
Vol.:(0123456789)1 3

Evolutionary Intelligence (2021) 14:1997–2025
https://doi.org/10.1007/s12065-020-00479-5

RESEARCH PAPER

Improved chaotic binary grey wolf optimization algorithm
for workflow scheduling in green cloud computing

Ali Mohammadzadeh1 · Mohammad Masdari1 · Farhad Soleimanian Gharehchopogh1 · Ahmad Jafarian2

Received: 3 April 2020 / Revised: 9 July 2020 / Accepted: 25 August 2020 / Published online: 11 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The workflow scheduling in the cloud computing environment is a well-known NP-complete problem, and metaheuristic
algorithms are successfully adapted to solve this problem more efficiently. Grey wolf optimization (GWO) is a recently
proposed interesting metaheuristic algorithm to deal with continuous optimization problems. In this paper, we proposed
IGWO, an improved version of the GWO algorithm which uses the hill-climbing method and chaos theory to achieve better
results. The proposed algorithm can increase the convergence speed of the GWO and prevents falling into the local optimum.
Afterward, a binary version of the proposed IGWO algorithm, using various S functions and V functions, is introduced to
deal with the workflow scheduling problem in cloud computing data centers, aiming to minimize their executions’ cost,
makespan, and the power consumption. The proposed workflow scheduling scheme is simulated using the CloudSim simu-
lator and the results show that our scheme can outperform other scheduling approaches in terms of metrics such as power
consumption, cost, and makespan.

Keywords  Meta-heuristic · Grey wolf optimization · Green cloud computing · Workflow scheduling

1  Introduction

Cloud computing provides an interesting technology that
makes scientific and industrial projects easier to implement.
Infrastructure as a service (IaaS) is a type of cloud comput-
ing that provides online resources for virtualized computing.
In addition to software as a service (SaaS) and platform as
a service (PaaS), IaaS is one of the three main categories
of cloud computing services [1]. Cloud computing can be
used to deploy highly complex applications for scientific
workflow. Workflows break down complex, data-intensive

applications into smaller tasks and perform them in serial
or parallel depending on the application’s nature. Work-
flow models are commonly used in fields such as science,
business, and engineering. In the planning of the scientific
workflow, we need to take the following questions: (1) how
to allocate tasks to VMs; (2) in what order the VMs will per-
form tasks taking into account the data dependency between
tasks. Usually, these scientific workflows require a great deal
of data of different sizes and simulations of long-term com-
puters. We need high computing power and the availability
of large infrastructure that offers different levels of QoS for
the grid and more recently cloud computing environments.

There are various strategies to solving the problem of
scheduling; scheduling schemes can usually be defined as
follows: metaheuristic-based scheduling, heuristic workflow
scheduling, hybrid metaheuristic, and heuristic schedul-
ing, and Task and workflow scheduling [2]. Metaheuristic
scheduling schemes can use algorithms such as simulated
annealing (SA), ant colony optimization (ACO), and particle
swarm optimization (PSO) to generate optimum schedules.
For metaheuristic scheduling workflow schemes, the goals
sought are often found in the metaheuristic algorithm’s
fitness function. For this reason, once multiple objections
are implemented to scheduling, different coefficients are

 *	 Mohammad Masdari
	 M.Masdari@iaurmia.ac.ir

	 Ali Mohammadzadeh
	 A.mohammadzadeh@iaurmia.ac.ir

	 Farhad Soleimanian Gharehchopogh
	 Bonab.Farhad@gmail.com

	 Ahmad Jafarian
	 A.Jafarian@iaurmia.ac.ir

1	 Department of Computer Engineering, Urmia Branch,
Islamic Azad University, Urmia, Iran

2	 Department of Mathematics, Urmia Branch, Islamic Azad
University, Urmia, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00479-5&domain=pdf

1998	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

allocated for each goal that can change the effect of each goal
on the overall scheduling of workflow. Also, Metaheuristic
algorithms were commonly used to solve various optimiza-
tion issues, such as the selection of features [3].

The metaheuristic optimization algorithms have become
so popular over the past two decades. Some of these algo-
rithms are even known among scholars from other sciences.
They are usually inspired by physical phenomena and ani-
mals’ behaviors. Additionally, learning, using, and combin-
ing these algorithms are done easily. The only point in using
these algorithms is how to give input and get output from
the system. These algorithms act better than conventional
optimization methods in the comparison with local optimi-
zations given their stochastic nature. On the contrary, all
meta-heuristic methods have some weaknesses [4–7].

A common feature among the meta-heuristic approaches
is dividing the search process into two stages: exploration
and exploitation [8]. The exploration step is the broad ran-
dom search in the search space to reach more desirable seg-
ments. The exploitation step is the local and more precise
search in the desirable explored segments of the search
space. Finding the right balance between these two stages
is one of the challenging issues of metaheuristic methods.

Several approaches have been proposed concerning the
metaheuristic algorithms in the past few decades, which we
intend to review in some cases. Particle swarm optimiza-
tion (PSO) algorithm [9, 10] is inspired by the collective
behavior of the birds where each particle tries to find the
best response in the search space by changing its speed and
direction. Gandomi [11] introduced the krill herd (KH)
optimization algorithm according to krill feeding behavior.
In this algorithm, particle motion is specified according to
three factors: food search behavior, random scattering, and
the motion created by other particles [11]. Bat algorithm
is inspired by the echolocation behavior of bats that was
proposed by Yang in 2012. In this algorithm, the particles
randomly navigate the search space at a different speed,
position, frequency, and sound band [12].

Ant lion optimizer (ALO) algorithm [13] was first pro-
posed by mirjalili according to ant lion feeding behavior for
continuous problems. Ant lion performance uses specific
movements of this insect to trap the ants in a pit. Multi-verse
optimizer (MVO) algorithm is a kind of the new powerful
meta-heuristic algorithms inspired by nature, where it has
been commonly applied in a lot of fields, and based on three
cosmological concepts: black hole, a white hole, and worm-
hole. These three concepts are used for exploration, exploita-
tion, and local search [14]. Moth-flame optimizer algorithm
[15] is a population-based algorithm that is proposed by
Mirjalili. The moths in this algorithm move in a single, two,
or multidimensional space. Cosine and logarithmic spiral
function are used to implement moth-flame motion.

In the shuffled frog leaping algorithm [16], the frogs
mimic each other and try to improve this behavior locally
and turn into a model that others can imitate. This is a con-
scious imitation and not a mere imitation. The new optimiza-
tion algorithm, inspired by the static and dynamic behavior
of dragonflies’ accumulation and its two main phases of
exploration and exploitation, has been done by modeling the
grasshopper optimization algorithm’s social relationship in
guiding, searching for food, and avoiding the enemies [17].

Several papers have been presented regarding grey wolves
in recent years. In [18], a hybrid algorithm of PSO and GWO
algorithms is presented. The particle swarm position is first
updated by the PSO algorithm and then by the GWO algo-
rithm. In [19], Kumar et al. proposed three strategies for
improving the GWO algorithm. The first strategy is to use
weighted baits. He then uses the laws of astrophysics to bet-
ter guide the grey wolves to more desirable goals. According
to this strategy, the wolves perform both exploration and
exploitation processes. In the third strategy, the features and
benefits of the two strategies are applied together. Various
schemes have also been proposed to improve the GWO algo-
rithm [20, 21].

The basic GWO algorithm does not perform well in the
identification and exploration of global optimums that affect
the convergence rate, despite good convergence. Hence,
the purpose of the paper is to present the improved GWO
algorithm that performs better in global optimizations. This
algorithm is based on collective intelligence and is inspired
by the collective behavior and hunting of grey wolves in
nature. The innovation of the paper is using hill-climbing
problem and random numbers based on chaos problem in
the proposed algorithm. With the improvements done, we
have seen good results with the basic method based on the
chaos theory of the GWO algorithm. Many papers have used
random numbers based on chaos problem and hill-climbing
to improve the optimization algorithms [22–28].

The main contributions of this paper are as follows: (1)
inspired by the GWO algorithm, an improved version of this
algorithm was designed in this paper. The proposed algo-
rithm is search improvement using hill-climbing problem
and random numbers based on the theory of chaos. In this
scheme, the update of the particle’s position at each itera-
tion is affected by the last few positions. (2) We used some
standard mathematical optimization benchmark functions
to compare the other algorithms. These benchmark func-
tions were chosen as single exponential, multi-exponential,
and finite-dimensional, with varying levels of hardness. (3)
Using the transfer functions in the proposed algorithm for
the solution of scientific workflow scheduling. (4) To evalu-
ate the performance of the proposed algorithm practically,
we implemented the extended proposed algorithm using the
WorkflowSim tool, which is based on the CloudSim tool.

1999Evolutionary Intelligence (2021) 14:1997–2025	

1 3

The results of the proposed algorithm were compared with
some other algorithms.

The rest of this paper is organized as follows. The second
section explores the context and the related work in recent
literature. This section divided into two parts: heuristic, and
meta-heuristic algorithms. The third section briefly explains
the basic GWO algorithm. The proposed algorithm is pro-
vided in the fourth part, and in this part, we describe the
innovation in the proposed algorithm, such as the improve-
ment in search using hill-climbing problem and random
numbers based on chaos theory. In the fifth part, the opti-
mization functions and simulation results will be discussed.
Section 5 explains the simulation component in detail, focus-
ing on the optimization functions which divided into three
groups: unimodal, multimodal, and constrained multimodal
benchmark functions. Part six is a workflow scheduling in
green cloud computing. In this section, we highlight the
scheduling problem and describe a binary version of the
proposed algorithm to use in discrete problems. In this sec-
tion, we integrate the S-shaped and V-shaped transfer func-
tions into the algorithm to convert the continuous proposed
algorithm into the binary version, and simulation of work-
flow in the cloud-sim simulator are presented in this section,
respectively. Section seven and eight exhibits the discussing
and concluding remarks.

