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Abstract
The workflow scheduling in the cloud computing environment is a well-known NP-complete problem, and metaheuristic 
algorithms are successfully adapted to solve this problem more efficiently. Grey wolf optimization (GWO) is a recently 
proposed interesting metaheuristic algorithm to deal with continuous optimization problems. In this paper, we proposed 
IGWO, an improved version of the GWO algorithm which uses the hill-climbing method and chaos theory to achieve better 
results. The proposed algorithm can increase the convergence speed of the GWO and prevents falling into the local optimum. 
Afterward, a binary version of the proposed IGWO algorithm, using various S functions and V functions, is introduced to 
deal with the workflow scheduling problem in cloud computing data centers, aiming to minimize their executions’ cost, 
makespan, and the power consumption. The proposed workflow scheduling scheme is simulated using the CloudSim simu-
lator and the results show that our scheme can outperform other scheduling approaches in terms of metrics such as power 
consumption, cost, and makespan.

Keywords  Meta-heuristic · Grey wolf optimization · Green cloud computing · Workflow scheduling

1  Introduction

Cloud computing provides an interesting technology that 
makes scientific and industrial projects easier to implement. 
Infrastructure as a service (IaaS) is a type of cloud comput-
ing that provides online resources for virtualized computing. 
In addition to software as a service (SaaS) and platform as 
a service (PaaS), IaaS is one of the three main categories 
of cloud computing services [1]. Cloud computing can be 
used to deploy highly complex applications for scientific 
workflow. Workflows break down complex, data-intensive 

applications into smaller tasks and perform them in serial 
or parallel depending on the application’s nature. Work-
flow models are commonly used in fields such as science, 
business, and engineering. In the planning of the scientific 
workflow, we need to take the following questions: (1) how 
to allocate tasks to VMs; (2) in what order the VMs will per-
form tasks taking into account the data dependency between 
tasks. Usually, these scientific workflows require a great deal 
of data of different sizes and simulations of long-term com-
puters. We need high computing power and the availability 
of large infrastructure that offers different levels of QoS for 
the grid and more recently cloud computing environments.

There are various strategies to solving the problem of 
scheduling; scheduling schemes can usually be defined as 
follows: metaheuristic-based scheduling, heuristic workflow 
scheduling, hybrid metaheuristic, and heuristic schedul-
ing, and Task and workflow scheduling [2]. Metaheuristic 
scheduling schemes can use algorithms such as simulated 
annealing (SA), ant colony optimization (ACO), and particle 
swarm optimization (PSO) to generate optimum schedules. 
For metaheuristic scheduling workflow schemes, the goals 
sought are often found in the metaheuristic algorithm’s 
fitness function. For this reason, once multiple objections 
are implemented to scheduling, different coefficients are 
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allocated for each goal that can change the effect of each goal 
on the overall scheduling of workflow. Also, Metaheuristic 
algorithms were commonly used to solve various optimiza-
tion issues, such as the selection of features [3].

The metaheuristic optimization algorithms have become 
so popular over the past two decades. Some of these algo-
rithms are even known among scholars from other sciences. 
They are usually inspired by physical phenomena and ani-
mals’ behaviors. Additionally, learning, using, and combin-
ing these algorithms are done easily. The only point in using 
these algorithms is how to give input and get output from 
the system. These algorithms act better than conventional 
optimization methods in the comparison with local optimi-
zations given their stochastic nature. On the contrary, all 
meta-heuristic methods have some weaknesses [4–7].

A common feature among the meta-heuristic approaches 
is dividing the search process into two stages: exploration 
and exploitation [8]. The exploration step is the broad ran-
dom search in the search space to reach more desirable seg-
ments. The exploitation step is the local and more precise 
search in the desirable explored segments of the search 
space. Finding the right balance between these two stages 
is one of the challenging issues of metaheuristic methods.

Several approaches have been proposed concerning the 
metaheuristic algorithms in the past few decades, which we 
intend to review in some cases. Particle swarm optimiza-
tion (PSO) algorithm [9, 10] is inspired by the collective 
behavior of the birds where each particle tries to find the 
best response in the search space by changing its speed and 
direction. Gandomi [11] introduced the krill herd (KH) 
optimization algorithm according to krill feeding behavior. 
In this algorithm, particle motion is specified according to 
three factors: food search behavior, random scattering, and 
the motion created by other particles [11]. Bat algorithm 
is inspired by the echolocation behavior of bats that was 
proposed by Yang in 2012. In this algorithm, the particles 
randomly navigate the search space at a different speed, 
position, frequency, and sound band [12].

Ant lion optimizer (ALO) algorithm [13] was first pro-
posed by mirjalili according to ant lion feeding behavior for 
continuous problems. Ant lion performance uses specific 
movements of this insect to trap the ants in a pit. Multi-verse 
optimizer (MVO) algorithm is a kind of the new powerful 
meta-heuristic algorithms inspired by nature, where it has 
been commonly applied in a lot of fields, and based on three 
cosmological concepts: black hole, a white hole, and worm-
hole. These three concepts are used for exploration, exploita-
tion, and local search [14]. Moth-flame optimizer algorithm 
[15] is a population-based algorithm that is proposed by 
Mirjalili. The moths in this algorithm move in a single, two, 
or multidimensional space. Cosine and logarithmic spiral 
function are used to implement moth-flame motion.

In the shuffled frog leaping algorithm [16], the frogs 
mimic each other and try to improve this behavior locally 
and turn into a model that others can imitate. This is a con-
scious imitation and not a mere imitation. The new optimiza-
tion algorithm, inspired by the static and dynamic behavior 
of dragonflies’ accumulation and its two main phases of 
exploration and exploitation, has been done by modeling the 
grasshopper optimization algorithm’s social relationship in 
guiding, searching for food, and avoiding the enemies [17].

Several papers have been presented regarding grey wolves 
in recent years. In [18], a hybrid algorithm of PSO and GWO 
algorithms is presented. The particle swarm position is first 
updated by the PSO algorithm and then by the GWO algo-
rithm. In [19], Kumar et al. proposed three strategies for 
improving the GWO algorithm. The first strategy is to use 
weighted baits. He then uses the laws of astrophysics to bet-
ter guide the grey wolves to more desirable goals. According 
to this strategy, the wolves perform both exploration and 
exploitation processes. In the third strategy, the features and 
benefits of the two strategies are applied together. Various 
schemes have also been proposed to improve the GWO algo-
rithm [20, 21].

The basic GWO algorithm does not perform well in the 
identification and exploration of global optimums that affect 
the convergence rate, despite good convergence. Hence, 
the purpose of the paper is to present the improved GWO 
algorithm that performs better in global optimizations. This 
algorithm is based on collective intelligence and is inspired 
by the collective behavior and hunting of grey wolves in 
nature. The innovation of the paper is using hill-climbing 
problem and random numbers based on chaos problem in 
the proposed algorithm. With the improvements done, we 
have seen good results with the basic method based on the 
chaos theory of the GWO algorithm. Many papers have used 
random numbers based on chaos problem and hill-climbing 
to improve the optimization algorithms [22–28].

The main contributions of this paper are as follows: (1) 
inspired by the GWO algorithm, an improved version of this 
algorithm was designed in this paper. The proposed algo-
rithm is search improvement using hill-climbing problem 
and random numbers based on the theory of chaos. In this 
scheme, the update of the particle’s position at each itera-
tion is affected by the last few positions. (2) We used some 
standard mathematical optimization benchmark functions 
to compare the other algorithms. These benchmark func-
tions were chosen as single exponential, multi-exponential, 
and finite-dimensional, with varying levels of hardness. (3) 
Using the transfer functions in the proposed algorithm for 
the solution of scientific workflow scheduling. (4) To evalu-
ate the performance of the proposed algorithm practically, 
we implemented the extended proposed algorithm using the 
WorkflowSim tool, which is based on the CloudSim tool. 
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The results of the proposed algorithm were compared with 
some other algorithms.

