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Abstract
Teaching-Learning-Based Optimization is one of the well-known metaheuristic algorithm in the research industry. Recently, 
various population-based algorithms have been developed for solving optimization problems. In this paper, a random scale 
factor approach is proposed to modify the simple TLBO algorithm. Modified Teaching-Learning-Based Optimization with 
Opposite-Based-Learning algorithm is applied to solve the Permutation Flow-Shop-Scheduling Problem with the purpose 
of minimizing the makespan. The OBL approach is used to enhance the quality of the initial population and convergence 
speed. PFSSP is used extensively for solving scheduling problem, which belongs to the category of NP-hard optimization 
problems. First, MTLBO is developed to effectively determine the PFSSP using the Largest Order Value rule-based random 
key, so that individual job schedules are converted into discrete schedules. Second, new initial populations are generated 
in MTLBO using the Nawaz–Enscore–Ham heuristic mechanism. Finally, the local exploitation ability is enhanced in the 
MTLBO using effective swap, insert and inverse structures. The performance of proposed algorithm is validated using ten 
benchmark functions and the Wilcoxon rank test. The computational results and comparisons indicate that the proposed 
algorithm outperformed over five well-known datasets such as Carlier, Reeves, Heller, Taillards and VRF benchmark test 
functions, compared to other metaheuristic algorithms. The p-value indicated the significance and superiority of the proposed 
algorithm over other metaheuristic algorithms.

Keywords Evolutionary algorithms · Opposite-based learning · Permutation flow-shop scheduling problem · Teaching-
learning-based optimization

1 Introduction

Scheduling is a decision-making process, perform vital role 
in services, manufacturing and production industry. It is tra-
ditionally defined as a process of allocating job sequence on 
different machines that reduces the makespan (completion-
time) of a job sequence [1]. Scheduling problems are found 
in many real-world industries such as textile [2], discrete 
manufacturing industries [3], electronics [4], chemical [5], 
production of concrete [6], manufacturing of photographic 

film [7], iron and steel [8], and internet service architec-
ture [9]. Typically, scheduling problems are classified on the 
basis of production environments such as single machines, 
flow-shop, parallel-machines, open-shop, cyclic flow shop 
and Flexible Job-Shop (FJS). PFSSP is an ultimate engag-
ing research problem in the manufacturing industry with an 
objective to minimize the total completion time. It is one of 
the simplified versions of the typical Flow Shop Schedul-
ing Problem (FSSP). The first PFSSP pioneering work was 
carried out on two machines, with a view to minimize the 
completion-time [10]. In terms of complexity estimates, 
PFSSP is found to be NP hard optimization problem [11].

The approaches to solve PFSSP can be broadly grouped 
into three categories: exact, heuristics and metaheuris-
tic algorithms. The exact-algorithms: dynamic-program-
ming [12], branch and bound techniques [13], and linear-
programming [14], that can be successively adopted for 
solving small problems. However, these techniques do not 
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produce promising outcomes for large instances in reason-
able time. Therefore, heuristic techniques are generally used 
for large instances. The heuristic techniques are simple, fast 
and can be used to frame scheduling solutions [15]. A solu-
tion can be obtained in stipulated time using the heuristic 
algorithms, but the produces outcomes may not be optimal. 
Hence, metaheuristic algorithms are proposed over heu-
ristic algorithms. An existing metaheuristic algorithms for 
any given problem provide balance between diversification 
and intensification [16]. There are many nature-inspired 
algorithms that are used to solve the PFSSP such as genetic 
algorithm [17], ant colony optimization [18], differential 
evolution [19], harmony search [20], firefly algorithm [21], 
bat algorithm [22], cuckoo search [23], TLBO [24], grey 
wolf algorithm [25], earthworm optimization algorithm [26], 
monarch butterfly optimization [27], artificial bee colony 
algorithm  [28], jaya algorithm  [29], moth search algo-
rithm [30], return-cost-based binary FFA (Rc-BBFA) [31] 
etc. To overcome the problems faced by single metaheuris-
tic algorithm, recently hybridization of algorithms i.e. com-
bination of two or more local or global search algorithms 
are used. This also results in increased performance of the 
metaheuristic algorithms. As the hybridization algorithms 
can find high-quality feasible outcomes in reasonable time, 
they are recently used in research development of PFSSP. 
The advantages for selection of TLBO algorithm, it is easy 
to implement and easily applicable for practical applica-
tion. Selection of parameter tune problem is not here. It is 
not required any mutation and crossover parameters as like 
genetic algorithm. The performance of TLBO is better than 
comparative other metaheuristic algorithms. The proper pre-
caution have to take for TLBO algorithm as convergence 
rate is quickly that is main disadvantage of this algorithm.

In recent decades, researchers are focusing on the 
hybridization of the genetic algorithm in search of mini-
mum makespan of PFSSP [32]. Hybrid Genetic Algorithm 
(HGA) [33] was proposed to solve sequence independence 
of PFSSP. The objective of Particle Swarm Optimization 
(PSO) for PFSSP, i.e. PSOVNS [34] was to minimize the 
makespan and the total-flow time. Also, the effective PSO 
with local search simulated annealing algorithm was used 
for PFSSP, which balance the exploitation and explora-
tion [35]. Tabu-search-algorithm (TSA) hybridized with 
improved global search algorithm for solving PFSSP [36]. 
Hybrid Differential Evolution (HDE) algorithm combined 
with greedy based local search and Individual Improving 
Scheme (IIS) was developed to elevate the feasible outcomes 
quality [37]. The novel Hybrid Cuckoo Search (HCS) was 
proposed to minimize the makespan and total flow time for 
solving PFSSP [38]. Enhanced Migrating Bird Optimiza-
tion (MBO) algorithm was also used to solve a scheduling 
problem [39]. For minimizing the total flowtime, distributed 
PFSSP was introduced [40]. While, Improved Migrating 

Birds Optimization (IMMBO) and a Hybrid-multi-objec-
tive Discrete Artificial-Bee-Colony (HDABC) were used to 
minimize the makespan [41]. Flow shop-scheduling problem 
to minimize makespan by modified fruit-fly optimization 
algorithm [42]

Teaching-Learning-Based Optimization (TLBO) was 
suggested by Rao et al. [24]. It was inspired from the teach-
ing-learning process and it proved to be efficient. The main 
advantage of using TLBO is that, it is free from any algo-
rithm-parameters. Due to its characteristics, the TLBO algo-
rithm has been gaining recognition in the research industry. 
The electrochemical discharge machining technique and 
electrochemical-machining mechanism have been designed 
using TLBO algorithm [43]. The efficiency of TLBO algo-
rithm was tested on flow-shop and Job-Shop-Scheduling 
Problem (JSSP) [44]. Shao et al. [45] applied hybrid TLBO 
algorithm combined with simulated annealing for solving 
PFSSP. The discrete TLBO algorithm (DTLBO) for solv-
ing flowshop rescheduling problem [46]. The probabilistic 
TLBO algorithm was used to solve no-wait flow-shop sched-
uling problem (NWFSSO) with high completion-time [47]. 
The flexible flow shop scheduling problems were solved 
using the improved TLBO and the JAYA algorithm [48]. The 
Whale-Optimization-Algorithm (WOA) with a local search 
approach was also used for solving PFSSP [49].

With this background, the primary contributions of this 
paper are listed below: 

1. MTLBO with OBL method is applied for solving PFSSP. 
The OBL approach is used to enhance the quality of 
initial populations (individuals). Using Largest-Order-
Value (LOV) rule based random key, MTLBO algorithm 
is developed to solve PFSSP effectively by changing 
individuals into discrete job sequences. Nawaz–Encore–
Ham (NEH) heuristic method is combined with discrete 
job sequence to initialize a high quality and a diverse 
population. Moreover, to enhance the local exploitation 
ability, the effective swap, insert and inverse structures 
are included into the MTLBO algorithm.

2. In order to evaluate and analyze the effectiveness of the 
proposed algorithm, computational experiments are con-
ducted using ten benchmark test functions and Wilcoxon 
signed-rank test.

3. Comprehensive extensive experiments are conducted 
using different well-known datasets such as Carlier, 
Reeves, Heller, Taillards and VRF benchmark test func-
tions.

4. To validate its performance, the MTLBO algorithm is 
compared with various well-known metaheuristic algo-
rithms.

The structure of the paper is as follows: Sect. 2 presents the 
description of the PFSSP. Section 3 provides the related work 
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of basic TLBO algorithm. Section 4 describes the proposed 
algorithm MTLBO. Section 5 presents computational results 
and discussion and at last Sect. 6 discusses the conclusions. 
The symbols used to describe the PFSSP and along with their 
explanations are shown in Table 1.

