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Abstract
DNA motif discovery means to find short similar sequence elements within a set of nucleotide sequences. It has become 
a compulsory need in bioinformatics for its useful applications such as compression, summarization, and clustering algo-
rithms. Motif discovery is an NP-hard problem and exact algorithms cannot solve it in polynomial time. Many optimization 
algorithms were proposed to solve this problem. However, none of them can show its supremacy by overcoming all the 
obstacles. Chemical Reaction Optimization (CRO) is a population based metaheuristic algorithm that can easily fit for the 
optimization problem. Here, we have proposed an algorithm based on Chemical Reaction Optimization technique to solve the 
DNA motif discovery problem. The four basic operators of CRO have been redesigned for this problem to search the solu-
tion space locally as well as globally. Two additional operators (repair functions) have been proposed to improve the quality 
of the solutions. They have been applied to the final solution after the iteration stage of CRO to get a better one. Using the 
flexible mechanism of elementary operators of CRO along with the additional operators (repair functions), it is possible to 
determine motif more precisely. Our proposed method is compared with other traditional algorithms such as Gibbs sampler, 
AlignACE (Aligns Nucleic Acid Conserved Elements), MEME (Multiple Expectation Maximization for Motif Elicitation), 
and ACRI (Ant-Colony-Regulatory-Identification) by testing real-world datasets. The experimental results show that the 
proposed algorithm can give better results than other traditional algorithms in quality and in less running time. Besides, sta-
tistical tests have been performed to show the superiority of the proposed algorithm over other state-of-the-arts in this area.
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1 Introduction

Generally, a motif is an idea, subject, theme, pattern etc. 
which repeats itself and has some significance, especially 
in a musical work, literary, artistic or set of sequences[1]. 
In bioinformatics, motif discovery means the process of 
determining motifs within a set of DNA, RNA or protein 
sequences where motif means a widespread amino-acid 
sequence or nucleotide pattern that captures a biological 
significance. Motifs are generally short sequence patterns of 
a fixed length that express important functional or structural 

features in protein sequences and nucleic acids such as active 
sites, transcription binding sites, interaction interfaces or 
splice junctions[2]. They can appear in an approximate or 
exact form within a family or subfamily of sequences. In 
other words, a pattern common to a set of DNA, RNA or 
protein sequences that shares same biological property, such 
as functioning as binding sites for a particular protein is 
called motif. So we can say that the problem of identifying 
short similar sequence elements shared by a set of protein 
or nucleotide sequences with a general biological function 
is known as motif discovery[3].

Figure 1 shows an example of motif discovery. Position 
weight matrix (PWM) have been used to express motifs. 
PWM is the representation of the occurrences of nucleo-
tide at each position of a motif. Let the number of DNA 
sequences, n = 6 having a length L = 30 for each sequence. 
Here we have to discover a motif of width W = 8 using 
PWM, f where PWM is usually used to express motifs[4]. 
Now from every sequence, we get a motif instance of length 
8. These six motif instances have used in PWM. Now from 
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the PWM, we select nucleotide with the highest occurrences 
in every position and get a motif of length 8. Thus the final 
motif from these instances has been discovered.

In the era of bioinformatics revolution, the volume of 
biological sequences is increasing in public databases. That 
is why motif discovery gradually becomes a fundamental 
problem in molecular biology and computer science[5]. The 
capability to predict the function, structure, or behavior of 
biological entities or motifs such as proteins and genes, addi-
tionally cooperation among them, play a major role in the 
analysis of information to describe biological mechanisms. 
Motif discovery is, therefore, an important field of bioinfor-
matics. There are two main ways to discover a motif using 
biological experiments and computing approaches, i.e; bio-
informatics. But biological experiments are very costly and 
time-consuming processes. So computing approaches are 
extensively used to discover motifs[6]. But exact motif dis-
covery is a tough problem. Because the lengths of motifs are 
generally very short such as up to 30 nucleotides, although 
the regulatory regions accommodate motifs are very long 
such as a range from several hundred to several thousand 
nucleotides. Again the mutations of the actual instances of 
motifs are added as a burden[5].

Many algorithms were proposed to predict motifs, such 
as Gibbs sampler[7], MEME (Multiple Expectation Maxi-
mization for Motif Elicitation)[8], GA (Genetic Algorithm)
[9–12], GARPS (Genetic Algorithm with Random Projec-
tion Strategy)[13], ACO (Ant Colony Optimization), ACO-
Motif (An Efficient Ant Colony Algorithm for DNA Motif 
Finding)[6], EMACO (Ant Colony Optimization (ACO) 
and Expectation Maximization (EM))[14], MFACO (Motif 
Finding using Ant Colony Optimization)[15], ACRI (Ant-
Colony-Regulatory-Identification)[16], MotifSuite[17], 
MotifSampler, Bioprospector (BioProspector is an algo-
rithm which is used to discover sequence motifs from a set 
of DNA sequences)[18], an iterative algorithm (based on 
GA with addition operator) for motif discovery[5] etc. Gibbs 

sampler and MEME have drawbacks of dropping into local 
optimum easily. The consuming time of Gibbs sampler is 
lower but less prediction accuracy, and MEME is superior 
to the other methods by its prediction accuracy but time-
consuming[5]. Again there are some heuristic methods for 
predicting motifs, such as particle swarm optimization, Tabu 
search algorithm, and Simulated Annealing[19]. Some of 
the basic limitations of these algorithms are low prediction 
accuracy of binding sites and nucleotide levels. Another lim-
itation of transaction factors is the pattern model to detect 
the regularity among the binding sites[20]. To enable the 
biologist in determining functional motifs from statistical 
artifacts, many algorithms do not produce good motif sta-
tistics. For this reason, valid motifs can be rejected, or time 
may be wasted by searching random motifs. The main draw-
back of genetic algorithm based on statistical significance 
is the lack of a mechanism to identify false positives[9]. 
Though modified genetic algorithm[12] gets better results 
than Gibbs, MEME, Consensus and genetic algorithm[10]. 
But it has a low contextual connection with the motifs which 
are introduced by TRANSFAC (A Database on Transcrip-
tion Factors and Their DNA Binding Sites)[21]. Though all 
algorithms have some limitations, they produce better results 
in some restricted inputs criteria.

Motif discovery has several important application areas. 
It is widely used in locating regulatory sites and drug target 
identification[5]. Mainly, it is used to analyze the informa-
tion for describing biological mechanisms. Besides, motif 
discovery has become the main part of several higher-level 
algorithms handle with time series specially rule-discovery, 
compression, summarization, and clustering algorithms.

In this paper, we have proposed a nature inspired meta-
heuristic approach called Chemical Reaction Optimization 
(CRO) that mimics the interaction behaviour of molecules 
participated in a chemical reaction. CRO showed promising 
results in the case of various optimization problems. We 
choose CRO algorithm to solve the motif discovery problem 
because this algorithm searches the solution space globally 
as well as locally. Thus it gives the benefits of both GA and 
SA[22–24]. It has the flexibility to adapt with different opti-
mization problems according to the requirements by redefin-
ing its four operators as well as by using additional operators 
as needed. This algorithm always tries to find out a stable 
solution as like chemical reaction in the real world. CRO 
facilitates to avail variable size population, which permits 
the system to adapt automatically the problem being solved. 
When diversification is required, decomposition operator is 
triggered to produce more molecules in order to explore the 
solution space for finding out the optimal solution. On the 
other hand, the algorithm triggers synthesis for merging 
molecules when intensification is required. As a result, the 
probability of resultant molecules to be selected for manipu-
lation is increased. It also follows the law of conservation 

Fig. 1  Motif discovery of DNA sequences
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of energy where energy can be transformed from one form 
to different entities forms. The total amount of energy held 
by the molecules and buffer remains constant that makes the 
algorithm unique than other existing meta-heuristic algo-
rithms. Besides, one can construct a molecule (solution) for 
different attributes that suit the problem to be solved. This 
advantage provides the flexibility to design and manage dif-
ferent operators as needed[22–24].