The rest of this paper is organized as follows. The second 
section explores the context and the related work in recent 
literature. This section divided into two parts: heuristic, and 
meta-heuristic algorithms. The third section briefly explains 
the basic GWO algorithm. The proposed algorithm is pro-
vided in the fourth part, and in this part, we describe the 
innovation in the proposed algorithm, such as the improve-
ment in search using hill-climbing problem and random 
numbers based on chaos theory. In the fifth part, the opti-
mization functions and simulation results will be discussed. 
Section 5 explains the simulation component in detail, focus-
ing on the optimization functions which divided into three 
groups: unimodal, multimodal, and constrained multimodal 
benchmark functions. Part six is a workflow scheduling in 
green cloud computing. In this section, we highlight the 
scheduling problem and describe a binary version of the 
proposed algorithm to use in discrete problems. In this sec-
tion, we integrate the S-shaped and V-shaped transfer func-
tions into the algorithm to convert the continuous proposed 
algorithm into the binary version, and simulation of work-
flow in the cloud-sim simulator are presented in this section, 
respectively. Section seven and eight exhibits the discussing 
and concluding remarks.

2 � Literature review

Workflow scheduling is a NP-complete problem. Various 
heuristic and meta-heuristic algorithms have been pro-
posed that solve workflow scheduling problems. The rest 
of this section is classified as heuristic and meta-heuristic 
algorithms.

2.1 � Heuristic algorithms

Many heuristic algorithms such as MIN–MIN [29], and 
MAX–MIN [30] are proposed in the scheduling literature. 
List scheduling is one of the most common methods of 
scheduling workflow [31], in which a priority is given to 
each of the workflow tasks. Among the list-based heuristic 
algorithms, the critical path on the processor (CPOP) [32], 
dynamic level scheduling (DLS) [33], heterogeneous earli-
est finish time (HEFT) [34], dynamic heterogeneous earliest 
finish time (DHEFT) [35] and dynamic critical path (DCP) 
can be cited [36]. All these algorithms are aimed to reduce 
workflow makespan [37]. Some papers have considered two 
main criteria such as makespan and cost for scheduling. In 
[38], a multi-objective list-scheduling algorithm is presented 
to find dominant responses using Pareto for heterogeneous 
environments.

There are many bi-objective and multi-objective heuris-
tic algorithms which solve workflow scheduling problem. 
The following are some examples of these algorithms. A 
bi-objective dynamic level scheduling algorithm performs 
the assignment of tasks in conditions where the runtime is 
acceptable against reliability [39]. The authors considered 
makespan and cost and used the concept of Pareto domi-
nance to run large cloud applications to reduce financial 
costs regardless of budget and time constraints.

Camelo et al. [40], have presented a multi-objective heu-
ristic algorithm to solve the workflow scheduling problem in 
the grid environment and they have used branch and bound’s 
deterministic algorithm to find real Pareto front solutions. 
Juan et al. [37], have enhanced a new multi-objective list-
based scheduling algorithm to deal with numerous contra-
dictory objectives such as makespan, cost, and suggested 
a genuinely multi-criteria optimization reaching the Pareto 
front using a variety of well-distributed trading solutions 
chosen from the crowding distance and analyzed that use the 
HV metric. Multi-objective HEFT [41] has been provided 
for scheduling workflows on Amazon EC2. Cost and makes-
pan have been considered to create an optimal Pareto and the 
users have been allowed to select the best solution manually.

2.2 � Meta‑heuristic algorithms

Matthews et al. [42], have proposed a new scheduling algo-
rithm based on ant colony algorithm, aimed to minimize the 
workflow time and the makespan. Unfortunately, these have 
been ignored job priorities. In [43], a cost-based algorithm 
is presented for efficient mapping of tasks to available cloud 
resources. This scheduling algorithm considers the cost of 
resource use and efficiency. The scheduler divides all tasks 
by priority into three categories: high, medium, and low 
priorities.

Mozmar et al. [44], have proposed a bi-objective hybrid 
genetic scheduling algorithm for parallel applications, 
limited priority in heterogeneous distributed systems like 
cloud computing infrastructure. One of the advantages of 
this algorithm is the reduction of makespan and communi-
cation costs.

One way to solve multi-objective problems is to convert 
them to weighted single-objective problems. In [45], Li 
et al. transform the multi-objective problem into a single-
objective problem with the heuristic algorithm. They have 
been focused on using cloud resources to provide large-scale 
graph computing tasks. This algorithm produces a priority 
task list and passes the highest priority task in a cloud envi-
ronment to a cost-effective virtual machine.

Dangra et al. [46], have proposed a scheduling method 
with the technique of transforming a multi-objective prob-
lem into single-objective to increase efficiency and reliabil-
ity. They have proposed a reliable dynamic level scheduling 
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(RDLS) algorithm based on dynamic level scheduling (DLS) 
[47]. Unlike the previous method where only one definite 
solution is proposed as a result of the algorithm, a set of 
dominant solutions provided to the user.

Yu et al. [48], have used the multi-objective evolutionary 
algorithm (MOEA) to solve the workflow scheduling prob-
lem. This algorithm is used to reduce two contradictory cri-
teria of cost and runtime. Besides these two criteria, budget 
constraints and deadlines are considered in the algorithm as 
well. Population-based algorithms SPEA2 and NSGA-II [49, 
50] and local search algorithms such as MOEA and PAES 
[51] have been used to solve workflow scheduling problems 
with conflicting objectives and various constraints. Another 
multi-objective algorithm with the R-NSGA-II approach 
[52] obtains Pareto optimal solutions according to three 
conflicting objectives: runtime, total cost, and reliability.

By examining the past studies, one can conclude that 
most multi-objective heuristic algorithms are suitable for 
the grid model and studies on the cloud environment are 
few. On the other hand, most studies have been conducted 
to reduce makespan and cost, ignoring the energy issue. In 
their proposed approach, Khalili et al. [53], have consid-
ered throughput besides these two criteria. In our proposed 
method, besides reducing the makespan and implementa-
tion cost, the consumed energy and throughput have been 
considered as criteria. This paper presents a multi-objective 
optimization solution to create optimal Pareto responses for 
the workflow in the green cloud environment.

3 � Grey wolf optimization algorithm

This algorithm imitates the leadership hierarchy and grey 
wolves’ hunting mechanism in nature. In this algorithm, four 
types of a grey wolf—alpha, beta, delta, and omega—are 
used to simulate the leadership hierarchy. Moreover, three 
main stages of hunting—Hunt for a target, encircling target, 
and attacking target—are simulated. According to Moro 
et al., the main stages of grey wolves’ hunting are as follows 
[54]: tracking, chasing, and approaching prey. Chasing, seiz-
ing, and teasing the prey until it stops moving and attacking 
the prey. For mathematical modeling of the social hierar-
chies of wolves, we name the most appropriate solution as 
alpha, and among the best solutions, we name the second 
and third as beta and delta, respectively. The rest of the can-
didate solutions are considered as omega. The optimization 
process is directed by alpha, beta, and delta, and the fourth 
group follows these three groups. Equations 1 and 2 are used 
to model wolf siege behavior [54]:

(1)��⃗D =
|||
��⃗C.X⃗p(t) −

�⃗X(t)
|||

In these equations, t shows the number of current itera-
tions. A and C are coefficients vectors, X⃗p the hunting posi-
tion vector, and x the position vector of a grey wolf. D is the 
wolf’s distance from the prey or the current position distance 
from the optimal response. Equation 2 is the new position 
of the wolf after moving towards the target. Vectors A and 
C are calculated by Eqs. 3 and 4 [54]:

Vector decreases linearly from 2 to 0 during the iteration 
period in both the exploration and exploitation phases and r 
is a random vector from 0 to 1. Given the stochastic nature of 
r1 and r2 vectors, the wolves are allowed to reach any posi-
tion between the points shown in Fig. 1. Thus, a grey wolf 
can change its position within the space that encompasses 
the prey at random using Eqs. 5 and 6. The same concept can 
be extended to n-dimensional search space. In this case, the 
grey wolves move around the cubes around the best solution. 
In Eq. 5, variable D shows the spatial distance of the alpha, 
beta, and delta wolves from the prey position or variable X. 
In Eq. 6, variables X1, X2, and X3 are the new positions of the 
alpha, beta, and delta wolves are after changing the location 
and approaching the prey. Equation 7 calculates the new 
location of the hunter based on the mean of the three newer 
locations of alpha, beta, and delta wolves.