2 � Literature review

Workflow scheduling is a NP-complete problem. Various
heuristic and meta-heuristic algorithms have been pro-
posed that solve workflow scheduling problems. The rest
of this section is classified as heuristic and meta-heuristic
algorithms.

2.1 � Heuristic algorithms

Many heuristic algorithms such as MIN–MIN [29], and
MAX–MIN [30] are proposed in the scheduling literature.
List scheduling is one of the most common methods of
scheduling workflow [31], in which a priority is given to
each of the workflow tasks. Among the list-based heuristic
algorithms, the critical path on the processor (CPOP) [32],
dynamic level scheduling (DLS) [33], heterogeneous earli-
est finish time (HEFT) [34], dynamic heterogeneous earliest
finish time (DHEFT) [35] and dynamic critical path (DCP)
can be cited [36]. All these algorithms are aimed to reduce
workflow makespan [37]. Some papers have considered two
main criteria such as makespan and cost for scheduling. In
[38], a multi-objective list-scheduling algorithm is presented
to find dominant responses using Pareto for heterogeneous
environments.

There are many bi-objective and multi-objective heuris-
tic algorithms which solve workflow scheduling problem.
The following are some examples of these algorithms. A
bi-objective dynamic level scheduling algorithm performs
the assignment of tasks in conditions where the runtime is
acceptable against reliability [39]. The authors considered
makespan and cost and used the concept of Pareto domi-
nance to run large cloud applications to reduce financial
costs regardless of budget and time constraints.

Camelo et al. [40], have presented a multi-objective heu-
ristic algorithm to solve the workflow scheduling problem in
the grid environment and they have used branch and bound’s
deterministic algorithm to find real Pareto front solutions.
Juan et al. [37], have enhanced a new multi-objective list-
based scheduling algorithm to deal with numerous contra-
dictory objectives such as makespan, cost, and suggested
a genuinely multi-criteria optimization reaching the Pareto
front using a variety of well-distributed trading solutions
chosen from the crowding distance and analyzed that use the
HV metric. Multi-objective HEFT [41] has been provided
for scheduling workflows on Amazon EC2. Cost and makes-
pan have been considered to create an optimal Pareto and the
users have been allowed to select the best solution manually.

2.2 � Meta‑heuristic algorithms

Matthews et al. [42], have proposed a new scheduling algo-
rithm based on ant colony algorithm, aimed to minimize the
workflow time and the makespan. Unfortunately, these have
been ignored job priorities. In [43], a cost-based algorithm
is presented for efficient mapping of tasks to available cloud
resources. This scheduling algorithm considers the cost of
resource use and efficiency. The scheduler divides all tasks
by priority into three categories: high, medium, and low
priorities.

Mozmar et al. [44], have proposed a bi-objective hybrid
genetic scheduling algorithm for parallel applications,
limited priority in heterogeneous distributed systems like
cloud computing infrastructure. One of the advantages of
this algorithm is the reduction of makespan and communi-
cation costs.

One way to solve multi-objective problems is to convert
them to weighted single-objective problems. In [45], Li
et al. transform the multi-objective problem into a single-
objective problem with the heuristic algorithm. They have
been focused on using cloud resources to provide large-scale
graph computing tasks. This algorithm produces a priority
task list and passes the highest priority task in a cloud envi-
ronment to a cost-effective virtual machine.

Dangra et al. [46], have proposed a scheduling method
with the technique of transforming a multi-objective prob-
lem into single-objective to increase efficiency and reliabil-
ity. They have proposed a reliable dynamic level scheduling

2000	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

(RDLS) algorithm based on dynamic level scheduling (DLS)
[47]. Unlike the previous method where only one definite
solution is proposed as a result of the algorithm, a set of
dominant solutions provided to the user.

Yu et al. [48], have used the multi-objective evolutionary
algorithm (MOEA) to solve the workflow scheduling prob-
lem. This algorithm is used to reduce two contradictory cri-
teria of cost and runtime. Besides these two criteria, budget
constraints and deadlines are considered in the algorithm as
well. Population-based algorithms SPEA2 and NSGA-II [49,
50] and local search algorithms such as MOEA and PAES
[51] have been used to solve workflow scheduling problems
with conflicting objectives and various constraints. Another
multi-objective algorithm with the R-NSGA-II approach
[52] obtains Pareto optimal solutions according to three
conflicting objectives: runtime, total cost, and reliability.

By examining the past studies, one can conclude that
most multi-objective heuristic algorithms are suitable for
the grid model and studies on the cloud environment are
few. On the other hand, most studies have been conducted
to reduce makespan and cost, ignoring the energy issue. In
their proposed approach, Khalili et al. [53], have consid-
ered throughput besides these two criteria. In our proposed
method, besides reducing the makespan and implementa-
tion cost, the consumed energy and throughput have been
considered as criteria. This paper presents a multi-objective
optimization solution to create optimal Pareto responses for
the workflow in the green cloud environment.

3 � Grey wolf optimization algorithm

This algorithm imitates the leadership hierarchy and grey
wolves’ hunting mechanism in nature. In this algorithm, four
types of a grey wolf—alpha, beta, delta, and omega—are
used to simulate the leadership hierarchy. Moreover, three
main stages of hunting—Hunt for a target, encircling target,
and attacking target—are simulated. According to Moro
et al., the main stages of grey wolves’ hunting are as follows
[54]: tracking, chasing, and approaching prey. Chasing, seiz-
ing, and teasing the prey until it stops moving and attacking
the prey. For mathematical modeling of the social hierar-
chies of wolves, we name the most appropriate solution as
alpha, and among the best solutions, we name the second
and third as beta and delta, respectively. The rest of the can-
didate solutions are considered as omega. The optimization
process is directed by alpha, beta, and delta, and the fourth
group follows these three groups. Equations 1 and 2 are used
to model wolf siege behavior [54]:

(1)��⃗D =
|||
��⃗C.X⃗p(t) −

�⃗X(t)
|||

In these equations, t shows the number of current itera-
tions. A and C are coefficients vectors, X⃗p the hunting posi-
tion vector, and x the position vector of a grey wolf. D is the
wolf’s distance from the prey or the current position distance
from the optimal response. Equation 2 is the new position
of the wolf after moving towards the target. Vectors A and
C are calculated by Eqs. 3 and 4 [54]:

Vector decreases linearly from 2 to 0 during the iteration
period in both the exploration and exploitation phases and r
is a random vector from 0 to 1. Given the stochastic nature of
r1 and r2 vectors, the wolves are allowed to reach any posi-
tion between the points shown in Fig. 1. Thus, a grey wolf
can change its position within the space that encompasses
the prey at random using Eqs. 5 and 6. The same concept can
be extended to n-dimensional search space. In this case, the
grey wolves move around the cubes around the best solution.
In Eq. 5, variable D shows the spatial distance of the alpha,
beta, and delta wolves from the prey position or variable X.
In Eq. 6, variables X1, X2, and X3 are the new positions of the
alpha, beta, and delta wolves are after changing the location
and approaching the prey. Equation 7 calculates the new
location of the hunter based on the mean of the three newer
locations of alpha, beta, and delta wolves.

Grey wolves’ hunting is usually guided by alpha. Beta and
delta sometimes take part in hunting as well. We save three of
the best solutions obtained and force the other search agents
according to Eq. 7 to update their position according to the
best search factors to model this behavior. Figure 1 shows how

(2)�⃗X(t + 1) = ���⃗Xp(t) −
�⃗A.��⃗D

(3)A⃗ = 2a⃗.r⃗ − a⃗

(4)C⃗ = 2.r⃗

Fig. 1   Particle position updating in GWO algorithm

2001Evolutionary Intelligence (2021) 14:1997–2025	

1 3

to update the search agent position in 2D space. According to
Fig. 1, alpha, beta and delta estimate the hunting position, and
other wolves randomly update their position around the hunt-
ing area. In Fig. 1, alpha, beta, delta, and omega wolves are
shown as circles. Dα, Dβ, and Dδ show the hunter’s distance
from other wolves. Variables a and c are the radius of spatial
variations of alpha, beta, and delta particles and can be cal-
culated through Eqs. 3 and 4. Variable R is the radius of prey
locations change.

(5)���������⃗D𝛼|𝛽|𝛿 =
|||
��������⃗C1|2|3.X⃗𝛼|𝛽|𝛿 − �⃗X

|||

(6)

���⃗X1 =
���⃗X𝛼 −

���⃗A1.
����⃗D𝛼

���⃗X2 =
���⃗X𝛽 −

���⃗A2.
����⃗D𝛽

���⃗X3 =
���⃗X𝛿 −

���⃗A3.
����⃗D𝛿

In the exploitation phase or prey attack, the grey wolves
will attack if the prey stops. We reduce the value of a from 2
to 0 to model this. The value of A, depending on a, decreases
as well. The decrease in the value of A from 1 makes the
wolves attack the prey. To avoid trapping at a local minimum
of this algorithm, it provides a search or exploration phase
for the prey. The wolves are separated from each other in
search of prey and work together to attack it. To simulate this
divergence, we use vector A with random values greater than
1 or smaller than 1. Figure 2 shows this problem.