For properties and efficiency of CRO we refer two 
papers[23, 25]. Besides CRO is an algorithm which was 
used to solve many optimization problems effectively such as 
channel assignment problem in wireless mesh networks[22], 
shortest common supersequence[26], longest common sub-
sequence[27], RNA structure prediction[28], transportation 
scheduling optimization by a collaborative strategy in sup-
ply chain management with TPL[29], quadratic assignment 
problem, resource-constrained project scheduling prob-
lem[30], RNA secondary structure prediction with pseudo-
knots[31], optimization of protein folding in HP cubic lattice 
model[32] etc. So we have designed the CRO algorithm by 
redesigning four basic operators and designing two addi-
tional operators to solve the motif discovery problem for 
finding better results than the existing algorithms.

Contribution and novelty of the proposed work are given 
below.

• A new population generation process has been introduced 
to make our proposed approach more efficient.

• The basic four operators of CRO have been redesigned 
to make suitable with DNA motif discovery problem. 
These operators help our proposed approach to search 
the solution space locally as well as globally.

• The values of the parameters are defined very carefully 
to find the global optimal solution efficiently.

• We have introduced an additional operator called repair 
function to improve the quality of the solution by search-
ing all the neighboring solutions of the existing best solu-
tion. The local optimization technique is used as a second 
repair operator, which improves the quality of the binding 
sites.

• The results of the proposed work have been compared 
with several state-of-the-arts and statistical tests have 
been performed to show the efficiency of the proposed 
method compared with the other methods.

1.1  Basic concepts

Motif discovery problem can be stated as follows. Let a set 
of N DNA sequences is represented as S = {S1, S2,… , SN} , 
where Si = s1, s2,… , sli and li is the length of the sequence 
i. We have to find out the possible accurate motif pattern 
X = x1, x2,… , xl of length l where xi , and si�{A,C,G,T} . 

Motif discovery is based on a defined score function that 
calculates the similarity of the motif pattern with its occur-
rences. There are two approaches for the given motif 
length l[10]. These are as follows: 

1. Consensus approach Find a motif Sc of length l and a 
set of motif instances M = {m1,m2,… ,mN} , where mi 
is the motif instance of Si so that Sc minimizes the total 
hamming distances given in Eq. 1. 

 where 

 and H(Sc,m) is the hamming distance between the 
motif Sc and motif instances m. Here hamming distance 
means the number of positions in Sc and m where the 
nucleotides are not same. If we assume M as a con-
sensus matrix where the ith row is the motif instance 
mi and c(k, j) is denoted as the number of nucleotides 
k�{A,C,G,T} in column j. Then the CSCM (consensus 
score) is defined as: 

2. Positional approach Find a set of motif instances 
M = {m1,m2,… ,mN} with a length l of each motif and 
a set of positions, P = {p1, p2,… , pN} where pi is the 
starting position of motif instance mi in sequence Si , then 
the objective function information content, ICM of this 
approach is defined as: 

 where F(k, j) represents the frequency of nucleotide k 
to be in position j of the matrix M and Fk indicates its 
background frequency in the entire set S.

In bioinformatics, motif discovery is an NP-hard prob-
lem[6]. If we use real biological DNA sequences where the 
length of the nucleotides (or amino-acid) are very large, 
then it is not possible to find the exact motif in polynomial 
time. So here we solve this problem using chemical reac-
tion optimization (a metaheuristics method) and our target 
is to find optimal or near-optimal solutions. For finding a 
motif, we use the consensus approach, and to find their 
positions within the input DNA set the positional approach 
is used.

(1)THD(Sc) =

N∑

i=1

HD(Sc, Si)

(2)
HD(Sc, Si) = min

{
H(Sc,m) ∶ m is a subsequence

of Sc of length l
}

(3)CSCM =

l∑

j=1

(
max

k∈{A,C,G,T}

(
c
(
k, j

)))

(4)ICM =

l∑

j=1

∑

k∈{A,C,G,T}

F(k, j). log2
F(k, j)

Fk
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2  Related works

Different approaches were proposed for optimization of the 
Motif Discovery problem. Each algorithm has some draw-
backs as well as some efficiencies. Some of the approaches 
are described below.

2.1  Greedy mixture learning for multiple motif 
discovery in biological sequences

Greedy mixture learning for multiple motif discovery in 
biological sequences (Greedy EM) was proposed by Ble-
kas et al.[33]. This algorithm uses incremental methods for 
Gaussian mixture learning for finding significant motifs 
within a set of DNA sequences. A mixture of motif model 
with a greedy fashion is learned by adding motifs incremen-
tally to the mixture as far as some stopping criteria are met. 
This method starts with one motif that models the back-
ground. Then a new candidate motif is added at every step. 
By local search using partial EM (Expectation Maximiza-
tion) steps and global search for tuning the parameters, this 
algorithm finds a great initialized value for the parameters of 
the new candidate motif. This method uses original kd-trees 
to reduce the running time for querying the nearest neigh-
bor. Greedy EM uses real datasets from the PRINTS data-
base[34] and the PROSITE database of protein families[35] 
to compare their results with the MEME[8] algorithm. 
Greedy EM finds a great initialized value for the parameters 
of the new motif but it fails to find multiple motifs with 
variable length. The time complexity of the initialization 
procedure is reduced by the kd-tree technique[33].

2.2  Motif discovery using a genetic algorithm

In 2005 Che et al. proposed motif discovery using a genetic 
algorithm (MDGA)[10]. MDGA uses a generic framework 
of the genetic algorithm to explore all possible search spaces 
of the starting position of the motifs within different target 
sequences. In this algorithm, the number of initial population 
is selected randomly and kept fixed during evolution. A new 
individual is generated from two parents using crossover and 
mutation in every iteration. Thus the number of new indi-
viduals reduces to the half of the existing population. Then 
the new individuals are merged with the existing population 
and worst one-third individuals are eliminated from the total 
individuals. MDGA uses CRP dataset (contains 18 sequences 
with length 105 nucleotides)[36], YDR02c dataset (con-
sists of 15 target genes of transcription factor YDR02c)[37] 
and AZFI dataset (consists of 24 sequences in which each 
sequence has variable lengths, ranging from 175 to 1228)[37] 
to compare its efficiency with the other algorithms such as 
Gibbs sampler[7], Bioprospector[18] and AlignACE[38] etc. 
It gives higher prediction accuracy than Gibbs sampler[7] and 

Bioprospector[18] with the CRP dataset[36]. From YDR20c 
sequence dataset[37], MDGA gets truer motif pattern from 
a statistical point of view and in AZFI sequence dataset[37], 
it consumes less time than AlignACE[38].

2.3  Motif discovery using evolutionary algorithms

In 2009 Shao et al. proposed motif discovery using evolu-
tionary algorithms[39]. This algorithm integrates bacterial 
foraging optimization algorithm and Tabu Search (TS), it 
is also known as a TS-BFO algorithm. In this method, one 
candidate motif is referred to as one bacteria to undergo 
the evolution. There are four steps in a bacteria’s foraging 
action: chemotaxis, swarming, reproduction, and elimina-
tion and dispersal. TS-BFO uses SCPD datasets[40] and 
TRANSFAC datasets[21] to compare its efficiency with 
the efficiency of other approaches such as DE/EDA [DE/
EDA algorithm combines global information extracted by 
estimation of distribution algorithm (EDA) with differential 
information obtained by Differential evolution (DE)][41], 
MotifSampler, MEME (Multiple EM for Motif Elicitation)
[8] etc. TS-BFO algorithm uses self-control multi-length 
chemotactic step approach to extend the search space, 
remove local extremum, and speed up the constringency. It 
cannot generate the similar individuals in each step, guides 
the search orientation, and discovers the global solution[39].