Grey wolves’ hunting is usually guided by alpha. Beta and 
delta sometimes take part in hunting as well. We save three of 
the best solutions obtained and force the other search agents 
according to Eq. 7 to update their position according to the 
best search factors to model this behavior. Figure 1 shows how 

(2)�⃗X(t + 1) = ���⃗Xp(t) −
�⃗A.��⃗D

(3)A⃗ = 2a⃗.r⃗ − a⃗

(4)C⃗ = 2.r⃗

Fig. 1   Particle position updating in GWO algorithm
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to update the search agent position in 2D space. According to 
Fig. 1, alpha, beta and delta estimate the hunting position, and 
other wolves randomly update their position around the hunt-
ing area. In Fig. 1, alpha, beta, delta, and omega wolves are 
shown as circles. Dα, Dβ, and Dδ show the hunter’s distance 
from other wolves. Variables a and c are the radius of spatial 
variations of alpha, beta, and delta particles and can be cal-
culated through Eqs. 3 and 4. Variable R is the radius of prey 
locations change.

(5)���������⃗D𝛼|𝛽|𝛿 =
|||
��������⃗C1|2|3.X⃗𝛼|𝛽|𝛿 − �⃗X

|||

(6)

���⃗X1 =
���⃗X𝛼 −

���⃗A1.
����⃗D𝛼

���⃗X2 =
���⃗X𝛽 −

���⃗A2.
����⃗D𝛽

���⃗X3 =
���⃗X𝛿 −

���⃗A3.
����⃗D𝛿

In the exploitation phase or prey attack, the grey wolves 
will attack if the prey stops. We reduce the value of a from 2 
to 0 to model this. The value of A, depending on a, decreases 
as well. The decrease in the value of A from 1 makes the 
wolves attack the prey. To avoid trapping at a local minimum 
of this algorithm, it provides a search or exploration phase 
for the prey. The wolves are separated from each other in 
search of prey and work together to attack it. To simulate this 
divergence, we use vector A with random values greater than 
1 or smaller than 1. Figure 2 shows this problem.

Another component affecting the exploration process is 
C value. The value of this random number vector is in the 
range [0, 2]. If the random value C is greater than 1, the 
prey position will affect the wolf and prey distance (variable 
D in Eq. 5). However, if this value is less than 1, the prey 
position will be less effective. This vector can be consid-
ered as the effect of obstacles that prevent approaching the 
prey in nature. The pseudo-code of this algorithm is given 
in Table 1. All variables like the number of algorithm itera-
tions, random variables A and C, the population of wolves, 
and the parameter a are initialized. In each iteration, which 
is shown by variable t, the wolves’ population is randomly 
generated and the fit function is run for each case. In each 
iteration among the population, the best wolves are identified 
by alpha, beta, and delta based on their identified fitness. 
Then, the new position of the hunter wolves is determined 
based on the average location values of the top three wolves 
and all parameters and spatial vectors are updated. The best 
position of the wolves (Xα) is recorded as the response in 
each iteration.

(7)�������������⃗X(t + 1) =
���⃗X1 +

���⃗X2 +
���⃗X3

3

Fig. 2   Exploration phase versus exploitation

Table 1   Pseudocode of the GWO algorithm

Set the initial values of the population size n, parameter a, coefficient vectors A and C, and the maximum number of iterations Maxiter.

Set t = 0.

for (i = 1 : n) do
Generate an initial population of Xi(t) randomly.

Evaluate the fitness function of each search agent (solution) f (Xi).

end for
Assign the values of the 1st, 2nd, 3rd best solution Xα, Xβ, Xδ respectively.

repeat
for (i = 1 : n) do
Update each search agent in the population as shown in Eq. (7).

Decrease the parameter a from 2 to 0.

Update the coefficients A, C as shown in Eq. (3) and (4), respectively.

Evaluate the fitness function of each search agent (vector) f(Xi).
end for
Update the vectors Xα, Xβ, and Xδ.

Set t = t + 1.

until (t ≥ Maxiter ). (Termination criteria are satisfied)

Produce the best solution Xα.
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4 � Proposed algorithm

In the GWO algorithm, the population moves towards the 
optimal responses—alpha, beta, and delta wolves move. In 
each iteration, the optimal particles are identified based on 
the fitness function and the best particle is called alpha. Each 
dimension of the new location is equal to the corresponding 
dimension mean of the superior particles, fully explained 
in Sect. 2 in Eqs. 1–7. The movement of the particles at 
each stage is done regardless of the degree of fitness; i.e., 
non-greedily.

In the proposed algorithm, the number of steps of a par-
ticle can change without an increase in the degree of fitness. 
Every change in the fitness of the new location is compared 
to the best location it used to be. If there are no definite 
steps to improve, the particle is returned to the last optimal 
response [55]. This is well shown in Fig. 3. As is seen in 
this figure, after reaching the global optimum, it continues 
to explore several steps until it reaches a better response; 
however, it returns to the general optimum after not finding 
appropriate responses.

The basic GWO algorithm does not perform well in the 
exploration of global optimizations [21]; thus, we used 10 
functions according to chaos theory such as circular, Gauss-
ian and logistic instead of conventional stochastic functions 
to reduce this effect and increase the efficiency of the pro-
posed algorithm [56]. These functions are used to create 
numbers between [0, 1] as seen in Table 2. The initial value 
of all random numbers is considered 0.7 [57].

Overall, chaos, deterministic and quasi-random functions 
on dynamic and nonlinear systems are non-periodic, non-
convergent, and finite. Mathematically, chaos functions are 
a random deterministic dynamic system. Chaos maps dif-
ferent from alternate mathematical functions can be used 
to use these functions in the optimization algorithm. Since 
the last decade, these functions have widely been focused 
on optimization because of their dynamic behavior that 
helps optimization algorithms in dynamic and more gen-
eral discovery. Most importantly, chaos functions are used 
in real-world applications to make the algorithms applied. 

The results show that using chaos theory-based functions 
is effective to avoid being trapped in local optimum and to 
increase convergence speed. The implementation of some 
of these functions can be seen in Fig. 5. A random chaos 
function is used in each iteration of the GWO algorithm. 
Table 3 shows the pseudo-code for the proposed algorithm. 
The flowchart of the algorithm is also shown in Fig. 4 for 
more clarity.

Chaotic random numbers have a good effect on the con-
vergence rate of the algorithm. Maps of the chaos functions 
generate random numbers within a permissible range. These 
numbers are initially predictable for a very short time and 
are random for a long time then.