2  The description of the PFSSP

In the PFSSP, the set of n jobs (j = j1, j2,… , jn) are 
consecutively handled on the set of m machines 
(M = M1,M2,… ,Mm) . As each machine can process only 
one job at a time, the handling time for each job is deter-
mined as Pi,j = (i = 1, 2,… ., n, j = 1, 2,… ,m) . Each job is 
given a task or operation on each machine and is represented 
as Tj = Tj1, Tj2,… , Tjm . The sequence followed by each job 
over each machine is the same. A schedule � is denoted as a 
permutation (� = �1,�2,… ,�n) , where � represents set of 
all permutations for n jobs. Let us assume Z(�i,m) to be the 
makespan of job ( �i ) over the machine m. S1,�i−1,�i, indicates 
initial time of job-permutation. Let us assume that P

�i,j
 repre-

sents the handling time of job ( �i ) over the machine j. Hence, 
the PFSSP can be mathematically represented as follows:

(1)Z
(
�1, 1

)
= p

�1,1

(2)
Z(�i, 1) = Z(�i−1, 1) + p

�i,1
+ S1,�i−1,�i,

i = 2, 3,… ., n

(3)Z(�i, j) = Z(�1, j − 1) + p
�1,j

, j = 2, 3,… .,m

(4)

Z(�i, j) = max(Z(�i−1, j) + Sj,�i−1,�i,

(Z(�i, j − 1)) + p
�i,1

i = 2, 3,… ., n; j = 2, 3,… .,m

where n indicates the total number of jobs, m denotes the 
machines, P represents PFSSP and Zmax is the goal to mini-
mize makespan of the last job on the last machine.

In PFSSP, main goal is minimization of the maximum 
makespan, which can be determined as

The main goal of PFSSP is to determine the optimal permu-
tation from the set of all permutations:

where �opt denotes the optimal permutation.

3  Basic TLBO algorithm

Teaching-learning process is widely known since the ancient 
times, where one individual (learner) tries to learn from 
other individual. It has been applied in optimization of two 
thermoelectric coolers  [50], cluster data  [51] and image 
processing [52].

TLBO [24]is a population-based metaheuristic algorithm, 
that has two main fundamental phases: a teacher-phase and 
the learner-phase. In teacher phase of the algorithm, teacher 
teaches or shares their knowledge to learners (students). In 
the learning phase, the group of students or learners enhance 
their knowledge through teacher or interaction among them-
selves. Figure 1 illustrates the schematic flow of basic TLBO 
algorithm.

3.1  Teacher‑phase (TP)

It invokes the exploration phase of TLBO where students learn 
from the teacher. In this stage, teacher attempts to enhance the 
mean result of the class. For the objective function f(Z) with 
N-dimensional variable, Z = (zi,1, zi,2,… , zi,N) represents the 
position of ith learner (or student) solution for N-dimensional 
problem. Thus, the class mean position with P learners (where 
P is the size of population) is represented as

The students with the optimal value (i.e. best value) in cur-
rent generation are represented as Zteacher . The position of 
each student is shown in Eq. (8)

where Zi,new and Zi,old are the ith students (learners) new and 
old positions respectively. Rand is dispersed random num-
ber in the range of [0, 1]. TF is teacher-factor which decided 

(5)Zmax(�) = Z
(
�n,m

)

(6)Z
(
�
opt
)
≤ Z

(
�n,m

)
for all �

(7)Zmean =

∑P

i=1
zi,1,

∑P

i=1
zi,2,… ,

∑P

i=1
zi,N

P

(8)Zi,new = Zi,old + rand(Zteacher − TF.ZMean)

Table 1  Symbols used

Symbols Explanation

n Indicate the total amount of jobs
m Indicate the as total number of machines
i Machine
j Job
Pi,j Total time required for job completion
Ti Task on each machine
� Set of all permutations of n jobs
Z(�i,m) Makespan of job �i on machine m
P PFSSP
Zmax Objective to minimize the completion time
Z(�opt) Optimal permutation
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average value to be altered. TF can be any 1 or 2, it can be 
generated randomly using Eq. (9) as

where TF is achieved randomly when the TLBO in range of 
[1–2], where “1” represent to no raise in proficiency-level 
and “2” represents to entire transmission of knowledge.

3.2  Learner‑phase (LP)

The learner-phase is an exploitation phase of TLBO algorithm, 
where a learner randomly collaborates with other learners to 
improve his/her proficiency. Student (Learner) Xi , learns new 
things if another student Xj(j ≠ i) has more proficiency than 
him/her. Learning process can be depicted mathematically as

where rand is a random number in the range of [0, 1], Zi,new 
it gives the preferable feasible value.

3.3  Duplication elimination

A duplicate solution should not be kept in the population as it 
may cause premature convergence of the algorithm [53, 54]. 
The duplication elimination strategy is given in Fig. 2.

(9)TF = round[1 + rand(0, 1){2 − 1}]

(10)Zi,new =

⎧⎪⎨⎪⎩

Zi,old + rand ∗
�
Zi − Zj

�
,

if f (Zi) ≤ f (Zj).

Zi,new = Zi,old + rand ∗
�
Zi − Zj

�
,

if f (Zi) > f (Zj).

4  Proposed MTLBO approach

In this section, the proposed MTLBO is explained with the 
local search strategy for makespan minimising the makes-
pan in PFSSP. The proposed algorithm flowchart is given in 
Fig. 3. The symbol and meaning of the proposed algorithm 
is shown in Table 2.

4.1  Representation of solution for MTLBO 
algorithm

The basic TLBO algorithm was initially proposed for solv-
ing different continuous-optimization examples. However, 
the PFSSP is a discrete optimization technique. The basic 
TLBO algorithm, therefore cannot be used to solve PFSSP 
directly. So, the basic TLBO has to be modified using the 

Fig. 1  The schematic flow diagram of basic TLBO

Population size, dimension of problem , 
number of generation.

Randomly generate solutions(populations)

Teacher phase

Learner  phase

Is final results
obtained?

Obtain global outcome

No

Yes
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learner1, learner2

Dimensional vector(M)

Is duplication
element

found in P

match found, alter learner
(learner1==learner2)

use randomize function to learner
learner2=rand[1,N]

Initialize upper and lower bound

Evaluate the learner2 End

NO

YES

Fig. 2  Elimination of duplicate solution in TLBO algorithm
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concept of differential evolution with random scale factor 
(DERSF) [55]. This term is scaled by scale factor (R) in a 
random way in the range (0.5, 1) and it is given as

To apply MTLBO to PFSSP, one of the key concerns is to 
create mapping rule between job sequence and the vector 
of individuals. To convert individual Zi = [zi,1, zi,2,… , zi,n] 
into job permutation �i = [�i,1,�i,2,… ,�i,n] , the follow-
ing random keys (called as robust representation  [56]) 
are used namely the Smallest Positive Value (SPV) [34], 
Largest Ranked Value (LRV) [57] and Largest Order Value 
(LOV) [58]. The SPV, LRV and LOV rules are used in exist-
ing research [38]. The job sequence relationship scheme 
plays a vital role in the developmental mechanism of the 
proposed MTLBO. If exchange of job sequence is not proper 
in PFSSP, then it will increase the computational time of the 
proposed algorithm.

In this study, LOV rule is utilized. LOV is a very simple 
method, which is focused on random-key presentation. In LOV 
rule, by ranking the individual of Zi = [zi,1, zi,2,… ., zi,n] with 
decreasing order, temp job permutation sequence is generated 
as �i = [�i,1, �i,2,… , �i,n] . Then a job sequence permutation is 
obtained as �i = [�i,1,�i,2,… ,�i,n] using Eq. (12).

where j ∈ [1,… ., n] . In Table 3, LOV-rule is described with 
an easy example (n = 6) where the solution representation 
of individual vector ( Zi ) is obtained with job dimension, 
position (location) and job permutation.

For Zi = [0.6, 0.12, 1.8, − 0.48, 1.7, − 1.06], it can be seen 
that zi,3 has the largest value, and so it is selected as the first 
order of a job permutation. After that zi,5 , zi,1 , zi,4 and zi,6 are 
preferred as job-permutation. Hence, the job sequence �i = [3, 
5, 1, 2, 4, 6] is obtained. From this formulation, the conversion 

(11)R = 0.5(1 + rand(0, 1))

(12)�i�i,j
= j

using LOV rule is clear, which makes MTLBO suitable for 
solving PFSSP.