2.4  Motif finding using ant colony optimization

Bouamama et al.[15] proposed motif discovery using ant 
colony optimization (MFACO) algorithm in 2010. As a local 
heuristic optimization search step, this algorithm integrates a 
modified Gibbs sampling method. MFACO builds a weighted 
directed graph G(V, E) with V is the set of nodes and E is 
the set of edges. This graph contains 4l nodes organized in a 
grid of four rows and l columns where l is the motif’s length. 
Every ant builds a solution incrementally by traversing the 
graph to complete a tour. MFACO searches both in the space 
of motif patterns and starting position. So it has better chances 
to detect potential motif. Three datasets used in FMGA (find-
ing motifs by genetic algorithm)[11] and E. coli CRP bind-
ing sites[36] are used to test the performance of MFACO. 
The three datasets consist of 6, 9, 18 sequences respectively 
where each sequence has an equal length of 3001 nucleotides. 
For this datasets, MFACO can acquire better performance in 
terms of motif accuracy than MEME (Multiple EM for Motif 
Elicitation)[8], Motif Sampler, BioProspector (BioProspector 
algorithm is used to discover sequence motifs from a set of 
DNA sequences)[18], and FMGA (Finding Motifs by Genetic 
Algorithm)[11] within a reasonable computational time. E. 
coli dataset contains 18 sequences with length 105 nucleo-
tides. For this datasets, MFACO is able to find the exact start-
ing positions of the motifs identified by Footprinting while the 
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other approaches such as BioProspector[18], MDGA (Motif 
Discovery using A Genetic Algorithm)[10] failed.

2.5  Optimizing genetic algorithm for motif 
discovery

Hongwei et al.[13] proposed a new algorithm in 2010 named 
GARPS that optimizes Genetic Algorithm (GA) via Random 
Projection Strategy (RPS) to identify (l, d)-motifs. Though 
the initial population used in this algorithm is generated 
from RPS that makes it capable of fast convergent to the 
best solution, the overall structure of GARPS is derived from 
the simple genetic algorithm. In the creation of every new 
generation, a simple mutation operator named the one-point 
crossover and keeping the best mechanism are used. Genera-
tion after generation, these steps are repeated iteratively in a 
while loop. During these iterations, new individuals appear 
because crossover and mutation operators are performed on 
the population. The best individuals survive using the best-
keeping mechanism is guaranteed by the selection operator. 
As GARPS progresses, the average fitness of the population 
is increased and it stops when no more improvement can be 
made. The GARPS algorithm was compared with the Projec-
tion Algorithm and showed the better results. They used sev-
eral data including eighteen sequences of identified binding 
sites of cAMP receptor protein (CRP)[36], seven sequences 
of identified binding sites of PDR3[42]. This algorithm can-
not find the extremely weak planted motif unless the algo-
rithm reports a sufficient number of patterns[13].

2.6  DNA motif discovery based on ant colony 
optimization and expectation maximization

Yang et al.[14] proposed a framework in 2011 with the com-
bined ability of the Ant Colony Optimization (ACO) and 
Expectation Maximization (EM) known as EMACO. ACO 
is effective in global search and EM is efficient to maxi-
mize the likelihood of parameter estimation that makes these 
two algorithms adequately complementary. Initially, some 
potential binding sites are randomly extracted from the given 
sequences. Next, ACO applies iteratively over all these solu-
tions to construction and updates pheromone in search of 
good motifs. To maximize the likelihood of parameter, the 
EM algorithm uses predictions found from ACO. Expecta-
tion step of EM, calculate the expected value of the log-like-
lihood function given the observed data under the current 
estimation of the missing motif sites. The maximization step 
finds the positions of motif instances. After applying this 
two algorithm, the post-processing procedures applied to 
refine the predicted results. Finally, those predicted binding 
sites are given as Motif predictions output. EMACO algo-
rithm was compared with GAME (Genetic Algorithm for 
Motif Elicitation)[43] and GALF (Genetic Algorithm with 

Local Filtering)[39] and predicts better motifs under most 
circumstances. EMACO conducted experiments on eight 
real datasets named CREB, CRP, E2F, ERE, MEF2, MyoD, 
SRF, TBP which were previously constructed by the authors 
of GAME[39]. It has low standard deviations for prediction 
which indicates its stable performance[14].

2.7  An iterative algorithm for motif discovery

In 2013 iterative algorithm for motif discovery was proposed 
by Fan et al.[5]. This method uses the common GA framework 
and finds the motifs with three operations in GA and a new 
Addition operation proposed in this algorithm. This method 
contains three operators such as mutation, addition, and dele-
tion. This method starts with short motifs whose length is 
three. So there are total 64 initial individuals because each site 
is chosen from A, C, G, T. Now the length of each individual 
adds one each epoch by three operators until the length of 
the optimal motif reaches to the standard length. Through-
out the method, the population number of individuals is kept 
64. The iterative algorithm is a parallel random search which 
is helpful to implement parallel computing to increase the 
computational efficiency of the method. This method also can 
avoid dropping into the local optimum. This algorithm uses 
both simulated and biological data to test the effectiveness of 
this algorithm. The biological data set used in this method is 
download from the SCPD database[40]. The iterative algo-
rithm achieves a higher score than Gibbs Sampler, GA, and 
GARPS in terms of the data CRP[36].

2.8  An Ant Colony Optimization based algorithm 
for identifying gene regulatory elements

Liu et al.[16] proposed an Ant Colony Optimization based 
algorithm for identifying gene regulatory elements (ACRI) 
in 2013. This paper focused on specific type of motif such 
as de-novo motif. De-novo motif is a type of motif in which 
the length of the motif is predefined. This algorithm detects 
all possible binding sites of a transcription factor from the 
upstream of co-expressed genes. It takes a set of sequences 
and a length of the motif as input. A special digraph is created 
where each node except the last one represents a sequence 
from the set of input sequences, the last node indicates the 
termination point, and each edge between two nodes repre-
sents a possible starting position of a binding site in the cor-
responding sequence. Each ant builds a solution by traversing 
each node once and picking one edge between two nodes. 
Then the best solution is searched by various optimization. 
ACRI used five transcriptional factors of Saccharomyces cer-
evisiae from the uniform database SCPD[40], five transcrip-
tional factors of Homo Sapiens from the uniform database 
JASPAR[44] and 18 gene sequences contain E. coli transcrip-
tion factor binding sites[36] to compare the results with the 
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algorithms, Gibbs sampler[7], AlignACE[38], MEME[8] etc. 
ACRI gets a higher quality of solutions at a very high speed 
compared with other existing related algorithms.

2.9  An efficient ant colony algorithm for DNA motif 
finding

In 2015 Huan et al. proposed an efficient ant colony algo-
rithm for DNA motif finding (ACOMotif)[6]. ACOMo-
tif uses a simple memetic scheme and applies ACO with 
reinforcement search technique. It uses the same structural 
graph G(V, E) of MFACO[15] but the heuristic informa-
tion, pheromone update rule and local search technique are 
quite different. G(V, E) has 4l vertices organized in four 
rows and l columns where l is the length of the motif. The 
path through starting vertex to the last vertex that is made by 
each ant defines the acceptable solution for the motif. Then 
ACOMotif applies local search for the potential motif. This 
method uses the hill-climbing technique for local search. 
Additionally, it applies relax method to find the binding site 
of every motif. ACOMotif used H.sapiens dataset[44], E. 
coli dataset[36], SCPD dataset[40], ERE and E2F to com-
pare its efficiency with the efficiencies of MFACO (motif 
discovery using ant colony optimization)[15], ACRI (Ant-
Colony-Regulatory-Identification)[16], EMACO (DNA 
Motif Discovery based on Ant Colony Optimization and 
Expectation Maximization)[14] and MotifSuite[17]. Where 
H.sapiens dataset contains 6, 9, and 12 sequences respec-
tively, and each sequence contains 3001 nucleotides, E. 
coli dataset holds 18 sequences and each sequence has 105 
nucleotides, both ERE and E2F have 25 sequences and each 
contains 200 nucleotides. The experimental results show that 
ACOMotif/R-ACOMotif is superior in comparison with the 
other algorithms.