5 � Simulation and results

We used 23 standard mathematical optimization functions 
presented as CEC 2005 to compare the GWO algorithm 
and the proposed algorithm [56, 58, 59]. These benchmark 
functions have been selected as single exponential, multi-
exponential, and finite-dimensional with varying hardness 
levels. The simulation and the resulting numerical results are 
performed in MATLAB 2017. The simulator uses a com-
puter with a Core i7 processor with 2 GHz processing power 
and 4 GB of main memory.

We run the proposed algorithm 10 times over the relevant 
functions and obtain the maximum, minimum, median, and 
mean of the iterations as are shown in Tables 5, 7, and 9. 
All the results shown in this paper are based on the IEEE 
CEC 2005 approved format. In these tables, the results are 
better distinguished by the thick pen. Each time the algo-
rithm is fully run, 1000 searches are performed. We have a 
population size of 30 and each response is assumed to be a 
set of 30. The population and computational power of the 
compared algorithms are considered similar to have a correct 
and fair comparison.

5.1 � Unimodal benchmark functions

Figure 6 is a three-dimensional drawing of these bench-
mark functions. Moreover, the cost functions along with the 
dimensions, ranges, and minimum inputs related to the sin-
gle exponential benchmark functions are shown in Table 4. 
In Tables 4, 6, and 8, n shows the number of x members. We 
used an array of length 30 for each particle.

These functions are suitable for measuring the exploi-
tation process. Table 5 shows the statistical results (mean, 
median, minimum, and maximum) of the basic GWO algo-
rithm, the proposed algorithm, and several new algorithms 
on unimodal exponential functions. Figure 7 shows the con-
vergence graph for the best response to the algorithms. In 

Fig. 3   Hill–Climbing problem
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Fig. 4   Flowchart of the pro-
posed HCGWO algorithm
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Figs. 7, 9, and 11, the number of iterations is shown 80 times 
less, so the number of iterations in this figure is 12.5.     

The results in Tables 5, 7 and 9 show the comparison of 
the proposed algorithm (HCGWO) with GWO Algorithms 
[54], Chaos Theory-based GWO (CGWO) [21], Hill-climb-
ing Improved GWO (HGWO), PSO, ALO [13], multi-verse 
optimizer (MVO), and MFO algorithms [15]. Table  5 
shows the statistical results of unimodal functions for the 
mentioned algorithms. According to the results of Fig. 7, 
the proposed algorithm exploitation stage performs better 
than the other algorithms. The results of the two improved 
algorithms of the other grey wolves are better than the other 
algorithm except for F6 function. According to Table 5, the 

results of the proposed algorithm mean, median, minimum, 
and maximum in all single unimodal functions except F6 are 
better than other algorithms. In F6 function, the result of the 
PSO algorithm is better as well. In the proposed algorithm, 
because of using the hill-climbing problem, the exploita-
tion stage has improved significantly compared to the basic 
algorithm.

5.2 � Multimodal benchmark functions

These functions evaluate the exploration stage and the abil-
ity to avoid the local optimum of the search algorithm. In 
CEC 2005 test problems, functions F8–F16 are multimodal. 

Table 2   Chaotic maps No. Name Function

1 Chebyshev Vb+1 = cos
(
bcos−1

(
Vb

))
 , b = 1…100

2 Circle Vb+1 = Vb + d −
(

C

2�

)
sin

(
2�Vb

)
mod(1)

 , C = 0.5, d = 0.2
3 Gauss

Vb+1 =

{
0
1

Vbmod(1)

Vb = 0

otherwise
1

Vbmod(1)
=

1

Vb

−
[

1

Vb

]

4 Iterative Vb+1 = sin
(

C�

Vb

)
,
 C = 0.7

5 Logistic Vb+1 = CVb

(
1 − Vb

)
 , C = 4

6 Piecewise

Vb+1 =

⎧
⎪
⎨
⎪
⎩

Vb∕P 0 ≤ Vb < P

Vb − P∕0.5 − P P ≤ Vb < 1∕2

1 − P − Vb∕0.5 − P 1∕2 ≤ Vb < 1 − P

1 − Vb∕P 1 − P ≤ Vb < 1,P = 0.4

7 Sine Vb+1 =
C

4
sin

(
�Vb

)
,C = 4

8 Singer Vb+1 = �
(
7.86Vb − 23.31V2

b
+ 28.75V3

b
− 13.3V4

b

)
 , � = 1.07

9 Sinusoidal Vb+1 = CV2
b
sin

(
�Vb

)

10 Tent Vb = 0.6

Vb+1 =

{
Vb∕0.7 Vb < 0.7

10∕3
(
1 − Vb

)
Vb ≥ 0.7

Fig. 5   Chaotic maps implementation result
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The cost functions related to the multimodal benchmark 
functions along with the dimensions, range, and minimum 
input are shown in Table 6. Figure 8 is the three-dimensional 
diagram of the multimodal benchmark functions.

For a spatial vector with a length of 30 results, the mean 
of the proposed algorithm is less than the other algorithms. 
The statistical results for the multimodal functions are shown 
in Table 7. The results in all multimodal functions are bet-
ter for the proposed algorithm except for F8 function that 
has a better mean and the best state for the moth algorithm. 
However, the result of the proposed algorithm is better than 
basic grey wolves, PSO chaos theory based GWO algorithm, 
and grey wolves with hill-climbing problem in this function. 
According to Fig. 9, the proposed algorithm exploration 
step is better than other algorithms. The chaos theory-based 
GWO algorithm performs better in F10, F11, and F15 func-
tions than the basic GWO algorithm. The improved GWO 
algorithm with hill-climbing problem also performs better 
than the basic grey wolves in functions F9, F10, F12, F13, 
and F14. In the other multimodal functions, the results of 

the basic GWO algorithm are better than the chaos-theory 
based GWO algorithm. Because of using chaotic functions, 
the proposed algorithm exploration stage performs better 
than other algorithms.

5.3 � Constrained multimodal benchmark functions

Constrained multimodal test problems to show the ability 
to avoid being trapped in local optimum and the balance 
between exploration and exploitation stages. Functions 
F17–F23 are constrained multimodal. The dimensions of 
these problems differ as shown in Table 8. Figure 10 is a 
three-dimensional drawing of these benchmark functions. 
According to the statistical results of Table 9, in these 
functions, the proposed algorithm is better than the other 
two algorithms with little difference. Figure 11 shows the 
results of the algorithms close to these functions. The 
results of the convergence diagram of functions F19–F23 
were very similar to each other; thus, they have not been 
shown. Overall, the results of exploration, exploitation, 

Table 3   Pseudocode of proposed HCGWO algorithm

Set the initial values of the population size n, parameter a, coefficient vectors A and Set the initial value of the 

chaotic map C randomly, and the maximum number of iterations Maxiter, maxCountOfHillClimbing.

Set t := 0.

for (i = 1 : n) do
Generate an initial population of Xi(t) randomly.

Evaluate the fitness function of each search agent (solution) f (Xi).

end for
Assign the values of the 1st, 2nd, 3rd best solution Xα, Xβ, Xδ respectively.

repeat
for (i = 1 : n) do

Update each search agent in the population as shown in  Eq. (6).

if the first iteration

Save Position in BestPosition

else if(fitness(Positions)<fitness(BestPosition)) 

BestPosition= Position.

count_iter=0.

else  if count_iter <= maxCountOfHillClimbing

count_iter=count_iter+1.

else
Position=BestPosition.

count_iter=0

end if
end if

end if
Decrease the parameter a from 2 to 0.

Update the coefficients A, C as shown in Eq. (3) ,(4), respectively.

Evaluate the fitness function of each search agent (vector)  f(Xi).
end for
Update the vectors Xα, Xβ, and Xδ.