Another component affecting the exploration process is
C value. The value of this random number vector is in the
range [0, 2]. If the random value C is greater than 1, the
prey position will affect the wolf and prey distance (variable
D in Eq. 5). However, if this value is less than 1, the prey
position will be less effective. This vector can be consid-
ered as the effect of obstacles that prevent approaching the
prey in nature. The pseudo-code of this algorithm is given
in Table 1. All variables like the number of algorithm itera-
tions, random variables A and C, the population of wolves,
and the parameter a are initialized. In each iteration, which
is shown by variable t, the wolves’ population is randomly
generated and the fit function is run for each case. In each
iteration among the population, the best wolves are identified
by alpha, beta, and delta based on their identified fitness.
Then, the new position of the hunter wolves is determined
based on the average location values of the top three wolves
and all parameters and spatial vectors are updated. The best
position of the wolves (Xα) is recorded as the response in
each iteration.

(7)�������������⃗X(t + 1) =
���⃗X1 +

���⃗X2 +
���⃗X3

3

Fig. 2   Exploration phase versus exploitation

Table 1   Pseudocode of the GWO algorithm

Set the initial values of the population size n, parameter a, coefficient vectors A and C, and the maximum number of iterations Maxiter.

Set t = 0.

for (i = 1 : n) do
Generate an initial population of Xi(t) randomly.

Evaluate the fitness function of each search agent (solution) f (Xi).

end for
Assign the values of the 1st, 2nd, 3rd best solution Xα, Xβ, Xδ respectively.

repeat
for (i = 1 : n) do
Update each search agent in the population as shown in Eq. (7).

Decrease the parameter a from 2 to 0.

Update the coefficients A, C as shown in Eq. (3) and (4), respectively.

Evaluate the fitness function of each search agent (vector) f(Xi).
end for
Update the vectors Xα, Xβ, and Xδ.

Set t = t + 1.

until (t ≥ Maxiter). (Termination criteria are satisfied)

Produce the best solution Xα.

2002	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

4 � Proposed algorithm

In the GWO algorithm, the population moves towards the
optimal responses—alpha, beta, and delta wolves move. In
each iteration, the optimal particles are identified based on
the fitness function and the best particle is called alpha. Each
dimension of the new location is equal to the corresponding
dimension mean of the superior particles, fully explained
in Sect. 2 in Eqs. 1–7. The movement of the particles at
each stage is done regardless of the degree of fitness; i.e.,
non-greedily.

In the proposed algorithm, the number of steps of a par-
ticle can change without an increase in the degree of fitness.
Every change in the fitness of the new location is compared
to the best location it used to be. If there are no definite
steps to improve, the particle is returned to the last optimal
response [55]. This is well shown in Fig. 3. As is seen in
this figure, after reaching the global optimum, it continues
to explore several steps until it reaches a better response;
however, it returns to the general optimum after not finding
appropriate responses.

The basic GWO algorithm does not perform well in the
exploration of global optimizations [21]; thus, we used 10
functions according to chaos theory such as circular, Gauss-
ian and logistic instead of conventional stochastic functions
to reduce this effect and increase the efficiency of the pro-
posed algorithm [56]. These functions are used to create
numbers between [0, 1] as seen in Table 2. The initial value
of all random numbers is considered 0.7 [57].

Overall, chaos, deterministic and quasi-random functions
on dynamic and nonlinear systems are non-periodic, non-
convergent, and finite. Mathematically, chaos functions are
a random deterministic dynamic system. Chaos maps dif-
ferent from alternate mathematical functions can be used
to use these functions in the optimization algorithm. Since
the last decade, these functions have widely been focused
on optimization because of their dynamic behavior that
helps optimization algorithms in dynamic and more gen-
eral discovery. Most importantly, chaos functions are used
in real-world applications to make the algorithms applied.

The results show that using chaos theory-based functions
is effective to avoid being trapped in local optimum and to
increase convergence speed. The implementation of some
of these functions can be seen in Fig. 5. A random chaos
function is used in each iteration of the GWO algorithm.
Table 3 shows the pseudo-code for the proposed algorithm.
The flowchart of the algorithm is also shown in Fig. 4 for
more clarity.

Chaotic random numbers have a good effect on the con-
vergence rate of the algorithm. Maps of the chaos functions
generate random numbers within a permissible range. These
numbers are initially predictable for a very short time and
are random for a long time then.

5 � Simulation and results

We used 23 standard mathematical optimization functions
presented as CEC 2005 to compare the GWO algorithm
and the proposed algorithm [56, 58, 59]. These benchmark
functions have been selected as single exponential, multi-
exponential, and finite-dimensional with varying hardness
levels. The simulation and the resulting numerical results are
performed in MATLAB 2017. The simulator uses a com-
puter with a Core i7 processor with 2 GHz processing power
and 4 GB of main memory.

We run the proposed algorithm 10 times over the relevant
functions and obtain the maximum, minimum, median, and
mean of the iterations as are shown in Tables 5, 7, and 9.
All the results shown in this paper are based on the IEEE
CEC 2005 approved format. In these tables, the results are
better distinguished by the thick pen. Each time the algo-
rithm is fully run, 1000 searches are performed. We have a
population size of 30 and each response is assumed to be a
set of 30. The population and computational power of the
compared algorithms are considered similar to have a correct
and fair comparison.

5.1 � Unimodal benchmark functions

Figure 6 is a three-dimensional drawing of these bench-
mark functions. Moreover, the cost functions along with the
dimensions, ranges, and minimum inputs related to the sin-
gle exponential benchmark functions are shown in Table 4.
In Tables 4, 6, and 8, n shows the number of x members. We
used an array of length 30 for each particle.

These functions are suitable for measuring the exploi-
tation process. Table 5 shows the statistical results (mean,
median, minimum, and maximum) of the basic GWO algo-
rithm, the proposed algorithm, and several new algorithms
on unimodal exponential functions. Figure 7 shows the con-
vergence graph for the best response to the algorithms. In

Fig. 3   Hill–Climbing problem

2003Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Fig. 4   Flowchart of the pro-
posed HCGWO algorithm

2004	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

Figs. 7, 9, and 11, the number of iterations is shown 80 times
less, so the number of iterations in this figure is 12.5.

The results in Tables 5, 7 and 9 show the comparison of
the proposed algorithm (HCGWO) with GWO Algorithms
[54], Chaos Theory-based GWO (CGWO) [21], Hill-climb-
ing Improved GWO (HGWO), PSO, ALO [13], multi-verse
optimizer (MVO), and MFO algorithms [15]. Table 5
shows the statistical results of unimodal functions for the
mentioned algorithms. According to the results of Fig. 7,
the proposed algorithm exploitation stage performs better
than the other algorithms. The results of the two improved
algorithms of the other grey wolves are better than the other
algorithm except for F6 function. According to Table 5, the

results of the proposed algorithm mean, median, minimum,
and maximum in all single unimodal functions except F6 are
better than other algorithms. In F6 function, the result of the
PSO algorithm is better as well. In the proposed algorithm,
because of using the hill-climbing problem, the exploita-
tion stage has improved significantly compared to the basic
algorithm.

5.2 � Multimodal benchmark functions

These functions evaluate the exploration stage and the abil-
ity to avoid the local optimum of the search algorithm. In
CEC 2005 test problems, functions F8–F16 are multimodal.

Table 2   Chaotic maps No. Name Function

1 Chebyshev Vb+1 = cos
(
bcos−1

(
Vb

))
 , b = 1…100

2 Circle Vb+1 = Vb + d −
(

C

2�

)
sin

(
2�Vb

)
mod(1)

 , C = 0.5, d = 0.2
3 Gauss

Vb+1 =

{
0
1

Vbmod(1)

Vb = 0

otherwise
1

Vbmod(1)
=

1

Vb

−
[

1

Vb

]

4 Iterative Vb+1 = sin
(

C�

Vb

)
,
 C = 0.7

5 Logistic Vb+1 = CVb

(
1 − Vb

)
 , C = 4

6 Piecewise

Vb+1 =

⎧
⎪
⎨
⎪
⎩

Vb∕P 0 ≤ Vb < P

Vb − P∕0.5 − P P ≤ Vb < 1∕2

1 − P − Vb∕0.5 − P 1∕2 ≤ Vb < 1 − P

1 − Vb∕P 1 − P ≤ Vb < 1,P = 0.4

7 Sine Vb+1 =
C

4
sin

(
�Vb

)
,C = 4

8 Singer Vb+1 = �
(
7.86Vb − 23.31V2

b
+ 28.75V3

b
− 13.3V4

b

)
 , � = 1.07

9 Sinusoidal Vb+1 = CV2
b
sin

(
�Vb

)

10 Tent Vb = 0.6

Vb+1 =

{
Vb∕0.7 Vb < 0.7

10∕3
(
1 − Vb

)
Vb ≥ 0.7

Fig. 5   Chaotic maps implementation result

2005Evolutionary Intelligence (2021) 14:1997–2025	

1 3

The cost functions related to the multimodal benchmark
functions along with the dimensions, range, and minimum
input are shown in Table 6. Figure 8 is the three-dimensional
diagram of the multimodal benchmark functions.

For a spatial vector with a length of 30 results, the mean
of the proposed algorithm is less than the other algorithms.
The statistical results for the multimodal functions are shown
in Table 7. The results in all multimodal functions are bet-
ter for the proposed algorithm except for F8 function that
has a better mean and the best state for the moth algorithm.
However, the result of the proposed algorithm is better than
basic grey wolves, PSO chaos theory based GWO algorithm,
and grey wolves with hill-climbing problem in this function.
According to Fig. 9, the proposed algorithm exploration
step is better than other algorithms. The chaos theory-based
GWO algorithm performs better in F10, F11, and F15 func-
tions than the basic GWO algorithm. The improved GWO
algorithm with hill-climbing problem also performs better
than the basic grey wolves in functions F9, F10, F12, F13,
and F14. In the other multimodal functions, the results of

the basic GWO algorithm are better than the chaos-theory
based GWO algorithm. Because of using chaotic functions,
the proposed algorithm exploration stage performs better
than other algorithms.