2.10  A genetic algorithm for motif finding based 
on statistical significance

In 2015 a genetic algorithm for motif finding based on sta-
tistical significance was proposed by Gutierrez et al.[9]. This 
approach proposes a new computational technique with a 
genetic algorithm that uses several statistical coefficients. 
It represents the candidate motifs using a position in which 
instances is situated. The only restriction is that they are over-
represented in at least a few sequences. So before starting the 
method, all input sequences are merged in a single superse-
quence. Then the supersequence is divided into subsequences 
of a random length disregarding the length of every sequence 
to generate more diverse solutions faster. Finally, the solu-
tions are filtered and clustered to generate final solutions 
after applying the method for each given motif width. This 
method was tested with the assessment provided by the study 
performed by Tompa et al.[45]. This assessment contains 52 

datasets of four different organisms (human, yeast, fly, and 
mouse) and four negative controls. This algorithm success-
fully predicts many of the sites with the high number of true 
positives both in site level and nucleotide level. The main 
disadvantage of this approach is the lack of a system to detect 
false positive. It generally detects a known motif, but with 
more instances than it really has[9].

3  Chemical reaction optimization

A nature-inspired metaheuristic algorithm for optimiza-
tion named Chemical Reaction Optimization (CRO) was 
proposed by Lam and Li[30]. CRO has been successfully 
applied to solve many NP-hard problems and obtained better 
performance compared to other metaheuristic algorithms. 
CRO loosely couples chemical reaction with optimization 
that obeys two laws of thermodynamics. The first law com-
monly known as energy conservation rule states that total 
energy of a system remains constant. So, according to the 
first law of thermodynamics we can write,

where PEi(t) and KEi(t) denote the potential and kinetic 
energy of the molecule i at time t respectively, Buffer(t) is 
the energy of the surrounding as well as the energy of the 
central buffer at time t, and C is a constant.

CRO is a multi-agent algorithm where the molecule is a 
manipulated agent having some essential attributes such as 
the molecular structure (z), the potential energy (PE), the 
kinetic energy (KE), the number of hits (NumHit) and other 
parameters. The excessive energy of a molecule means insta-
bility. An unstable molecule always tries to be stable with 
low energy. This phenomenon is similar to searching for the 
optimal point of the optimization problem. To obtain stabil-
ity, molecules undergo four basic reactions named onwall 
ineffective collision, decomposition, inter-molecular inef-
fective collision, and synthesis. Here ineffective collisions 
mean a small change in the molecular structure that refers to 
local search while decomposition and synthesis mean a mas-
sive change in the molecular structure that refers to global 
search. As CRO follows the energy conservation rule so, 
any of the reactions will only take place when the following 
equation is satisfied:

where t is the number of reactants, s is the number of prod-
ucts, Z and Z′ are the structures of the molecule before and 
after the reaction.

(5)
popSize(t)∑

i=1

(PEi(t) + KEi(t)) + Buffer(t) = C

(6)
t∑

i=1

(PEzi + KEzi) ≥

s∑

i=1

(PEz�i)
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3.1  Parameters of CRO

In CRO, molecules are the manipulated agents having some 
attributes. Table 1 lists the attributes and their algorithmic 
definitions.

3.2  Operator selection

This section describes the basic scheme of CRO and opera-
tor selection. Figure 2 shows a flowchart of CRO to depict 
the whole process. The process starts with the initialization 
stage. In this stage, the number of populations and the other 
parameters are initialized. Then the iteration stage starts and 
a number of iterations are performed. In each iteration, one 
of the elementary reaction happens and the required number 
of molecules are selected from the population randomly. At 
first of each iteration, a random number v between 0 and 1 
is generated to take the decision, if uni-molecular or inter-
molecular collision will occur. If v > MoleColl or only one 
molecule remains, then the uni-molecular collision occurs 
else the inter-molecular collision takes place. Then for this 
collision, a definite number of molecules are selected from 
the population randomly. Now for uni-molecular collision 
(left side of the flowchart), a condition is checked with a 
parameter � if the onwall ineffective or decomposition reac-
tion will occur. Similarly, for inter-molecular collision (right 
side of the flowchart), a condition is checked with a parame-
ter � if the inter-molecular ineffective or decomposition reac-
tion will occur. The value of the parameters MoleColl, �, � 
are assigned at the initialization state. After each elementary 
reaction, if any best solution is found, it is saved. The itera-
tion stage continues until any stopping criterion is met. In 
the final stage, a global best solution is found. The operator 
repair1 is applied to the final solution to search for the bet-
ter solution. Then the binding sites of the better solution are 
located. At last, operator repair2 is applied to improve the 
quality of the binding sites.

4  CRO for DNA motif discovery problem

In this paper, we solve the DNA Motif Discovery problem 
using a well-known population-based metaheuristic algo-
rithm, Chemical Reaction Optimization (CRO). CRO is an 
algorithmic framework that can solve optimization problems 
efficiently. It is a variable population based algorithm that 
means there are different numbers of molecules in differ-
ent iterations. Here we have proposed an algorithm to find 
the DNA motif using four basic operators of CRO. The 
operators are redesigned and an additional operator (repair 
operator) is designed to find out the best solutions. Another 
repair function is used to find the better binding sites that 
give a better result. The proposed algorithm is named here 
as DMD_CRO (DNA Motif Discovery using CRO). For 

Table 1  Various parameters 
of CRO and their algorithmic 
definitions

Symbol Algorithmic definition

PopSize The number of solutions (solution space)
KELossRate The loss rate of kinetic energy in an elementary reaction
MoleColl Makes a decision whether a uni-molecular or an inter-molecular collision will occur
Buffer The initial energy of the system
� and � Make a decision whether an effective or an ineffective collision will occur
NumHit The total number of hits a molecule has experienced
Minstruct The structure of a solution having minimum potential energy
MinPE The potential energy of a solution having minimum structure
MinHit The number of hits when a molecule experiences a minimum structure

Fig. 2  A flowchart of CRO
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implementation, the code of the proposed DMD_CRO can 
be found here1.

4.1  Basic structure of DMD_CRO

Our proposed DMD_CRO algorithm has a difference from 
the basic CRO algorithm. The difference is after the iteration 
stage when we find the final solution, two additional repair 
operators are applied to this final solution to get better poten-
tial motif and binding sites. Algorithm 1 shows the pseudo 
code of DMD_CRO. 

4.2  Solution representation and population 
generation

Let, for a given set of N DNA sequences S = {S1, S2,… , SN} , 
we have to find a motif where the length of the motif, l = 7 . So 
there are 47 = 16384 possible patterns as each site is selected 
from � = {A,C,G,T} . We generate patterns randomly from 
all possible patterns and calculate their information contents 
according to Eq. 4. Then from the 100 patterns, 20 patterns 
with higher information contents are taken to use for exploring 
the solution space. When population generation is completed, 
each symbol {A,C,G,T} of each possible pattern is encoded 
by a unique numerical value. We have used 0, 1, 2, 3 for the 
symbols A, C, T, G respectively. Figure 3 shows an example 
of solution representation.

4.3  Reaction operators

For the DMD_CRO algorithm, we have represented four reac-
tion operators to find out the solutions and introduced two 
additional operators to get better results. The following sub-
sections describe the operators used in the algorithm.

4.3.1  On‑wall ineffective collision

This molecular reaction is used to search for the neighborhood 
solution (local search). We use the one-difference operator as 
shown in Fig. 4 for this elementary reaction. A position is 
chosen randomly in the molecule to change the value of this 
position. Let Sm is a molecule to which the on-wall ineffective 
collision is applied. The values of the solution Sm are copied 
to a solution S′

m
 . A position i of the molecule Sm is randomly 

selected where 1 ≤ i ≤ l (length of the motif). Next, the value 
of ith position of S′

m
 has to be changed. For this, we generate 

a value r�{0, 1, 2, 3} such that r ≠ Sm[i] and put the value of 
r in the ith position of S′

m
 . Thus a new solution S′

m
 is created. 