Set t = t + 1.

until (t ≥ Maxiter ). (Termination criteria are satisfied)

Produce the best solution Xα.
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and local optimum avoidance steps of the proposed algo-
rithm are better than or similar to other algorithms. The 
changes applied to the proposed algorithm have improved 
the relative balance between the exploration and exploita-
tion steps.

6 � Workflow scheduling in green cloud 
computing

According to the previous section, the HCGWO algorithm 
produces better compared to other optimization algorithms 
on various benchmark functions. This algorithm is designed 
to solve continuous optimization problems. In this section, 

Fig. 6   3-D versions of unimodal benchmark functions
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we will solve the workflow scheduling problem using the 
proposed algorithm. We can use the discrete environment 
optimization algorithm to solve this problem. The solutions 
must be binary to develop binary HCGWO. Hence, various 
conversions are required to realize this goal. Using transfer 
functions is one of the efficient ways to convert continuous 
optimizer to binary. Transfer functions are simple, fast, and 
low cost with simple implementation as well [60, 61].

In this paper, four S-shaped (S1–S4) and V-shaped 
(V1–V4) transfer functions are used to convert continuous 
HCGWO to binary. Table 10 shows the mathematical defini-
tion of these transfer functions. The images of these func-
tions are shown in Fig. 12 as well.

Binary hill-climbing chaotic GWO (BHCGWO) algo-
rithm could search binary search space in the light of using 
the transfer function. In this algorithm, the wolves’ loca-
tion changes in two stages. In the first step, the BHCGWO 
algorithm updates the location of wolves like the proposed 
HCGWO algorithm. This new location is in continuous 
space. In the second step, the transfer functions are used 
to convert the new location to a possible value. Wolf’s new 
location is updated by Eqs. 8 and 9.

Thus, we convert the wolf’s location into a binary form. 
In the set of S-shaped functions, the BHCGWO algorithm 
updates the location of the wolves according to Eq. 8.

In this equation, T(x) is a S-shaped transfer function, 
rand(0,1) is a random number between [0,1], x the wolf’s 
location, i the wolf number in the population, d is dimension 
and t is the current iteration number. Unlike the S-shaped 
transfer function, the V-shaped transfer function does not 

(8)Xd
i
(t + 1) =

{
1 if rand(0, 1) < T

(
ΔXd

i
(t + 1)

)

0 otherwise

restrict the search agent to the interval [0,1]. Equation 9 
shows updating the wolf’s location with V-shaped transfer 
functions.

In this equation, T(x) is the S-shaped transfer function, 
rand(0,1) random number between [0,1], x wolf location, i 
wolf number in the population, d dimension, t current itera-
tion number, and ¬X supplement X. Table 11 shows the pro-
posed binary algorithm.

We simulated the workflow problem in the Cloudsim 
environment and compared it with heterogeneous earli-
est finish time (HEFT), DHEFT, PSO, GWO, and CGWO 
algorithms to evaluate the proposed algorithm. The HEFT 
scheduling algorithm is a popular scheduling algorithm to 
minimize the execution time of tasks in the workflow. This 
algorithm has two stages of task prioritization and the last 
task selection phase. Each task is assigned to a processor 
with fewer EFTS for that task [34]. The distributed DHEFT 
or HEFT algorithm uses the distributed concept and better 
utilizes the concept of virtual machine accessibility level to 
better map tasks to the virtual machine [35]. The workflow 
scheduling and evaluation criteria will be discussed later on.

The parallel workflow can be shown by a non-circular 
graph in Fig. 13 [62]. The task graph G = (N, E) consists 
of a set of N vertices and E edges. In this problem, N is a 
set of tasks and E is a set of available edges between tasks 
that show prioritized constraints. Each E ∈ edge(i, j) edge 
shows ni and nj tasks that nj task cannot start until ni task is 
completed [63]. Tasks without an input edge are the starting 
tasks. The actual start time (AST) is calculated for each ni 
node on Pk processor using Eq. 10 [64].

In this equation, EST1(ni, Pk) is the start time of task ni 
on Pk processor. Avail(Pk) is the first time Pk processor is 
ready to perform the task. The earliest end time (EFT) of 
each node on Pk processor is calculated using Eq. 11 [65].

In Eq. 11, variable W is the time needed to process the 
task ni on Pk processor. According to Eq. 12, the completion 
time of all tasks equals the end time of the output graph node 
[65]. In this practical example, the goal is to reduce the time 
all tasks are completed [66–71].

(9)Xd
i
(t + 1) =

{
¬Xd

i
(t) if rand(0, 1) < T

(
ΔXd

i
(t + 1)

)

Xd
i
(t) otherwise

(10)AST
(
ni,Pk

)
= max

(
EST

(
ni,Pk

)
,Avail

(
Pk

))

(11)EFT
(
ni,Pk

)
= AST

(
ni,Pk

)
+W

(
ni,Pk

)

Table 4   Unimodal benchmark functions

Function Dim Range fmin

f1(x) =
n∑
i=1

x2
i

30 [− 100, 100] 0

f2(x) =
n∑
i=1

��xi�� +
n∏
i=1

��xi��
30 [− 10, 10] 0

f3(x) =
n∑
i=1

�
i∑

j=1

xj

�2 30 [− 100, 100] 0

f4(x) = maxi
{||xi||, 1 ≤ i ≤ n

}
30 [− 100, 100] 0

f5(x) =
n−1∑
i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 30 [− 30, 30] 0

f6(x) =
n∑
i=1

��
xi + 0.5

��2 30 [− 100, 100] 0

f7(x) =
n∑
i=1

ix4
i
+ random[0, 1)

30 [− 1.28, 1.28] 0

1  Earliest Start Time.
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In cloud computing, the computational cost for each 
customer is calculated according to the length of time the 
resources are used. Indeed, this cost is obtained by the exe-
cution time of task ti on VMj virtual machine according to 
Eq. 13. The duration of the task is according to Eq. 14.

(12)makespan = max
{
EFT

(
nexit

)}

(13)Cp

(
ti
)
= ET

VMj

ti
× CostPerProcessingVMj

(14)ET
VMj

ti
= MI

(
ti
)
∕MIPS

(
VMj

)

In this equation, MI(ti) is the number of instructions of 
request i and MIPS(VMj) is the number of millions of instruc-
tions that machine j executes per second. The cost of storage is 
calculated according to the time needed to store the task on the 
virtual machine according to Eq. 15. In this equation, WT

VMj

ti
 

according to Eq. 16 is the waiting time of request ti on VMj 
virtual machine to provide the required resources.

(15)Cs

(
ti
)
= (ET

VMj

ti
+WT

VMj

ti
) × CostPreStorageInVMj

(16)WT
VMj

ti
= maxinput

(
ti
)
∕BW

Table 5   Comparison of optimization results obtained for the unimodal benchmark functions (F1-F7) in 10 iterations

