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Abstract
The salp swarm algorithm (SSA) has shown its fast search speed in several challenging problems. Research shows that 
not every nature-inspired approach is suitable for all applications and functions. Additionally, it does not provide the best 
exploration and exploitation for each function during the search process. Therefore, there were several researches attempts to 
improve the exploration and exploitation of the meta-heuristics by developing the newly hybrid approaches. This inspired our 
current research and therefore, we developed a newly hybrid approach called hybrid salp swarm algorithm with particle swarm 
optimization for searching the superior quality of optimal solutions of the standard and engineering functions. The hybrid 
variant integrates the advantages of SSA and PSO to eliminate many disadvantages such as the trapping in local optima and 
the unbalanced exploitation. We have used the velocity phase of the PSO approach in salp swarm approach in order to avoid 
the premature convergence of the optimal solutions in the search space, escape from ignoring in local minima and improve 
the exploitation tendencies. The new approach has been verified on different dimensions of the given functions. Addition-
ally, the proposed technique has been compared with a wide range of algorithms in order to confirm its efficiency in solving 
standard CEC 2005, CEC 2017 test suits and engineering problems. The simulation results show that the proposed hybrid 
approach provides competitive, often superior results as compared to other existing algorithms in the research community.

Keywords  Standard functions · Heuristic hybridization · Salp swarm algorithm · Particle swarm optimization algorithm · 
Exploration and exploitation

1  Introduction

The last few decades witnessed the introduction of many 
robust population-based meta-heuristics, such as swarm 
intelligence optimization and evolutionary algorithms for 
the purpose of finding the best and possible optimal solu-
tions to many real-life applications. Although such algo-
rithms have been useful in tackling many real life problems, 
the extensive literature review reveals that there is no single 

algorithm which works well in all the applications. Conse-
quently, researchers have been developing newly, modified 
and hybrid techniques for resolving and eliminate many of 
the disadvantages of the existing algorithms such as: differ-
ential evolution (DE) [1, 2], genetic algorithm (GA) [3, 4], 
hybrid genetic algorithm (HGA) [5], biogeography based 
optimization algorithm (BBO) [6], gravitational search 
algorithm (GSA) [7], particle swarm optimization (PSO) 
[8], Tabu search (TS) [9], harmony search algorithm (HAS) 
[10], artificial neural network (ANN) [11], dragonfly algo-
rithm (DA) [12], grey wolf optimization (GWO) [13], krill 
herd algorithm (KHA) [14], black-hole-based optimization 
(BHBO) [15], robust optimization (RO) [16], ant lion opti-
mizer (ALO) [17], One half personal best position particle 
swarm optimizations (OHGBPPSO) [18], EPO [19], SHO 
[20], EGWO [21], AGWO [22], PSOGWO [23], MFOA 
[79], RSO [80] and many other algorithms [24–38].

The particle swarm optimization is a swarm intelligence 
approach, which is inspired by the social behaviors of ani-
mals like bird flocking and fish schooling [39, 40]. As a 
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stochastic search method, particle swarm optimization algo-
rithm has characters of rapid convergence capability and 
simple computation. The approach was applied in separate 
industrial problems like modeling [41–43], prediction [41], 
parameters learning of neural network [44, 45], power sys-
tems [46–50], control [51], and parameters optimization of 
fuzzy system [52].

Over the years, researchers developed several hybrid tech-
niques to enhanced the balanced between exploration and 
exploitation of the meta-heuristics and searching the supe-
rior quality of the solutions of the real life applications. For 
instance, Ali and Tawhid [53] developed a hybrid approach 
by integrating the PSO and GA to minimize a simplified 
model of the energy problem of the molecule. The advan-
tages of existing approach have been presented by using the 
three different mechanisms. The accuracy of the approach 
has been verified on the potential energy function and thir-
teen unconstrained global optimization functions. Simulated 
results reveal that the newly existing method is an efficient 
and promising approach. Similarly, Yu et al. [37] presented 
a hybrid approach called HPSO. In their approach, they 
integrated space transformation search with a new modi-
fied velocity model. Simulation solutions on eight standard 
problems demonstrated that the hybrid particle swarm opti-
mization holds superior accuracy in solving standard func-
tions. Additionally, Mao et al. [54] proposed hybrid method 
integrated with a DE and PSO known as DEMPSO, to find 
the best and possible global optimal solution of the nonlinear 
model of the forward kinematics. Five configurations with 
distinct positions and orientations were used as an exam-
ple to demonstrate the efficiency of the existing variant for 
finding the best global optimal solution of kinematic func-
tion of parallel manipulators. And the experimental solu-
tion of existing approach and the other meta-heuristics also 
revealed that newly hybrid approach can provide a superior 
performance regarding global searching properties and the 
convergence rate.

The several real life applications best optimal solutions 
has been finds by the researchers of the different fields such 
as environmental/economic dispatch [55], cost-based feature 
selection in classification [56], feature selection on high-
dimensional data [57], dynamic economic dispatch with 
valve-point effect [58], robot path planning in uncertain 
environment [59] and many others.

In our previous research work, we presented several 
modified and hybrid nature-inspired approaches and these 
algorithms were applied on several real life applications and 
tried to improved and extend the working strength of the 
newly existing meta-heuristics [18, 31, 33, 35, 36, 23, 60]. 
In this research, we extend our previous work via proposing 
a new hybrid algorithm employing SSA and PSO to ben-
efit from their exploitation and exploration. Furthermore, 
the proposed method is to aggregate advantages from SSA 

and PSO with an integrated feedback mechanism to achieve 
a better optima goal (or solution). In fact, PSO is used to 
enhance the exploitation and exploration of SSA. As a result, 
the newly existing method has the balance ability amid local 
and global searching abilities to guarantee the better conver-
gence. So, the major contributions of the research work can 
be explained as:

•	 The proposed methodology is enhancing the balanced 
between exploration and exploitation by feed-back mech-
anism.

•	 Search tendency is redefined to improve the capability of 
searching best optimal solution in the search space during 
the search process.

•	 Under this methodology, during the search process the 
proposed strategy is fastly trapping the global optima 
solution in the search space.

The experimental solutions reveal that the newly existing 
approach possess superior capability of search the global 
optimum than that of the other meta-heuristics. The per-
formance of the existing approach is demonstrated by the 
obtained results of standard CEC 2005, CEC 2017 test suits 
and real life functions with comparison to others.

The rest of the article is structured as follows. Section 2, 
describes related research which describes the main aspects 
of the salp swarm algorithm and particle swarm optimi-
zation algorithm; Sect. 3, presents the hybrid SSA–PSO 
algorithms; the numerical and statistical experiments are 
described in Sect. 4; in Sect. 5, experiment and results are 
performed. The engineering applications are described in 
Sects. 6 and 7; Sect. 7 provides the conclusions.

2 � Related work

In this section, we overview existing research showing differ-
ent aspects of the two main algorithms have been employed 
in this research: salp swarm algorithm and particle swarm 
optimization algorithm. This is done via presenting existing 
studies from the literature and showing their relatedness to 
the current approach.

In 2017, Mirjalili et al. [61] developed a nature inspired 
approach, known as salp swarm algorithm that mimics the 
special swarming behavior of salps in oceans. Salps usually 
live in groups and often form a swarm called salp chain. The 
first salp is denoted as the leader, while the others are follow-
ers. The position of the leader should by using the following 
mathematical equations:

(1)x1
j
=

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0.5

Fj − c1
((
ubj − lbj

)
c2 + lbj

)
c3 < 0.5
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where x1
j
 is the position of the best and possible solution, ubj , 

lbj is the upper and lower bound of the jth dimension, Fj is 
the food source position of the dimension, c2 , c3 are two 
random numbers in the range [0, 1] and c1 is an most impor-
tant variable in this algorithm that gradually decreases over 
the course of generations to allow high exploration at the 
early stages of the optimization process, then high exploita-
tion in last steps.

where L represents the maximum number of iteration and l 
indicates the current iterations.The follower’s positions are 
updated by using the following mathematical equation:

where xi
j
 indicates the position of the ith follower at the jth 

dimension and i ≥ 2.

(2)c1 = 2e
−
(

4l

L

)2

(3)xi
j
=

1

2

(
xi
j
+ xi−1

j

)

Algorithm 1. Pseudocode of the Salp Swarm Algorithm

Initialize population 1,2,...,i nix

for generation from 1to max_ iter
do
Calculate all salp in the crowd
Represent the best salp as F
Update the value of 1c by using the mathematical equation (2)

for (all salp xi )do

if ix is a leader 
then
Update the position of the leader by using the mathematical equation (1)
else
Update the position of the follower’s by using the mathematical equation (3)
Return F

=

Besides the SSP algorithm, the original version of PSO 
approach was proposed by Kennedy et al. [39]. Their algo-
rithm emulates the flocking behavior of particles or birds to 
solve global optimization functions. In this approach, each 
possible result is considered as an agent (particle). All can-
didates have their own velocities and fitness values. These 
agents fly through the D-dimensional function area by learn-
ing from the historical information of the agents. A possible 
result is demonstrated by an agent, which adjusts its velocity 
and position according to mathematical Eqs. (4) and (5):

where vk
ij
 indicates the velocity of particle i ∈

[
1, 2,… , nx

]
 

in dimension j at time step k , w is the inertia constant, 

(4)vk+1
i

= w × vk
i
+ c4r1

(
pk
i
− xk

i

)
+ c5r2

(
gbest − xk

i

)

(5)xk+1
i

= xk
i
+ vk+1

i
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pk
i
 is the personal best position of the agent, gbest is the 

best position of the neighbor agent, xk
ij
 represents the 

position of the particle i in dimension j at time step k . 

The constants w and c4, c5 are acceleration coefficients 
and rand values rk

1j
, rk

2j
∈ U(0, 1) in the range [0, 1] at a 

time step k.

Algorithm 2. Pseudocode of the PSO (Particle Swarm Optimization) Algorithm

For each particle
Initialize particle 1,2,...,i nix
End
Do 
For all particle
Calculate fitness value
If the fitness value is superior than the best fitness value ( kpi ) in history

Set current value as the new ( kpi )
End 
Choose the particle with the best fitness value of all the particles as the ( gbest )
For each particle
Calculate particle velocity and position according to equations (4) and (5)
End 
While minimum error or maximum iterations criteria is not attained. 

=

3 � Hybrid SSA–PSO algorithm

Each algorithm is not able to solving each type of real-world 
problems. These algorithms may be failure to find the goal 
for any complex functions due to own weakness in the search 
area. Therefore, according to demand of the present situa-
tions of the real-world applications the researchers of the 
different fields are developing the newly modified and hybrid 
version for reducing the weakness of the present versions 
that these algorithms could be able to gives the best global 
optimal solution for the complex applications. After learn-
ing these strategies, we have tried to develop a new hybrid 
algorithm in this text for complex functions.

Although, the SSA method is more able to reveal a capa-
ble accuracy in contrast with other recent meta-heuristics, 
one of its limitations is that it might face the complexity 
of getting trapped in local/global optima. Additionally, it is 
not fitting for high difficult problems or functions and can-
not handle their drawbacks such as slow convergence speed, 
slow diversity and premature convergence. To further boost 
the exploration and exploitation of SSA, a more focused par-
ticle swarm optimizer is incorporated into this algorithm to 
form a newly hybrid SSA–PSO algorithm. In order to reduce 
these types of weaknesses and to improve the SSA method 

search capability, the merits of the two different methods 
have been merged and developed as an newly approach that 
we called the HSSAPSO algorithm. The present method has 
been applied to identify the best score of the complex opti-
mization functions. The particle swarm optimization algo-
rithm phase operates in the direction of exploring the vector 
of optimal solutions although the HSSAPSO approach is 
invoked as a local search method to enhance the optimal 
solution superiority. This methodology is also helpful in 
fastly trapping the global optimal solution and ignoring the 
local optima in the search area during the search process. 
Therefore, with this method we can strengthen the search 
ability and obtain accurate convergences by accelerating 
the search. Further, details of Hybrid SSAPSO algorithm is 
shown step by step as below:

3.1 � Step 1: parameter setting

The newly existing hybrid approach starts by setting 
its constant values such as the number of search agents 
( s = 30), current iteration ( l = 2 ), maximum iterations 
( L = 50 − 500 ), maximum weight ( wmax = 0.9 ), minimum 
weight ( wmin = 0.2 ) and maximum velocity ( vmax = 6).
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Fig. 1   Flowchart of Hybrid 
SSAPSO algorithm
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3.2 � Step 1: initialization

During the search process of the algorithm in the search 
space firstly we are initializing the crowd and these are ini-
tialized randomly according of the given problems, where 
the algorithms assigns a random vector of n dimensional for 
the ith salp; X = xi ∼ (i = 1, 2, 3,… , n).