4.2  Population initialization

This phase plays a vital role and it is applied uniformly and 
randomly. A population vector Zi = [zi,1, zi,2,… , zi,n] is ran-
domly generated. Nawaz–Enscore–Ham (NEH) method is 
used for producing good initial population. NEH is the heu-
ristic method to obtain optimal solution to the PFSSP. The 
NEH steps are described below: 

Step 1: All jobs are arranged in non-increasing procedure 
based on their overall handling time on all machines. 
Then job permutation �(i) = [�(1),�(2),… .,�(3)] is 
achieved.

Step 2: Select any two jobs permutations, for examples 
�(1) and �(2) . Then, all forms of permutation records 
of these two jobs are calculated and then an optimal 
order is taken.

Step 3: Select any job permutation �(j),(j=3,4,....,n) and 
determine best permutation of jobs by assigning the 
available position to which they had scheduled. The 
optimal arrangement is selected from the next iteration.

The outcome created by NEH algorithm is a discrete job-
permutation. To implement the MTLBO algorithm, the job 
permutation sequences are converted into individual by using 
Eq. (13), the conversion process is performed as:

where INEH,i is job-index in ith dimension of job-permutation 
( � ). Zmax,i and Zmin,i are maximum and minimum bounds. 
ZNEH,i is the individual value of given problem at the ith 
dimension.

Let us consider that all job-permutation ( � ) achieved by 
NEH heuristic approach are given as � = [2, 6, 3, 5, 1, 4]. 
Hence, the index of first carry on job sequence is given as 
value 5, index of second carry on job sequence is given as 
value 1. The index sequence ( INEH,i ) and individual value 
( ZNEH,i ) are shown in Table 4.

4.3  Opposition based learning

Many optimization techniques are developed using OBL. 
OBL is used to enhance the performance and search abil-
ity to find a solution of population based algorithms [59]. 
Rahnamayan et al. [60] first proposed OBL strategy in an 
optimization method. The main purpose of OBL is to choose 

(13)
ZNEH,i = Zmin,i +

(
Zmax,i − Zmin,i

)
n

×
(
INEH,i − 1

)
i = 1, 2,… , n

Table 2  Symbols and meaning used in proposed algorithm

Symbols Meaning

NP Population size of proposed algorithm
MaxG Maximum generation or iteration
T Maximum CPU time
Znew and Znew Old and new iteration in population
OBL Opposite Based Learning.
GOBL Generalized Opposite-Based Learning
NEH Nawaz–Enscore–Ham
Zi Design variable of problem
�i Job sequence permutation
LOV Largest Order Value
DERSF Differential Evolution with Random Scale Factor
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Fig. 3  Proposed MTLBO 
algorithm
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a better current candidate outcome by simultaneous evalu-
ation of the current outcomes and its opposite outcomes. 
Mainly, OBL is applied to any population based algorithm 
during two phases: initial population and evolutionary phase. 
We can improve the initial population of proposed MTLBO 
algorithm using OBL. The concept of OBL depends on 
opposite number and opposite point.

Opposite number : Let a z ∈ [x, y] be any real number ℝ . 
its opposite number zopp is given by

Opposite point: Let Y(z1, z2,… , zn) be point in N- dimen-
sional space where zi = [x, y]; . The opposite point of oppo-
site population ( zopp

1
, z

opp

2
,… , z

opp
n  ) is given as:

4.3.1  GOBL optimization in MTLBO algorithm

The convergence rate of MTLBO algorithm can be improved 
with the help of GOBL. Wang et al. [61] proposed General-
ized OBL model (GOBL). The proposed MTLBO approach 
uses this method to improve the performance of algorithm. 
When the premature convergence and stagnation state are 
identified, re-initialization method (i.e. OBL concept) is 
stimulated to avoid premature convergence in MTLBO 
algorithm.

4.4  Local search approach

The local search approach is applied to improve the quality 
of best scheduling (let B∗ ) such as 

(a) In the job permutation, each job in the B∗ may have 
variable dimension d, where move the job sequence to 
all other (d − 1) location.

(14)zopp = x + y − z

(15)z
opp

1
= xi + yi − zi

(b) For each movement, calculate the new schedule of the 
job permutation, i.e. consider B∗ = new schedule.

(c) Least search probability (LSP) is used for local search 
approach.

By using the Kaveh et al. [62], the probability value P is 
changed to each generation(iteration) such as

where iteration is current iteration and max_iteration is total 
number of iterations required to perform the experiments. 
Thus, changing the value of P improves the solution of the 
outcomes.

4.5  Swap, insert and inverse operators

To enhance the performance and quality of solution for 
MTLBO, some operators are chosen such as swap, insert 
and inverse. These operators would enhance local search 
ability [63] and improve the outcome solution. Let us ran-
domly take any two different positions m and n in a job 
permutation ( � ), if m < u , m will be inserted at the back of 
u. Otherwise, m is to be inserted in front of u. The details of 
these structures are as follows:

4.5.1  Swap operator

The Fig. 4 shows the swap operation. Randomly select any 
two separate locations from a job-permutation ( � ) such as 
m and u and swap them.

4.5.2  Insert operation

In Fig. 5, randomly select any two separate locations from a 
job permutation. Here job permutation ( � ) is removed from 
position m and inserted into other position u.

(16)P = 0.3

(
iteration

max _iteration

)

Table 3  Individual solutions 
represented in LOV-rule

Dimension (D) 1 2 3 4 5 6

Location 0.6 0.12 1.8 − 0.48 1.7 − 1.06
Job 3 5 1 2 4 6

Table 4  Transformation of the 
job-permutation ( � ) to the 
individual vector

Dimension (D) 1 2 3 4 5 6

Permuatation by NEH 2 6 3 5 1 4
job sequence ( INEH,i) 5 1 3 6 4 2
individual value ( ZNEH,i) 0.6 − 1.8 − 0.6 1.2 0 − 1.2
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4.5.3  Inverse operation

In Fig. 6, randomly change the subsequence between two 
separate locations of a job permutation ( � ). By perform-
ing the inverse operation, jobs in solution � and �new are 
interchanged.

4.6  Re‑initialization structure

The experiment is conducted on the proposed algorithm, 
local search is used for fast convergence of the outcomes. 
Thus, at some extent the algorithm outcomes are trapped in 
local optimum i.e. premature convergence may occur. To 
overcome this situation, re-initialization mechanism is devel-
oped. If the feasible optimal solution is not found after 40 
successive generation, then reinitialize the learners (popula-
tions). The re-initialization scenario is developed and it is 

given as: half of the populations are exchanged with the best 
populations achieved in the earlier process and another half 
of the populations are generated randomly.

4.7  Computational‑complexity of MTLBO in term 
of big O notation

Let there be n jobs and m machines in PFSSP, the size of 
population is p. Generally in EA the computation com-
plexity determine as of O (d ∗ p + fit ∗ p) , d is dimension 
of problem, fit is fitness or cost function (here minimiza-
tion of maximum makespan is cost function). In the Initial 
stage of MTLBO computational complexity of NEH O() 
and remaining population generated by randomly using 
OBL technique is O(0.5 * n2 mp) . The computational 
complexity at initial phase is O(n2mp ) + O(0.5 ∗ n2mp ). In 
teaching phase, due swap and local search computational 

Fig. 4  Local-search using swap 
operator
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Seq

um -1 m +1 mu-1 u +1 Seq
new

Fig. 5  Local-search using insert 
operator
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Seq
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Fig. 6  Local-search using 
inverse operator

mm -1 m +1 uu-1 u+1
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Seq
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complexity is O(n2mp ) . In learning phase, computational 
complexity is O(n2m∕2 ), due the learner gets information 
from teacher or exchange information themselves.

Total computation complexity of MTLBO for comput-
ing PFSSP :

O(n, m, p) = O(n2mp ) + O(0.5 ∗ n2mp ) + O(n2mp ) + 
O(0.5 ∗ n2mp )+ O(n2m∕2 ) ≈O(n2mp ) = O(50 × 1000 n2 ) 
= O(50000 n2)

5  Computational results and comparisons

This section represents the computational outcomes gener-
ated from the MTLBO algorithm. The MTLBO is tested 
over ten standard benchmark test functions which are 
taken from Liang [64]. These test functions are either uni-
modal or multimodal. The tuning for various performance 
measures are calculated from various evolutionary algo-
rithms by the best, worst, mean (average) and SD (stand-
ard-deviation) outcomes [65]. The unimodal benchmark 
functions validate accuracy and the convergence speed 
of proposed algorithm whereas multimodal benchmark 
test functions validate using the global search ability of 
proposed algorithm. Then, the computational results of 
MTLBO algorithm are analyzed using Wilcoxon signed 
rank test method. There are various kinds of stopping 
criteria in the literature of NIAs, like maximum-number 
of iterations (G) , number of function evaluation (NFEs), 
limit of time and tolerance. The experiment uses G (i.e. 
number of generations) as stopping criteria for proposed 
MTLBO algorithm.