5.3 � Constrained multimodal benchmark functions

Constrained multimodal test problems to show the ability
to avoid being trapped in local optimum and the balance
between exploration and exploitation stages. Functions
F17–F23 are constrained multimodal. The dimensions of
these problems differ as shown in Table 8. Figure 10 is a
three-dimensional drawing of these benchmark functions.
According to the statistical results of Table 9, in these
functions, the proposed algorithm is better than the other
two algorithms with little difference. Figure 11 shows the
results of the algorithms close to these functions. The
results of the convergence diagram of functions F19–F23
were very similar to each other; thus, they have not been
shown. Overall, the results of exploration, exploitation,

Table 3   Pseudocode of proposed HCGWO algorithm

Set the initial values of the population size n, parameter a, coefficient vectors A and Set the initial value of the

chaotic map C randomly, and the maximum number of iterations Maxiter, maxCountOfHillClimbing.

Set t := 0.

for (i = 1 : n) do
Generate an initial population of Xi(t) randomly.

Evaluate the fitness function of each search agent (solution) f (Xi).

end for
Assign the values of the 1st, 2nd, 3rd best solution Xα, Xβ, Xδ respectively.

repeat
for (i = 1 : n) do

Update each search agent in the population as shown in Eq. (6).

if the first iteration

Save Position in BestPosition

else if(fitness(Positions)<fitness(BestPosition))

BestPosition= Position.

count_iter=0.

else if count_iter <= maxCountOfHillClimbing

count_iter=count_iter+1.

else
Position=BestPosition.

count_iter=0

end if
end if

end if
Decrease the parameter a from 2 to 0.

Update the coefficients A, C as shown in Eq. (3) ,(4), respectively.

Evaluate the fitness function of each search agent (vector) f(Xi).
end for
Update the vectors Xα, Xβ, and Xδ.

Set t = t + 1.

until (t ≥ Maxiter). (Termination criteria are satisfied)

Produce the best solution Xα.

2006	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

and local optimum avoidance steps of the proposed algo-
rithm are better than or similar to other algorithms. The
changes applied to the proposed algorithm have improved
the relative balance between the exploration and exploita-
tion steps.

6 � Workflow scheduling in green cloud
computing

According to the previous section, the HCGWO algorithm
produces better compared to other optimization algorithms
on various benchmark functions. This algorithm is designed
to solve continuous optimization problems. In this section,

Fig. 6   3-D versions of unimodal benchmark functions

2007Evolutionary Intelligence (2021) 14:1997–2025	

1 3

we will solve the workflow scheduling problem using the
proposed algorithm. We can use the discrete environment
optimization algorithm to solve this problem. The solutions
must be binary to develop binary HCGWO. Hence, various
conversions are required to realize this goal. Using transfer
functions is one of the efficient ways to convert continuous
optimizer to binary. Transfer functions are simple, fast, and
low cost with simple implementation as well [60, 61].

In this paper, four S-shaped (S1–S4) and V-shaped
(V1–V4) transfer functions are used to convert continuous
HCGWO to binary. Table 10 shows the mathematical defini-
tion of these transfer functions. The images of these func-
tions are shown in Fig. 12 as well.

Binary hill-climbing chaotic GWO (BHCGWO) algo-
rithm could search binary search space in the light of using
the transfer function. In this algorithm, the wolves’ loca-
tion changes in two stages. In the first step, the BHCGWO
algorithm updates the location of wolves like the proposed
HCGWO algorithm. This new location is in continuous
space. In the second step, the transfer functions are used
to convert the new location to a possible value. Wolf’s new
location is updated by Eqs. 8 and 9.

Thus, we convert the wolf’s location into a binary form.
In the set of S-shaped functions, the BHCGWO algorithm
updates the location of the wolves according to Eq. 8.

In this equation, T(x) is a S-shaped transfer function,
rand(0,1) is a random number between [0,1], x the wolf’s
location, i the wolf number in the population, d is dimension
and t is the current iteration number. Unlike the S-shaped
transfer function, the V-shaped transfer function does not

(8)Xd
i
(t + 1) =

{
1 if rand(0, 1) < T

(
ΔXd

i
(t + 1)

)

0 otherwise

restrict the search agent to the interval [0,1]. Equation 9
shows updating the wolf’s location with V-shaped transfer
functions.

In this equation, T(x) is the S-shaped transfer function,
rand(0,1) random number between [0,1], x wolf location, i
wolf number in the population, d dimension, t current itera-
tion number, and ¬X supplement X. Table 11 shows the pro-
posed binary algorithm.

We simulated the workflow problem in the Cloudsim
environment and compared it with heterogeneous earli-
est finish time (HEFT), DHEFT, PSO, GWO, and CGWO
algorithms to evaluate the proposed algorithm. The HEFT
scheduling algorithm is a popular scheduling algorithm to
minimize the execution time of tasks in the workflow. This
algorithm has two stages of task prioritization and the last
task selection phase. Each task is assigned to a processor
with fewer EFTS for that task [34]. The distributed DHEFT
or HEFT algorithm uses the distributed concept and better
utilizes the concept of virtual machine accessibility level to
better map tasks to the virtual machine [35]. The workflow
scheduling and evaluation criteria will be discussed later on.

The parallel workflow can be shown by a non-circular
graph in Fig. 13 [62]. The task graph G = (N, E) consists
of a set of N vertices and E edges. In this problem, N is a
set of tasks and E is a set of available edges between tasks
that show prioritized constraints. Each E ∈ edge(i, j) edge
shows ni and nj tasks that nj task cannot start until ni task is
completed [63]. Tasks without an input edge are the starting
tasks. The actual start time (AST) is calculated for each ni
node on Pk processor using Eq. 10 [64].

In this equation, EST1(ni, Pk) is the start time of task ni
on Pk processor. Avail(Pk) is the first time Pk processor is
ready to perform the task. The earliest end time (EFT) of
each node on Pk processor is calculated using Eq. 11 [65].

In Eq. 11, variable W is the time needed to process the
task ni on Pk processor. According to Eq. 12, the completion
time of all tasks equals the end time of the output graph node
[65]. In this practical example, the goal is to reduce the time
all tasks are completed [66–71].

(9)Xd
i
(t + 1) =

{
¬Xd

i
(t) if rand(0, 1) < T

(
ΔXd

i
(t + 1)

)

Xd
i
(t) otherwise

(10)AST
(
ni,Pk

)
= max

(
EST

(
ni,Pk

)
,Avail

(
Pk

))

(11)EFT
(
ni,Pk

)
= AST

(
ni,Pk

)
+W

(
ni,Pk

)

Table 4   Unimodal benchmark functions

Function Dim Range fmin

f1(x) =
n∑
i=1

x2
i

30 [− 100, 100] 0

f2(x) =
n∑
i=1

��xi�� +
n∏
i=1

��xi��
30 [− 10, 10] 0

f3(x) =
n∑
i=1

�
i∑

j=1

xj

�2 30 [− 100, 100] 0

f4(x) = maxi
{||xi||, 1 ≤ i ≤ n

}
30 [− 100, 100] 0

f5(x) =
n−1∑
i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 30 [− 30, 30] 0

f6(x) =
n∑
i=1

��
xi + 0.5

��2 30 [− 100, 100] 0

f7(x) =
n∑
i=1

ix4
i
+ random[0, 1)

30 [− 1.28, 1.28] 0

1  Earliest Start Time.

2008	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

In cloud computing, the computational cost for each
customer is calculated according to the length of time the
resources are used. Indeed, this cost is obtained by the exe-
cution time of task ti on VMj virtual machine according to
Eq. 13. The duration of the task is according to Eq. 14.

(12)makespan = max
{
EFT

(
nexit

)}

(13)Cp

(
ti
)
= ET

VMj

ti
× CostPerProcessingVMj

(14)ET
VMj

ti
= MI

(
ti
)
∕MIPS

(
VMj

)

In this equation, MI(ti) is the number of instructions of
request i and MIPS(VMj) is the number of millions of instruc-
tions that machine j executes per second. The cost of storage is
calculated according to the time needed to store the task on the
virtual machine according to Eq. 15. In this equation, WT

VMj

ti

according to Eq. 16 is the waiting time of request ti on VMj
virtual machine to provide the required resources.