3.3 � Step 2: evaluation

Under this step, during the search process the each search 
agent of the crowd is evaluated as per the superiority of the 
own location. The fitness value of each search agent is tested 
on the basis of objective function after that, the each search 
agents take the next new location according to its fitness 
value in the search space.

3.4 � Step 3: leader position updating

The position of the main search agent (like; leader) has been 
updating by mathematical Eqs. (1)–(2) during the search 
process in the search space.

3.5 � Step 4: velocity initialization

We easily see in the literature the velocity initialization is 
a most important role for the population-based algorithms. 
With the help of this concept we can reduced the search 
agent’s efforts during the search process in the search space 
and ignored wrong positions. Many times, during the search 
process of the search agents for searching the global optima 
goal, these search agents may leave the intended boundaries 
of the search area, which will tend the wastage of finding 
effort and can a bad impact on the accuracy of the algorithm, 
hence this concept is play a important role for trapping the 
best global optima solution and ignoring the local optima in 
the search space. The velocity initialization can be done in 

three different ways such as initialize to small random value, 
initialize to random values close to zero and lastly initialize 
to zero. Distinct strategies of this initialization have different 
impacts on the accuracy of the algorithm.

3.6 � Step 5: follower’s position updating

The position of the follower’s in the search space during 
the search process has been replaced by the help of modi-
fied mathematical Eq. (6). Here the velocity concept plays 
a most important role for trapping the global optima fastly 
and ignored the wrong positions during the search process.

3.7 � Step 5: stopping condition

At the end, the stopping condition has been applied for 
searching the global optima for all kind of problems. Here 
this criteria is used for evaluating each search agent assess-
ment process and replacing the best search agent’s position, 
it is repeated again and again until it satisfies the criteria 
of prevention for example it reaches the highest maximum 
iterations or the solution is earliest found. The rest of opera-
tions are the same as salp swarm algorithm. Furthermore, 
the working process of the proposed algorithm has been dis-
cussed in the flowchart Fig. 1.

The main structure of the newly existing approach 
HSSAPSO is presented in Algorithm 3.

Table 1   Parameter settings

Constants Definitions Values

s Number of search agents 30
l Current iteration 2
L Maximum number of iterations 50–500
wmax Max-Inertia value 0.9
wmin Min-Inertia value 0.2
vmax Maximum velocity 6

Table 2   Unimodal benchmark functions

Function Dim Range fmin

F1(y) ∼
n∑
i=1

y2
i

30 [− 100, 100] 0

F2(y) ∼
n∑
i=1

��yi�� +
n∏
i=1

��yi�� 30 [− 10, 10] 0

F3(y) ∼
n∑
i=1

(
i∑

j−1

yj)
2

30 [− 100, 100] 0

F4(y) ∼ maxi

{||yi||, 1 ≤ i ≤ n
}

30 [− 100, 100] 0

F5(y) ∼
n−1∑
i=1

�
100

�
yi+1 − y2

i

�2
+
�
yi − 1

�2�30 [− 30, 30] 0

F6(y) ∼
n∑
i=1

��
yi + 0.5

��2 30 [− 100, 100] 0

F7(y) ∼
n∑
i=1

iy4
i
+ rand[0, 1)

30 [− 1.28, 1.28] 0
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Here, the proposed approach plays a important role for 
trapping the solution in the search space during the search 
process and its advantages has been described as followings;

•	 The proposed method hold the best optima solution after 
the each iteration and it can not at all be wiped out even 
if the entire crowd deteriorates.

•	 The proposed algorithm updates the location of each 
search agents in the search space according to the goal 

which is the best goal obtained so far; hence the best 
search agent explores and exploits in the search space it 
for a best one goal.

•	 The HSSAPSO update the position of follower agents 
with the help of velocity concept. This concept plays a 
important role for ignoring the wrong position and fastly 
trapping global optima in the search space. It’s also 
enhanced the exploration and exploitation balance for 
trapping fastly optima during the search process.
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•	 Gradual movements of follower search agents during the 
search process in the search space prevent the HSSAPSO 
algorithm from effortlessly stagnating into local optima.

•	 The main parameter of SSA algorithm helps the 
HSSAPSO for reducing the complexity and makes it 
effortless to execute.

4 � Numerical and statistical experiments

The numerical and statistical results of the proposed 
approach are compared to SSA, PSO, MFO, SCA and DA 
algorithms for the twenty-two standard benchmark func-
tions. HSSAPSO, SSA, PSO, MFO, SCA and DA algorithms 
are programmed using Matlab 2015. Further details about 
the experiments are discussed in the following subsections.

4.1 � Parameter settings

The literature review shows that researchers have mostly 
used constants for controlling the speed of the agents, 
exploration and exploitation tendency. Different settings of 
parameters have been employed in the search process. The 
following settings of parameters are used in this experiment 

to enhance and improve the convergence ability of the meta-
heuristics (Table 1).

4.2 � Benchmark or standard functions

The initial ability of the HSSAPSO was verified on uni-
modal, multi-modal and fixed dimension multi-modal func-
tions. The brief information of these tested functions is 
described in the Tables 2, 3 and 4 respectively.   

4.3 � The convergence performance of HSSAPSO 
on 100–500 dimensions

In order to make sure the effectiveness of the partitioning 
process and integrating the standard SSA and PSO algo-
rithm, the general convergence ability of the newly exist-
ing approach HSSAPSO and the others are presented for 
benchmark functions by plotting the function values versus 
the number of generations as described in Fig. 2. In Fig. 2, 
the red line indicates the standard SSA, while the black line 
indicates the newly existing variant HSSAPSO. Here, with 
the help of these conference graphs we can easily see that the 
velocity concept playing the important role for search agents 
in ignoring the wrong positions or directions and trapping 

Table 3   Multimodal benchmark 
functions

Function Dim Range fmin

F8(y) ∼
n∑
i=1

−yi sin

����yi��
�

30 [− 500, 500] − 418.9829 × 5

F9(y) ∼
n∑
i=1

�
y2
i
− 10 × cos(2�yi) + 10

� 30 [− 5.12, 5.12] 0

F10(y) ∼ −20e

�
−0.2

�
1

n

n∑
i=1

y2
i

�

− e

�
1

n

n∑
i=1

cos (2�yi)
�

+ 20 + e

30 [− 32, 32] 0

F11(y) ∼
1

4000

∑n

i=1
y2
i
−

n∏
i=1

cos

�
yi√
i

�
+ 1

30 [− 600, 600] 0

F12(y) ∼
𝜋

n

�
10 sin

�
𝜋xi

�
+

n−1�
i=1

�
xi − 1

�2�
1 + 10 sin

2
�
𝜋xi+1

�
+
�
xn−1

�2�
�

+

n�
i=1

u
�
yi, 10, 100, 4

�

xi = 1 +
yi + 1

4

u
�
yi, a, k,m

�
=

⎧⎪⎨⎪⎩

k
�
yi − a

�m
yi > a

0 −a < yi < a

k
�
−yi − a

�m
yi < −a

30 [− 50, 50] 0

F13(y) ∼ 0.1

�
sin

2 (3�yi)+
n∑
i=1
(yi−1)

2
[1+sin2 (3�yi+1)]

+(yn−1)
2
[1+sin2(2�yn)]

�

+

n�
i=1

u
�
yi, 5, 100, 4

�

30 [− 50, 50] 0
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the fastly global optima in the search space during the search 
process. It can search the solution for the given functions in 
least number of iterations as comparison to others and save 
the wasting time. The data in Fig. 2 is plotted after d (dim) 
generations. The convergence results of Fig. 2, reveals that 
the new approach is superior to the standard SSA and others 
which verifies that the applied partitioning mechanism and 
the integration amid the standard salp swarm strategy and 
standard particle swarm optimization algorithm can acceler-
ate the convergence of the newly hybrid approach.

5 � Experiment and results

In this part, twenty-two standard tested problems have been 
used [26, 61] demonstrate the quality, superiority and accu-
racy of the newly hybrid approach, where obtained optimal 
solutions by the newly approach have been compared with 
the standard SSA, PSO, MFO, SCA and DA algorithms. 
The standard benchmark functions like unimodal, multi-
modal and fixed dimension multi-modal functions or prob-
lems. The description and the convergence graph of all 
problems are represented in Tables 5, 6 and 7 and Figs. 3, 

4 and 5 respectively. The statistical measures in terms of 
maximum and minimum objective function value, average, 
best score and standard deviation are recorded. Further, the 
welded beam design function has been solved by HSSAPSO 
algorithm and results are reported in the last section of this 
text. On the basis of obtained solutions, the importance and 
advantages of the newly hybrid approach has been discussed 
in the following subsections.

5.1 � Results on unimodal benchmark test functions

In this subsection, has been utilized the unimodal function 
for verifying the working performance of algorithms. The 
numerical experimental solutions on these functions are dis-
cussed in Table 5. This table shows the comparison between 
the HSSAPSO, SSA, PSO, MFO, SCA and DA algorithms. 
Here, it can be easily seen that the hybrid algorithm gives 
superior or highly effective optimal solutions as compared 
to others. As previously discussed, the uni-modal benchmark 
tested functions are able for benchmarking exploitation of 
the approaches. Therefore, have been obtained optimal solu-
tions proofs high rate of exploitation potential of the hybrid 
algorithm.

Table 4   Fixed-dimension 
multimodal benchmark 
functions

Function Dim Range fmin

F14(y) ∼

�
1

500
+

25∑
j=1

1

j+
∑2

i=1 (yi−aij)
6

�−1 2 [− 65, 65] 1

F15(y) ∼
11∑
i=1

�
ai −

y1(b2i +biy2)
b2
i
+biyi+y4

�2 4 [− 5, 5] 0.00030

F16(y) ∼ 4y2
1
− 2.1y4

1
+

1

3
y6
1

+y1y2 − 4y2
2
+ 4y4

2

2 [− 5, 5] − 1.0316

F
17
(y) ∼

[
1 +

(
y
1
+ y

2
+ 1

)2(19−14y
1
+3y2

1

−14y
2
+6y

1
y
2
+3y2

2

)]

×

[
30+(2y1−3y2)

2

×

(
18−32y

1
+12y2

1

+48y
2
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1
y
2
+27y2

2

)
]

2 [− 2, 2] 3

F18(y) ∼ −
4∑
i=1

cie

�
−

3∑
j=1

aij(yj−pij)
2

�
3 [1, 3] − 3.86

F19(y) ∼ −
4∑
i=1

cie

�
−

6∑
j=1

aij(yj−pij)
2

�
6 [0, 1] − 3.32

F20(y) ∼ −
5∑
i=1

��
Y − ai

��
Y − ai

�T
+ ci

�−1 4 [0, 10] − 10.1532

F21(y) ∼ −
7∑
i=1

��
Y − ai

��
Y − ai

�T
+ ci

�−1 4 [0, 10] − 10.4028

F22(y) ∼ −
10∑
i=1

��
Y − ai

��
Y − ai

�T
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�−1 4 [0, 10] − 10.5363
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Fig. 2   Convergence perfor-
mance graphs of meta-heuristics 
on 100–500 dimensions
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5.2 � Results on multi‑modal benchmark test 
functions

The optimal solutions of meta-heuristic approaches on the 
multimodal problems/functions have been discussed in this 
section and also verify the working ability of the algorithms. 