5.1  Experimental setup

In the following computational experiments, the perfor-
mance and efficiency of MTLBO algorithm is applied on 
extensively used benchmark functions. There are mainly five 
well known benchmark functions such as 

(a) Carlier datasets (contains eight instances) consist 
of eight combinations, ranging from 11 jobs with 5 
machines to 8 jobs with 8 machines [66].

(b) Reeves and Yamada benchmark datasets (contains 
twenty-one instances) consist of seven combinations, 
ranging from 20-jobs with 5-machines to 75-jobs with 
20-machines [67].

(c) Heller datasets (contains two instances) consist of two 
combinations, ranging from 20 jobs with 10 machines 
to 10 jobs with 10 machines [68].

(d) Taillard datasets (contains 120 instances) consist of 
twelve combinations, ranging from 20 jobs with 5 
machines to 500 jobs with 20 machines [69].

(e) VRF benchmark functions [70] (each contain 240 small 
and 240 large instances, which have upto 800 jobs on 
60 machines) data is available at http://soa.iti.es.

The performance measure indicators for benchmark func-
tions are ARPD (Average Relative Percentage Deviation ), 
BRPD (Best Relative Percentage Deviation ) and WRPD 
(Worst Relative Percentage Deviation) [71]. They are cal-
culated in Eqs. (17), (18), and (19) respectively.

where Zopt is best makespan value, Zbest , Zi and Zworst are 
makespan solutions obtained in tested algorithms. Smaller 
value of ARPD indicates that the algorithm are better.

In Table 5, the given parameters are calibrate for MTLBO 
by conducting several experiments. All the experimentation 
and analysis of MTLBO algorithm have been implemented 
on an Intel 3.40 GHz core i5 processor where MTLBO algo-
rithm was programmed with Matlab 8.4 (R2014b) under 
Win7(x64) with 8 GB RAM.

5.2  Testing proposed algorithm using benchmark 
functions

In this experiment, ten unconstrained benchmark functions 
are tested using MTLBO algorithm for population size 
( NP = 50 ) and dimension ( D = 50 ). The performance of the 
MTLBO is calculated by 25 independent runs over the given 
ten benchmark functions. In Table 6, the effective results of 
MTLBO are shows in terms of performance measures such 
as best, worst, mean and SD values on different population 
based algorithms.

5.2.1  Diversification and intensification of proposed 
algorithm

The unimodal optimization function (for e.g. Fun2 : Schwe-
fels) is used to find the balance between diversification 

(17)ARPD =
Zbest − Zopt

Zopt
.100

(18)BRPD =

n∑
i=1

(
Zi − Zopt

Zopt

)
1

n
× 100

(19)WRPD =

(
Zworst − Zopt

)
× 100

Zopt

http://soa.iti.es
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(exploration) and intensification (exploitation). In the Fig. 7 
indicate the convergence of diversity of population with 
iterations for unimodal optimization function (i.e schwefels 
function). This is applied for five metaheuristic algorithms 
(i.e. GA, PSO, DE, TLBO and MTLBO). In the Fig. 7, the 
graph indicates that proposed algorithm MTLBO decrease 
gradually during the exploration, hence global optimal value 
obtained. The solution obtained during exploitation of algo-
rithm is precise and stable.

5.2.2  Statistical analysis of proposed algorithm

To investigate the MTLBO algorithm, statistical procedure 
is applied to perform analysis such as parametric and non-
parametric tests. The parametric test is based on assumptions 
made during the analysis of an experiment in computational 
intelligence. On the other hand, the non-parameter test is 
applied when the previous conclusions are not satisfied. 
Usually, this test deals with nominal or ordinal data, but it 
can also be applied to continuous data by performing the 
ranking based transformation.

The non-parametric test is applied to investigate the pro-
posed algorithm. There are two types of non-parametric tests 
such as pair-wise comparison and multiple comparisons. 
To perform analysis of the proposed algorithm, pair-wise 
comparison is applied to MTLBO. In pair-wise procedure, 
comparison is made between two methods (algorithms), by 
obtaining p-value from one another. Wilcoxon signed rank 
test is a powerful non-parametric test for the pair-wise pro-
cedure as given in [72].

In Table  7, results of Wilcoxon signed rank test for 
MTLBO algorithm, with different metaheuristic algorithms 
over ten benchmark functions are shown. The test is con-
ducted using 25 independent runs of the proposed algorithm, 
which differs significantly from other algorithms. Table 7 
records the p-value for ten unconstrained benchmark func-
tions with R+ and R− values. The R+ value indicate a sum of 
rank in which the first algorithm outperform compare to the 
second algorithm. R− value indicate a sum of ranks second 
algorithm outperforms compared to the first algorithm. The 
non significant p-value is represented in bold in Table 7.

From the Table 7, it is clear that the performance of 
the MTLBO algorithm is significantly better than other 
metaheuristic algorithms. Functions Fun1, Fun2, Fun3, 
Fun5, Fun7 and Fun10 have significant p-value ( p ≤ 0.05 ), 
in MTLBO versus DE, whereas functions Fun4, Fun6 and 
Fun9 does not have significant value.

5.3  Comparison of MTLBO algorithm on Carlier 
benchmark datasets

The effectiveness of MTLBO is compared with various 
metaheuristic algorithms on Carlier benchmark datasets. 
Table 8, shows Carlier datasets range from Car01 to Car08 
with size range from 11 × 5 to 8 × 8 . The performance of 
MTLBO is calculated using BRPD, ARPD and WRPD along 
with best makespan value ( Zopt ). The MTLBO algorithm 
is compared with L-HDE [37], PSOVNS [34], DBA [73], 
HBSA [74], and PSOMA [35].

From the Table 8, it is observed that performance of 
proposed algorithm is better than given population based 
algorithm. The effective values of MTLBO algorithm shows 
better performance by using parameters of BRPD, ARPD, 
WRPD and best makespan values.

5.4  MTLBO algorithm on Reeves and Heller 
benchmark datasets

The effectiveness of proposed algorithm is compared with 
Reeves and Heller datasets. In the Table 9 indicates Reeves 
datasets range from REC001 to REC041 with size range 
from 20× 5 to 75× 20. The performance of MTLBO is 
calculated using BRPD, ARPD and WRPD along with best 
makespan value ( Zopt ). The MTLBO algorithm is com-
pared with L-HDE, PSOVNS, DBA, HBSA, PSOMA, and 
HCS [34]. Note that, the best values are shown in bold.

From Table 9, it is clear that the efficiency of MTLBO 
is superior than given population based algorithm. The 
effective values of MTLBO algorithm shows better per-
formance by using parameters of BRPD, ARPD, WRPD 
and best makespan values.

Table 5  Parameter used for experiments of MTLBO algorithm

Parameter Value Remarks

Population size (NP) 50 The population size 50 is selected after several experiments
Stopping criteria ( i.e. here number of genera-

tions)
1000 Maximum number of iterations used as stopping criteria for algorithm

Number of runs of each problem 25 It is used for finding best possible value for a problem
Zopt Best mean makespan found so far
LSP 0.01 Least search probability value for all benchmark function such as 

Carlier, Reeves, Heller and Taillard
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The comparison of the mean value of BRPD, WRPD 
and ARPD for the dataset Reeves is shown in (Figs. 8, 9, 
10). MTLBO is compared with various population-based 
algorithms, it can be seen that MTLBO algorithm achieves 
best outcomes. In mean value of BRPD, the largest value 
PSOVNS is 2.1665. In average value of ARPD, the largest 
value on DBA is 2.5875. In mean value WRPD, the largest 

value on DBA is 3.346. MTLBO shows best and effective 
outcomes as compared to other population based algorithms. 
Hence, MTLBO is most reliable and effective algorithm for 
solving PFSSP.