(15)Cs

(
ti
)
= (ET

VMj

ti
+WT

VMj

ti
) × CostPreStorageInVMj

(16)WT
VMj

ti
= maxinput

(
ti
)
∕BW

Table 5   Comparison of optimization results obtained for the unimodal benchmark functions (F1-F7) in 10 iterations

HCGWO PSO GWO CGWO HGWO ALO MVO MFO

F1
Average 6.9468e−43 9.1651e−05 1.4777e−27 2.5396e−33 8.8978e−35 0.0010336 1.2821 6008.3099
Median 4.729e−43 4.839e−05 2.5778e−28 2.3967e−34 6.1586e−35 0.00095777 1.2199 34.3623
Worst 1.3044e−42 0.00026612 6.3494e−27 1.0628e−32 1.9139e−34 0.001809 1.7088 20,001.507
Best 1.5605e−43 9.6984e−06 1.9799e−28 2.0596e−35 3.221e−36 0.00043216 1.0346 1.5905
F2
Average 7.5367e−26 0.050295 6.9014e−17 3.6229e−20 1.8525e−21 35.5875 0.65587 25.8797
Median 7.049e−26 0.020011 5.5668e−17 3.5763e−20 1.469e−21 21.8016 0.64866 30.1091
Worst 1.7323e−25 0.18705 1.2032e−16 6.584e−20 3.9566e−21 88.0321 0.95114 30.3762
Best 1.6865e−26 0.008893 3.6789e−17 1.3372e−20 8.4795e−22 8.1671 0.47081 18.513
F3
Average 5.8122e−10 79.4177 4.3846e−07 8.3761e−09 2.9211e−08 4086.4126 260.7753 17,436.4019
Median 2.8485e−10 71.0817 9.4586e−08 6.7131e−10 1.2189e−08 4149.6831 251.7489 13,793.9382
Worst 2.1648e−10 115.0266 1.3551e−06 2.7794e−08 8.5956e−08 5472.5221 460.8192 32,607.7329
Best 1.3918e−11 56.4176 4.0187e−08 1.9717e−10 4.0169e−10 2325.1234 94.394 8083.9653
F4
Average 3.9227e−11 1.1884 2.4308e−07 3.1475e−09 1.0864e−08 17.8541 2.1266 66.2307
Median 2.2074e−11 1.2325 2.4182e−07 3.2281e−09 7.5578e−09 17.0726 2.2719 69.4952
Worst 9.2415e−11 1.5415 3.92e−07 4.0598e−09 2.5863e−08 23.3831 3.0227 71.6198
Best 6.7287e−12 0.78219 1.2131e−07 1.8432e−09 1.8626e−09 15.404 1.1682 59.7321
F5
Average 25.8923 47.8821 26.7316 27.9859 25.936 209.9292 898.1287 19,100.8589
Median 26.131 27.5914 27.0831 27.9819 26.2218 171.3735 449.7371 732.6185
Worst 27.1106 88.57 28.1283 28.7999 27.8859 436.7595 3005.2074 90,288.0057
Best 24.8969 22.6936 26.1005 27.168 25.1845 81.8003 41.5783 464.6745
F6
Average 0.15121 0.00012322 0.82173 2.1685 0.80149 0.0010195 1.3952 1991.5863
Median 6.5663e−05 0.00014334 0.64331 1.9932 0.96824 0.00076701 1.2963 12.6365
Worst 0.50181 0.00026487 1.4933 3.242 1.0031 0.0019705 1.8247 9900.9301
Best 3.1408e−05 1.768e−05 0.49516 1.2535 0.49862 0.00055122 0.86741 6.4579
F7
Average 0.0011435 0.1972 0.0023893 0.0011597 0.0014318 0.3006 0.035581 1.0797
Median 0.00063433 0.22819 0.0024451 0.001091 0.0013036 0.25302 0.026729 0.7112
Worst 0.0022767 0.2717 0.0030328 0.0020419 0.0027826 0.54887 0.069679 2.7735
Best 0.00032155 0.10398 0.0012816 0.00050637 0.0006637 0.2007 0.022797 0.15342

2009Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Fig. 7   Comparison of convergence curves of HCGWO and other algorithms in some of the unimodal benchmark functions

2010	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

The cost of sending files for task ti is calculated by
Eq. 17. The total cost is equal to Eq. 18 [72].

(17)CT

(
ti
)
= (

∑
Output

(
ti
)
∕BW) × CostPerTransfer

This paper considers the energy consumed in calculating
tasks. Hence, the power consumption of task ti on the virtual
machine VMij is expressed with Eq. 19. In this equation, VEij
is the hourly power consumption of machine VMij. Thus,

(18)Ctotal

(
ti
)
= Cp

(
ti
)
+ Cs

(
ti
)
+ CT

(
ti
)

Fig. 8   3-D versions of multimodal benchmark functions

2011Evolutionary Intelligence (2021) 14:1997–2025	

1 3

the energy consumption of a workflow equals the sum of
the energy consumption of its workflow tasks according to
Eq. 20 [73].

(19)E
(
ti,VMij

)
= ET

VMj

ti
× VEij

We have several types of balanced and unbalanced
workflows according to some scheduling papers [48, 74].
Table 12 shows the scientific workflows examined in this
paper along with information like the number of vertices

(20)E(V) =

n∑

i=1

E
(
ti, sched

(
ti
))

Fig. 9   Comparison of convergence curves of HCGWO and other algorithms in some of the multimodal benchmark functions

2012	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

and edges, the minimum and maximum relevance of each
edge in terms of bytes, the minimum and the maximum
runtime [75]. Figure 13 is the graph of these workflows
[2]. Experiments were done on 100 and 1000 vertices from
four scientific workflows examined.

Epigenomics and Inspiral workflows are of the balanced
type and Montage and Cybershake are of the unbalanced
type. A balanced workflow has some pipelines that need
similar services. However, they process various forms of
services. The unbalanced workflow is more complex and
has some parallel tasks that need various services.

The limited task distribution among the machines can
meet the needs of users using the cloud. This section consid-
ers a particular type of cloud environment called green com-
puting [76]. Green computing is known as environmentally
friendly information technology. In other words, studying,
designing, constructing, using, and disposition related sys-
tems and subsystems, so that they have minimal approval

and exploitation from the environment. Reduction in energy
consumption is one of the main goals of green computing,
we can reach by designing efficient algorithms. In the rest of
this section, the purpose is to evaluate the energy consump-
tion of the proposed algorithm and examining the time and
cost needed to perform the tasks [77].

As most scheduling presented does not reach the best
possible response under all conditions, the paper tries
to enhance the scheduling problem to some extent with
an improved algorithm. We will compare the algorithms
according to the three criteria - task completion time, cost,
and energy. Figure 14 shows the 3D Pareto front diagram
of the proposed algorithm. Figure 14 shows the results of
the proposed algorithm for average workflows. Each chart
has a number of blue and red dots where the red dots show
the Pareto members optimally produced and the blue ones
the ideal Pareto members produced. In these graphs, each
dimension is one of the comparison benchmarks.

Fig. 9   (continued)

2013Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Fig. 10   3-D versions of fixed-dimension multimodal benchmark functions

2014	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

Fig. 11   Comparison of convergence curves of HCGWO and other algorithms in some of the fixed-dimension multimodal benchmark functions

Table 6   Multimodal benchmark functions

Function Dim Range fmin

f8(x) =
n∑
i=1

−xisin

��
��xi��

�
30 [− 500, 500] − 418.9829 × 5

f9(x) =
n∑
i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

� 30 [− 5.12, 5.12] 0

f10(x) = −20 exp

�
−0.2

�
1

n

n∑
i=1

x2
i

�
− exp

�
1

n

n∑
i=1

cos
�
2�xi

��
+ 20 + e

30 [− 32, 32] 0

f11(x) =
1

4000

n∑
i=1

x2
i
−

n∏
i=1

cos
�

xi√
i

�
+ 1

30 [− 600, 600] 0

f12(x) =
𝜋

n

�
10 sin

�
𝜋y1

�
+

n−1�

i=1

�
yi − 1

�2�
1 + 10sin2

�
𝜋yi−1

��
+
�
yn − 1

�2
�

+

n�

i=1

u
�
xi, 10, 100, 4

�
, yi = 1 +

xi + 1

4

u
�
xi, a, k, m

�
=

⎧
⎪
⎨
⎪
⎩

k
�
xi − a

�m
xi > a

0 −a < xa < a

k
�
−xi − a

�m
xi < −a

30 [− 50, 50] 0

f13(x) = 0.1

�
sin2

�
3�x1

�
+

n∑
i=1

�
xi − 1

�2�
1 + sin2

�
3�xi + 1

��
+ (xn − 12)

�
1 + sin2

�
2�xn

���
+

n∑
i=1

u
�
xi, 5, 100, 4

� 30 [− 50, 50] 0

f14(x) =
n∑
i=1

sin
�
xi
�
.
�
sin

�
ix2

i

�

��2m

,m = 10
30 [0, �] − 4.687

f15(x) =

�
e
−

n∑
i=1
(xi∕�)

2m

− 2e
−

n∑
i=1

x2
i

�
.

n∏
i=1

cos2xi,m = 5
30 [− 20, 20] − 1

f16(x) =

��
n∑
i=1

sin2
�
xi
��

− exp

�
−

n∑
i=1

x2
i

��
.exp

�
−

n∑
i=1

sin2
�

��xi��
�

30 [− 10, 10] − 1

2015Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Table 7   Comparison of optimization results obtained for the multimodal benchmark functions (F8-F15) in 10 iterations