These numerical experimental optimal results are repre-
sented in Table 6. The accuracy and ability of the presented 
approach has been verified in the terms of best scores, least 
and maximum cost of the objective function and statistical 
experiments on different dimensions. Table 6, results prove 

Table 5   Results of unimodal benchmark problems on 200 and 500 dimensions

Problem Algorithm Best score Min Max SD Mean Dim Search agents

1. SSA 5.7926e−08 0 2.3852e+04 5.4544e+03 4.6203e+03 500 30
HSSAPSO 1.1939e−20 0 8.6710e+03 1.4622e+04 1.0045e+04
PSO 3.7076e−04 3.7076e−04 7.1953e+04 6.8614e+03 1.0395e+03
MFO 3.2973 3.2973 6.9638e+04 1.9768e+04 1.2981e+04
SCA 7.0898 0 7.0634e+04 1.5236e+04 1.1256e+04
DA 1.3937e+03 1.3937e+03 6.3050e+04 2.2496e+04 1.4705e+04

2. SSA 2.2585e−05 0 32.0671 5.1827 4.4401 500 30
HSSAPSO 1.2491e−11 0 157.8076 0.3768 0.0277
PSO 4.4620e−13 4.4620e−13 26.6797 3.5224 2.0653
MFO 4.3142e−09 4.3142e−09 57.2575 62.0730 9.4139
SCA 7.0800e−10 0 18.8925 4.3697 1.7218
DA 3.5979 3.5979 37.8736 12.8065 12.2109

3. SSA 1.9984e−08 0 6.3457e+03 1.3181e+03 933.6434 500 30
HSSAPSO 1.8638e−20 0 7.8141e+03 1.1254e+03 994.0973
PSO 6.5057e−07 6.5057e−07 1.9732e+04 1.8661e+03 301.5329
MFO 6.6667e+03 6.6667e+03 1.5282e+04 1.2725e+03 7.1233e+03
SCA 3.7880e−05 0 1.6814e+04 3.3340e+03 1.9429e+03
DA 30.1597 30.1597 2.0518e+04 3.6640e+03 1.9544e+03

4. SSA 5.9776e−05 0 43.8478 12.1112 11.1070 500 30
HSSAPSO 2.7882e− + 11 0 96.2945 1.2939 0.0924
PSO 4.6958 1.2415e−05 70.4458 7.6754 1.7416
MFO 3.7007 3.7007 80.0806 14.9159 10.5832
SCA 7.9072e−05 0 66.8571 14.0143 7.8260
DA 4.2288 4.2288 70.9532 20.3763 15.4620

5. SSA 20.2446 0 3.4403e06 4.5862e+05 2.9579e+05 200 30
HSSAPSO 8.7330 0 7.8138e+05 1.5259e+04 4.0083e03
PSO 23.2351 0.6246 2.0374e+07 1.6783e+06 1.9379e+05
MFO 33.6766 33.6766 5.6714e+07 8.6290e+06 2.9114e+06
SCA 8.9566 0 7.4528e+06 3.3673e+06 2.1655e+06
DA 8.9755e+03 8.4755e+03 7.0845e+07 1.9161e+07 5.0671e+06

6. SSA 3.2341e−09 0 5.2263e+03 568.8210 386.0136 200 30
HSSAPSO 2.3760e−11 0 6.2355e+03 59.3087 14.0814
PSO 2.6748e−09 2.6748e−09 1.9446e+04 2.4597e+03 548.3564
MFO 9.2940e−04 9.2940e−04 1.2481e+04 2.7803e+03 1.1489e+03
SCA 3.5955 0 1.1383e+04 2.6547e+03 1.2365e+03
DA 8.2934 8.2934 2.2353e+04 7.0066e+03 3.5195e+03

7. SSA 0.0230 0 1.2617 0.0826 0.0712 500 30
HSSAPSO 0.0059 0 9.2726 0.0138 0.0011
PSO 0.0069 0.0069 8.2005 0.9444 0.5463
MFO 0.0072 0.0072 3.9423 0.4952 0.1267
SCA 5.5911e−04 0 4.4394 0.2641 0.0718
DA 0.0260 0.0260 7.6920 2.2553 0.9315
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that the newly hybrid approach gives best score values, best 
minimum and maximum values on different dimensions.

Further, the results strongly demonstrate that high explo-
ration of newly hybrid approach is capable to explore the 
search space extensively and provide capable regions of the 
search space.

5.3 � Results on fixed dimension multi‑modal 
benchmark test functions

Further, in this subsection, the results of HSSAPSO on 
fixed dimension multi-modal problems are discussed and 

also verifying the convergence performance with other 
meta-heuristics in Table 7. Results are prove that the hybrid 
approach is capable to gives the best quality of solutions in 
the search area of these functions.

Hence, it can be concluded that the HSSAPSO algorithm 
has better characteristics in high quality of the optimal 
results and strength of the optimal solutions.

5.4 � Statistical results of the algorithms

In this subsection, the working performance of the newly 
modified method has been verified by statistical solutions on 

Table 6   Results of multimodal benchmark problems on 200 and 500 dimensions

Problem Algorithm Best score Min Max SD Mean Dim Search agents

8. SSA − 2.9432e+03 − 2.9432e+03 0 163.2604 − 2.4330e+03 200 30
HSSAPSO − 3.0449e+03 − 3.0449e+03 0 135.4370 − 2.5385e+03
PSO − 2.0428e+03 − 2.0428e+03 − 1.1427e+03 171.4619 − 1.9742e+03
MFO − 2.9994e+03 − 2.9994e+03 − 922.2770 494.5624 − 2.7243e+03
SCA − 1.7365e+03 − 1.7365e+03 0 140.1863 − 1.6785e+03
DA − 2.4542e+03 − 2.4542e+03 − 1.1783e+03 452.3059 − 2.0922e+03

9. SSA 23.8790 0 97.6607 14.4804 36.9362 500 30
HSSAPSO 0 0 172.7369 4.2308 0.3255
PSO 12.9345 12.9345 111.1988 21.4631 33.0228
MFO 10.9445 10.9445 135.3036 23.0731 19.9183
SCA 1.2932e−12 0 95.7572 27.8833 18.2722
DA 37.1460 37.1460 108.7236 20.4295 52.9479

10. SSA 8.7643e−06 0 18.1594 5.3141 4.2305 500 30
HSSAPSO 3.3038e−11 0 23.9880 0.7524 0.0627
PSO 3.8804e−11 3.8804e−11 19.0182 2.6527 1.6418
MFO 9.7300e−08 9.7300e− + 08 19.6886 4.7199 2.1465
SCA 7.7344e−06 0 20.1437 8.6185 5.8990
DA 4.0672 0.0672 19.6234 6.4737 5.6422

11. SSA 0.1698 0 25.5869 8.4919 7.1692 500 30
HSSAPSO 0 0 288.5100 0.8415 0.0519
PSO 2.2536 0.0615 88.7712 21.5538 7.9763
MFO 0.3470 0.3470 144.8050 20.7299 5.9697
SCA 0.0049 0 204.9183 29.2239 8.8299
DA 1.3078 1.3078 138.1165 23.3066 9.7577

12. SSA 0.4242 0 1.9563e+06 9.0642e+06 1.6256e+04 200 30
HSSAPSO 0.0011 0 5.2996e+04 3.1473e+03 265.2714
PSO 4.1278e−10 4.1278e−10 1.0339e+08 9.0642e+06 1.0388e+06
MFO 2.5638e−05 2.5638e−05 4.0073e−07 4.4967e+07 4.1218e+06
SCA 0.0808 0 2.2523e+08 3.1206e+07 9.1233e+06
DA 7.8924 7.8924 9.7833e+07 3.2051e+07 1.4025e+07

13. SSA 3.8892e−04 0 6.5479e+06 1.4490e+06 7.8013e+05 200 30
HSSAPSO 0.0110 0 8.5618e+05 1.0541e+04 4.2813e+03
PSO 1.3419e−07 1.3419e−07 4.6884e+07 4.8102e+06 5.8085e+05
MFO 0.0110 0.0110 4.6780e+07 6.8358e+06 1.5392e+06
SCA 0.4525 0 1.8438e+08 1.8409e+07 1.9738e+06
DA 0.3403 0.3403 7.7773e+07 3.7598e+07 2.1056e+07
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Table 7   Results of fixed 
dimension multi-modal 
benchmark problems on 50–80 
dimensions

Problem Algorithm Best score Min Max SD Mean Dim Search agents

14. SSA 3.9683 0 11.3839 1.1989 4.0488 50 30
HSSAPSO 0.9980 0 65.0054 0.1415 9.9805
PSO 7.8740 7.8740 20.5206 3.4435 11.0557
MFO 5.9288 5.9288 49.6864 10.4699 8.7070
SCA 10.7632 0 11.1822 1.5397 10.6156
DA 2.9821 2.9821 215.0151 29.9163 12.0821

15. SSA 4.0204 0 0.1730 0.0166 0.0237 500 30
HSSAPSO 3.07493e−04 0 0.9463 0.0071 0.0024
PSO 8.9060e−04 8.9060e−04 0.0518 0.0084 0.0029
MFO 7.82663e−04 7.8266e−04 0.8625 0.0546 0.0050
SCA 7.2909e−04 0 0.0327 0.0036 0.0016
DA 9.0452e−04 9.0452e−04 0.2349 0.0187 0.0094

16. SSA − 1.0316 − 1.0316 0 0.1399 − 0.9640 100 30
HSSAPSO − 1.0316 − 1.0316 0 0.1078 − 0.9976
PSO − 1.0316 − 1.0316 0 0.1401 − 1.0128
MFO − 1.0316 − 1.0316 − 0.0532 0.1543 − 0.9897
SCA − 1.0316 − 1.0315 0 0.1865 − 0.9916
DA − 1.0316 − 1.0316 − 0.3029 0.1508 − 0.9742

17. SSA 3.0000 0 8.7831 1.5112 3.6260 80 30
HSSAPSO 3.0000 0 85.4961 1.0241 5.1069
PSO 3.0000 3.0000 65.9740 7.0347 3.9725
MFO 3.0000 3.0000 80.6247 17.8383 7.9745
SCA 3.0000 0 10.5066 1.5860 3.6260
DA 3.0000 3.0000 48.8171 10.2422 6.7816

18. SSA − 3.8549 − 3.8549 0 0.5630 − 3.6345 50 30
HSSAPSO − 3.8628 − 3.8628 0 0.4459 − 3.7825
PSO − 3.8628 − 3.8628 − 2.4674 0.2014 − 3.8071
MFO − 3.8628 − 3.8628 − 3.1070 0.1496 − 3.8221
SCA − 3.8472 − 3.8472 0 0.5375 − 3.6949
DA − 3.8292 − 3.8628 − 3.7051 0.4523 − 3.8292

19. SSA − 3.1899 − 3.1899 0 0.2841 − 3.0542 500 30
HSSAPSO − 3.3220 − 3.3220 0 0.1099 − 3.0233
PSO − 3.2031 − 3.2031 − 1.0762 0.1356 − 3.1689
MFO − 3.3220 − 3.3220 − 1.5623 0.1518 − 3.2952
SCA − 2.9132 − 2.9132 0 0.3057 − 2.7119
DA − 3.3217 − 3.3217 − 1.4780 0.5247 − 3.1342

20. SSA − 2.6829 − 2.6829 0 0.6835 − 2.0970 50 30
HSSAPSO − 5.0994 − 5.0994 0 0.0231 − 4.3374
PSO − 5.1005 − 5.1005 − 0.8952 1.4115 − 3.6668
MFO − 5.0975 − 5.0975 − 0.5036 1.7439 − 3.0601
SCA − 0.8812 − 0.8812 0 0.1395 − 0.8064
DA − 5.0994 − 5.0994 − 0.3078 2.0655 − 2.8166

21. SSA − 2.7519 − 2.7519 0 0.8814 − 2.0175 100 30
HSSAPSO − 5.0877 − 5.0877 0 0.4000 − 3.9669
PSO − 1.8376 − 1.8376 − 0.4561 0.3273 − 1.6577
MFO − 3.7243 − 3.7243 − 0.4817 0.9090 − 3.2069
SCA − 1.5233 − 2.7519 0 0.8814 − 2.0175
DA − 5.0288 − 5.0288 − 0.9433 0.9602 − 4.4089
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the fixed dimension, multi-modal and uni-modal functions. 
These solutions are presented in Tables 5, 6 and 7. In order 
to do a fair comparison of a HSSAPSO algorithm with SSA, 
PSO, MFO, SCA and DA algorithms, average and standard 
deviation for multiple runs has been reported. In Tables 5, 6 
and 7, the least statistic scores indicate that the HSSAPSO 
algorithm is the most robust and is competent to reproduce 
the best solution with the minimum discrepancy and has less 
dependence as comparison to others.