HCGWO PSO GWO CGWO HGWO ALO MVO MFO

F1
Average 6.9468e−43 9.1651e−05 1.4777e−27 2.5396e−33 8.8978e−35 0.0010336 1.2821 6008.3099
Median 4.729e−43 4.839e−05 2.5778e−28 2.3967e−34 6.1586e−35 0.00095777 1.2199 34.3623
Worst 1.3044e−42 0.00026612 6.3494e−27 1.0628e−32 1.9139e−34 0.001809 1.7088 20,001.507
Best 1.5605e−43 9.6984e−06 1.9799e−28 2.0596e−35 3.221e−36 0.00043216 1.0346 1.5905
F2
Average 7.5367e−26 0.050295 6.9014e−17 3.6229e−20 1.8525e−21 35.5875 0.65587 25.8797
Median 7.049e−26 0.020011 5.5668e−17 3.5763e−20 1.469e−21 21.8016 0.64866 30.1091
Worst 1.7323e−25 0.18705 1.2032e−16 6.584e−20 3.9566e−21 88.0321 0.95114 30.3762
Best 1.6865e−26 0.008893 3.6789e−17 1.3372e−20 8.4795e−22 8.1671 0.47081 18.513
F3
Average 5.8122e−10 79.4177 4.3846e−07 8.3761e−09 2.9211e−08 4086.4126 260.7753 17,436.4019
Median 2.8485e−10 71.0817 9.4586e−08 6.7131e−10 1.2189e−08 4149.6831 251.7489 13,793.9382
Worst 2.1648e−10 115.0266 1.3551e−06 2.7794e−08 8.5956e−08 5472.5221 460.8192 32,607.7329
Best 1.3918e−11 56.4176 4.0187e−08 1.9717e−10 4.0169e−10 2325.1234 94.394 8083.9653
F4
Average 3.9227e−11 1.1884 2.4308e−07 3.1475e−09 1.0864e−08 17.8541 2.1266 66.2307
Median 2.2074e−11 1.2325 2.4182e−07 3.2281e−09 7.5578e−09 17.0726 2.2719 69.4952
Worst 9.2415e−11 1.5415 3.92e−07 4.0598e−09 2.5863e−08 23.3831 3.0227 71.6198
Best 6.7287e−12 0.78219 1.2131e−07 1.8432e−09 1.8626e−09 15.404 1.1682 59.7321
F5
Average 25.8923 47.8821 26.7316 27.9859 25.936 209.9292 898.1287 19,100.8589
Median 26.131 27.5914 27.0831 27.9819 26.2218 171.3735 449.7371 732.6185
Worst 27.1106 88.57 28.1283 28.7999 27.8859 436.7595 3005.2074 90,288.0057
Best 24.8969 22.6936 26.1005 27.168 25.1845 81.8003 41.5783 464.6745
F6
Average 0.15121 0.00012322 0.82173 2.1685 0.80149 0.0010195 1.3952 1991.5863
Median 6.5663e−05 0.00014334 0.64331 1.9932 0.96824 0.00076701 1.2963 12.6365
Worst 0.50181 0.00026487 1.4933 3.242 1.0031 0.0019705 1.8247 9900.9301
Best 3.1408e−05 1.768e−05 0.49516 1.2535 0.49862 0.00055122 0.86741 6.4579
F7
Average 0.0011435 0.1972 0.0023893 0.0011597 0.0014318 0.3006 0.035581 1.0797
Median 0.00063433 0.22819 0.0024451 0.001091 0.0013036 0.25302 0.026729 0.7112
Worst 0.0022767 0.2717 0.0030328 0.0020419 0.0027826 0.54887 0.069679 2.7735
Best 0.00032155 0.10398 0.0012816 0.00050637 0.0006637 0.2007 0.022797 0.15342



2009Evolutionary Intelligence (2021) 14:1997–2025	

1 3

Fig. 7   Comparison of convergence curves of HCGWO and other algorithms in some of the unimodal benchmark functions
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The cost of sending files for task ti is calculated by 
Eq. 17. The total cost is equal to Eq. 18 [72].

(17)CT

(
ti
)
= (

∑
Output

(
ti
)
∕BW) × CostPerTransfer

This paper considers the energy consumed in calculating 
tasks. Hence, the power consumption of task ti on the virtual 
machine VMij is expressed with Eq. 19. In this equation, VEij 
is the hourly power consumption of machine VMij. Thus, 

(18)Ctotal

(
ti
)
= Cp

(
ti
)
+ Cs

(
ti
)
+ CT

(
ti
)

Fig. 8   3-D versions of multimodal benchmark functions
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the energy consumption of a workflow equals the sum of 
the energy consumption of its workflow tasks according to 
Eq. 20 [73].

(19)E
(
ti,VMij

)
= ET

VMj

ti
× VEij

We have several types of balanced and unbalanced 
workflows according to some scheduling papers [48, 74]. 
Table 12 shows the scientific workflows examined in this 
paper along with information like the number of vertices 

(20)E(V) =

n∑

i=1

E
(
ti, sched

(
ti
))

Fig. 9   Comparison of convergence curves of HCGWO and other algorithms in some of the multimodal benchmark functions
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and edges, the minimum and maximum relevance of each 
edge in terms of bytes, the minimum and the maximum 
runtime [75]. Figure 13 is the graph of these workflows 
[2]. Experiments were done on 100 and 1000 vertices from 
four scientific workflows examined.

Epigenomics and Inspiral workflows are of the balanced 
type and Montage and Cybershake are of the unbalanced 
type. A balanced workflow has some pipelines that need 
similar services. However, they process various forms of 
services. The unbalanced workflow is more complex and 
has some parallel tasks that need various services.

The limited task distribution among the machines can 
meet the needs of users using the cloud. This section consid-
ers a particular type of cloud environment called green com-
puting [76]. Green computing is known as environmentally 
friendly information technology. In other words, studying, 
designing, constructing, using, and disposition related sys-
tems and subsystems, so that they have minimal approval 

and exploitation from the environment. Reduction in energy 
consumption is one of the main goals of green computing, 
we can reach by designing efficient algorithms. In the rest of 
this section, the purpose is to evaluate the energy consump-
tion of the proposed algorithm and examining the time and 
cost needed to perform the tasks [77].

As most scheduling presented does not reach the best 
possible response under all conditions, the paper tries 
to enhance the scheduling problem to some extent with 
an improved algorithm. We will compare the algorithms 
according to the three criteria - task completion time, cost, 
and energy. Figure 14 shows the 3D Pareto front diagram 
of the proposed algorithm. Figure 14 shows the results of 
the proposed algorithm for average workflows. Each chart 
has a number of blue and red dots where the red dots show 
the Pareto members optimally produced and the blue ones 
the ideal Pareto members produced. In these graphs, each 
dimension is one of the comparison benchmarks.

Fig. 9   (continued)
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Fig. 10   3-D versions of fixed-dimension multimodal benchmark functions
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Fig. 11   Comparison of convergence curves of HCGWO and other algorithms in some of the fixed-dimension multimodal benchmark functions

Table 6   Multimodal benchmark functions

Function Dim Range fmin

f8(x) =
n∑
i=1

−xisin

��
��xi��

�
30 [− 500, 500] − 418.9829 × 5

f9(x) =
n∑
i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

� 30 [− 5.12, 5.12] 0

f10(x) = −20 exp

�
−0.2

�
1

n

n∑
i=1

x2
i

�
− exp

�
1

n

n∑
i=1

cos
�
2�xi

��
+ 20 + e

30 [− 32, 32] 0

f11(x) =
1

4000

n∑
i=1

x2
i
−

n∏
i=1

cos
�

xi√
i

�
+ 1

30 [− 600, 600] 0

f12(x) =
𝜋

n

�
10 sin

�
𝜋y1

�
+

n−1�

i=1

�
yi − 1

�2�
1 + 10sin2

�
𝜋yi−1

��
+
�
yn − 1

�2
�

+

n�

i=1

u
�
xi, 10, 100, 4

�
, yi = 1 +

xi + 1

4

u
�
xi, a, k, m

�
=

⎧
⎪
⎨
⎪
⎩

k
�
xi − a

�m
xi > a

0 −a < xa < a

k
�
−xi − a

�m
xi < −a

30 [− 50, 50] 0

f13(x) = 0.1

�
sin2

�
3�x1

�
+

n∑
i=1

�
xi − 1

�2�
1 + sin2

�
3�xi + 1

��
+ (xn − 12)