HCGWO PSO GWO CGWO HGWO ALO MVO MFO

F8
Average − 5989.1312 − 5261.7293 − 5717.0179 − 5759.4266 − 5515.5868 − 6147.3232 − 7928.8541 − 8787.1449
Median − 5951.4982 − 6487.3747 − 6630.8358 − 5630.793 − 5935.1256 − 5418.2808 − 7957.8835 − 8996.8159
Worst − 5182.9179 − 3043.6746 − 3636.7026 − 4960.1357 − 3950.0693 − 5417.6748 − 7147.4386 − 7589.3808
Best − 7224.6131 − 6566.2401 − 6827.5529 − 7068.7775 − 6062.9433 − 9016.2057 − 8632.0256 − 9464.1723
F9
Average 4.5475e−14 72.1227 4.4907 1.95 0.89681 68.2553 101.2343 199.1907
Median 2.2737e−13 72.5695 0 0 0 66.6626 94.1638 194.1654
Worst 0 83.8416 17.1564 9.7501 4.484 86.5617 135.9787 35.0872
Best 1.1369e−15 59.9082 0 0 5.6843e−14 51.7423 77.2765 166.2726
F10
Average 3.9257e−14 0.19691 1.0321e−13 1.581e−14 3.0731e−14 6.3755 2.0015 19.2137
Median 3.9968e−14 0.012861 1.0036e−13 1.5099e−14 3.2863e−14 3.0932 1.8154 19.8062
Worst 4.3521e−14 0.9314 1.1813e−13 1.8652e−14 3.2863e−14 12.8148 2.8642 19.9537
Best 3.2863e−14 0.0090414 9.3259e−14 1.5099e−14 2.5757e−14 2.1206 1.481 18.1572
F11
Average 0.0003269 0.0082269 0.0075901 0.0040586 0.0077435 0.049923 0.89367 18.9906
Median 0 0.0098757 0 0 0.0079949 0.048667 0.91068 1.0154
Worst 0.0057341 0.0197 0.024532 0.020293 0.017934 0.061512 0.94242 90.9522
Best 0 1.3207e−05 0 0 0 0.037607 0.83485 0.95555
F12
Average 2.0493e−06 0.0029994 0.045242 0.20223 0.017398 14.4259 2.4315 8.071
Median 3.2293e−07 4.0036e−06 0.039717 0.1248 0.013723 10.5685 2.253 7.1995
Worst 8.0354e−06 0.0084599 0.069629 0.56976 0.026658 24.55 3.4895 12.606
Best 2.6278e−07 1.6564e−06 0.025047 0.055229 0.013165 10.1767 1.9892 5.9687
F13
Average 0.0064788 0.12063 0.54119 1.3162 0.63134 22.4864 0.13393 14.6478
Median 0.00018974 0.099803 0.66129 1.3342 0.62124 21.0918 0.12156 11.7512
Worst 0.021046 0.40289 0.78256 1.6261 0.79549 47.6724 0.20163 28.4673
Best 1.7638e−06 4.7981e−05 0.23354 0.83664 0.45384 0.10291 0.082835 2.7491
F14
Average 0.7447 3.364 2.1885 7.2386 1.7916 2.1893 0.998 3.1715
Median 0.9821 1.992 2.9821 10.7632 0.998 1.992 0.998 2.9821
Worst 1.7632 6.9033 2.9821 12.6705 2.9821 2.9821 0.998 5.9288
Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
F15
Average 0.00090078 0.00095386 0.0046906 0.0083382 0.0045018 0.0045018 0.008546 0.0010404
Median 0.00072606 0.00099349 0.0012232 0.00034895 0.0003075 0.00030749 0.0007665 0.00081231
Worst 0.00162 0.0010823 0.020363 0.020363 0.020363 0.020363 0.020363 0.0016554
Best 0.00059093 0.00072197 0.00030974 0.0003075 0.00030749 0.00030749 0.00055338 0.00052735
F16
Average − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Median − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Worst − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Best − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316

2016	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

According to the results shown in Figs. 15, 16, and 17,
the proposed algorithm has relatively lower task completion
time, cost, and power consumption compared to the basic
algorithms. As is seen in Fig. 15, the proposed algorithm
has managed to accomplish less time than other methods
in different workflows. However, in the large-scale Mon-
tage workflow, the results of the proposed algorithm and
the HEFT, PSO, GWO, and CGWO algorithms are close
together. Figure 16 indicates the results for the cost of sched-
uling. The results of the proposed algorithm on medium-
sized workflows have proven to be better than the other algo-
rithms examined. The proposed algorithm scheduling cost
in large-scale Epigenomics, Inspiral, and Cybershake work-
flows are better than other algorithms as is shown in Fig. 16.
However, the results of this criterion on large-scale Montage
workflow are better for the HEFT algorithm. Figure 17 is the
results of the energy consumption of running algorithms on
different workflows. The proposed algorithm on the Mon-
tage workflow with various dimensions has proper results as
well. The results of this algorithm on mid-dimensional Epig-
enomics, Inspiral, and Cybershake workflows are better than
other algorithms as well. In large-scale Epigenomics, Inspi-
ral, and Cybershake workflows, the results of the presented
algorithm are better than HEFT and DHEFT algorithms,
whereas it yields improper results compared to PSO, GWO,
and CGWO algorithms. The changes made on the proposed
algorithm in task scheduling problems have a great effect
on task completion time, cost, and energy consumption as a
result of returning to the optimal states in case of failing to
find proper responses.

7 � Discussion

The innovation in the proposed algorithm is the improve-
ment in search using hill-climbing problem and random
numbers based on chaos theory. From the experiments per-
formed in Sects. 5.1–5.3 on the benchmarks, it is shown
that HCGWO performs better than the GWO and other opti-
mization approaches. Besides, HCGWO implementation is
easy and simple, and there is no effect on the fine-tuning of
the parameters. The work performed in this paper shows
the robustness of the HCGWO for all types of benchmark
functions. There are several ways to check meta-heuristic
optimization-based algorithms efficiently. Benchmark evalu-
ation is a simple way that is widely used. However, it is not
a perfect approach.

The use of chaos was one of the techniques used in
metaheuristic algorithms to tune certain parameters. We
added chaos to the basic GWO in the current work and cre-
ated a chaotic GWO version. To validate the algorithm, ten
different chaotic maps were used. The results suggest that
the new algorithms are strengthened due to the implementa-
tion of deterministic chaotic signals instead of constant and/
or random values. Statistical findings and the HCGWO’s
performance rates suggest that the tuned algorithms will sig-
nificantly improve the reliability of the global optimality and
also increase the consistency of the results. Any progress in
such evaluation will undoubtedly provide insight into the
working mechanism of chaotic metaheuristic algorithms and
the confluence of metaheuristic algorithms with chaos.

Table 8   Fixed-dimension
multimodal benchmark
functions

Function Dim Range fmin

f17(x) =
(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cosx1 + 1

2 [− 5, 5] 0.398

f18(x) =
[
1 +

(
x1 + x2 + 1

)2(
19 − 14x2

1
− 14x2 + 6x1x2 + 3x2

2

)]

×
[
30 +

(
2x1 − 3x2

)2
×
(
18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2

)]
2 [− 2, 2] 3

f19(x) = −
4∑
i=1

ciexp

�
−

3∑
i=1

aij
�
xj − pij

�2
�

3 [1, 3] − 3.86

f20(x) = −
4∑
i=1

ciexp

�
−

6∑
i=1

aij
�
xj − pij

�2
�

6 [0, 1] − 3.32

f21(x) = −
5∑
i=1

��
X − ai

��
X − ai

�T
+ Ci

�−1 4 [0, 10] − 10.153

f22(x) = −
7∑
i=1

��
X − ai

��
X − ai

�T
+ Ci

�−1 4 [0, 10] − 10.402

f23(x) = −
10∑
i=1

��
X − ai

��
X − ai

�T
+ Ci

�−1 4 [0, 10] − 10.536

2017Evolutionary Intelligence (2021) 14:1997–2025	

1 3

A local search strategy works well in certain instances
but usually fails with a large number of local maxima. Hill
climbing is a local search strategy that aims to enhance
a given solution by searching around the currently best-
known solution in the solution space. Hill Climbing is
therefore suggested as a method for the general case due
to its capability to avoid local maxima and ease of use and
implementation.

Ultimately, we compared the performance of the new
algorithm with some of the famous existing algorithms
in this regard and identified its strengths and weak-
nesses. The improvements made bring about an increase

Table 9   Comparison of
optimization results obtained for
the fixed-dimension multimodal
benchmark functions (F17–F23)
in 10 iterations

HCGWO PSO GWO CGWO HGWO ALO MVO MFO

F17
Average 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Median 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Worst 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
F18
Average 3 3 3.0001 19.2 3 3 3 3
Median 3 3 3 3 3 3 3 3
Worst 3 3 3.0002 84 3 3 3 3
Best 3 3 3 3 3 3 3 3
F19
Average − 3.8628 − 3.8628 − 3.8595 − 3.8587 − 3.8628 − 3.8628 − 3.8628 − 3.8628
Median − 3.8628 − 3.8628 − 3.8592 − 3.8581 − 3.8628 − 3.8628 − 3.8628 − 3.8628
Worst − 3.8628 − 3.8628 − 3.8565 − 3.8549 − 3.8628 − 3.8628 − 3.8628 − 3.8628
Best − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628
F20
Average − 3.2982 − 3.2507 − 3.2505 − 3.298 − 3.2497 − 3.2503 − 3.2979 − 3.2132
Median − 3.322 − 3.2031 − 3.322 − 3.322 − 3.2029 − 3.203 − 3.322 − 3.2031
Worst − 3.2031 − 3.2031 − 3.0839 − 3.2022 − 3.1992 − 3.2019 − 3.2017 − 3.1345
Best − 3.322 − 3.322 − 3.322 − 3.322 − 3.322 − 3.322 − 3.322 − 3.322
F21
Average − 10.1519 − 7.6272 − 10.1505 − 10.1485 − 10.1510 − 4.6514 − 9.1424 − 5.114
Median − 10.1518 − 10.1438 − 10.1506 − 10.1478 − 10.1511 − 2.6829 − 10.1528 − 5.0552
Worst − 10.1513 − 2.6305 − 10.1482 − 10.1468 − 10.1505 − 2.6829 − 5.1007 − 2.6305
Best − 10.1525 − 10.1532 − 10.1527 − 10.1512 − 10.1525 − 10.1532 − 10.1531 − 10.1532
F22
Average − 10.4011 − 7.3453 − 10.4004 − 9.3445 − 10.4011 − 8.2768 − 8.2848 − 7.537
Median − 10.4018 − 10.4029 − 10.4006 − 10.3993 − 10.4003 − 10.4029 − 10.4025 − 10.4029
Worst − 10.3987 − 2.7519 − 10.3993 − 5.1237 − 10.4013 − 5.0877 − 5.0876 − 2.7519
Best − 10.4027 − 10.4029 − 10.4019 − 10.4011 − 10.4027 − 10.4029 − 10.4027 − 10.4029
F23
Average − 10.5346 − 8.0958 − 8.9124 − 10.5339 − 10.5323 − 6.209 − 8.9901 − 8.1241
Median − 10.5348 − 10.5364 − 10.5348 − 10.5341 − 10.5326 − 5.1285 − 10.5361 − 10.5364
Worst − 10.5335 − 3.694 − 2.4217 − 10.5315 − 10.5345 − 2.4217 − 2.8066 − 3.8354
Best − 10.5351 − 10.5364 − 10.5358 − 10.5354 − 10.5350 − 10.5364 − 10.5361 − 10.5364