In Fig. 4, i = 3 and the value Sm[3] = 2 . Now we randomly 
generate a value r between 0 and 3 such that r ≠ 2 , so r = 3 
is selected and put it in S�

m
[i] . Algorithm 2 shows the pseudo 

code of On-wall ineffective collision.

1 https ://drive .googl e.com/open?id=1cEFV klnTf c5QZM xtSPh 
LSPFN 25nJw m6K

https://drive.google.com/open?id=1cEFVklnTfc5QZMxtSPhLSPFN25nJwm6K
https://drive.google.com/open?id=1cEFVklnTfc5QZMxtSPhLSPFN25nJwm6K


1715Evolutionary Intelligence (2021) 14:1707–1726 

1 3

4.3.2  Decomposition

This reaction is implemented to enable the algorithm 
for exploring the other region of solution space (global 
search). Here we have used a popular half-total exchange 
operator as decomposition shown in Fig. 5. In decompo-
sition, two new molecules are generated from an original 
molecule. Let Sd is an original molecule to which we apply 
this reaction. At first, the molecule Sd is divided into two 
parts. Then we copy values of the first part of Sd to a new 
molecule Sd1 and randomly generate values of the remain-
ing part of Sd1 . Similarly, the values of the last part of 
Sd are being copied to the respective part of another new 
molecule Sd2 and randomly generate values of the remain-
ing part of Sd2 . Algorithm 3 depicts the pseudo code of 
Decomposition.

4.3.3  Inter‑molecular Ineffective Collision

In this elementary reaction, a well-known two-point crosso-
ver operator is used as shown in Fig. 6. Two molecules Sc1 
and Sc2 are randomly selected from the solution space. Then 

two points p1 and p1 from the molecule are randomly chosen 
where p1 < p2 . Now we divide both molecules Sc1 and Sc2 
into three parts with these two points. Then the values from 
the first and third parts of Sc1 are copied to the respective 
positions of a new molecule Sn1 . The values of the second 
part of Sc2 are being copied to the respective positions of 
the new molecule Sn1 . Similarly, another new solution Sn2 
is created from the first and third parts of Sc2 along with the 
second part of Sc1 . Algorithm 4 gives the pseudo code of 
inter-molecular ineffective collision.

4.3.4  Synthesis

The probabilistic select operator depicted in Fig. 7 is used 
for this elementary reaction[26]. Synthesis takes two mol-
ecules Sm1 and Sm2 randomly from the solution space and 
produces a new molecule S′

m
 . This reaction is the opposite 

of the decomposition operator. At first, the frequency of each 
symbol {A,C,G,T} for both Sm1 and Sm2 are calculated and 
the values of the frequencies are put in two different arrays. 
Then to find a proper symbol for the ith position of S′

m
 , we 

compare the frequency of the ith symbol of Sm1 with the 
frequency of the ith symbol of Sm2 and take the symbol with 
the highest frequency as the value of the ith position of S′

m
 . 

Now the frequency of the selected symbol for the molecule 
is decreased by one from the solution array. This procedure 

Fig. 3  Solution representation

Fig. 4  On-wall ineffective

Fig. 5  Decomposition reaction
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repeats for selecting every symbol. Algorithm 5 shows the 
pseudo code of synthesis.

4.3.5  Operator Repair1

The operator repair1 is applied to the final solution Sm to 
improve the result by the local search to get potential motif. 
At first, we copy the values of Sm to form a new solution S′

m
 . 

Now the value of the first position of S′
m
 has been changed 

by one of {0, 1, 2, 3} such that Sm[0] ≠ S�
m
[0] . Compute the 

information content T = IC(Sm) and T � = IC(S�
m
) using 

Eq. 4. If T ′ is not greater than T, then we change the value 
of the second position of S′

m
 and do the same again. But if 

T ′ is greater than T, then Sm is updated by S′
m
 and again the 

technique is applied to the updated solution Sm . The opera-
tor repair1 is stopped when we do not get a better result 
by checking all the positions of Sm and output the updated 
best solution Sm . Algorithm 6 gives the pseudo code of the 
process.

Figure 8 shows an example of the operator repair1. Here 
an initial solution Sm is taken with information content 11.78. 
Now we have changed the value of the 1st position of Sm using 
{0, 1, 2, 3} to get three new solutions Sm11, Sm12 and Sm13 such 
that Sm11 ≠ Sm12 ≠ Sm13 . Next, the information contents of 
Sm11, Sm12 and Sm13 are computed. But a larger information 
content than the initial solution has not been found. Now the 
value of the 2nd position of Sm is changed to get Sm21, Sm22 
and Sm23 similarly. But still, a larger information content has 
not been obtained. Next, the value of the 3rd position has been 
changed and got a solution Sm32 with larger information content 
12.17. So the solution Sm is updated by Sm32 . At this moment, 
we have to reapply the repair1 operator to this updated solu-
tion. The repair1 operator searches all the neighboring solu-
tions of the existing solution to get a better one. If any better 
solution is found then the existing solution is replaced by this 
better solution and we repeat the process. This process con-
tinues until all the neighboring solutions are worse than the 
existing solution. But the CRO operators search one or two 
local or global solution(s) of the existing solution(s). Since 
the searching space by repair operator is very large compared 
to the traditional CRO operators. So this additional operator 
helps the proposed DMD_CRO algorithm to search the solu-
tion space efficiently in finding better solutions. That is why 
the possibility to find better solutions by the CRO with the 
operator repair1 is more than the CRO without this operator.

Fig. 6  Inter-molecular ineffective reaction

Fig. 7  Synthesis reaction
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4.3.6  Locate binding sites

To get the binding sites for a solution Sm , we have to find 
a position pi for each input sequence Si which can mini-
mize the hamming distance in Eq. 2. Thus a set of positions 
P = {p1, p2,… , pN} is found which is known as the binding 
sites for the solution Sm.

4.3.7  Operator repair2

We have used operator repair2 (repair function), which is 
a modified version of a local optimization technique for 
subsequence tuple in ACRI[16]. This operator is applied 
to the binding sites P = {p1, p2,… , pN} to find better 
binding sites. The value of information contents for exist-
ing binding sites P is calculated using Eq.  4. At first, 
each position in P is changed to get six new binding sites 
Pk = {p1 + k, p2 + k,… , pN + k} where −3 ≤ k ≤ 3 and 
k ≠ 0 . Again the value of information content of Pk for each 
value of k is calculated using Eq. 4. Thus we get new six 
information contents for six values of k. At last, we have 
to find out the binding sites having the highest information 
content among the six information contents and old ones. 
Algorithm 7 gives the pseudo code of the process.

Figure 9 shows an example of the process of the repair2 
operator. Here P = {59, 53,… 76} are initial binding sites 
having information content, IC = 11.923 . Next, we get 
P = {56, 50,… 73} by adding k = 3 in each position of P 
and compute the information content value, IC = 10.568 
for P′ . Similarly, the binding sites and information content 
for each value of k are computed. From Fig. 9, the highest 
information content value IC = 13.091 is found with binding 
sites P = {61, 55,… 78} for k = 2 . So P = {61, 55,… 78} 
and IC = 13.091 are the final outputs of the operator repair2.

5  Experimental results and analysis

The proposed DMD_CRO algorithm was tested with sev-
eral datasets given in ACRI[16] for evaluation purpose. We 
implemented our algorithm in C# programming language 
using Microsoft Visual C# 2013 and executed using an 
Intel Core i5 computer with 2.50 GHz CPU and 4 GB RAM 
under Windows 10 operating system (64 bit). For an effec-
tive test, we compared the results of DMD_CRO with Gibbs 
sampler[7], AlignACE[38], MEME[8] and ACRI[16]. The 
datasets used in the experiments contain five transcriptional 
factors of Homo sapiens, 18 gene sequences contain E. coli 
transcription factor binding sites[36] and RAP1 of Saccha-
romyces cerevisiae from SCPD[40]. The ACRI algorithm 
solved the de-novo motif discovery problem. We have also 
designed DMD_CRO to solve the same type of problem. 
De-novo motif is a type of motif in which the length of the 
motif is predefined.