5.5 � Convergence graphs

At the end, the convergence performance of the presented 
approach and others has been plotted on Figs. 3, 4 and 5. 
The accuracy of the meta-heuristics has been tested on dif-
ferent dimension in the search space of the functions and 
each algorithms code has been run several times for the test 
the fair comparison of the algorithms. Figures 3, 4 and 5, 
shows that the HSSAPSO algorithm finds the best optimal 
solution of the problems in least number of generations or 
iterations. But, on the other sides, recent algorithms are tak-
ing the maximum times for find the solution in the search 
areas of the functions.

Hence, the graphs result proves that the HSSAPSO 
approach more suitable and faster for benchmark function 
as comparison to others.

5.6 � Comparison of the algorithms on high 
dimensional (CEC 2017) functions

Due to the high complexity, the CEC test functions [62] cus-
tomized for global optimization has been used these func-
tion for evaluating the performance quality of the proposed 
algorithm as comparison to others. The accuracy of the algo-
rithms has been compared on 100 dimension and 5000 itera-
tions with each others. The CEC 2017 test function contains 
twenty-nine standard functions, but function (F2) has been 
excluded because it reveals unstable behavior as given in 
[62]. These functions have been described in four different 
categories such as uni-modal functions (F1 and F3), multi-
modal functions (F4–F10), hybrid functions (F11–F20) 
and composition functions (F21–F30). Here multimodal 

standard function has been utilized to evaluate the competi-
tive metaheuristics to avoid fall into local optimum because 
these functions have several local values. Further, the com-
posite standard functions have been utilized to evaluate the 
balance amid exploration and exploitation phases.

Through the Table 8 has been reported the simulation 
global optimum solutions of the algorithms. The conver-
gence performance of the algorithms has been compared 
through Fig. 6. These graphs have been plotted on 5000 
iterations at 100 dimensions.

The experimental results of the SSA, PSO, MFO, SCA, 
EGWO, AGWO, GWOPSO and HSSAPSO algorithms have 
been compared through minimum value of objective func-
tion, maximum value of objective function, mean value and 
standard deviation value. The simulation results on all func-
tions reveals that the proposed algorithms has very superior 
than others for evaluating the best global optima solution 
in the search space during the search process. Hence, it’s 
capable for best solution for complex functions. According 
to the aforementioned findings, the following observations 
can be made.

•	 Unimodal functions: These functions have only one 
global optima, hence these functions have been utilized 
to evaluate the exploitation phase. The obtained global 
optimal solutions shows that proposed algorithm has 
exhibited a superior exploitation capability outperform 
than others.

•	 Multimodal functions; in which have many local optima 
and the number of design variables exponentially 
increases with the problem size compared to the uni-
modal functions. Generally these test suits utilized for 
representing the exploration ability of the metaheuristics. 
Here, the obtained solution shows that the proposed algo-
rithm yields a superior exploration capability.

•	 Composition and Hybrid functions generally used for 
assessing the local global optima avoidance capability 
and the balance amid exploitation and exploration, which 
have a huge number of local global optima. The obtained 
simulation solutions prove that the proposed method is 
able to create the superior balance amid exploration/
exploitation.

Table 7   (continued) Problem Algorithm Best score Min Max SD Mean Dim Search agents

22. SSA − 2.8711 − 2.8711 0 0.7695 − 2.1808 50 30

HSSAPSO − 5.1285 − 5.1285 0 1.1737 − 4.2235

PSO − 2.8711 − 2.8711 − 0.5628 0.6432 − 2.3018

MFO − 5.1284 − 5.1284 − 1.0227 1.3751 − 4.0762

SCA − 2.7511 − 2.7511 0 0.7695 − 2.1808

DA − 3.8898 − 5.1285 − 1.4964 1.6692 − 3.8898
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Fig. 3   HSSAPSO, SSA, PSO, 
MFO, SCA and DA algorithms 
convergence curves for uni-
modal test functions
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•	 Hence, the proposed methodology is most efficient 
approach for all CEC 2017 test suits outperform than 
others.

5.7 � Testing performance of the HSSAPSO algorithm 
through Wilcoxon signed ranks method

In this sub-section, the working performance of the 
HSSAPSO algorithm has been confirmed by applying the 
Wilcoxon signed ranks (WSR) method on the median values 
(see in Tables 9, 10, 11) of the algorithms for the supe-
rior assessment [63]. The WSR test is a non-parametric test 
that is applied on two distinct samples or data columns, for 
searching the significance amid two samples/or two algo-
rithms. With the help of this method/or test, we can be easily 
find the best one sample/or algorithms. In addition, the help 
of this method easily locates the significant difference of the 
behaviors of two meta-heuristics.

Here after using the WSR test we found the z-value and 
p value of the each algorithm. These values have been rep-
resented in the Tables 12, 13 and 14. Further we have used 
the condition of this test for verifying the significance of 
each algorithms, such as if p < 0.05 , then it represents a 
rejection of the H0 hypothesis, whereas p > 0.05 represents 
a failure to reject the null hypothesis. Hence p-values are less 
than 0.05, it can be determined that HSSAPSO algorithm 
is significantly superior to the other meta-heuristics. If not, 
the obtained improvements are not statistically significant.

To sum up, all numerical and statistical solutions has 
proven that the HSSAPSO algorithm is more helpful in 
enhancing and improving the convergence performance of 
the Salp Swarm Algorithm in the terms of optimal solution 
superiority as well as computational efforts.

Finally, the results of Tables 12, 13 and 14, illustrates 
that proposed method has better characteristics such that 
strength of the global optimal target and superiority of the 
optimal solution. Also, significant importance may be placed 

in global exploration and local exploitation. Solutions illus-
trate based on the WSR method proved that the proposed 
algorithm presents the superiority performance as compari-
son to recent meta-heuristics. Hence, the obtained results by 
the proposed algorithm have been statistically superior and 
this has not happened by likelihood/or chance.

6 � Welded beam design function

Welding can be presented as a procedure of combining 
metallic parts by heating to appropriate temperature without 
or with the application of pressure [64]. Here, the welding 
course that uses heat alone is known as mixture welding 
process. The components involved in this procedure are kept 
in position and given to attach the melted metal. Molten 
metal that can come from any part that it’s called parent 
metal or external filler metal. The merging surface of dif-
ferent parts becomes plastic under the action of heat. When 
consolidated, two parts fuse into a unit.

A beam is a member subjected to loads applied trans-
verse to the long dimension, causing the member to bend. 
Beam is often distributed on a support or reaction basis. 
Here the beam supported by smooth surface, rollers, pins 
at the split ends is known as simple beam. It will develop a 
general reaction to a beam assisted action but will not create 
a momentum at the reactions. If a beam project other than 
the supporters either ends either side then it is called the 
simple beam with the overhang.

A beam ( A ) is to be welded to a rigid member ( B ). The 
welded beam is to consist of 1010 steel and is to support 
a force P of 6000 lb. Beam dimensions should be selected 
so that the cost of the system is reduced. The structure of 
the beam has been illustrated by Fig. 7. In this image an 
rigid member ( A ) has been welded on one beam. A weight 
or load is applied at the last part of the member. Here, the 
beam is to be adapted for minimize cost by varying the weld 

Fig. 3   (continued)
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and member dimensions �⃗y =
[
y1 y2 y3 y4

]
= [h l t b] . This 

includes the limits of the end deflection, bending stress, 
buckling load and shear stress. The variables y1 and y2 
are multiples of 0.0625 inch and but for this problem are 
assumed continuous [65, 66].

The main objective of this function is to minimize the 
total material and fabrication cost of a beam that is loaded 
in bending shown in Fig. 8 [67]. The beam dimensions are 
varied to decrease the total mass (thus reducing fabrica-
tion cost). However, the cost of welding is also measured, 

Fig. 4   HSSAPSO, SSA, PSO, 
MFO, SCA and DA algorithms 
convergence curves for multi-
modal test functions
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introducing more complexity to the problem. The subject to 
constraints of the problems are on l : shear stress, m : bend-
ing stress in the beam, n : buckling load on the bar, o : end 
deflection of the beam and side constraints. This function is 
depend on four variables such as a(y1) : thickness of the weld 

(h ) , b(y2) : length of the clamped bar (l) , c(y3) : height of the 
bar (t) and d(y4) : thickness of the bar(b) [67]. The function 
can be indicated as the following mathematical equations:

(8)Consider �⃗y =
[
y1 y2 y3 y4

]
= [h l t b]

Fig. 5   HSSAPSO, SSA, PSO, 
MFO, SCA and DA algorithms 
convergence curves for fixed 
dimension multi-modal test 
functions
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where l(Y) =
√

(l�)2 + l�l��
(
y2∕2R

)
+ (l��)2 , l� = n∕

√
2y1y2 , 

l�� = MR∕J , M = n
(
L + y

2
∕2

)
 , R =

√
y2
2
∕4 +

((
y1 + y2

)
∕2

)2 , 

(9)
Minimize ∶ f (Y) = 1.10471y2

1
y2 + 0.04811y3y4

(
14.0 + y

2

)

(10)r1(Y) = l(Y) − lmax ≤ 0,

(11)r2(Y) = m(Y) − mmax ≤ 0,

(12)r3(Y) = y1 − y4 ≤ 0,

(13)r4(Y) = 0.010471y2
1
+ 0.04811y3y4

(
14.0 + y

2

)
≤ 0,

(14)r5(Y) = 0.125 − y1 ≤ 0,

(15)r6(Y) = o(Y) − omax ≤ 0,

(16)r7(Y) = n − n(Y) ≤ 0,

J = 2

�√
2y

1
y
2

�
y2
2
∕12 +

��
y
1
+ y

2

��2�� ,  m(Y) = 6nL3∕Ey3
3
y4  , 

n(Y) =

�
4.013E

�
y2
3
y6
4
∕36∕L2

��
1 −

�
y3∕2L

�√
E∕4G

�
  , 

n = 6000 lb , L = 14 in , E = 30 × 106 psi , G = 12 × 106 psi , 
lmax = 13, 600 psi , mmax = 30, 000 psi , omax = 0.25 in , 
Y =

(
y1, y2, y3, y4

)
 and (0.1, 0.1, 0.1, 0.1) ≤ Y ≤ (2, 10, 10, 2).

The welded beam design function has been solved by 
newly HSSAPSO approach in this section. During this study 
the compatibility with extreme values of the parameter has 
been tested with different solvers. The results of the algo-
rithms are of a stochastic type, hence these results have been 
tested on 20 trial. The results obtained by proposed algorithm 
has been compared with using the literature results of; ABC 
(Artificial Bee Colony) [68], CPSOS (Co-Evolutionary PSO) 
[69], CDE (Co-evolutionary) [70], HIS (Improved Harmony 
Search Algorithm) [71], MFO (Moth Flame Optimizer) [29], 
AFA (Adaptive FA) [72],CSS (Charged System Search) [73], 
LSA-SM (Hybrid Lightning Search Algorithm-Simplex 
Method) [74] and Water Cycle and Moth-Flame Optimiza-
tion algorithms (WCMFO) [75] respectively. The results of 
Table 14, represents the obtained solution in the terms of 

Fig. 5   (continued)
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Table 8   Results of CEC 2017 on 100 dimensions of algorithms

Algorithms F-1 F-2

Min. Max Mean SD Min Max Mean SD

AGWO 8.7436e+10 5.8722e+11 1.0573e+11 2.6395e+10 2.5967e+05 1.7006e+12 4.1382e+08 2.4207e+10
EGWO 8.6188e+10 6.1715e+11 9.1301e+10 1.9248e+10 2.3662e+05 9.2129e+09 5.8695e+06 2.2562e+08
MFO 1.4959e+11 6.0861e+11 1.6594e+11 5.4908e+10 4.3100e+05 3.9002e+07 6.7332e+05 1.8826e+06
PSO 1.2885e+04 6.0038e+11 3.0637e+11 2.6633e+10 2.1680e+05 2.3924e+12 4.8263e+08 3.3834e+10
PSOGWO 8.3322e+09 6.7750e+11 6.2987e+11 6.7401e+10 2.2526e+05 2.0029e+12 4.0066e+09 2.8325e+11
SCA 0 6.2775e+11 3.0446e+11 1.5430e+11 0 9.5481e+10 1.0204e+08 2.7218e+09
SSA 0 3.8836e+11 1.1025e+11 1.4300e+11 0 8.6059e+10 2.7214e+07 1.3894e+09
HSSAPSO 0 6.9718e+11 6.7670e+10 1.0428e+11 0 6.7360e+13 1.3557e+04 9.5262e+05