�
1 + sin2

�
2�xn

���
+

n∑
i=1

u
�
xi, 5, 100, 4

� 30 [− 50, 50] 0

f14(x) =
n∑
i=1

sin
�
xi
�
.
�
sin

�
ix2

i

�

��2m

,m = 10
30 [0, �] − 4.687

f15(x) =

�
e
−

n∑
i=1
(xi∕�)

2m

− 2e
−

n∑
i=1

x2
i

�
.

n∏
i=1

cos2xi,m = 5
30 [− 20, 20] − 1

f16(x) =

��
n∑
i=1

sin2
�
xi
��

− exp

�
−

n∑
i=1

x2
i

��
.exp

�
−

n∑
i=1

sin2
�

��xi��
�

30 [− 10, 10] − 1
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Table 7   Comparison of optimization results obtained for the multimodal benchmark functions (F8-F15) in 10 iterations

HCGWO PSO GWO CGWO HGWO ALO MVO MFO

F8
Average − 5989.1312 − 5261.7293 − 5717.0179 − 5759.4266 − 5515.5868 − 6147.3232 − 7928.8541 − 8787.1449
Median − 5951.4982 − 6487.3747 − 6630.8358 − 5630.793 − 5935.1256 − 5418.2808 − 7957.8835 − 8996.8159
Worst − 5182.9179 − 3043.6746 − 3636.7026 − 4960.1357 − 3950.0693 − 5417.6748 − 7147.4386 − 7589.3808
Best − 7224.6131 − 6566.2401 − 6827.5529 − 7068.7775 − 6062.9433 − 9016.2057 − 8632.0256 − 9464.1723
F9
Average 4.5475e−14 72.1227 4.4907 1.95 0.89681 68.2553 101.2343 199.1907
Median 2.2737e−13 72.5695 0 0 0 66.6626 94.1638 194.1654
Worst 0 83.8416 17.1564 9.7501 4.484 86.5617 135.9787 35.0872
Best 1.1369e−15 59.9082 0 0 5.6843e−14 51.7423 77.2765 166.2726
F10
Average 3.9257e−14 0.19691 1.0321e−13 1.581e−14 3.0731e−14 6.3755 2.0015 19.2137
Median 3.9968e−14 0.012861 1.0036e−13 1.5099e−14 3.2863e−14 3.0932 1.8154 19.8062
Worst 4.3521e−14 0.9314 1.1813e−13 1.8652e−14 3.2863e−14 12.8148 2.8642 19.9537
Best 3.2863e−14 0.0090414 9.3259e−14 1.5099e−14 2.5757e−14 2.1206 1.481 18.1572
F11
Average 0.0003269 0.0082269 0.0075901 0.0040586 0.0077435 0.049923 0.89367 18.9906
Median 0 0.0098757 0 0 0.0079949 0.048667 0.91068 1.0154
Worst 0.0057341 0.0197 0.024532 0.020293 0.017934 0.061512 0.94242 90.9522
Best 0 1.3207e−05 0 0 0 0.037607 0.83485 0.95555
F12
Average 2.0493e−06 0.0029994 0.045242 0.20223 0.017398 14.4259 2.4315 8.071
Median 3.2293e−07 4.0036e−06 0.039717 0.1248 0.013723 10.5685 2.253 7.1995
Worst 8.0354e−06 0.0084599 0.069629 0.56976 0.026658 24.55 3.4895 12.606
Best 2.6278e−07 1.6564e−06 0.025047 0.055229 0.013165 10.1767 1.9892 5.9687
F13
Average 0.0064788 0.12063 0.54119 1.3162 0.63134 22.4864 0.13393 14.6478
Median 0.00018974 0.099803 0.66129 1.3342 0.62124 21.0918 0.12156 11.7512
Worst 0.021046 0.40289 0.78256 1.6261 0.79549 47.6724 0.20163 28.4673
Best 1.7638e−06 4.7981e−05 0.23354 0.83664 0.45384 0.10291 0.082835 2.7491
F14
Average 0.7447 3.364 2.1885 7.2386 1.7916 2.1893 0.998 3.1715
Median 0.9821 1.992 2.9821 10.7632 0.998 1.992 0.998 2.9821
Worst 1.7632 6.9033 2.9821 12.6705 2.9821 2.9821 0.998 5.9288
Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
F15
Average 0.00090078 0.00095386 0.0046906 0.0083382 0.0045018 0.0045018 0.008546 0.0010404
Median 0.00072606 0.00099349 0.0012232 0.00034895 0.0003075 0.00030749 0.0007665 0.00081231
Worst 0.00162 0.0010823 0.020363 0.020363 0.020363 0.020363 0.020363 0.0016554
Best 0.00059093 0.00072197 0.00030974 0.0003075 0.00030749 0.00030749 0.00055338 0.00052735
F16
Average − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Median − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Worst − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Best − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
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According to the results shown in Figs. 15, 16, and 17, 
the proposed algorithm has relatively lower task completion 
time, cost, and power consumption compared to the basic 
algorithms. As is seen in Fig. 15, the proposed algorithm 
has managed to accomplish less time than other methods 
in different workflows. However, in the large-scale Mon-
tage workflow, the results of the proposed algorithm and 
the HEFT, PSO, GWO, and CGWO algorithms are close 
together. Figure 16 indicates the results for the cost of sched-
uling. The results of the proposed algorithm on medium-
sized workflows have proven to be better than the other algo-
rithms examined. The proposed algorithm scheduling cost 
in large-scale Epigenomics, Inspiral, and Cybershake work-
flows are better than other algorithms as is shown in Fig. 16. 
However, the results of this criterion on large-scale Montage 
workflow are better for the HEFT algorithm. Figure 17 is the 
results of the energy consumption of running algorithms on 
different workflows. The proposed algorithm on the Mon-
tage workflow with various dimensions has proper results as 
well. The results of this algorithm on mid-dimensional Epig-
enomics, Inspiral, and Cybershake workflows are better than 
other algorithms as well. In large-scale Epigenomics, Inspi-
ral, and Cybershake workflows, the results of the presented 
algorithm are better than HEFT and DHEFT algorithms, 
whereas it yields improper results compared to PSO, GWO, 
and CGWO algorithms. The changes made on the proposed 
algorithm in task scheduling problems have a great effect 
on task completion time, cost, and energy consumption as a 
result of returning to the optimal states in case of failing to 
find proper responses.

7 � Discussion

The innovation in the proposed algorithm is the improve-
ment in search using hill-climbing problem and random 
numbers based on chaos theory. From the experiments per-
formed in Sects. 5.1–5.3 on the benchmarks, it is shown 
that HCGWO performs better than the GWO and other opti-
mization approaches. Besides, HCGWO implementation is 
easy and simple, and there is no effect on the fine-tuning of 
the parameters. The work performed in this paper shows 
the robustness of the HCGWO for all types of benchmark 
functions. There are several ways to check meta-heuristic 
optimization-based algorithms efficiently. Benchmark evalu-
ation is a simple way that is widely used. However, it is not 
a perfect approach.

The use of chaos was one of the techniques used in 
metaheuristic algorithms to tune certain parameters. We 
added chaos to the basic GWO in the current work and cre-
ated a chaotic GWO version. To validate the algorithm, ten 
different chaotic maps were used. The results suggest that 
the new algorithms are strengthened due to the implementa-
tion of deterministic chaotic signals instead of constant and/
or random values. Statistical findings and the HCGWO’s 
performance rates suggest that the tuned algorithms will sig-
nificantly improve the reliability of the global optimality and 
also increase the consistency of the results. Any progress in 
such evaluation will undoubtedly provide insight into the 
working mechanism of chaotic metaheuristic algorithms and 
the confluence of metaheuristic algorithms with chaos.