In Table 10, Heller datasets have two instances such as 
Hel1 and Hel2 with the size range 20 × 10 and 10 × 10 . 
Hamdi et al. [75] determined the upper and lower bound of 

Table 6  The comparison results 
of GA, PSO, DE, HS, TLBO, 
MTLBO (D = 50)

Functions Parameters GA PSO DE HS TLBO MTLBO

 Fun1 Best 0 1.000E−08 1.000E−08 1.000E−08 0 0
Worst 0 1.000E−08 1.000E−08 1.000E−08 0 0
Mean 0 1.000E−08 1.000E−08 1.000E−08 0 0
SD 0 1.000E−08 1.000E−08 1.000E−08 0 0

 Fun2 Best 1.744E+05 1.145E+05 2.070E+05 7.753E+05 1.088E+05 5.863E+04
Worst 1.050E+06 8.660E+05 9.740E+05 9.247E+05 2.063E+05 9.088E+04
Mean 4.760E+05 3.063E+05 4.720E+05 8.737E+05 1.684E+05 7.437E+04
SD 2.138E+05 4.192E+05 1.630E+05 5.234E+05 1.850E+04 1.023E+04

 Fun3 Best 2.553E+06 2.104E+05 9.010E+03 1.608E+04 5.415E+03 3.102E+03
Worst 8.438E+08 3.655E+06 1.990E+04 3.718E+04 1.235E+04 6.113E+03
Mean 1.057E+08 8.226E+05 7.880E+03 2.781E+04 7.084E+04 3.543E+03
SD 1.493E+08 7.674E+05 2.830E+03 6.128E+03 3.594E+04 1.954E+03

 Fun4 Best 4.901E−01 3.450E+02 3.230E+02 1.460E+04 2.971E+02 1.520E+02
Worst 3.450E+01 2.250E+02 3.660E+03 5.031E+04 8.562E+02 4.163E+02
Mean 3.330E+00 9.923E+01 1.380E+03 2.983E+04 6.578E+02 3.766E+02
SD 4.883E+00 5.447E+01 8.140E+02 1.007E+04 1.760E+02 8.700E+01

 Fun5 Best 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0
Worst 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0
Mean 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0
SD 1.000E−08 1.000E−08 0 1.000E−08 1.000E−08 0

 Fun6 Best 3.657E+01 2.060E+01 4.340E+01 3.293E+01 1.750E+01 8.050E+00
Worst 9.707E+01 8.856E+01 4.340E+01 5.563E+01 4.337E+01 2.763E+00
Mean 4.723E+01 5.427E+01 4.340E+01 4.457E+01 4.073E+01 2.963E+00
SD 1.402E+01 2.034E+01 4.340E+01 5.984E+00 6.959E+00 2.390E−01

 Fun7 Best 1.513E+01 5.600E+01 6.730E−02 5.995E+02 3.074E+01 1.065E+01
Worst 1.043E+02 1.770E+02 9.090E+00 1.301E+03 5.547E+01 2.198E+01
Mean 4.165E+01 1.670E+02 9.960E−01 9.090E+02 4.963E+01 2.397E+01
SD 1.834E+01 5.518E+02 1.940E+00 2.196E+02 5.314E+00 2.764E+00

 Fun8 Best 2.307E+01 2.111E+01 2.100E+01 4.553E+01 2.099E+01 9.674E+00
Worst 2.425E+01 5.012E+00 2.120E+01 6.189E+01 2.110E+01 1.199E+01
Mean 2.119E+01 3.606E+00 2.110E+01 5.396E+01 2.107E+01 9.760E+00
SD 3.985E−02 7.355E−01 4.150E−01 1.680E−01 2.715E−02 1.375E−02

 Fun9 Best 5.212E+01 9.598E+01 1.870E+01 9.339E+01 5.644E+01 2.287E+01
Worst 7.770E+01 1.333E+02 7.110E+01 8.447E+02 6.255E+01 3.186E+01
Mean 7.431E+01 1.136E+02 2.730E+01 6.154E+01 6.089E+01 3.053E+01
SD 3.967E+00 8.869E+00 7.550E+00 1.260E+01 1.661E+00 6.530E−01

 Fun10 Best 2.713E−02 9.560E−03 1.930E−07 8.966E−03 7.396E−03 3.452E−03
Worst 4.385E−01 1.684E−02 4.440E−02 7.937E−02 2.710E−02 1.721E−03
Mean 1.047E−01 9.840E−02 1.700E−02 5.664E−02 1.763E−02 8.760E−03
SD 7.093E−02 9.845E−02 1.140E−02 9.903E−03 6.850E−03 2.360E−03
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these datasets. The MTLBO is also compared with NEH, 
DSOMA [76] and SG [11]. It can be seen from the outcomes 
that MTLBO achieves better value for upper bound for Hel1 
and Hel2 problems.

5.5  MTLBO algorithm on Taillard benchmark 
dataset

The comparison of the MTLBO with basic TLBO and other 
metaheuristic algorithms are carried out using Taillards 

benchmark functions [69]. The problem size of Taillard 
benchmark functions range from 20 × 5 to 500 × 20 . The 
minimum and maximum bounds of Taillard’s test function 
are given in OR-Library ( i.e. Eric Taillard’s webpage).

5.5.1  Comparison of MTLBO with basic TLBO

To validate the performance of MTLBO, the experimental 
outcomes and comparison of the proposed algorithm with 

Table 7  Wilcoxon signed rank test for p-value comparing MTLBO with various EAs over ten benchmark functions ( p ≤ 0.05)

Funtions Parameter MTLBO versus GA MTLBO versus PSO MTLBO versus DE MTLBO versus HS MTLBO 
versus 
TLBO

Fun1 p-value 8.31E−05 8.06E−05 6.20E−04 8.34E−05 9.80E−04
R+ 210 210 188 210 210
R− 68 68 79 68 79

Fun2 p-value 8.31E−05 8.31E−05 1.20E−04 8.31E−05 3.20E−04
R+ 210 210 156 210 168
R− 68 68 74 68 71

Fun3 p− value 3.04E−02 1.43E−02 2.20E−04 2.22E−03 2.41E−03
R+ 156 168 156 122 122
R− 74 71 74 83 83

Fun4 p−value 3.99E−02 3.99E−02 6.56E−01 3.99E−02 3.99E−02
R+ 168 168 119 168 168
R− 71 71 206 71 71

Fun5 p-value 8.31E−05 8.31E−05 5.50E−04 8.34E−05 9.80E−04
R+ 210 210 156 210 156
R− 68 68 74 68 74

Fun6 p-value 9.94E−03 9.94E−03 6.09E−01 9.94E−03 NA
R+ 122 122 119 122 NA
R− 83 83 206 83 NA

Fun7 p-value 8.31E−05 8.31E−05 8.31E−05 8.31E−05 8.31E−05
R+ 210 210 210 210 210
R− 68 68 68 68 68

Fun8 p-value 8.31E−05 1.52E−03 3.13E−03 8.31E−05 8.31E−05
R+ 210 122 126 210 210
R− 68 83 145 68 68

Fun9 p-value 8.31E−05 8.31E−05 1.44E−01 9.60E−04 4.30E−03
R+ 210 210 126 156 122
R- 68 68 145 74 83

Fun10 p-value 8.31E−05 8.31E−05 7.35E−02 8.31E−05 4.60E−03
R+ 210 210 126 210 122
R− 68 68 145 68 83
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basic TLBO for Taillard benchmark test functions are shown 
in Table 11. The performance measure indicators such as 
BRPD, ARPD and WRPD are given in Table 11.

MTLBO algorithm outperforms the basic TLBO algo-
rithm on all Taillard benchmark functions. The total average 
values for ARPD, BRPD and WRPD of MTLBO are 0.830, 
3.717 and 6.118 which are better than basic TLBO algorithm 
tested values.

The convergence plots of basic TLBO and MTLBO algo-
rithms are listed in Fig. 11. For plotting the graph, makespan 
versus Taillard benchmark function (such as TA010, TA030, 
TA050, TA070, TA090 and TA0110) are used. From these 
graphs, it can be indicated that the proposed algorithm con-
verges faster than basic TLBO algorithm. As the iterations 
increase, MTLBO hardly finds accurate solutions, but by 
embedding the local search operator into MTLBO, it can 
achieve better performance.

5.5.2  Comparison of MTLBO with other EAs

In this subsection, the proposed MTLBO algorithm is com-
pared with IG1 [77], IG2 [77], HDDE [78] and TLBO algo-
rithms using Taillard benchmark test functions. The perfor-
mance is measured using ARPD indicator. Table 12 shows 
comparison of proposed algorithm over population based 
algorithms with respect to ARPD. The MTLBO algorithm 
obtained lowest average value i.e. 0.83 for ARPD, which is 
better than IG1 (2.31), IG2 (2.27), HDDE (4.51) and TLBO 
(3.11).