Algorithms F-3 F-4

Min Max Mean SD Min Max Mean SD

AGWO 6.6671e+03 3.1602e+05 1.0853e+04 1.1627e+04 1.6939e+03 2.9310e+03 1.8471e+03 94.3943
EGWO 1.5218e+04 4.3494e+05 1.7010e+04 1.2113e+04 1.7695e+03 2.9036e+03 1.8501e+03 97.9658
MFO 2.8858e+04 3.4552e+05 3.4744e+04 2.5453e+04 1.6916e+03 3.2675e+03 1.7587e+03 190.5930
PSO 775.6263 3.3804e+05 1.7261e+03 1.0734e+04 1.1985e+03 3.2442e+03 1.3301e+03 207.8733
PSOGWO 1.6850e+03 2.6136e+05 2.4243e+03 5.5267e+03 859.6864 3.2793e+03 1.3548e+03 249.7328
SCA 0 2.7651e+05 8.6822e+04 6.7722e+04 0 2.8853e+03 2.2167e+03 260.3634
SSA 0 2.2338e+05 3.0684e+04 4.8758e+04 0 2.5623e+03 1.8362e+03 385.3124
HSSAPSO 0 4.7555e+05 1.0874e+03 1.0051e+03 0 3.4025e+03 1.1015e+03 89.8728

Algorithms F-5 F-6

Min Max Mean SD Min Max Mean SD

AGWO 668.2970 764.4739 675.0074 7.0826 2.4343e+03 1.3959e+04 2.7671e+03 573.4496
EGWO 704.6420 782.0255 710.6183 8.0391 3.5529e+03 1.2407e+04 3.6610e+03 383.8259
MFO 667.9487 772.4922 672.4760 11.9740 5.5769e+03 1.4527e+04 5.9351e+03 1.1863e+03
PSO 658.8228 772.1896 669.9477 16.0018 1.9266e+03 1.4316e+04 2.2490e+03 497.2001
PSOGWO 620.7786 769.8404 644.0656 15.5998 1.8606e+03 1.3474e+04 2.3313e+03 342.4363
SCA 0 767.9188 715.6532 24.8871 0 1.2014e+04 6.0600e+03 3.0979e+03
SSA 0 743.3641 696.1465 23.5754 0 6.7789e+03 3.2750e+03 1.2609e+03
HSSAPSO 0 789.9729 629.7751 5.6209 0 5.4154e+04 2.0305e+03 267.8433

Algorithms F-7 F-8

Min Max Mean SD Min Max Mean SD

AGWO 1.9958e+03 3.5536e+03 2.1290e+03 126.9865 4.9631e+04 2.5903e+05 5.3733e+04 1.1695e+04
EGWO 1.9885e+03 3.5067e+30 2.0760e+03 108.7698 6.1380e+04 1.6582e+05 7.5310e+04 1.4865e+04
MFO 2.0279e+03 3.3703e+03 2.1212e+03 158.8603 4.1062e+04 2.5285e+05 4.8902e+04 2.2398e+04
PSO 1.7621e+03 3.9074e+03 1.8830e+03 198.5284 2.1764e+04 2.4414e+05 4.5453e+04 1.8786e+04
PSOGWO .8070e+03 3.9462e+03 1.8833e+03 196.0034 5.0245e+04 2.4850e+04 5.5643e+04 1.1995e+04
SCA 0 3.4884e+03 2.6611e+03 354.1787 0 2.7414e+05 1.2326e+04 4.8056e+04
SSA 0 3.0286e+03 2.2353e+03 415.8781 0 1.5008e+05 7.2155e+04 3.0355e+04
HSSAPSO 0 3.9957e+03 1.0244e+03 069.3923 0 2.9948e+05 1.1389e+04 1.1740e+04

Algorithms F-9 F-10

Min Max Mean SD Min Max Mean SD

AGWO 2.9358e+04 3.7325e+04 3.0877e+04 1.2484e+03 5.4516e+04 2.7167e+08 5.6084e+06 3.8421e+08
EGWO 2.1149e+04 3.6931e+04 2.2629e+04 1.9505e+03 5.1829e+04 2.5876e+06 6.5046e+04 6.8428e+04
MFO 1.9342e+04 3.6485e+04 2.0071e+04 2.2816e+03 1.9139e+05 1.7473e+08 7.5527e+06 3.4982e+08
PSO 1.5119e+04 3.6148e+04 1.7948e+04 4.1195e+03 2.0012e+03 1.9174e+09 6.2503e+05 3.0913e+07
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Table 8   (continued)

Algorithms F-9 F-10

Min Max Mean SD Min Max Mean SD

PSOGWO 2.9253e+04 3.6790e+04 3.1817e+04 893.0032 6.4281e+04 8.9500e+07 1.1719e+05 1.7893e+05
SCA 0 3.6366e+04 3.2340e+04 889.6159 0 1.2684e+06 2.5031e+05 1.8776e+05
SSA 0 3.6366e+04 2.3757e+04 8.3438e+03 0 1.6123e+07 1.1452e+05 9.1196e+05
HSSAPSO 0 3.8905e+04 1.0729e+04 866.8765 0 1.9045e+10 4.9255e+04 5.1422e+04

Algorithms F-11 F-12

Min Max Mean SD Min Max Mean SD

AGWO 4.8285e+06 1.7008e+08 9.3402e+06 1.4136e+07 8.2599e+03 6.0252e+08 1.8053e+05 8.5762e+06
EGWO 4.3598e+04 5.3178e+08 3.4218e+06 8.7304e+07 6.9252e+03 1.5263e+08 7.4891e+04 2.1854e+06
MFO 4.5947e+04 1.7995e+09 4.0425e+06 7.1322e+07 1.8449e+03 1.2945e+08 9.6372e+04 3.3853e+06
PSO 4.4669e+04 2.0752e+08 1.2964e+06 1.0994e+07 3.9955e+03 1.7837e+08 1.1076e+05 3.8417e+06
PSOGWO 2.3521e+04 3.3260e+09 3.7745e+06 5.7037e+07 2.5585e+03 4.7917e+08 1.2461e+05 6.8066e+06
SCA 0 1.2714e+09 2.5401e+07 4.7018e+07 0 5.3078e+08 3.3211e+05 8.8918e+06
SSA 0 1.3566e+09 2.1465e+07 1.0019e+08 0 4.8545e+08 5.4625e+05 7.0285e+06
HSSAPSO 0 4.4885e+09 1.1748e+06 1.0758e+07 0 6.1962e+08 6.8241e+04 1.2894e+06

Algorithms F-13 F-14

Min Max Mean SD Min Max Mean SD

AGWO 7.3087e+06 8.1732e+08 1.2683e+07 3.6436e+07 8.4001e+05 1.0860e+10 1.0326e+07 2.5030e+08
EGWO 7.7040e+05 1.9395e+09 2.6307e+06 3.8845e+07 1.1980e+05 3.5952e+05 1.9094e+06 6.1603e+07
MFO 2.1269e+06 1.9635e+09 6.5316e+06 6.3673e+07 5.5655e+04 4.8642e+09 1.5943e+07 2.3239e+08
PSO 4.1131e+06 2.1774e+09 4.2955e+06 6.0298e+07 2.7978e+03 7.3571e+09 6.3917e+06 1.9124e+08
PSOGWO 6.3348e+06 2.8436e+09 1.3297e+07 4.6100e+07 4.6623e+06 3.1784e+09 1.8630e+08 3.1594e+08
SCA 0 8.6416e+08 8.2125e+07 5.4555e+07 0 7.9890e+09 4.9714e+07 2.1519e+08
SSA 0 1.3854e+09 4.0504e+07 7.3267e+07 0 1.1190e+09 4.8658e+07 1.2809e+08
HSSAPSO 0 9.2538e+09 1.3085e+06 3.3541e+07 0 2.3964e+10 1.0094e+06 1.9958e+07

Algorithms F-15 F-16

Min Max Mean SD Min Max Mean SD

AGWO 1.0854e+04 4.4341e+04 1.1365e+04 910.3137 8.5516e+03 5.9602e+07 2.9602e+04 9.6888e+05
EGWO 1.3731e+04 5.5962e+04 1.4282e+04 1.2911e+03 7.6643e+05 1.1134e+08 8.7984e+05 2.0847e+06
MFO 6.4817e+03 5.1155e+04 6.9201e+03 2.2657e+03 8.5092e+03 4.4725e+08 4.8543e+05 1.1775e+07
PSO 6.1057e+03 4.5461e+04 7.1374e+03 2.2236e+03 5.2478e+03 1.6366e+08 2.0000e+05 5.0115e+06
PSOGWO 8.6066e+03 3.9198e+04 8.9150e+03 855.8692 1.8718e+04 3.5186e+08 4.0734e+05 6.1290e+06
SCA 0 3.3884e+04 1.5209e+04 2.8035e+03 0 8.6642e+07 7.3358e+05 4.3616e+06
SSA 0 3.5155e+04 1.0696e+04 4.7803e+03 0 5.6526e+07 1.2944e+05 1.2449e+06
HSSAPSO 0 5.9290e+04 5.7510e+03 1.2336e+03 0 6.2087e+08 2.1018e+04 2.1616e+05

Algorithms F-17 F-18

Min Max Mean SD Min Max Mean SD

AGWO 9.6711e+06 1.7158e+09 2.5531e+07 5.3688e+07 6.5164e+08 5.7104e+10 1.2899e+09 1.3170e+09
EGWO 6.7700e+06 5.4483e+08 9.0476e+06 1.3261e+07 5.9956e+09 5.9566e+10 6.1580e+09 1.4984e+09
MFO 2.4659e+06 9.8822e+08 1.0253e+07 4.3492e+07 5.8139e+07 6.6649e+10 4.3559e+08 3.4207e+09
PSO 1.6884e+06 3.2664e+09 6.8220e+06 7.8703e+07 9.9707e+03 6.6649e+10 1.3035e+08 2.0850e+09
PSOGWO 3.7701e+06 1.1801e+09 1.2239e+07 3.4371e+07 2.6616e+07 5.6211e+10 1.0801e+09 1.9166e+09
SCA 0 1.6498e+09 1.5474e+08 1.5183e+08 0 6.1036e+10 8.5249e+09 6.4656e+09
SSA 0 1.0786e+09 5.1591e+07 9.6749e+07 0 4.2142e+10 3.0090e+09 5.7992e+09
HSSAPSO 0 8.8823e+09 4.3847e+06 1.2669e+07 0 6.9667e+10 1.2413e+08 1.1054e+09
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Table 8   (continued)

Algorithms F-19 F-20

Min Max Mean SD Min Max Mean SD

AGWO 6.5886e+03 9.8485e+03 6.9019e+03 635.2155 3.3616e+03 5.9252e+03 3.5074e+03 136.0660
EGWO 5.5678e+03 9.9133e+03 5.7517e+03 309.5110 3.7876e+03 5.1303e+03 3.8607e+03 192.9396
MFO 4.5636e+03 9.9426e+03 4.6647e+03 502.8372 3.7258e+03 5.7824e+03 3.7835e+03 173.9068
PSO 5.0743e+03 8.9084e+03 5.2775e+03 448.5211 3.4598e+03 5.5222e+03 3.6066e+03 248.1098
PSOGWO 4.9323e+03 1.0365e+04 7.0279e+03 789.2256 3.5693e+03 5.6888e+03 3.6749e+03 113.6552
SCA 0 9.9179e+03 8.1412e+03 503.6686 0 5.2939e+03 4.2506e+03 333.2527
SSA 0 9.9769e+03 6.2707e+03 1.2025e+03 0 5.1889e+03 3.6161e+03 484.9990
HSSAPSO 0 9.9808e+03 4.4857e+03 290.5478 0 5.9961e+03 3.1560e+03 104.2024