Table 8   Fixed-dimension 
multimodal benchmark 
functions
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A local search strategy works well in certain instances 
but usually fails with a large number of local maxima. Hill 
climbing is a local search strategy that aims to enhance 
a given solution by searching around the currently best-
known solution in the solution space. Hill Climbing is 
therefore suggested as a method for the general case due 
to its capability to avoid local maxima and ease of use and 
implementation.

Ultimately, we compared the performance of the new 
algorithm with some of the famous existing algorithms 
in this regard and identified its strengths and weak-
nesses. The improvements made bring about an increase 

Table 9   Comparison of 
optimization results obtained for 
the fixed-dimension multimodal 
benchmark functions (F17–F23) 
in 10 iterations

HCGWO PSO GWO CGWO HGWO ALO MVO MFO

F17
Average 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Median 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Worst 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
F18
Average 3 3 3.0001 19.2 3 3 3 3
Median 3 3 3 3 3 3 3 3
Worst 3 3 3.0002 84 3 3 3 3
Best 3 3 3 3 3 3 3 3
F19
Average − 3.8628 − 3.8628 − 3.8595 − 3.8587 − 3.8628 − 3.8628 − 3.8628 − 3.8628
Median − 3.8628 − 3.8628 − 3.8592 − 3.8581 − 3.8628 − 3.8628 − 3.8628 − 3.8628
Worst − 3.8628 − 3.8628 − 3.8565 − 3.8549 − 3.8628 − 3.8628 − 3.8628 − 3.8628
Best − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628
F20
Average − 3.2982 − 3.2507 − 3.2505 − 3.298 − 3.2497 − 3.2503 − 3.2979 − 3.2132
Median − 3.322 − 3.2031 − 3.322 − 3.322 − 3.2029 − 3.203 − 3.322 − 3.2031
Worst − 3.2031 − 3.2031 − 3.0839 − 3.2022 − 3.1992 − 3.2019 − 3.2017 − 3.1345
Best − 3.322 − 3.322 − 3.322 − 3.322 − 3.322 − 3.322 − 3.322 − 3.322
F21
Average − 10.1519 − 7.6272 − 10.1505 − 10.1485 − 10.1510 − 4.6514 − 9.1424 − 5.114
Median − 10.1518 − 10.1438 − 10.1506 − 10.1478 − 10.1511 − 2.6829 − 10.1528 − 5.0552
Worst − 10.1513 − 2.6305 − 10.1482 − 10.1468 − 10.1505 − 2.6829 − 5.1007 − 2.6305
Best − 10.1525 − 10.1532 − 10.1527 − 10.1512 − 10.1525 − 10.1532 − 10.1531 − 10.1532
F22
Average − 10.4011 − 7.3453 − 10.4004 − 9.3445 − 10.4011 − 8.2768 − 8.2848 − 7.537
Median − 10.4018 − 10.4029 − 10.4006 − 10.3993 − 10.4003 − 10.4029 − 10.4025 − 10.4029
Worst − 10.3987 − 2.7519 − 10.3993 − 5.1237 − 10.4013 − 5.0877 − 5.0876 − 2.7519
Best − 10.4027 − 10.4029 − 10.4019 − 10.4011 − 10.4027 − 10.4029 − 10.4027 − 10.4029
F23
Average − 10.5346 − 8.0958 − 8.9124 − 10.5339 − 10.5323 − 6.209 − 8.9901 − 8.1241
Median − 10.5348 − 10.5364 − 10.5348 − 10.5341 − 10.5326 − 5.1285 − 10.5361 − 10.5364
Worst − 10.5335 − 3.694 − 2.4217 − 10.5315 − 10.5345 − 2.4217 − 2.8066 − 3.8354
Best − 10.5351 − 10.5364 − 10.5358 − 10.5354 − 10.5350 − 10.5364 − 10.5361 − 10.5364

Table 10   The utilized S-shaped and V-shaped transfer functions
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Fig. 12   Sample S-shaped and V-shaped transfer functions

Table 11   Pseudocode of proposed BHCGWO algorithm

Set the initial values of the population size n, parameter a, coefficient vectors A and Set the initial value of the chaotic map C randomly, 

and the maximum number of iterations Maxiter, maxCountOfHillClimbing.

Set t := 0.

for (i = 1 : n) do
Generate an initial population of Xi(t) randomly.

Evaluate the fitness function of each search agent (solution) f (Xi).

end for
Assign the values of the 1st, 2nd, 3rd best solution Xα, Xβ, Xδ respectively.

repeat
for (i = 1 : n) do

Update each search agent in the population as shown in  Eq. (6).

if the first iteration

Save Position in BestPosition

else if(fitness(Positions)<fitness(BestPosition)) 

BestPosition= Position.

count_iter=0.

else  if count_iter <= maxCountOfHillClimbing

count_iter=count_iter+1.

else
Position=BestPosition.

Calculate the probability using S-shaped or V-

shaped transfer function.

Update a new position using (8) or (9).

count_iter=0

end if
end if

end if
Decrease the parameter a from 2 to 0.

Update the coefficients A, C as shown in Eq. (3) ,(4), respectively.

Evaluate the fitness function of each search agent (vector)  f(Xi).
end for
Update the vectors Xα, Xβ, and Xδ.

Set t = t + 1.

until (t ≥ Maxiter ). (Termination criteria are satisfied)

Produce the best solution Xα.
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in convergence speed and prevent trapping in local opti-
mum by proper adjustment of the parameters. The paper 
used the proposed algorithm in an applied way for work-
flow scheduling in the green cloud computing environ-
ment. Thus, we made the proposed algorithm binary using 
transfer functions. The purpose was to minimize the cost 
and time of doing the tasks and workflows and to reduce 
energy consumption for having a green cloud environment. 
The results show a reduction in the energy consumed, the 
cost, and the time needed to perform tasks in some cases.

8 � Conclusion

The purpose of the paper was to present a new version of 
the metaheuristic GWO algorithm to optimize the search 
capability in wolves hunting. Thus, 23 standard IEEE 
CEC2005 benchmark functions were used to evaluate the 
performance of the presented algorithm. The efficiency of 
the proposed algorithm proved to be better compared to the 
base algorithm and other algorithms. In the algorithm pro-
posed for random numbers, we use several chaos functions 
and keep the best possible response for some determined 

Fig. 13   Non-cyclic graph of scientific workflows

Table 12   Specification of 
scientific workflows

Workflow name No. of vertices No. of edges Max com. Min com. Max. task runtime Min. task 
runtime

Cybershake 100 190 10,300 102 203.78 0.34
Cybershake 1000 1994 1,003,000 1002 180.67 0.55
Epigenomics 100 124 10,300 25 23,471 0.02
Epigenomics 997 1242 997,000 246 27,775 0.01
Inspiral 100 250 10,300 24 670.45 4.25
Inspiral 1000 1486 1,003,000 230 689.97 4.23
Montage 100 250 10,300 63 13.85 0.83
Montage 1000 2652 1,003,000 663 99.53 2.52
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steps until we return to the last optimal response if no 
better responses are reached. This improvement led to 
increased convergence speed and prevented trapping in 
a local optimum. Moreover, the practical task scheduling 
problem was proposed on scientific workflows of various 
sizes and the performance of the binary version of the 
proposed algorithm was examined on the task scheduling 
problem to prove the applicability of the algorithm. The 

simulation results showed the reduction of runtime, cost, 
and energy for the proposed algorithm.

The proposed algorithm has opened a new path for 
enhancing leadership-based search capability. Other 
improvements could be proposed for this algorithm in the 
finite problems and infinite to multi-swarm multi-objective 
states.

Fig. 14   Pareto front of scientific workflows in medium dimension
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Fig. 15   Comparison of Makespan
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Fig. 16   Comparison of cost
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Fig. 17   Comparison of energy consumption
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