Later on, the proposed MTLBO algorithm is compared 
with GA [79], HPSO [78], ATPPSO [80] and NCS [81] 
on the Taillard benchmark test functions. The computa-
tion results achieved by GA, HPSO, ATPPSO and NCS are 
indicated in Table 13. The performance measure indicators 
such as Mean and ARPD (Average relative error) are also 

Table 8  Comparison of 
MTLBO algorithm on Carlier 
benchamark datasets

Problem Size Zopt DE PSOVNS DBA HBSA PSOMA MTLBO

Car01 11 × 5 7038 BRPD 0 0 0 0 0 0
ARPD 0 0 0 0 0 0
WRPD 0 0 0 0 0 0

Car02 13 × 4 7166 BRPD 0 0 0 0 0 0
ARPD 0 0 0 0 0 0
WRPD 0 0 0 0 0 0

Car03 12 × 5 7312 BRPD 0 0 0 0 0 0
ARPD 0.0369 0.42 0.397 0.06 0 0
WRPD 0.7385 1.189 1.19 1.19 0 0

Car04 14 × 4 8003 BRPD 0 0 0 0 0 0
ARPD 0 0 0 0 0 0
WRPD 0 0 0 0 0 0

Car05 10 × 6 7720 BRPD 0 0 0 0 0 0
ARPD 0.5285 0.039 0 0 0.018 0
WRPD 1.3083 0.389 0 0 0.375 0

Car06 8 × 9 8505 BRPD 0 0 0 0 0 0
ARPD 0.3821 0.076 0 0 0.114 0
WRPD 0.7643 0.764 0 0 0.764 0

Car07 7 × 7 6590 BRPD 0 0 0 0 0 0
ARPD 0.5341 0 0 0 0 0
WRPD 2.868 0 0 0 0 0

Car08 8 × 8 8366 BRPD 0 0 0 0 0 0
ARPD 0.0645 0 0 0 0 0
WRPD 0.6455 0 0 0 0 0
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Table 9  Comparison of 
MTLBO algorithm on Reeves 
benchmark datasets

Problem Size Zopt DE PSOVNS DBA PSOMA HBSA HCS MTLBO

REC001 20 × 5 1247 BRPD 0 0.16 0 0 0 0 0
ARPD 0 0.168 0.08 0.144 0.14 0.016 0
WRPD 0 0.321 0.16 0.16 0.16 0.1602 0

REC003 20 × 5 1109 BRPD 0 0 0 0 0 0 0
ARPD 0 0.158 0.081 0.189 0.08 0 0
WRPD 0 0.18 0.18 0.721 0.18 0 0

REC005 20 × 5 1242 BRRD 0.2415 0.242 0.241 0.242 0.24 0.2415 0
ARPD 0.2415 0.249 0.241 0.249 0.24 0.2415 0
WRPD 0.2415 0.42 0.241 0.402 0.24 0.2415 0

REC007 20 × 10 1566 BRPD 0 0.702 0 0 0 0 0
ARPD 0 1.095 0.575 0.986 0.46 0 0
WRPD 0 1.405 1.149 1.149 1.15 0 0

REC009 20 × 10 1537 BRPD 0 0 0 0 0 0 0
ARPD 0.026 0.651 0.638 0.621 0.07 0 0
WRPD 0.026 1.366 2.407 1.691 0.65 0 0

REC011 20 × 10 1431 BRPD 0 0.071 0 0 0 0 0
ARPD 0 1.153 1.167 0.129 0 0 0
WRPD 0 2.656 2.655 0.978 0 0 0

REC013 20 × 15 1930 BRPD 0 1.036 0.415 0.259 0.1 0 0
ARPD 0.2746 1.79 1.461 0.893 0.53 0.1917 0
WRPD 0.7772 2.643 3.782 1.502 1.14 0.3109 0

REC015 20 × 15 1950 BRPD 0 0.769 0.154 0.051 0.05 0 0
ARPD 0.5231 1.487 1.226 0.628 0.64 0.1128 0
WRPD 1.1795 2.256 2.103 1.076 1.18 0.4615 0

REC017 20 × 15 1902 BRPD 0 0.999 0.368 0 0 0 0
ARPd 0.3628 2.453 1.277 1.33 1 0.1157 0
WRPD 0.9464 3.365 2.154 2.155 2.16 0.4732 0

REC019 30 × 10 2093 BRPD 0.2867 1.529 0.573 0.43 0.29 0.1433 0
ARPD 0.7023 2.099 0.929 1.313 0.81 0.5638 0.247
WRPD 1.2422 2.532 2.023 2.102 1.29 0.7645 0.282

REC021 30 × 10 2017 BRPD 0.6445 1.487 1.438 1.437 0.69 0.2975 0
ARPD 1.2791 1.671 1.671 1.596 1.5 1.1651 0.112
WRPD 1.4378 2.033 2.231 1.636 1.83 1.4378 0.109

REC023 30 × 10 2011 BRPD 0.3481 1.343 0.796 0.596 0.45 0.248 0
ARPD 0.4276 2.106 1.173 1.31 1.28 0.4625 0.202
WRPD 0.4973 2.884 2.381 2.038 3.08 0.4973 0.317

REC025 30 × 15 2513 BRPD 0.5571 2.388 1.632 0.835 0.4 0.2786 0
ARPD 1.0824 0.16 2.921 2.085 1.29 0.8754 0.034
WRPD 1.6315 0.168 3.94 3.233 2.43 0.154 0.122

REC027 30 × 15 2373 BRPD 0.2528 1.728 1.011 1.348 0.25 0.2528 0
ARPD 0.8512 2.463 1.419 1.605 1.27 0.8175 0.061
WRPD 1.2221 3.203 2.298 2.402 2.57 1.0535 0.121

REC029 30 × 15 2287 BRPD 0.8308 1.968 1.049 1.442 0.57 0.0875 0
ARPD 1.0494 3.109 2.58 1.888 1.42 0.8833 0
WRPD 1.443 4.067 3.935 2.492 2.97 1.1369 0

REC031 50 × 10 3045 BRPD 0.427 2.594 2.299 1.51 0.43 0.263 0.214
ARPD 0.644 3.232 3.392 2.254 1.91 0.8998 0.202
WRPD 0.92 4.237 4.532 2.692 2.66 1.3793 0.214

REC033 50 × 10 3114 BRPD 0 0.835 0.61 0 0 0 0
ARPD 0.244 1.007 0.728 0.645 0.59 0.5652 0
WRPD 0.835 1.477 1.734 0.834 1.28 0.8349 0
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presented in Table 13. The best outcomes of the benchmark 
functions are indicated in bold.

In Table 13, MTLBO obtains the best computational 
outcomes with respect to all the given metaheuristic algo-
rithms. The MTLBO algorithm obtained lowest total mean 
ARPD (i.e. 0.8) which is superior value than HPSO (2.74), 

ATPPSO (1.94), GA (4.31), and NCS (1.24). The perfor-
mance of proposed algorithm significantly superior out-
comes over Taillard benchmark test function. The mean 
values of proposed algorithm are within the lower and upper 
bound given as OR-Library.

Table 9  (continued) Problem Size Zopt DE PSOVNS DBA PSOMA HBSA HCS MTLBO

REC035 50 × 10 3277 BRPD 0 0 0 0 0 0 0

ARPD 0 0.038 0.037 0 0 0 0

WRPD 0 0.092 0.092 0 0 0 0
REC037 75 × 20 4951 BRPD 2.565 4.383 3.373 2.101 1.92 1.636 1.643

ARPD 3.001 4.949 4.872 3.537 2.93 2.2541 1.852
WRPD 3.555 5.736 5.979 4.039 4.2 2.5045 2.286

REC039 75 × 20 5087 BRPD 1.73 2.85 2.28 1.553 0.9 0.806 0.654
ARPD 1.832 3.371 3.851 2.426 1.88 1.2463 0.811
WRPD 2.005 3.951 5.347 2.83 3.38 1.553 0.914

REC041 75 × 20 4960 BRPD 2.661 4.173 3.81 2.641 1.69 1.4516 0.986
ARPD 3.35 4.867 5.095 3.684 2.72 2.1532 1.684
WRPD 3.77 5.585 6.532 4.052 3.55 2.4597 2.451