Algorithms F-21 F-22

Min Max Mean SD Min Max Mean SD

AGWO 3.3244e+04 3.8619e+04 3.4299e+04 586.2696 4.2580e+03 7.4952e+03 4.3588e+03 182.9933
EGWO 2.2561e+04 3.7865e+04 2.4090e+04 2.3225e+03 5.0815e+03 7.9679e+03 5.1590e+03 194.7915
MFO 2.1369e+04 3.8943e+04 2.2906e+04 2.5291e+03 4.1106e+03 8.9157e+03 4.1463e+03 194.8181
PSO 1.8750e+04 3.8829e+04 2.1433e+04 4.1121e+03 5.0671e+03 8.5115e+03 5.3240e+03 428.5617
PSOGWO 2.0879e+04 3.8014e+04 2.1667e+04 1.3016e+03 3.9492e+03 8.8007e+03 4.1257e+03 172.2201
SCA 0 3.8976e+04 3.5586e+04 690.5235 0 6.3574e+03 4.9523e+03 212.3388
SSA 0 3.9216e+04 2.7337e+04 7.9593e+03 0 6.7323e+03 4.2415e+03 589.0682
HSSAPSO 0 3.9000e+04 2.0539e+04 1.2941e+03 0 8.9889e+03 4.0421e+03 160.1187

Algorithms F-23 F-24

Min Max Mean SD Min Max Mean SD

AGWO 4.9896e+03 1.5714e+04 5.1378e+03 298.8665 7.5300e+03 1.1965e+05 9.5914e+03 4.7302e+03
EGWO 6.9222e+03 1.3659e+04 7.0263e+03 292.2962 6.7968e+03 1.1937e+05 8.7203e+03 8.2825e+03
MFO 4.2325e+03 1.3757e+04 4.3134e+03 464.3535 9.0983e+03 1.2916e+05 1.4181e+04 1.2958e+04
PSO 4.8551e+03 1.3030e+04 5.0519e+03 622.1611 3.2902e+03 1.4479e+05 3.6800e+03 4.2005e+03
PSOGWO 6.3798e+03 1.5310e+04 6.7003e+03 435.6941 4.8090e+03 1.5531e+05 5.8210e+03 4.0426e+03
SCA 0 1.2419e+04 6.7550e+03 448.5384 0 1.4587e+05 4.9684e+04 3.9826e+04
SSA 0 9.7776e+03 5.0219e+03 1.0635e+03 0 6.6087e+04 1.7156e+04 1.7948e+04
HSSAPSO 0 1.9747e+04 4.0117e+03 204.7735 0 1.8668e+05 3.1203e+03 2.2825e+03

Algorithms F-25 F-26

Min Max Mean SD Min Max Mean SD

AGWO 2.1171e+04 1.1593e+05 2.2837e+04 3.0597e+03 4.2901e+03 1.4910e+04 4.7726e+03 615.7574
EGWO 3.7167e+04 8.9166e+04 3.7972e+04 2.1775e+03 6.2353e+03 1.7979e+04 6.3636e+03 360.3580
MFO 2.4304e+04 1.0381e+05 2.4786e+04 3.5126e+03 3.9943e+03 1.6516e+04 4.0724e+03 655.8559
PSO 2.0327e+04 9.7396e+04 2.2099e+04 4.6989e+03 3.2898e+03 1.8398e+04 3.4386e+03 1.0790e+03
PSOGWO 3.1131e+04 9.0001e+04 3.2974e+04 1.7793e+03 3.6069e+03 2.0822e+04 4.1059e+03 603.6115
SCA 0 8.5300e+04 4.0761e+04 5.4104e+03 0 2.0084e+04 8.1192e+03 862.1907
SSA 0 7.0612e+04 2.3569e+04 1.0331e+04 0 1.9752e+04 5.0059e+03 1.8725e+03
HSSAPSO 0 1.8712e+05 2.0292e+04 1.0769e+03 0 2.7276e+04 3.3799e+03 299.7865

Algorithms F-27 F-28

Min Max Mean SD Min Max Mean SD

AGWO 9.7315e+03 7.4850e+04 1.1871e+04 3.6681e+03 1.1015e+04 5.9090e+06 1.7728e+04 1.2724e+05
EGWO 1.4508e+04 7.0191e+04 1.5309e+04 2.1319e+03 1.0545e+04 8.6608e+05 1.1546e+04 1.3864e+05
MFO 2.1546e+04 8.2466e+04 2.2058e+04 3.7733e+03 8.6222e+03 1.9189e+07 1.1041e+05 1.8743e+06
PSO 3.3871e+03 8.1274e+04 3.9296e+04 3.7198e+03 7.0723e+03 5.0436e+06 1.6695e+04 1.6472e+05

PSOGWO 3.7770e+03 7.6115e+04 1.4825e+04 7.2186e+03 7.9841e+03 1.6743e+07 2.7565e+04 2.5260e+05
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thickness of the weld, length of the clamped bar, height of the 
bar, thickness of the weld and minimum fabrication cost of a 
beam of this problem. Here, the thickness of weld ( y1 ) remains 
constant in the LSA-SM, CSS, AFA, MFO, HIS, ACO and 
it is greater of CPSO and CDE algorithms. The length of the 
clamped bar ( y2 ) remains greater in the LSA-SM, CSS, AFA, 
MFO, HIS, CDE, CPSO and ABC algorithms while it is least 
of HSSAPSO algorithm as comparison to others. The height 
of the bar ( y3 ) remains constant in HSSAPSO, LSA-SM, CSS, 
AFA, MFO, HIS and ABC algorithms while it is least of CDE 
algorithm outperforms than the others. Although, CPSO algo-
rithm gives an high value of the height of the bar than others. 
The thickness of the weld ( y4 ) remains constant in the all 
algorithms. Finally, the minimum fabrication cost of a beam 
of this problem has been reported in the Table 15. Hence, 
these experimental solutions affirmed that the proposed algo-
rithm is able to find the least cost of a beam of this problem 
outperform than others. Hence, the HSSAPSO approach is 
more suitable and capable for welded beam design function 
as compared to ABC, CPSO, CDE, HIS, MFO, AFA, CSS, 
LSA-SM and WCMFO algorithms.

7 � Rolling element bearing

The main objective of this function is to increase the reliabil-
ity and service life of the bearing [76, 77]. On the basis of 
operating requirements, several objectives for this function 
can be proposed such as longest fatigue life, mode of failure 
contact fatigue and many others. In which have been used 
three different critical constants or parameters such as pitch 
diameter 

(
Dm

)
 , the number of balls (Z) and the ball diameter 

(
Db

)
 . During this research, the basic dynamic capacity has 

been taken as objective for maximization and expression of 
basic dynamic capacity for ball bearing is given as:

Subject to:

where

Max
�
Cd(X)

�
=

⎧
⎪⎨⎪⎩

max

�
−fcz

2∕3D1.8
b

�
if Db ≤ 25.5 mm

max

�
−3.647 × fcz

2∕3D1.4
b

�
if Db ≤ 25.5 mm

(17)g1(x) =
�o

2sin−1
(
Db∕Dm

) − Z + 1 ≥ 0,

(18)g2(x) = 2Db − KDmin(D − d) ≥ 0

(19)g3(x) = KDmax(D − d) − 2Db ≥ 0

(20)g4(x) = �Bw − Db ≥ 0

(21)g5(x) = Dm − 0.5(D + d) ≥ 0

(22)g6(x) = (0.5 + e)(D + d) − Dm ≥ 0

(23)g7(x) = 0.5
(
D − Dm − Db

)
− �Db ≥ 0

(24)g8(x) = f1 ≥ 0.515

(25)g9(x) = fo ≥ 0.515

Table 8   (continued)

Algorithms F-27 F-28

Min Max Mean SD Min Max Mean SD

SCA 0 9.2411e+04 3.5672e+04 1.2854e+04 0 1.0481e+07 3.1805e+05 5.8952e+05
SSA 0 5.4133e+04 1.4597e+04 1.4150e+04 0 2.5735e+06 3.5253e+04 1.4772e+05
HSSAPSO 0 9.3249e+04 1.0671e+04 1.1434e+03 0 2.8604e+07 1.1143e+04 8.9224e+04

Algorithms F-29

Min Max Mean SD

AGWO 1.9308e+04 7.7933e+07 4.4752e+05 2.0558e+06
EGWO 3.5491e+04 1.9674e+08 2.3957e+05 9.9354e+06
MFO 9.0200e+05 7.4096e+07 1.0436e+06 2.6305e+06
PSO 6.9434e+03 2.2356e+08 4.2193e+05 7.7880e+06
PSOGWO 9.2347e+05 1.6009e+08 1.7660e+06 3.8386e+06
SCA 0 5.5052e+07 1.3731e+06 1.4919e+06
SSA 0 7.9730e+07 5.2916e+05 3.7957e+06
HSSAPSO 0 2.8875e+08 1.4591e+05 1.0464e+06
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Fig. 6   Convergence graphs of 
algorithms on CEC 2017 test 
functions at 100 dimensions and 
5000 iterations
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Fig. 6   (continued)
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Fig. 6   (continued)



49Evolutionary Intelligence (2022) 15:23–56	

1 3

Fig. 6   (continued)
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(26)fc = 37.91

⎧⎪⎪⎨⎪⎪⎩

1 +
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�
1 − �
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�
fi
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�
2fi − 1

�
�0.41⎤⎥⎥⎦

10∕3
⎫⎪⎪⎬⎪⎪⎭

−0.3

×

⎡⎢⎢⎣
�0.3(1 − �)1.39

(1 + �)
1∕3

⎤⎥⎥⎦

�
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Fig. 6   (continued)
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(27)� =
Dbcos�

Dm

(28)f1 =
r1

Db

(29)�o = 2� − 20cos−1

[{
(D − d)∕2 − 3(T∕4)2 +

{
D∕2 −

(
T∕4 − Db

)}2
− {d∕2 + (T∕4)}2

}]

2{D − d∕2 − 3(T∕4)}
{
D∕2 − (T∕4) − Db

}

(30)T = D − d − 2Db

(31)D = 160, d = 90, Bw = 30

Table 9   Median values of the 
algorithms on seven uni-modal 
problems

Problem no’s Algorithms

DA MFO PSO SCA SSA HSSAPSO

Ai Bi Ci Di Ei Fi

1. 2.4172e+03 1.3327e+03 5.0456 4.2684 270.3903 1.6154e−09
2. 0.6166 0.0025 0.0529 1.5677e−05 0.9594 6.5649e−06
3. 568.8904 67.4091 0.2664 1.0420 47.8683 5.3484e−10
4. 1.5306 5.841 0.1453 0.0251 2.7582 7.2903e−06
5. 1.6044e+03 903.1350 24.9223 55.5528 3.1845e+03 8.9597
6. 49.1651 65.3184 0.7598 0.9620 0.4365 0.7684
7. 0.0053 0.0110 0.0432 0.0054 0.0116 2.9255e−05

Table 10   Median values of the 
algorithms on sixmulti-modal 
problems

Problem no’s Algorithms

DA MFO PSO SCA SSA HSSAPSO

Ai Bi Ci Di Ei Fi

1. − 2.06e+03 − 3.21e+01 − 2.01e+03 − 1.83e+03 − 2.36e+03 − 2.4866e+03
2. 36.809 12.9349 25.6489 6.4280e−08 21.6504 1.4554e−10
3. 3.9293 2.3170 0.0450 0.378 2.2106 9.4262e−06
4. 16.5049 0.1034 0.1527 0.8462 1.0706 1.6008e−09
5. 8.2092 2.5743 0.0105 5.4691 2.5248 0.2143
6. 10.4227 2.4161 0.0773 0.5830 0.4377 0.1404
7.

Table 11   Median values of 
the algorithms on ninefixed 
dimension multi− modal 
problems

Problem no’s Algorithms

DA MFO PSO SCA SSA HSSAPSO

Ai Bi Ci Di Ei Fi

1. 8.8787 2.4808 1.9921 3.0386 6.9063 0.99805
2. 0.0023 7.8321e−04 0.0011 0.0013 0.0011 4.3092e−04
3. − 1.0252 − 1.0316 − 1.0316 − 1.0312 − 1.0309 − 1.0315
4. 3.0155 3.0075 3.0282 3.0194 3.0185 3.0001
5. − 3.6349 − 3.8624 − 3.8595 − 3.6657 − 3.7523 − 3.8606
6. − 3.3182 − 3.2031 − 3.3220 − 2.9484 − 3.1693 − 3.3288
7. − 3.8130 − 1.9801 − 2.2929 − 3.9838 − 2.5998 − 4.9648
8. − 4.4923 − 5.1245 − 3.5971 − 3.0913 − 7.8224 − 10.0113
9. − 1.6132 − 2.3891 − 1.8648 − 0.9710 − 3.4059 − 5.1091
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where (d) is the bearing bore, (D) is the outside diameter (see 
Fig. 9, 

(
fi =

ri
/
Db

)
 is the curvature radius coefficient of the 

inner raceway groove, 
(
fo =

ro
/
Db

)
 is the curvature radius 

coefficient of the outer raceway groove, the outer 
(
ro
)
 and 

(32)0.5(D + d) ≤ Dm ≤ 0.6(D + d)

(33)0.15(D − d) ≤ Db ≤ 0.45(D − d)

4 ≤ Z ≤ 50; 0.515 ≤ f
1
≤ 0.6; 0.515 ≤ fo ≤ 0.6;

0.4 ≤ KDmin ≤ 0.5; 0.6 ≤ KDmax ≤ 0.7

0.3 ≤ � ≤ 0.4; 0.02 ≤ e ≤ 0.1; 0.6 ≤ � ≤ 0.85.