Table 10   The utilized S-shaped and V-shaped transfer functions

S-shaped
family

Transfer function V-shaped
family

Transfer function

S1 T(x) = 1∕
(
1 + e−2x

)
V1

T(x) =
����
erf

�√
�

2
x
�����

S2 T(x) = 1∕(1 + e−x) V2 T(x) = |tanh(x)|
S3

T(x) = 1∕

(
1 + e

(
−

x

2

)) V3 T(x) =
���x∕

√
1 + x2

���

S4
T(x) = 1∕

(
1 + e

(
−

x

3

)) V4
T(x) =

||||
2

�
arctan

(
�

2
x
)||||

2018	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

Fig. 12   Sample S-shaped and V-shaped transfer functions

Table 11   Pseudocode of proposed BHCGWO algorithm

Set the initial values of the population size n, parameter a, coefficient vectors A and Set the initial value of the chaotic map C randomly,

and the maximum number of iterations Maxiter, maxCountOfHillClimbing.

Set t := 0.

for (i = 1 : n) do
Generate an initial population of Xi(t) randomly.

Evaluate the fitness function of each search agent (solution) f (Xi).

end for
Assign the values of the 1st, 2nd, 3rd best solution Xα, Xβ, Xδ respectively.

repeat
for (i = 1 : n) do

Update each search agent in the population as shown in Eq. (6).

if the first iteration

Save Position in BestPosition

else if(fitness(Positions)<fitness(BestPosition))

BestPosition= Position.

count_iter=0.

else if count_iter <= maxCountOfHillClimbing

count_iter=count_iter+1.

else
Position=BestPosition.

Calculate the probability using S-shaped or V-

shaped transfer function.

Update a new position using (8) or (9).

count_iter=0

end if
end if

end if
Decrease the parameter a from 2 to 0.

Update the coefficients A, C as shown in Eq. (3) ,(4), respectively.

Evaluate the fitness function of each search agent (vector) f(Xi).
end for
Update the vectors Xα, Xβ, and Xδ.

Set t = t + 1.

until (t ≥ Maxiter). (Termination criteria are satisfied)

Produce the best solution Xα.

2019Evolutionary Intelligence (2021) 14:1997–2025	

1 3

in convergence speed and prevent trapping in local opti-
mum by proper adjustment of the parameters. The paper
used the proposed algorithm in an applied way for work-
flow scheduling in the green cloud computing environ-
ment. Thus, we made the proposed algorithm binary using
transfer functions. The purpose was to minimize the cost
and time of doing the tasks and workflows and to reduce
energy consumption for having a green cloud environment.
The results show a reduction in the energy consumed, the
cost, and the time needed to perform tasks in some cases.

8 � Conclusion

The purpose of the paper was to present a new version of
the metaheuristic GWO algorithm to optimize the search
capability in wolves hunting. Thus, 23 standard IEEE
CEC2005 benchmark functions were used to evaluate the
performance of the presented algorithm. The efficiency of
the proposed algorithm proved to be better compared to the
base algorithm and other algorithms. In the algorithm pro-
posed for random numbers, we use several chaos functions
and keep the best possible response for some determined

Fig. 13   Non-cyclic graph of scientific workflows

Table 12   Specification of
scientific workflows

Workflow name No. of vertices No. of edges Max com. Min com. Max. task runtime Min. task
runtime

Cybershake 100 190 10,300 102 203.78 0.34
Cybershake 1000 1994 1,003,000 1002 180.67 0.55
Epigenomics 100 124 10,300 25 23,471 0.02
Epigenomics 997 1242 997,000 246 27,775 0.01
Inspiral 100 250 10,300 24 670.45 4.25
Inspiral 1000 1486 1,003,000 230 689.97 4.23
Montage 100 250 10,300 63 13.85 0.83
Montage 1000 2652 1,003,000 663 99.53 2.52

2020	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

steps until we return to the last optimal response if no
better responses are reached. This improvement led to
increased convergence speed and prevented trapping in
a local optimum. Moreover, the practical task scheduling
problem was proposed on scientific workflows of various
sizes and the performance of the binary version of the
proposed algorithm was examined on the task scheduling
problem to prove the applicability of the algorithm. The

simulation results showed the reduction of runtime, cost,
and energy for the proposed algorithm.

The proposed algorithm has opened a new path for
enhancing leadership-based search capability. Other
improvements could be proposed for this algorithm in the
finite problems and infinite to multi-swarm multi-objective
states.

Fig. 14   Pareto front of scientific workflows in medium dimension

2021Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Fig. 15   Comparison of Makespan

2022	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

Fig. 16   Comparison of cost

2023Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Fig. 17   Comparison of energy consumption

2024	 Evolutionary Intelligence (2021) 14:1997–2025

1 3

References

	 1.	 Rani D, Ranjan RK (2014) A comparative study of SaaS, PaaS
and IaaS in cloud computing. Int J Adv Res Comput Sci Softw
Eng 4(6):158–161

	 2.	 Masdari M et al (2016) Towards workflow scheduling in cloud
computing: a comprehensive analysis. J Netw Comput Appl
66:64–82

	 3.	 Abualigah LMQ (2019) Feature selection and enhanced krill herd
algorithm for text document clustering. Springer, Berlin

	 4.	 Aktel A et al (2017) The comparison of the metaheuristic algo-
rithms performances on airport gate assignment problem. Transp
Res Procedia 22:469–478

	 5.	 Gharehchopogh FS, Gholizadeh H (2019) A comprehensive sur-
vey: Whale optimization algorithm and its applications. Swarm
Evol Comput 48:1–24

	 6.	 Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new
metaheuristic algorithm for solving continuous optimization prob-
lems. Appl Soft Comput 71:728–746

	 7.	 Gharehchopogh FS, Shayanfar H, Gholizadeh H (2019) A compre-
hensive survey on symbiotic organisms search algorithms. Artif
Intell Rev 53:2265–2312

	 8.	 Mozaffari A, Emami M, Fathi A (2018) A comprehensive inves-
tigation into the performance, robustness, scalability and conver-
gence of chaos-enhanced evolutionary algorithms with boundary
constraints. Artif Intell Rev 52:2319–2380

	 9.	 Kennedy J (2011) Particle swarm optimization. In: Sammut C,
Webb GI (eds) Encyclopedia of machine learning. Springer, Ber-
lin, pp 760–766

	10.	 Masdari M et al (2017) A survey of PSO-based scheduling algo-
rithms in cloud computing. J Netw Syst Manag 25(1):122–158

	11.	 Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831–4845

	12.	 Yang X-S, Hossein Gandomi A (2012) Bat algorithm: a novel
approach for global engineering optimization. Eng Comput
29(5):464–483

	13.	 Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw
83:80–98

	14.	 Abualigah L (2020) Multi-verse optimizer algorithm: a compre-
hensive survey of its results, variants, and applications. Neural
Comput Appl 32:12381–12401

	15.	 Mirjalili S (2015) Moth-flame optimization algorithm: a
novel nature-inspired heuristic paradigm. Knowl-Based Syst
89:228–249

	16.	 Luo J, Chen M-R (2014) Improved shuffled frog leaping algorithm
and its multi-phase model for multi-depot vehicle routing prob-
lem. Expert Syst Appl 41(5):2535–2545

	17.	 Mirjalili SZ et al (2018) Grasshopper optimization algorithm for
multi-objective optimization problems. Appl Intell 48(4):805–820

	18.	 Kamboj VK (2016) A novel hybrid PSO–GWO approach for unit
commitment problem. Neural Comput Appl 27(6):1643–1655

	19.	 Kumar V, Kumar D (2017) An astrophysics-inspired Grey wolf
algorithm for numerical optimization and its application to engi-
neering design problems. Adv Eng Softw 112:231–254

	20.	 Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf
optimization approaches for feature selection. Neurocomputing
172:371–381

	21.	 Kohli M, Arora S (2018) Chaotic grey wolf optimization algo-
rithm for constrained optimization problems. J Comput Des Eng
5(4):458–472

	22.	 Abdullah S, Alzaqebah M (2013) A hybrid self-adaptive bees
algorithm for examination timetabling problems. Appl Soft Com-
put 13(8):3608–3620

	23.	 Yousri D, Allam D, Eteiba M (2019) Chaotic whale optimizer var-
iants for parameters estimation of the chaotic behavior in perma-
nent magnet synchronous motor. Appl Soft Comput 74:479–503

	24.	 Rizk-Allah RM, Hassanien AE, Bhattacharyya S (2018) Chaotic
crow search algorithm for fractional optimization problems. Appl
Soft Comput 71:1161–1175