Table 10  Comparison of 
MTLBO algorithm on Heller 
benchmark datasets

Problems Size Max bound NEH DSOMA SG MTLBO

Hel1 20 × 10 516 518 631 515 515
Hel2 10 × 10 136 141 150 137 135

Table 11  Results achieved by 
MTLBO and TLBO for Taillard 
benchmark datasets

Problems Size TLBO MTLBO

ARE BRE WRE ARE BRE WRE

TA001–TA010 20 × 5 0.780 1.976 4.987 0.000 1.314 4.786
TA010–TA020 20 × 10 1.520 2.996 4.345 0.880 2.964 3.987
TA020–TA030 20 × 20 2.080 5.231 10.654 0.240 4.987 9.886
TA030–TA040 50 × 5 0.200 2.123 5.321 0.000 2.077 4.342
TA040–TA050 50 × 10 5.030 3.802 8.098 1.920 3.786 7.674
TA050–TA060 50 × 20 6.860 3.621 7.210 2.830 3.564 6.987
TA060–TA070 100 × 5 0.750 1.090 1.978 0.060 0.870 1.046
TA070–TA080 100 × 10 1.570 4.099 6.045 0.620 3.990 5.876
TA080–TA090 100 × 20 5.960 8.099 9.065 2.210 7.786 8.954
TA090–TA100 200 × 10 4.780 2.188 5.023 0.520 2.098 4.988
TA100–TA110 200 × 20 4.080 6.791 8.102 3.060 6.596 7.987
TA110–TA120 500 × 20 3.720 4.678 7.105 1.660 4.567 6.909
Average 2.738 3.891 6.494 0.830 3.717 6.118
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In Table  14, the proposed algorithm compared total 
flowshop time criterion over Taillard benchmark problems 
which taken from http://www.cs.colos tate.edu/sched /gener 
ator. MTLBO compared with PSO and RSA [82] . The 
mimumium and average results obtained by MTLBO is sig-
nificantly superior than PSO and RSA.

To analyze the performance of MTLBO algorithm over 
other evolutionary algorithms, Wilcoxon sign ranked test 
was conducted by using achieved ARPD value. Table 15 
shows significant p-value of proposed algorithm over other 
evolutionary algorithms. From these experimental outcomes, 
it is observed that MTLBO algorithm is more effective and 
significant than GA, HPSO, ATPPSO and NCS. It is to be 
noted that the p-value in this experiment is shown in bold 
letters for below 0.05 value.

Fig. 7  Convergence graph of population diversity of unimodal func-
tion (fun2: Schwefels) for metaheuristic algorithms (D = 50)

Table 12  Comparison of 
MTLBO with other population 
based algorithms on basis 
of ARPD using Taillard 
Benchmark datasets

Problem PS(J X M) IG1 IG2 HDDE TLBO MTLBO

Ta010 20 × 05 0.39 0.46 1.49 0.78 0
Ta020 20 × 10 0.48 0.62 1.53 1.52 0.88
Ta030 20 × 20 0.31 0.32 1.23 2.08 0.24
Ta040 50 × 05 2.71 2.99 5.69 0.20 0
Ta050 50 × 10 3.24 3.23 5.63 5.03 1.92
Ta060 50 × 20 2.88 2.54 5.04 6.86 2.83
Ta070 100 × 05 3.82 3.56 7.22 0.75 0.06
Ta080 100 × 10 3.34 3.48 6.67 1.57 0.62
Ta090 100 × 20 3.03 2.82 4.41 5.96 2.21
Ta0100 200 × 10 3.85 3.63 6.91 4.78 0.52
Ta0110 200 × 20 2.31 2.20 4.34 4.08 3.06
Ta0120 500 × 20 1.32 1.33 3.93 3.72 1.66
Average 2.31 2.27 4.51 3.11 0.83

Fig. 8  Comparison of mean value of BRPD on Reeves benchmark 
datasets

Fig. 9  Comparison of mean value of ARPD on Reeves benchmark 
datasets

http://www.cs.colostate.edu/sched/generator
http://www.cs.colostate.edu/sched/generator
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5.6  MTLBO algorithm on VRF benchmark datasets

New benchmark test functions such as VRF_hard_small 
benchmark and VRF_hard_large benchmark are proposed 
in [70]. These benchmark functions are selected to perform 
experiments on PFSSP. These functions consist of 240 small 

instances and 240 large instances, with upto 800 jobs on 
60 machines. The small instances have following combina-
tions of n = number of jobs, m = number of machines i.e. n 
= [10, 20, 30, 40, 50, 60] and m = [5, 10, 15, 20] and large 
instances consist of n = [100, 200, 300, 400, 500, 600, 700, 
800] and m = [20, 40, 60].

The stopping criterion to perform VRF benchmark func-
tion is evaluated with maximum running CPU time as follows

where t indicates the amount of time (t = 5 ms). Each of the 
instance runs at least 25 times to obtain the best outcomes.

To measure the effectiveness of the metaheuristic method, 
ARPD is calculated for each instance as in Eq. (17).

The computational results of the MTLBO over differ-
ent metaheursitic algorithms with VRF small instance are 
given in the Table 16. The best outcomes of the experi-
mental are shown in bold letters. The performance of 
MTLBO is calculated using ARPD and SD values. In 
Table 16, the average value for MTLBO with VRF small 
instances for ARPD and SD are 0.10 and 0.03 respectively. 
From Table 16, it is observed that ARPD and SD value of 
MTLBO is superior than DPSO, GA-VNS, HDE and HPSO 
algorithms.

The computational results of MTLBO over differ-
ent metaheursitic algorithms with VRF Large instances 
are given in the Table  17. The best outcomes of the 

(20)Maximum running CPU time = (n.(m∕2).t)

Fig. 10  Comparison of mean value of WRPD on Reeves benchmark 
datasets

Table 13  Comparison of MTLBO algorithm with other evolutionary algorithms over Taillard benchmark problems

Problems Size GA HPSO ATPPSO NCS MTLBO

ARPD Mean ARPD Mean ARPD Mean ARPD Mean ARPD Mean

Ta010 20 × 05 2.49 1135.6 0.68 1278 0.22 1110.4 0.00 1108 0 1108
Ta020 20 × 10 2.63 1632.8 1.94 1587.5 1.09 1608.3 0.94 1606 0.9 1598
Ta030 20 × 20 2.73 2237.5 1.44 2307 0.72 2193.6 0.28 2184 0.2 2180
Ta040 50 × 05 1.21 2815.7 0.08 2724 0.02 2782.5 0.00 2782 0 2782
Ta050 50 × 10 5.24 3225.5 3.09 3053.6 2.97 3156.1 2.16 3131.2 1.9 3085
Ta060 50 × 20 6.73 4008.6 5.46 3944.6 3.92 3903.2 2.78 3860.6 2.8 3752
Ta070 100 × 05 0.95 5372.3 0.75 5493 0.43 5344.9 0.08 5326 0.1 5324
Ta080 100 × 10 3.62 6056.3 1.57 5913.3 0.94 5900.1 0.79 5891.4 0.6 5844
Ta090 100 × 20 7.40 6910.3 5.86 6598.5 3.99 6690.6 2.62 6602.8 2.2 6430
Ta0100 200 × 10 3.28 11025.6 4.88 10796.9 1.60 10846.2 0.55 10734 0.5 10675
Ta0110 200 × 20 8.70 12269.5 3.98 11,832.1 4.39 11,783 3.06 11,633.6 3.1 11,284
Ta0120 500 × 20 6.76 28,245 3.12 27,282 2.98 27,246.5 1.66 26,897.2 1.7 26,453
Average 4.31 2.74 1.94 1.24 0.8
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Table 14  Comparision of 
MTLBO on total flowshop 
time criterion over Taillard 
benchmark problems

Problems PSO RSA MTLBO

MIN Average MIN Average MIN Average

20 × 20 34,518 35,026.50 32,443 33,770.60 32,273 33,570.40
20 × 20 33,243 34,039.80 32,166 33,406.90 31,892 33,362.20
20 × 20 35,489 36,207.80 35,066 35,610.70 34,752 35,610.50
20 × 20 32,234 32,836.50 30,915 31,925.50 30,112 31,621.50
20 × 20 35,086 35,471.40 34,354 35,027.40 33,786 34,786.80
50 × 20 136,668 138,212.60 139,522 142,179.60 138,986 142,111.20
50 × 20 136,262 140,163.70 141,745 142,899 141,672 141,765
50 × 20 138,031 142,076.30 145,079 146,329.20 144,872 145,984.80
50 × 20 134,550 137,505.70 139,607 140,680.70 138,211 140,113.70
50 × 20 135,915 138,541.90 140,990 142,256 134,651 141,986
100 × 20 428,602 433,439.20 428,602 433,439.20 428,032 433,112.90
100 × 20 430,677 434,747.60 430,677 434,747.60 430,654 433,211.90
100 × 20 417,704 426,910.40 417,704 426,910.40 417,702 425,872.40
100 × 20 418,411 427,356.90 418,411 427,356.90 418,409 426,112.90
100 × 20 416,454 424,499.50 416,454 424,499.50 416,454 423,212.20
200 × 20 1,421,104 1,440,869 1,421,104 1,440,869 1,421,104 1,440,762
200 × 20 1,447,880 1,463,356 1,447,880 1,463,356 1,447,878 1,463,119
200 × 20 1,462,239 1,479,747 1,462,239 1,479,747 1,462,239 1,479,117
200 × 20 1,434,704 1,450,640 1,434,704 1,450,640 1,434,702 1,450,081
200 × 20 1,434,687 1,456,151 1,434,687 1,456,151 1,434,687 1,455,113

experiments is shown in bold letters. The performance of 
MTLBO algorithm is calculated using ARPD and SD val-
ues. In Table 17, the average value of the MTLBO with 
VRF small instances for ARPD and SD are 2.61 and 0.14 
respectively. From Table 17, it is observed that obtained 
results using ARPD and SD value for MTLBO algorithm 
are statistically better than DPSO, GA-VNS, HDE and 
HPSO algorithms.