Table 12   Wilcoxon method for the comparison of solutions in Table 8

Proposed method Compared 
algorithms

Sum of rank 
( 
∑7

i=1
R−
i
)

Sum of rank 
( 
∑7

i=1
R+
i
)

Difference (D) z-value p value Accept 
( p < 0.05)
H1

Reject 
( p < 0.05

)
H0

HSSAPSO algorithm DA 28 0 Ai − Bi to Fi 2.366432 .017962 Yes Yes
MFO 28 0 2.366432 .017962 Yes Yes
PSO 23 5 2.197401 .027992 Yes Yes
SCA 28 0 2.366432 .017962 Yes Yes
SSA 26 2 2.02837 .04253 Yes Yes

Table 13   Wilcoxon method for the comparison of solutions in Table 9

Proposed method Compared 
algorithms

Sum of rank 
( 
∑7

i=1
R−
i
)

Sum of rank 
( 
∑7

i=1
R+
i
)

Difference (D) z-value p value Accept 
( p < 0.05)
H1

Reject 
( p < 0.05

)
H0

HSSAPSO algorithm DA 21 0 Ai − Bi to Fi 2.201398 .027715 Yes Yes
MFO 21 0 2.201398 .027715 Yes Yes
PSO 15 6 0.943456 .345476 No No
SCA 21 0 2.201398 .027715 Yes Yes
SSA 21 0 2.201398 .027715 Yes Yes

Table 14   Wilcoxon method for the comparison of solutions in Table 10

Proposed method Compared 
Algorithms

Sum of rank 
( 
∑7

i=1
R−
i
)

Sum of rank 
( 
∑7

i=1
R+
i
)

Difference (D) z-value p value Accept 
( p < 0.05)
H1

Reject 
( p < 0.05

)
H0

HSSAPSO algorithm DA 45 0 Ai − Bi to Fi − 2.66557 .007699 Yes Yes
MFO 41 4 − 2.19169 .028452 Yes Yes
PSO 44 1 − 2.5471 .010865 Yes Yes
SCA 45 0 − 2.66557 .007699 Yes Yes
SSA 45 0 − 2.66557 .007699 Yes Yes

Fig. 7   Weld Beam Structure
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Fig. 8   Welded beam design 
function: a schematic of the 
weld; b stress distribution eval-
uated at the optimum design; c 
displacement distribution at the 
optimum design

Table 15   Best optimal solutions 
of the welded beam design 
function by different algorithms

Algorithm y1 y2 y3 y4 f (Y)

ABC [64] 2.06e−01 3.47e+00 9.04e+00 2.06e−01 1.72e+00
CPSO [65] 2.02e−01 3.54e+00 9.05e+00 2.06e−01 1.73e+00
CDE [66] 2.03e−01 3.54e+00 9.03e+00 2.06e−01 1.73e+00
HIS [68] 2.06e−01 3.47e+00 9.04e+00 2.06e−01 1.72e+00
MFO [29] 2.06e−01 3.47e+00 9.04e+00 2.06e−01 1.72e+00
AFA [69] 2.06e−01 3.47e+00 9.04e+00 2.06e−01 1.72e+00
CSS [70] 2.06e−01 3.47e+00 9.04e+00 2.06e−01 1.72e+00
LSA-SM [67] 2.06e−01 3.25e+00 9.04e+00 2.06e−01 1.70e+00
WCMFO [75] 0.206711 3.449553 9.03679 0.205731 1.723583
HSSAPSO 0.206711 3.440553 9.00179 0.202731 1.693651489

Fig. 9   Rolling Element Bearing macro-geometry

Fig. 10   Ball bearing showing the assembly angle
inner 

(
ri
)
 (see Fig. 11) raceway groove curvature radius, (

KDmax

)
 is the maximum roller diameter limiter (0.8), 

(
KDmin

)
 

is minimum roller diameter limiter (0.5), (e) is the parameter 
for mobility condition (0.1), (�) is the parameter for outer 
ring strength (0.1) and 

(
�o

)
 is the maximum tolerable assem-

bly angle (see Fig. 10) which depends upon the bearing 
geometry (Fig. 11).   

For the analysis of the performance of the algorithms 
usually consider three parameters such as pitch diam-
eter, ball diameter and the number of balls for reasons of 
complexity. But during this research have been applied 
five design parameters 

(
Dm,Db, Z, fi, fo

)
 . In the subject 
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to the constraints, the constants values have been used 
KDmax= 0.8, KDmin= 0.5, e = 0.1, � = 0.1 and �o = 4.7124 
rads which are obtained from considerations of the rings, 
strength of the ball and mobility of balls. In the Matlab code 
of the proposed algorithm have been used the parameters 
values such as; number of search agents (30) and maximum 
iterations (500). The performance of the proposed approach 
have been compared with the literature results of the SSA, 
SCA, GWO, GSA, MVO, PSO, EPO, SHO and ESA algo-
rithms [78]. The simulation solutions of the all algorithms 
have presented through the Table 16.

The simulation results of Table 10 reveals that the pro-
posed method able to search the best corresponding (max) 
value ( Cd(X) ) for this function outperforms than others. Here 
we can say that, on the basis of solutions of the proposed 
method, it can be improved and enhanced the life of the 
bearings.

8 � Conclusion and future works

For the purpose of improving the exploration and exploita-
tion of the algorithm, we have developing the newly hybrid 
approach called HSSAPSO in this article. This approach 
integrates the advantages of the salp swarm algorithm and 
particle swarm optimization algorithm to eliminate disad-
vantages, like the trapping in local optima and unbalanced 
exploitation. Welded beam design function, Rolling element 
bearing, twenty-two CEC 2005and twenty-nine CEC 2017 
functions have been used for verifying the performance of 
the newly approach. The results and convergence graphs of 
these functions, proves that the HSSAPSO algorithm is a 
capable and faster algorithm for these functions outperform 
than recent metaheuristics.

Watchful evidences will determine the following advan-
tages of the HSSAPSO algorithm.

(1)	 It can powerfully improve the examining capabilities 
of the exploration by introducing the PSO.

(2)	 It can recognize the accurate position HSSAPSO by 
tuning the constant around target.

(3)	 It can find the superior possible global optima solution 
in the search areas for the practical and real life func-
tions.

(4)	 It can enhanced the convergence purity and extend the 
performance through reduction the computational time.

Future studies will investigate a new method with the 
help of statistical model to accelerate the speed of recent 
meta-heuristics as well as apply it for solving the other con-
strained nonlinear optimization functions, big data statistical 
and built train applications.

Fig. 11   Cut sections of bearing races

Table 16   Results of rolling element bearing function on different algorithms

Algorithms Optimum variables Opt. cost

Dm Db Z fi fo KDmin KDmax � e �

SSA 125 20.77562 11.01247 0.515 0.515000 0.5 0.61397 0.300000 0.05004 0.610001 82,773.982
SCA 125 21.14834 10.96928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83,431.117
GWO 125.6199 21.35129 10.98781 0.515 0.515 0.5 0.68807 0.300151 0.03254 0.62701 84,807.111
GSA 125 20.85417 11.14989 0.515 0.517746 0.5 0.61827 0.304068 0.02000 0.624638 82,276.941
MVO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84,491.266
PSO 125 20.75388 11.17342 0.515 0.515000 0.5 0.61503 0.300000 0.05161 0.60000 81,691.202
EPO 125 21.41890 10.94113 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,067.983
SHO 125 21.40732 10.93268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,054.532
ESA 125 21.41750 10.94109 0.510 0.515 0.4 0.7 0.3 0.02 0.6 85,070.085
HSSAPSO 125.7227 21.4233 11.0012 0.5150 0.5150 0.4515 0.6170 0.3000 0.0244 0.6259 85,539.189



55Evolutionary Intelligence (2022) 15:23–56	

1 3

Acknowledgements  The authors are very grateful to the referees for 
their valuable suggestions, which helped to improve the quality of the 
paper significantly.

References

	 1.	 Kalaiselvi K, Kumar VS, Chandrasekar K (2010) Enhanced 
genetic algorithm for optimal electric power flow using TCSC 
and TCPS. World congress on engineering, vol II, WCE 2010, 
June 30–July 2, 2010, London, UK

	 2.	 Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal 
power flow by enhanced genetic algorithm. IEEE Power Eng Rev 
22(2):60

	 3.	 Chung TS, Li YZA (2000) A hybrid GA approach for OPF 
with consideration of FACTS devices. IEEE Power Eng Rev 
20(8):54–57

	 4.	 Cai LJ, Erlich I, Stamtsis G (2004) Optimal choice and allocation 
of FACTS devices in deregulated electricity market using genetic 
algorithms. In: IEEE PES power systems conference and exposi-
tion, 10–13 Oct 2004, New York, NY, USA

	 5.	 Slimani L, Optimal BT (2012) Optimal power flow solution of the 
algerian electrical network using differential evolution algorithm. 
TELKOMNIKA 10(2):199–210

	 6.	 Simon D (2008) Biogeography-based optimization. IEEE Trans 
Evol Comput 12(6):702–713

	 7.	 Duman S, Guvenc U, Sonmez Y, Yorukeren N (2012) Optimal 
power flow using gravitational search algorithm. Energy Convers 
Manag 59:86–95

	 8.	 Kennedy J (2011) Particle swarm optimization. In: Sammut C, 
Webb GI (eds) Encyclopedia of machine learning. Springer, 
Boston

	 9.	 Abido MA (2002) Optimal power flow using Tabu search algo-
rithm. Electr Power Compon Syst 30:469–483

	10.	 Sinsupan N, Leeton U, Kulworawanichping T (2010) Applica-
tion of harmony search to optimal power flow problems. In: 2010 
International conference on advances in energy engineering, 
19–20 June 2010, Beijing, China

	11.	 Alrashydah EI, Qudais SAA (2018) Modeling of creep compliance 
behavior in asphalt mixes using multiple regression and artificial 
neural networks. Constr Build Mater 159:635–641

	12.	 Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristics 
optimization technique for solving single-objetive, discrete, and 
multi-objective problems. Neural Comput Appl 27:1053–1073

	13.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. 
Adv Eng Softw 69:46–61

	14.	 Mukherjee A, Mukherjee V (2015) Solution of optimal power 
flow using chaotic krill herd algorithm. Chaos Solitons Fractals 
78:10–21

	15.	 Bouchekara HREH (2014) Optimal power flow using black-hole-
based optimization approach. Appl Soft Comput 24:879–888

	16.	 Tal AB, Ghaoui LEI, Nemirovski A (2009) Robust optimization. 
Princeton series in applied mathematics. Princeton University 
Press, Princeton, pp 1–576

	17.	 Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 
83:80–98

	18.	 Singh N, Singh SB (2011) One half global best position particle 
swarm optimization algorithm. Int J Sci Eng Res 2(8):1–9

	19.	 Roger JM, Chauchard F, Maurel VB (2003) EPOPLS external 
parameter orthogonalisation of PLS application to temperature-
independent measurement of sugar content of intact fruits. Chem-
ometr Intell Lab 66:191–204

	20.	 Fausto F, Cuevas E, Valdivia A, González A (2017) A global 
optimization algorithm inspired in the behavior of selfish herds. 
Biosystems 160:39–55

	21.	 Joshi H, Arora S (2017) Enhanced grey wolf optimization algo-
rithm for constrained optimization problems. Int J Swarm Intell 
3(2/3):126–151

	22.	 Qais MH, Hasanien HM, Alghuwainem S (2018) Augmented grey 
wolf optimizer for grid-connected PMSG-based wind energy con-
version systems. Appl Soft Comput 69:505–515