	25.	 Kumar Y, Singh PK (2018) A chaotic teaching learning based
optimization algorithm for clustering problems. Appl Intell
49:1036–1062

	26.	 Boushaki SI, Kamel N, Bendjeghaba O (2018) A new quantum
chaotic cuckoo search algorithm for data clustering. Expert Syst
Appl 96:358–372

	27.	 Arora S, Anand P (2018) Chaotic grasshopper optimization algo-
rithm for global optimization. Neural Comput Appl 31:4385–4405

	28.	 Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput
Sci 5(2):224–232

	29.	 Yu J, Buyya R (2005) A taxonomy of workflow management sys-
tems for grid computing. J Grid Comput 3(3–4):171–200

	30.	 Etminani K, Naghibzadeh M (2007) A min–min max–min selec-
tive algorihtm for grid task scheduling. In: 2007 3rd IEEE/IFIP
international conference in central asia on internet. 2007. IEEE

	31.	 Gharehchopogh FS et al (2013) Analysis of scheduling algo-
rithms in grid computing environment. Int J Innov Appl Stud
4(3):560–567

	32.	 Topcuoglu H, Hariri S, Wu M-Y (1999) Task scheduling algo-
rithms for heterogeneous processors. In: Proceedings. Eighth
heterogeneous computing workshop (HCW’99). 1999. IEEE

	33.	 Wei W, GuoSun Z (2007) Trusted dynamic level schedul-
ing based on Bayes trust model. Sci China Ser F Inf Sci
50(3):456–469

	34.	 Abdelkader DM, Omara F (2012) Dynamic task scheduling
algorithm with load balancing for heterogeneous computing
system. Egypt Inform J 13(2):135–145

	35.	 Chen W, Deelman E (2012) Workflowsim: a toolkit for simulat-
ing scientific workflows in distributed environments. In: 2012
IEEE 8th international conference on E-science. 2012. IEEE

	36.	 Rahman M, Venugopal S, Buyya R (2007) A dynamic critical
path algorithm for scheduling scientific workflow applications
on global grids. In: Third IEEE international conference on
e-science and grid computing (e-science 2007). IEEE

	37.	 Khajemohammadi H, Fanian A, Gulliver TA (2014) Efficient
workflow scheduling for grid computing using a leveled multi-
objective genetic algorithm. J Grid Comput 12(4):637–663

	38.	 Fard HM et al (2012) A multi-objective approach for workflow
scheduling in heterogeneous environments. In: 2012 12th IEEE/
ACM international symposium on cluster, cloud and grid com-
puting (ccgrid 2012). IEEE

	39.	 Doğan A, Özgüner F (2005) Biobjective scheduling algorithms
for execution time–reliability trade-off in heterogeneous com-
puting systems. Comput J 48(3):300–314

	40.	 Camelo M, Donoso Y, Castro H (2010) A multi-objective per-
formance evaluation in grid task scheduling using evolutionary
algorithms. Appl Math Inform 28:100–105

	41.	 Durillo JJ, Prodan R (2014) Multi-objective workflow schedul-
ing in Amazon EC2. Cluster Comput 17(2):169–189

	42.	 Mateos C, Pacini E, Garino CG (2013) An ACO-inspired algo-
rithm for minimizing weighted flowtime in cloud-based param-
eter sweep experiments. Adv Eng Softw 56:38–50

	43.	 Selvarani S, Sadhasivam GS (2010) Improved cost-based algo-
rithm for task scheduling in cloud computing. In: 2010 IEEE
international conference on computational intelligence and
computing research. IEEE

	44.	 Mezmaz M et al (2011) A parallel bi-objective hybrid
metaheuristic for energy-aware scheduling for cloud comput-
ing systems. J Parallel Distrib Comput 71(11):1497–1508

2025Evolutionary Intelligence (2021) 14:1997–2025	

1 3

	45.	 Li J et al (2011) Cost-conscious scheduling for large graph pro-
cessing in the cloud. In: 2011 IEEE international conference on
high performance computing and communications. IEEE

	46.	 Dongarra JJ et al (2007) Bi-objective scheduling algorithms for
optimizing makespan and reliability on heterogeneous systems.
In: Proceedings of the nineteenth annual ACM symposium on
parallel algorithms and architectures. ACM

	47.	 Sih GC, Lee EA (1993) A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architec-
tures. IEEE Trans Parallel Distrib Syst 4(2):175–187

	48.	 Yu J, Kirley M, Buyya R (2007) Multi-objective planning for
workflow execution on grids. In: Proceedings of the 8th IEEE/
ACM international conference on grid computing. IEEE Com-
puter Society

	49.	 Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the
strength pareto evolutionary algorithm. TIK-report, 2001, 103

	50.	 Deb K et al (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

	51.	 Knowles J, Corne D (1999) The pareto archived evolution strat-
egy: a new baseline algorithm for pareto multiobjective optimisa-
tion. In: Congress on evolutionary computation (CEC99)

	52.	 Filatovas E, Kurasova O, Sindhya K (2015) Synchronous
R-NSGA-II: an extended preference-based evolutionary algorithm
for multi-objective optimization. Informatica 26(1):33–50

	53.	 Khalili A, Babamir SM (2017) Optimal scheduling workflows
in cloud computing environment using Pareto-based Grey Wolf
Optimizer. Concurr Comput Pract Exp 29(11):e4044

	54.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61

	55.	 Burke EK, Bykov Y (2017) The late acceptance Hill–Climbing
heuristic. Eur J Oper Res 258(1):70–78

	56.	 Mukherjee A, Mukherjee V (2016) Chaotic krill herd algorithm
for optimal reactive power dispatch considering FACTS devices.
Appl Soft Comput 44:163–190

	57.	 Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based opti-
misation with chaos. Neural Comput Appl 25(5):1077–1097

	58.	 Liang J-J, Suganthan PN, Deb K (2005) Novel composition test
functions for numerical global optimization. In: Swarm intelli-
gence symposium, 2005. SIS 2005. Proceedings 2005 IEEE

	59.	 Yang X-S (2010) Firefly algorithm, stochastic test functions and
design optimisation. Int J Bio-Inspired Comput 2(2):78–84

	60.	 Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer
functions for binary particle swarm optimization. Swarm Evol
Comput 9:1–14

	61.	 Mahmoudi M, Gharehchopogh FS (2018) An improvement of
shuffled frog leaping algorithm with a decision tree for feature
selection in text document classification. 16(1):60–72

	62.	 Masdari M, Zangakani M (2019) Efficient task and workflow
scheduling in inter-cloud environments: challenges and opportu-
nities. J Supercomput 76:499–535

	63.	 Masdari M, Khoshnevis A (2019) A survey and classification of
the workload forecasting methods in cloud computing. Cluster
Comput 22:1–26

	64.	 Xu Y et al (2014) A genetic algorithm for task scheduling on
heterogeneous computing systems using multiple priority queues.
Inf Sci 270:255–287

	65.	 Schwiegelshohn U (2010) Job scheduling strategies for parallel
processing. Springer, Berlin

	66.	 Elsherbiny S et al (2018) An extended intelligent water drops
algorithm for workflow scheduling in cloud computing environ-
ment. Egypt Inform J 19(1):33–55

	67.	 Casas I et al (2018) GA-ETI: an enhanced genetic algorithm for
the scheduling of scientific workflows in cloud environments. J
Comput Sci 26:318–331

	68.	 Abazari F et al (2018) MOWS: multi-objective workflow schedul-
ing in cloud computing based on heuristic algorithm. Simul Model
Pract Theory 93:119–132

	69.	 Alkhanak EN, Lee SP (2018) A hyper-heuristic cost optimisation
approach for scientific workflow scheduling in cloud computing.
Fut Gener Comput Syst 86:480–506

	70.	 Choudhary A et al (2018) A GSA based hybrid algorithm for
bi-objective workflow scheduling in cloud computing. Fut Gener
Comput Syst 83:14–26

	71.	 Hu H et al (2018) Multi-objective scheduling for scientific
workflow in multicloud environment. J Netw Comput Appl
114:108–122

	72.	 Ebadifard F, Babamir SM (2018) Optimal workflow scheduling
in cloud computing using AHP Based multi objective black hole
algorithm. 2145:36–42

	73.	 Yao G-S, Ding Y-S, Hao K-R (2017) Multi-objective workflow
scheduling in cloud system based on cooperative multi-swarm
optimization algorithm. J Cent South Univ 24(5):1050–1062

	74.	 Fard HM et al (2012) A multi-objective approach for workflow
scheduling in heterogeneous environments. In 2012 12th IEEE/
ACM international symposium on cluster, cloud and grid comput-
ing (CCGrid). IEEE

	75.	 Naghibzadeh M (2016) Modeling and scheduling hybrid work-
flows of tasks and task interaction graphs on the cloud. Fut Gener
Comput Syst 65:33–45

	76.	 Masdari M, Zangakani M (2019) Green cloud computing using
proactive virtual machine placement: challenges and issues. J Grid
Comp. https​://doi.org/10.1007/s1072​3-019-09489​-9

	77.	 Thaman J, Singh M (2017) Green cloud environment by using
robust planning algorithm. Egypt Inform J 18(3):205–214

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10723-019-09489-9

	Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing
	Abstract
	1 Introduction
	2 Literature review
	2.1 Heuristic algorithms
	2.2 Meta-heuristic algorithms

	3 Grey wolf optimization algorithm
	4 Proposed algorithm
	5 Simulation and results
	5.1 Unimodal benchmark functions
	5.2 Multimodal benchmark functions
	5.3 Constrained multimodal benchmark functions

	6 Workflow scheduling in green cloud computing
	7 Discussion
	8 Conclusion
	References

