBO algorithm on VRF benchmark datasets

	6 Conclusion
	References