5.1  Experimental setup

In the proposed DMD_CRO algorithm, there are some key 
parameters. We investigated for the best value by testing 
over the 18 gene sequences of E. coli transcription factor 
binding sites dataset for these key parameters. The tunning 
process was demonstrated in Fig. 10 for � , � , iteration, and 
KELossRate. In the first row and first column of Fig 10, a 
line graph has been drawn to show the effect of the value of 
� over the value of information content (used in Eq. 4). Here 
� has been plotted in the x-axis and information content (IC) 
has been plotted in the y-axis. From the graph, it can be seen 
that the highest value of IC is obtained for � = 1 . Similarly, 
we get highest values of IC for � = 350 , iteration = 2000 , 
and KELossRate = 0.2 respectively.

Besides these parameters, several parameters named 
popSize, MoleColl, InitialKE were used in the experiment. 
Table 2 shows all parameters and their respective values. 
The termination condition of the proposed algorithm was 
set upon the value of these parameters.

Fig. 8  Repair1 operator
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5.2  Analysis for transcription factor binding sites 
of Homo sapiens

The experiments of the proposed DMD_CRO algorithm 
were performed using Homo sapiens for transcription fac-
tor binding sites from the uniform database JASPAR. We 
selected five transcriptional factor binding sites as tested 
data. Table 3 shows the dataset (also used in ACRI).

The dataset was tested using our proposed algorithm and 
ACRI and created weblogo using the http://weblo go.berke 
ley.edu/logo.cgi website. Table 4 shows the results. The 
second and third columns show generated weblogo about 

its corresponding sequence using DMD_CRO and ACRI 
respectively. The weblogos of DMD_CRO and ACRI are 
similar to the real weblogos. These point out the effective-
ness of our proposed DMD_CRO algorithm that means 
DMD_CRO algorithm is correct. We did this experiment to 
prove the effectiveness and correctness of our algorithm. In 
Tables 3 and 4, TF means sequence name.

5.3  Analysis of CRP binding sites of E. coli

Another benchmark dataset for identifying the regulatory 
elements is the CRP binding sites of E. coli. In this data-
set, there are 18 sequences having a length of 105 for each 
sequence. Table 5 shows the 18 sequences of the CRP bind-
ing sites for E. coli.

To find the motif starting positions from these sequences, 
we used Information Content as objective function stated in 
Eq. 4. Like most of the popular computing methods, we set 
the motiflength = 22 . We have executed DMD_CRO algo-
rithm five times using the same parameter settings as shown 
in Table 2. In Table 6, the worst and best-found motif start-
ing position for each sequence of five consecutive runs for 
both without and with repair operator is shown.

Now, Table 7 shows the experimental results of our pro-
posed DMD_CRO algorithm in comparison with MEME[8], 
ACRI[16], Gibbs sampler[7], and AlignACE[38] using the 
best found motif starting positions of the CRP binding sites 
of E. coli. The found binding sites are acceptable if the dif-
ference between the actual position and detecting position 
is 10[16]. In Table 7 binding sites column denotes the actual 
position of the motif in the sequence. The found binding 
sites of MEME, ACRI, Gibbs sampler, and AlignACE were 
taken from ACRI[16] paper. MEME, ACRI, Gibbs sampler, 

Fig. 9  Repair2 operator

Fig. 10  Parameters tuning of CRO algorithm

http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
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and AlignACE columns show motif positions found using 
them. In DMD_CRO column, we show the best motif start-
ing position for each sequence from Table 6. The positional 
difference between actual position and position found using 
respective algorithms have been shown in error columns. 
Here DMD_CRO (without repair) gives all binding sites suc-
cessfully but some of the results have to be improved. The 
DMD_CRO algorithm with repair shows all the binding sites 
successfully and the results are better than those of MEME 
and ACRI algorithms. So the better results than the other 
related algorithms were obtained by the proposed algorithm 
with repair operators.

In Tables 8 and 9, we compared the information content 
values of DMD_CRO with other four algorithms: Gibbs 
sampler, MEME, AlignACE, and ACRI. Values of informa-
tion content (IC) were calculated using Eq. 4. We executed 
DMD_CRO algorithm 18 times to get the information con-
tent distributions by DMD_CRO. The information content 
distributions of other algorithms were taken directly from 
ACRI[16]. Here Table 8 depicts the information content dis-
tributions and Table 9 represents the worst, average, and best 
information content values of the respective algorithms. The 
higher information content value denotes a better solution. 
From Tables 8 and 9, it is clear that the quality of the solu-
tions found by DMD_CRO (with and without repair opera-
tor) is higher than the other algorithms.

5.4  Statistical significance test

The previous subsections express that the performance of 
the DMD_CRO algorithm is better than the other traditional 

algorithms in terms of the quality of the results. In this sub-
section, we examine whether there is statistical significance 
between DMD_CRO and other traditional algorithms. The 
Student’s t-test and the Mann-Whitney U test were used for 
this purpose.

5.4.1  Comparison using student’s t‑test

The information content values of Table 8 were used to 
calculate the t-values using Eq. 6.

Where V1 , V2 are the average information content values, �1 , 
�2 are the standard deviations, and n1 , n2 are the numbers of 
samples for group 1 and group 2 respectively. Each group has 
18 samples, so the degree of freedom is (18 + 18 − 2) = 34 . 
The significance level � = 0.05 was chosen to get the criti-
cal value tcrit. = 2.032 at 34 degrees of freedom from the 
t-distribution table. We set the null hypothesis that there is 
no statistically significant difference between DMD_CRO 
with other algorithms. If t-value > tcrit. or t-value < −tcrit. , 
then the null hypothesis can be rejected and decided that 
there is a statistically significant difference between DMD_
CRO with other algorithms. Table 10 shows the t-values of 
different algorithms compared with DMD_CRO. Using the 
data of Table 8, for DMD_CRO (without repair), the aver-
age information content value, V1 = 11.24 , standard devia-
tion, �1 = 0.985 , and the number of samples, n1 = 18 and for 
Gibbs sampler, V2 = 9.229 , �2 = 0.124 , and n2 = 18 . Now, 
using Eq. 6 t-value = 8.58 for Gibbs sampler compared with 
DMD_CRO (without repair), which is shown in the first row 
and first column in Table 10. Similarly, the other values were 
calculated. In Table 10, all the t-values are greater than the 
tcrit. = 2.032 . So we can reject the null hypothesis and con-
clude that DMD_CRO has statistical significant difference 
compared with the other related algorithms. 

5.4.2  Comparison using Mann‑Whitney U Test

The two-tailed Mann–Whitney U test was used to com-
pare DMD_CRO with other algorithms. We have consid-
ered the significance level � = 0.05 to get the critical value 
Zcrit. = 1.96 . Then Zstat. was calculated from the information 
content values of Table 8 using Eq. 7.

(7)
t-value =

|V1 − V2|√
�1

2

n1
+

�2
2

n2

(8)Zstat. =
U −

n1n2

2√
n1n2(n1+n2+1)

12

Table 2  Parameters of CRO 
algorithm for finding motif

Symbol Value

popSize 200
KELossRate 0.2
MoleColl 0.3
iteration 2000
InitialKE 500
� 1
� 350

Table 3  The five transcriptional factors of Homo sapiens

TF Length Consensus sequence

ELK4 9 ACC GGA AGT 
E2F1 8 TTT GGC GC
FOXD1 8 GTA AAC AT
USF1 7 CAC GTG G
RELA 10 GGG AAT TTCC 
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where U denotes the lowest sum between the positive and 
negative ranks of the information contents of DMD_CRO 
and any other algorithm, and n1 , n2 are the numbers of sam-
ples for these two algorithms. The null hypothesis states 
that there is no statistical significance between DMD_CRO 

with other algorithms. The alternative hypothesis defines 
that there is statistically significant. If Zstat. > Zcrit. or 
Zstat. < −Zcrit. , then we can reject the null hypothesis and 
accept the alternative hypothesis. Table 11 shows the calcu-
lated values of U and Zstat. of different algorithms compared 

Table 4  The experimental results for five transcriptional factors of Homo sapiens of DMD_CRO and ACRI
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with DMD_CRO. Using the data of Table 8, the number 
of samples, n1 = 18 for DMD_CRO (without repair) and 
n2 = 18 for Gibbs sampler. The lowest sum, U = 2 for 
Gibbs sampler. Now using Eq. 7, we get Zstat. = −5.046 for 
Gibbs sampler compared with DMD_CRO (without repair), 
which is shown in the first row and first column in Table 11. 
Similarly, the other values were calculated. In Table 11, all 
the Zstat. values are lower than Zstat. = −5.046 . So the null 
hypothesis can be rejected and concluded that DMD_CRO 
has statistical significant difference compared with the other 
algorithms.