6  Conclusion

This paper proposed a Modified Teaching Learning Based 
Optimization with Opposite Based Learning approach to 
find solution of Permutation Flow-Shop Scheduling Prob-
lem. OBL approach is used to enhance the quality of the 

initial population and convergence speed. MTLBO is devel-
oped to determine the PFSSP efficiently using the Largest 
Order Value rule-based random-key, to change an individual 
into discrete job schedules. Based on Nawaz–Enscore–Ham 
heuristic mechanism, the new initial populations are gener-
ated in MTLBO. To enhance the local exploitation ability, 
the effective swap, insert and inverse structures are incorpo-
rated into the MTLBO.

The statistical result and analysis of the MTLBO based 
on ten benchmark functions and Wilcoxon signed rank test 
shows the effectiveness of the algorithm. The computational 
results over five well-known benchmark functions such 
as Carlier, Reeves, Heller, Taillard and VRF benchmark 
instances set indicates that MTLBO is the most powerful and 
convenient method to solve PFSSP. The performance meas-
ures of the proposed algorithm are calculated using ARPD, 
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Fig. 11  Convergence plot of makespan over MTBLO and metaheuristic algorithms on Taillard functions

Table 15  The p-value obtained by MTLBO versus other metaheuris-
tic algorithms ( p ≤ 0.05)

Metaheuristic algorithms p-value

MTLBO versus HPSO 3.224E−03
MTLBO versus GA 3.220E−03
MTLBO versus ATPPSO 8.675E−04
MTLBO versus NCS 2.210E−03

BRPD, and WRPD over all datasets. The performance of 
MTLBO is tested against state-of-the-art algorithms. It is 
observed that MTLBO algorithm works effectively in most 
of the cases. Thus, by conducting Wilcoxon signed test, it is 
proved that MTLBO algorithm is much more effective than 
other metaheuristic algorithms. The future research direction 
focus on hybrid flow shop scheduling and multi-objective 
flow shop problems.
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Table 16  Comparison of 
MTLBO algorithm with other 
evolutionary algorithms over 
VRF hard small benchmark (t 
= 5 ms)

Instances DPSO GA-VNS HDE HPSO MTLBO

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

10 × 05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 × 05 0.02 0.03 0.01 0.02 0.04 0.05 0.01 0.03 0.00 0.00
20 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.18 0.00 0.00
20 × 15 0.01 0.01 0.00 0.00 0.00 0.00 0.40 0.30 0.00 0.00
20 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.22 0.00 0.00
30 × 05 0.18 0.14 0.25 0.15 0.34 0.21 0.17 0.22 0.07 0.04
30 × 10 0.14 0.15 0.09 0.08 0.18 0.24 0.42 0.41 0.00 0.00
30 × 15 0.11 0.13 0.01 0.01 0.11 0.10 0.32 0.37 0.01 0.01
30 × 20 0.17 0.12 0.02 0.01 0.13 0.09 1.02 0.32 0.00 0.00
40 × 05 0.53 0.21 0.87 0.26 1.00 0.28 0.09 0.32 0.22 0.03
40 × 10 0.31 0.22 0.39 0.18 0.48 0.22 2.18 0.40 0.06 0.04
40 × 15 0.21 0.19 0.24 0.14 0.25 0.16 2.02 0.48 0.00 0.00
40 × 20 0.22 0.13 0.18 0.11 0.25 0.15 1.76 0.47 0.00 0.00
50 × 5 0.69 0.23 0.39 0.26 1.36 0.36 1.74 0.38 0.32 0.11
50 × 10 0.44 0.19 0.76 0.24 0.67 0.26 2.57 0.40 0.16 0.05
50 × 15 0.36 0.21 0.69 0.21 0.58 0.25 2.38 0.51 0.08 0.03
50 × 20 0.34 0.16 0.65 0.25 0.58 0.19 2.39 0.49 0.00 0.00
60 × 05 1.02 0.26 2.11 0.33 1.75 0.31 2.37 0.49 0.50 0.15
60 × 10 0.71 0.25 1.37 0.25 1.08 0.25 2.97 0.39 0.26 0.12
60 × 15 0.52 0.25 1.34 0.26 0.95 0.24 3.00 0.57 0.45 0.08
60 × 20 0.51 0.22 1.07 0.28 0.89 0.27 3.07 0.47 0.23 0.04
Average 0.27 0.13 0.44 0.13 0.44 0.15 1.23 0.31 0.10 0.03

Table 17  Comparison of 
MTLBO algorithm with other 
evolutionary algorithms over 
VRF hard large benchmark (t 
= 5 ms)

Instances DPSO GA-VNS HDE HPSO MTLBO

ARPD SD ARPD SD ARPD SD ARPD SD ARPD SD

100 × 20 1.09 0.25 0.89 0.20 1.86 0.23 4.98 0.43 0.51 0.07
100 × 40 0.95 0.28 0.75 0.31 1.60 0.20 4.97 0.45 0.32 0.14
100 × 60 0.84 0.25 0.74 0.26 1.43 0.18 4.28 0.47 0.72 0.24
200 × 20 2.38 0.21 2.45 0.33 3.90 0.26 4.95 0.42 1.05 0.14
200 × 40 2.36 0.31 2.05 0.30 3.41 0.25 4.92 0.43 0.93 0.10
200 × 60 1.84 0.24 1.75 0.30 3.24 0.24 5.13 0.62 0.79 0.12
300 × 20 3.18 0.28 3.27 0.25 4.54 0.36 5.53 0.64 1.51 0.14
300 × 40 2.81 0.25 2.82 0.24 4.16 0.37 5.67 0.60 1.56 0.13
300 × 60 2.61 0.21 2.51 0.28 4.11 0.43 5.36 0.65 1.78 0.20
400 × 20 3.88 0.25 4.00 0.28 5.02 0.78 5.95 0.63 1.87 0.13
400 × 40 3.43 0.33 3.33 0.18 4.60 0.54 6.97 0.72 2.76 0.12
400 × 60 3.24 0.20 4.78 0.29 4.87 0.58 6.95 0.73 1.97 0.11
500 × 20 4.60 0.24 3.98 0.97 4.76 0.52 6.54 0.71 2.03 0.15
500 × 40 4.08 0.28 3.09 0.37 5.87 0.64 6.43 0.74 5.89 0.15
500 × 60 3.82 0.24 3.87 0.67 5.12 0.86 7.86 0.79 2.17 0.13
600 × 20 5.21 0.26 5.98 0.54 5.67 0.83 7.96 0.81 2.76 0.14
600 × 40 4.90 0.26 4.76 0.87 4.83 0.63 7.65 0.79 5.15 0.19
600 × 60 4.60 0.27 4.87 0.26 6.45 0.92 7.78 0.82 3.76 0.14
700 × 20 6.60 0.32 4.76 0.56 5.65 0.65 8.56 0.89 3.08 0.15
700 × 40 5.54 0.22 5.76 0.87 4.87 0.52 8.96 0.88 5.79 0.15
700 × 60 5.49 0.30 4.88 0.45 4.56 0.48 9.76 0.94 4.89 0.19
800 × 20 6.88 0.27 5.67 0.27 6.35 0.84 9.98 0.94 3.87 0.14
800 × 40 6.37 0.25 4.87 0.76 6.76 0.96 9.65 0.97 3.98 0.15
800 × 60 6.06 0.22 4.39 0.65 4.87 0.63 7.87 0.94 3.56 0.10
Average 3.87 0.26 3.59 0.44 4.52 0.54 6.86 0.71 2.61 0.14
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