	23.	 Singh N, Singh SB (2017) Hybrid algorithm of particle swarm 
optimization and grey wolf optimizer for improving convergence 
performance. J Appl Math 2017:1–15

	24.	 Soares J, Sousa T, Vale ZA, Morais H, Faria P (2011) Ant colony 
search algorithm for the optimal power flow problem. In: 2011 
IEEE power and energy society general meeting, 24–28 July 2011, 
Detroit, MI, USA

	25.	 Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation 
algorithm: theory and application. Adv Eng Softw 105:30–47

	26.	 Mirjalili S (2016) SCA: a sine cosine algorithm for solving opti-
mization problems. Knowl Based Syst 96:120–133

	27.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. 
Adv Eng Softw 95:51–67

	28.	 Singh S, Singh SB (2017) A novel hybrid GWO-SCA approach for 
optimization problems. Eng Sci Technol Int J 20(6):1586–1601

	29.	 Mirjalili S (2015) Moth-flame optimization algorithm: a novel 
nature-inspire heuristic paradigm. Knowl Syst 89:228–249

	30.	 Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group 
search optimization algorithm for multi-objective optimal power 
flow problem. Appl Soft Comput 38:1012–1024

	31.	 Singh N, Singh S, Singh SB (2017) A new hybrid MGBPSO-GSA 
variant for improving function optimization solution in search 
space. Evolut Bioinform 13:1–13

	32.	 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization. Neural 
Comput Appl 27:495–513

	33.	 Singh N, Singh S, Singh SB, Arora S (2012) Half mean particle 
swarm optimization algorithm. Int J Sci Eng Res 3(80):1–10

	34.	 Rao RM, Babu AVN (2013) Optimal power flow using cuckoo 
optimization algorithm. Int J Adv Res Electr Electron Instrum 
Eng 2(9):1–6

	35.	 Singh N, Singh SB (2012) Personal best position particle swarm 
optimization. J Appl Comput Sci Math Suceava 12(6):69–76

	36.	 Singh N, Hachimi H (2018) A new hybrid whale optimizer algo-
rithm with mean strategy of grey wolf optimizer for global opti-
mization. Math Comput Appl 23(1):1–32

	37.	 Yu S, Wu Z, Wang H, Chen Z (2010) A hybrid particle swarm 
optimization algorithm based on space transformation search and 
a modified velocity model. In: Schaeffer J (ed) High performance 
computing and applications. Springer, Berlin, pp 522–527

	38.	 Liang RH, Tsai SR, Chen YT, Tseng WT (2011) Optimal power 
flow by a fuzzy based hybrid particle swarm optimization 
approach. Electr Power Syst Res 81(7):1466–1474

	39.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. 
In: Proceedings of the ICNN’95—international conference on 
neural networks. IEEE, pp 1942–1948. https​://doi.org/10.1109/
icnn.1995.48896​8

	40.	 Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Mor-
gan Kaufmann Publishers, Burlington

	41.	 Liu W, Wang K, Sun B, Shao K (2006) A hybrid particle swarm 
optimization algorithm for predicting the chaotic time series. In: 
2006 international conference on mechatronics and automation, 
25–28 June 2006, Luoyang, Henan, China

	42.	 Marinke R, Araujo E, Coelho LS, Matiko L (2005) Particle swarm 
optimization (PSO) applied to fuzzy modeling in a thermal-vac-
uum system. In: Fifth international conference on hybrid intel-
ligent system (HIS’05), 6–9 Nov 2005, Rio de Janeiro, Brazil

	43.	 Angeline PJ (1998) Evolutionary optimization versus particle 
swarm optimization: philosophy and performance differences. In: 
Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary 

https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968


56	 Evolutionary Intelligence (2022) 15:23–56

1 3

programming VII. EP 1998. Lecture notes in computer science, 
vol 1447. Springer, Berlin

	44.	 Juang CF (2004) A hybrid of genetic algorithm and particle swarm 
optimization for recurrent network design. IEEE Trans Syst Man 
Cybern B (Cybern) 34(2):997–1006

	45.	 Zhang C, Shao H, Li Yu (2000) Particle swarm optimisation 
for evolving artificial neural network. In: SMC 2000 conference 
proceedings. 2000 IEEE international conference on systems, 
man and cybernetics. ‘cybernetics evolving to systems, humans, 
organizations, and their complex interactions’, 8–11 Oct 2000, 
Nashville, TN, USA

	46.	 Esmin AAA, Torres GL, Souza ACZD (2005) A hybrid particle 
swarm optimization applied to loss power minimization. IEEE 
Trans Power Syst 20(2):859–866

	47.	 Esmin AAA, Torres GL, Alvarenga GB (2006) Hybrid evolution-
ary algorithm based on PSO and GA mutation. In: 2006 sixth 
international conference on hybrid intelligent systems (HIS’06’), 
13–15 Dec 2006, Rio de Janeiro, Brazil

	48.	 Zhao B, Guo CX, Cao YJ (2005) A multiagent-based particle 
swarm optimization approach for optimal reactive power dispatch. 
IEEE Trans Power Syst 20:1070–1078

	49.	 Vlachogiannis JG, Leet KY (2006) A comparative study on par-
ticle swarm optimization for optimal steady-state performance of 
power systems. IEEE Trans Power Syst 21(4):1718–1728

	50.	 Huang CM, Huang CJ, Wang ML (2005) A particle swarm opti-
mization to identifying the ARMAX model for short-term load 
forecasting. IEEE Trans Power Syst 20(2):1126–1133

	51.	 Esmin AAA, Torres GL (2012) Application of particle swarm 
optimization to optimal power systems. Int J Innov Comput Inf 
Control 8(3):1705–1716

	52.	 Esmin AAA, Torres GL (2006) Fitting fuzzy membership func-
tions using hybrid particle swarm optimization. In: 2006 IEEE 
international conference on fuzzy systems, 16–21 July 2006

	53.	 Ali AA, Tawhid MA (2017) A hybrid particle swarm optimization 
and genetic algorithm with population partitioning for large scale 
optimization problems. Ain Shams Eng J 8(2):191–206

	54.	 Mao B, Xie Z, Wang Y, Handroos H, Wu H, Shi S (2017) A hybrid 
differential evolution and particle swarm optimization algorithm 
for numerical kinematics solution of remote maintenance manipu-
lators. Fusion Eng Des 124:587–590

	55.	 Hadji B, Mahdad B, Srairi K, Mancer N (2015) Multi-objective 
PSO-TVAC for environmental/economic dispatch problem. 
Energy Procedia 74:102–111

	56.	 Zhang Y, Gong DW, Cheng J (2017) Multi-objective particle 
swarm optimization approach for cost-based feature selection in 
classification. IEEE/ACM Trans Comput Biol Bioinf 14(1):64–75

	57.	 Song XF, Zhang Y, Guo YN, Sun XY, Wang YL (2020) Variable-
size cooperative co-evolutionary particle swarm optimization for 
feature selection on high-dimensional data. IEEE Trans Evolut 
Comput. https​://doi.org/10.1109/TEVC.2020.29687​43

	58.	 Zhang Y, Gong DW, Geng N, Sun XY (2014) Hybrid bare-bones 
PSO for dynamic economic dispatch with value-point effects. 
Appl Soft Comput 18:248–260

	59.	 Zhang Y, Gong DW, Zhang J (2013) Robot path planning in uncer-
tain environment using multi-objective particle swarm optimiza-
tion. Neurocomputing 103:172–185

	60.	 Singh N, Singh SB (2017) A modified mean gray wolf optimi-
zation approach for benchmark and biomedical problems. Evol 
Bioinform 13:1–28

	61.	 Mirjalil S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili 
SM (2017) Salp swarm algorithm: a bio-inspired optimizer for 
engineering design problems. Adv Eng Softw 114:163–191

	62.	 Awad N, Ali M, Liang J, Qu B, Suganthan P (2017) Problem 
definitions and evaluation criteria for the CEC 2017 special ses-
sion and competition on single objective real-parameter numerical 
optimization. Technical report

	63.	 Derrac J, García S, Molina D, Herrera F (2011) A practical tuto-
rial on the use of nonparametric statistical tests as a methodology 
for comparing evolutionary and swarm intelligence algorithms. 
Swarm Evol Comput 1(1):3–18

	64.	 David DCN, Stephen CEA (2018) Cost Minimization of Welded 
Beam Design Problem using Non-traditional optimization through 
Matlab and validation through analyses simulation. Int J Mech 
Eng Technol IJMET 9(8):180–192

	65.	 Mosavi A, Vaezipour A (2012) Reactive search optimization: 
application to multi-objective optimization problems. Appl Math 
3:1572–1582

	66.	 Li HS, Au SK (2010) Solving constrained optimization problems 
via subset simulation. In: 4th international workshop on reliable 
engineering computing, pp 439–453

	67.	 Coello CAC (2000) Use of a self-adaptive penalty approach for 
engineering optimization problems. Comput Ind 41:113–127

	68.	 Akay B, Karaboga D (2012) Artificial bee colony algorithm for 
large-scale problems and engineering design optimization. J Intell 
Manuf 23(4):1001–1014

	69.	 He Q, Wang L (2007) An effective co-evolutionary particle swarm 
optimization for constrained engineering design problems. Eng 
Appl Artif Intell 20(1):89–99

	70.	 Huang FZ, Wang L (2007) An effective co-evolutionary differen-
tial evolution for constrained optimization. Appl Math Comput 
186(1):340–356

	71.	 Mahdavi M, Fesangharg M, Damangir E (2007) An improved har-
mony search algorithm for solving optimization problems. Appl 
Math Comput 188(2):1567–1579

	72.	 Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm 
with chaos for mechanical design optimization problems. Appl 
Soft Comput 36:152–164

	73.	 Kaveh A, Talatahari S (2010) A novel heuristic optimization 
method: charged system search. Acta Mech 213:267–289

	74.	 Lu Y, Zhou Y, Wu X (2017) A hybrid lightning search algorithm-
simplex method for global optimization. Discrete Dyn Nat Soc 
8342694:1–23

	75.	 Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid 
algorithm based on water cycle and moth-flame optimization 
algorithms for solving numerical and constrained engineering 
optimization problems. Soft Comput 23:1699–1722. https​://doi.
org/10.1007/s0050​0-017-2894-y

	76.	 Kumar A (2016) Ball bearing design through Jaya algorithm. Int 
J Adv Res Sci Eng 5(12):458–467

	77.	 Chakraborty I, Kumar V, Nair SB (2003) Rolling element bearing 
design through genetic algoirthms. Eng Optim 35(6):1–26

	78.	 Dhiman G (2019) ESA: a hybrid bio-inspired metaheuristic opti-
mization approach for engineering problems. Eng Comput. https​
://doi.org/10.1007/s0036​6-019-00826​-w

	79.	 Yuan X, Dai X, Zhao J, He Q (2014) On a novel multi-swarm fruit 
fly optimization algorithm and its application. Appl Math Comput 
233:260–271

	80.	 Mosavi A, Vaezipour A (2012) Reactive search optimization; 
application to multiobjective optimization problems. Appl Math 
3(10):1572–1582

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TEVC.2020.2968743
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1007/s00366-019-00826-w
https://doi.org/10.1007/s00366-019-00826-w

	Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
	Abstract
	1 Introduction
	2 Related work
	3 Hybrid SSA–PSO algorithm
	3.1 Step 1: parameter setting
	3.2 Step 1: initialization
	3.3 Step 2: evaluation
	3.4 Step 3: leader position updating
	3.5 Step 4: velocity initialization
	3.6 Step 5: follower’s position updating
	3.7 Step 5: stopping condition

	4 Numerical and statistical experiments
	4.1 Parameter settings
	4.2 Benchmark or standard functions
	4.3 The convergence performance of HSSAPSO on 100–500 dimensions

	5 Experiment and results
	5.1 Results on unimodal benchmark test functions
	5.2 Results on multi-modal benchmark test functions
	5.3 Results on fixed dimension multi-modal benchmark test functions
	5.4 Statistical results of the algorithms
	5.5 Convergence graphs
	5.6 Comparison of the algorithms on high dimensional (CEC 2017) functions
	5.7 Testing performance of the HSSAPSO algorithm through Wilcoxon signed ranks method

	6 Welded beam design function
	7 Rolling element bearing
	8 Conclusion and future works
	Acknowledgements 
	References