These two significance tests prove the superiority of 
DMD_CRO algorithm over other state-of-the-arts in this 
area.

5.5  Running time analysis

For the analysis of running time, we implemented the ACRI 
algorithm in our experimental platform. For this testing pur-
pose, five ants were used for ACRI and initial population 
size was fixed to five for DMD_CRO. We set a value to the 
iteration parameter and executed each algorithm five times. 
So five running times were found for each algorithm. Now 

Table 5  The 18 sequences of 
the CRP binding sites for E. coli 

Sequence no. Sequence

1 TAA TGT TTG TGC TGG TTT TTG TGG CAT CGG GCG AGA ATA GCG CGT GGT GTGAA 
AGA CTG TTT TTT TGA TCG TTT TCA CAA AAA TGG AAG TCC ACA GTC TTG ACAG 

2 GAC AAA AAC GCG TAA CAA AAG TGT CTA TAA TCA CGG CAG AAA AGT CCA CATTG 
ATT ATT TGC ACG GCG TCA CAC TTT GCT ATG CCA TAG CAT TTT TAT CCA TAAG 

3 ACA AAT CCC AAT AAC TTA ATT ATT GGG ATT TGT TAT ATA TAA CTT TAT AAATT 
CCT AAA ATT ACA CAA AGT TAA TAA CTG TGA GCA TGG TCA TAT TTT TAT CAAT 

4 CAC AAA GCG AAA GCT ATG CTA AAA CAG TCA GGA TGC TAC AGT AAT ACA TTGAT 
GTA CTG CAT GTA TGC AAA GGA CGT CAC ATT ACC GTG CAG TAC AGT TGA TAGC 

5 ACG GTG CTA CAC TTG TAT GTA GCG CAT CTT TCT TTA CGG TCA ATC AGC AAGGT 
GTT AAA TTG ATC ACG TTT TAG ACC ATT TTT TCG TCG TGA AAC TAA AAA AACC 

6 AGT GAA TTA TTT GAA CCA GAT CGC ATT ACA GTG ATG CAA ACT TGT AAG TAGAT 
TTC CTT AAT TGT GAT GTG TAT CGA AGT GTG TTG CGG AGT AGA TGT TAG AATA 

7 GCG CAT AAA AAA CGG CTA AAT TCT TGT GTA AAC GAT TCC ACT AAT TTA TTCCA 
TGT CAC ACT TTT CGC ATC TTT GTT ATG CTA TGG TTA TTT CAT ACC ATA AGCC 

8 GCT CCG GCG GGG TTT TTT GTT ATC TGC AAT TCA GTA CAA AAC GTG ATC AACCC 
CTC AAT TTT CCC TTT GCT GAA AAA TTT TCC ATT GTC TCC CCT GTA AAG CTGT 

9 AAC GCA ATT AAT GTG AGT TAG CTC ACT CAT TAG GCA CCC CAG GCT TTA CACTT 
TAT GCT TCC GGC TCG TAT GTT GTG TGG AAT TGT GAG CGG ATA ACA ATT TCAC 

10 ACA TTA CCG CCA ATT CTG TAA CAG AGA TCA CAC AAA GCG ACG GTG GGG CGTA 
GGG GCA AGG AGG ATG GAA AGA GGT TGC CGT ATA AAG AAA CTA GAG TCC GTTTA 

11 GGA GGA GGC GGG AGG ATG AGA ACA CGG CTT CTG TGA ACT AAA CCG AGG TCAT 
GTA AGG AAT TTC GTG ATG TTG CTT GCA AAA ATC GTG GCG ATT TTA TGT GCGCA 

12 GAT CAG CGT CGT TTT AGG TGA GTT GTT AAT AAA GAT TTG GAA TTG TGA CACA 
GTG CAA ATT CAG ACA CAT AAA AAA ACG TCA TCG CTT GCA TTA GAA AGG TTTCT 

13 GCT GAC AAA AAA GAT TAA ACA TAC CTT ATA CAA GAC TTT TTT TTC ATA TGCC 
TGA CGG AGT TCA CAC TTG TAA GTT TTC AAC TAC GTT GTA GAC TTT ACA TCGCC 

14 TTT TTT AAA CAT TAA AAT TCT TAC GTA ATT TAT AAT CTT TAA AAA AAG CATT 
TAA TAT TGC TCC CCG AAC GAT TGT GAT TCG ATT CAC ATT TAA ACA ATT TCAGA 

15 CCC ATG AGA GTG AAA TTG TTG TGA TGT GGT TAA CCC AAT TAG AAT TCG GGAT 
TGA CAT GTC TTA CCA AAA GGT AGA ACT TAT ACG CCA TCT CAT CCG ATG CAAGC 

16 CTG GCT TAA CTA TGC GGC ATC AGA GCA GAT TGT ACT GAG AGT GCA CCA TATG 
CGG TGT GAA ATA CCG CAC AGA TGC GTA AGG AGA AAA TAC CGC ATC AGG CGCTC 

17 CTG TGA CGG AAG ATC ACT TCG CAG AAT AAA TAA ATC CTG GTG TCC CTG TTGA 
TAC CGG GAA GCC CTG GGC CAA CTT TTG GCG AAA ATG AGA CGT TGA TCG GCACG 

18 GAT TTT TAT ACT TTA ACT TGT TGA TAT TTA AAG GTA TTT AAT TGT AAT AACG 
ATA CTC TGG AAA GTA TTG AAA GTT AAT TTG TGA GTG GTC GCA CAT ATC CTGTT 
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Table 6  The worst and best 
motif starting positions of the 
CRP binding sites of E. coli for 
DMD_CRO

 No.  Binding sites DMD_CRO (without repair) DMD_CRO (With repair)

Worst position Best position Worst position Best position

1 17,61 36 61 36 61
2 17,55 31 55 58 55
3 76 19 76 19 76
4 63 21 61 43 61
5 50 24 50 83 50
6 7,60 63 4 40 7,60
7 42 60 38 24 44
8 39 74 35 74 41
9 9,80 71 9 12 80
10 14 70 14 17 14
11 61 34 65 29 61
12 41 32 41 32 41
13 48 64 48 64 48
14 71 74 68 74 71
15 17 75 17 29 17
16 53 84 53 44 53
17 1,84 41 80 34 83
18 78 7 78 74 78

Table 7  Comparison of the results of DMD_CRO with MEME, and ACRI for the 18 sequences of the CRP binding sites for E. coli 

No. Binding sites Gibbs 
sam-
pler[7]

Error AlignACE[38] Error MEME[8] Error ACRI[16] Error DMD_CRO 
(without 
repair)

Error DMD_CRO 
(with repair)

Error

1 17,61 59 − 2 63 2 61 0 63 2 61 0 61 0
2 17,55 53 − 2 57 2 55 0 57 2 55 0 55 0
3 76 74 − 2 78 2 76 0 78 2 76 0 76 0
4 63 59 − 4 65 2 63 0 65 2 61 2 61 2
5 50 11 − 39 52 2 13 − 37 52 2 50 0 50 0
6 7,60 5 − 2 9 2 7 0 9 2 4 3 7,60 0
7 42 40 − 2 26 − 16 42 0 44 2 38 4 44 2
8 39 37 − 2 41 2 39 0 41 2 35 4 41 2
9 9,80 7 − 2 11 2 9 0 11 2 9 0 80 0
10 14 12 − 2 16 2 14 0 16 2 14 0 14 0
11 61 59 − 2 63 2 35 − 16 63 2 65 4 61 0
12 41 47 6 43 2 34 − 7 43 2 41 0 41 0
13 48 46 − 2 50 2 48 0 50 2 48 0 48 0
14 71 69 − 2 73 2 71 0 73 2 68 3 71 0
15 17 15 − 2 19 2 75 58 19 2 17 0 17 0
16 53 43 − 4 55 2 6 − 47 55 2 53 0 53 0
17 1,84 25 24 68 − 16 27 26 95 4 80 4 83 1
18 78 74 − 4 80 2 16 − 2 78 0 78 0 78 0
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we made the average of these five running times for each 
algorithm to get the final running time. Then the value of 
iteration was changed to find the running times for different 
values of iteration. Thus the running times were calculated 
for all values of iteration.

Table 12 depicts the running time comparison between 
ACRI and DMD_CRO using the CRP binding sites of E. coli 
dataset. A line graph for this comparison has been depicted 
to better visualization as shown in Fig. 11. The running 
times of these two algorithms have been plotted under vari-
ous iterations. From Table 12, it can be observed that when 

Table 8  Comparison of the 
information content distribution 
of the results by different 
algorithms

Bold values indicate the best results

No. Gibbs sampler[7] MEME[8] AlignACE[38] ACRI[16] DMD_CRO 
(without repair)

DMD_CRO 
(with repair)

1 9.412 10.032 9.651 10.01 10.833 13.743
2 9.175 9.075 9.887 10.28 10.995 11.377
3 9.324 10.02 9.576 9.987 12.38 13.582
4 9.123 10.05 9.624 10.403 11.777 11.777
5 9.006 9.117 10.235 10.457 11.67 12.672
6 9.4 9.892 9.71 10.184 10.855 12.735
7 9.207 9.554 9.010 9.895 10.818 14.420
8 9.312 10.124 9.934 10.258 12.442 13.363
9 9.246 9.646 9.807 10.354 11.364 14.551
10 9.203 9.439 9.853 10.421 11.135 12.541
11 9.311 9.121 10.12 10.53 12.184 12.808
12 9.029 9.16 9.399 10.415 10.876 13.266
13 9.345 9.684 9.976 10.38 11.028 13.414
14 9.280 9.773 9.825 10.286 10.959 12.655
15 9.319 9.024 9.769 10.179 10.705 13.289
16 9.217 9.008 10.314 10.30 10.541 13.042
17 9.012 9.105 9.011 10.14 11.043 13.705
18 9.201 9.32 9.835 10.431 11.195 11.977

Table 9  Comparison of the 
computation information 
content with different 
algorithms

Bold values indicate the best results

Algorithm Information content 
(worst)

Information content 
(average)

Information 
content (best)

ACRI[16] 9.895 10.273 10.530
MEME[8] 9.008 9.508 10.124
AlignACE[38] 9.010 9.752 10.314
Gibbs sampler[7] 9.006 9.229 9.412
DMD_CRO (without repair) 10.541 11.267 12.442
DMD_CRO (with repair) 11.377 13.051 14.551

Table 10  t-value of information 
content between DMD_CRO 
with other algorithms

Algorithm Gibbs sampler [7] MEME [8] AlignACE [38] ACRI 
[16]

t-value compared with 
DMD_CRO (without 
repair)

8.590 6.900 6.0354 4.099

t-value compared with 
DMD_CRO (with 
repair)

16.978 13.795 12.946 11.0532
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the number of iterations is 30 the running time of DMD_
CRO (without repair) is less than that of ACRI. On the other 
hand, when the number of iterations is 45 DMD_CRO (with 
repair) takes less time than ACRI.

Similarly, Table  13 and Fig.  12 give the results and 
graphs of the running time comparison between ACRI and 
DMD_CRO using RAP1 of Saccharomyces cerevisiae. From 
Table 13, it can be noticed that when the number of itera-
tions is 15 both DMD_CRO (without repair) and DMD_
CRO (with repair) take less time than ACRI.

From Figs. 11 and  12, it can be observed that when the 
number of iterations increases, then the running time of 
ACRI also increases rapidly but in the case of DMD_CRO 
the running time increases very slowly. It proves that DMD_
CRO takes less running time than the ACRI when the num-
ber of iterations increases.

6  Conclusions

This paper is concerned with a renowned NP-hard com-
binatorial problem called motif discovery from biological 
sequences. Nowadays, as the demand for analyzing impor-
tant biological sequences is rapidly growing with the time, 
so researchers have focused on solving this problem. It is 
very useful and has great applications in the field of bio-
informatics. Several algorithms were proposed with good 
results but there still need more precise identification of 
motif in a shorter period of time. Here a population-based 
metaheuristic algorithm Chemical Reaction Optimization 
(CRO) is selected to solve the motif discovery problem. 
Four basic operators of CRO have been redesigned to find 
the solutions. Besides, one additional repair operator has 
been designed to find better potential motif and another 
one is used to search for better binding sites. We compared 
the results of the proposed DMD_CRO algorithm with Ant 
Colony Optimization (ACO) based algorithm ACRI, Gibbs 
sampler, MEME, which are the state-of-the-arts. From the 
results, it can be concluded that in the case of five transcrip-
tional factors of Homo sapiens dataset the found sequence 
logos are identical to the sequence logos by DNA footprint-
ing method. In the case of the 18 sequences of the CRP bind-
ing sites for Escherichia coli dataset, DMD_CRO with repair 

operator gets better results than the other algorithms. The 
repair operators help our proposed DMD_CRO algorithms 
to get better results efficiently and effectively. Besides, the 
statistical tests demonstrate the superiority of DMD_CRO 
algorithm over other algorithms, which are state-of-the-arts.

Table 11  U and Z
stat.

 of 
information content between 
DMD_CRO with other 
algorithms

 Algorithm Gibbs Sampler[7] MEME[8] AlignACE[38] ACRI[16]

U Z
stat.

U Z
stat.

U Z
stat.

U Z
stat.

Compared with 
DMD_CRO 
(without repair)

2 − 5.046 29 − 4.35 2 − 3.907 2

Compared with 
DMD_CRO (with 
repair)

0 − 5.11 0 − 5.11 0 − 5.11 0 − 5.11

Table 12  Running time comparison for the 18 sequences of the CRP 
binding sites for E. coli 

Bold values indicate the less running time

No. Iteration 
number

ACRI[16] (ms) DMD_CRO 
(without repair) 
(ms)

DMD_CRO 
(with repair) 
(ms)

1 5 37.6 99.8 167.6
2 10 58.2 111.6 164.6
3 15 74.2 112 186.2
4 20 98 110.4 171.8
5 25 111.6 113 161.8
6 30 118.2 115 185.6
7 35 161.8 114 185.6
8 40 176.8 117.4 191.4
9 45 189 145.6 178.4
10 50 213.8 132.6 189.8
11 55 237 132.8 182.8
12 60 238.6 133.4 219.4
13 65 288.2 135.6 154.8
14 70 293 138.6 180.4
15 75 312.8 143.4 197.6
16 80 344.4 139.4 205.6
17 85 346.4 117.4 141.4
18 90 371.2 145.8 209
19 95 383.6 151.2 214.6
20 100 388.4 153.6 233.4

Fig. 11  Running time comparison for the 18 sequences of the CRP 
binding sites for E. coli 
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To define the right values for the CRO parameters is a 
very difficult task. More statistical tests for proper param-
eters setting can be done to improve the results. The four 
operators of CRO can be modified to best suit for this prob-
lem. Better population initialization also can be beneficial.
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