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Abstract
Forensic speaker verification performance reduces significantly under high levels of noise and reverberation. Multiple channel 
speech enhancement algorithms, such as independent component analysis by entropy bound minimization (ICA-EBM), can 
be used to improve noisy forensic speaker verification performance. Although the ICA-EBM was used in previous studies to 
separate mixed speech signals under clean conditions, the effectiveness of using the ICA-EBM for improving forensic speaker 
verification performance under noisy and reverberant conditions has not been investigated yet. In this paper, the ICA-EBM 
algorithm is used to separate the clean speech from noisy speech signals. Features from the enhanced speech are obtained by 
combining the feature-warped mel frequency cepstral coefficients with similar features extracted from the discrete wavelet 
transform. The identity vector (i-vector) length normalized Gaussian probabilistic linear discriminant analysis is used as 
a classifier. The Australian Forensic Voice Comparison and QUT-NOISE corpora were used to evaluate forensic speaker 
verification performance under noisy and reverberant conditions. Simulation results demonstrate that forensic speaker veri-
fication performance based on ICA-EBM improves compared with that of the traditional independent component analysis 
under different types of noise and reverberation environments. For surveillance recordings corrupted with different types 
of noise (CAR, STREET and HOME) at − 10 dB signal to noise ratio, the average equal error rate of the proposed method 
based on ICA-EBM is better than that of the traditional ICA by 12.68% when the interview recordings are kept clean, and 
7.25% when the interview recordings have simulated room reverberations.

Keywords  Independent component analysis · ICA-EBM · Noisy and reverberant environments · Forensic speaker 
verification systems

1  Introduction

The purpose of forensic speaker verification is to investigate 
a suspect or confirm a judgment of guilt or innocence by 
analyzing their speech signals [1]. The speech signal from 
a criminal is compared with a corpus of speech signals of 
known suspects in forensic speaker verification to prepare 
legal evidence for the court [2].

Speaker verification systems face many challenges in 
real forensic situations. Reverberation often occurs when 
interview speech signals from the suspect are recorded in a 
police interview office. In reverberation environments, the 
interview speech signals are often combined with a multi-
ple reflection version of the speech due to the reflection of 
the interview speech signals from the surrounding room. 
The reverberated interview speech can be modeled by the 
convolution of the impulse response of the room with the 
interview speech signal [3]. The amount of reverberation 
can be characterized by ( T20 or T60 ) which describes the 
amount of time for the direct sound to decay by 20 dB or 60 
dB, respectively [4]. The surveillance speech signals from 
criminals are usually recorded using hidden microphones 
in public places. Such forensic surveillance data are usu-
ally mixed with different types of environmental noise [5]. 

 *	 Ahmed Kamil Hasan Al‑Ali 
	 ahmedkamilhasan.alali@hdr.qut.edu.au

1	 Department of Electromechanical Engineering, University 
of Technology, Baghdad, Iraq

2	 Queensland University of Technology, Brisbane, QLD 4001, 
Australia

3	 MARCS Institute, Western Sydney University, Sydney, 
NSW 2747, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00406-8&domain=pdf


1476	 Evolutionary Intelligence (2021) 14:1475–1494

1 3

The distortion of speech by environmental noise and rever-
beration conditions severely degrades speaker verification 
performance [6].

Speech enhancement algorithms can be divided into sin-
gle channel and multiple channel algorithms based on the 
number of microphones used for recording the noisy speech 
signal [5]. Multiple channel speech enhancement algorithms 
improve the quality of noisy speech signals compared with 
single channel speech enhancement algorithms [7]. Multi-
ple channel speech enhancement algorithms can be used to 
improve speaker recognition performance under noisy and 
reverberant environments [6, 8].

Beamforming techniques were used widely as multiple 
channel speech enhancement algorithms, and they are based 
on using microphone arrays for directional speech signal 
transmission only. The generalized sidelobe canceller tech-
niques were proposed in [9, 10] as effective adaptive beam-
former approaches which improve the gain of the desired 
speech signals and suppresses the interference signals by 
forming a main lobe toward the direction of arrival of the 
desired speech signals. The performance of the generalized 
sidelobe canceller is based on the steering vector and block 
matrix estimate. These parameters require some knowledge 
about the speech and noise direction which are unknown 
in real-world applications. The enhanced speech signals 
from the generalized sidelobe canceller could be affected 
by speech leakage if the steering vector is estimated inac-
curately [11]. Spectro-temporal filtering technique was used 
as a multiple channel speech enhancement algorithm in [12]. 
This technique is based on estimating the power spectral 
density (PSD) of the speech and noise signals. The enhanced 
speech signal in spectro-temporal filtering can be obtained 
by applying the parametrized multichannel non-causal Wie-
ner filter to the input microphone array. The speech presence 
probability approach was used to estimate the PSD of noise 
and this approach assumed the speech and noise compo-
nents as multivariate Gaussian distribution [12]. In fact, the 
speech signals are usually either super-Gaussian or skewed 
distribution in nature [13]. Thus, modeling speech signals 
with multivariate Gaussian distribution in spectro-temporal 
filtering could estimate the PSD of the noise inaccurately 
and lead to distortion in enhanced speech signals.

Independent component analysis (ICA) is used widely as 
a multiple channel speech enhancement algorithm [14–16]. 
ICA is used to separate the source signals (speech and noise) 
by transforming the noisy signals into components which are 
statistically independent. The principle of estimating inde-
pendent components is based on maximizing the contrast 
function of one independent component. Various contrast 
functions such as negentropy, Kurtosis and approximation 
of negentropy have been used to separate the mixed signals 
by estimating the difference between the distribution of the 
independent component and the Gaussian distribution [17].

Various algorithms of ICA have been proposed in previ-
ous studies such as Fast ICA [18], information maximization 
[19] and efficient fast ICA (EFICA) [20]. These algorithms 
used a fixed nonlinear contrast function or model which makes 
them computationally attractive for estimating source signals. 
However, the quality of separation of the source signals in the 
ICA algorithm degrades when the density of the source sig-
nals deviates from the assumed underlying model. Recently, 
the ICA-EBM algorithm has been used as an effective tech-
nique for source separation [13]. It is based on calculating 
the entropy bounds from four contrast measuring functions 
(two odd and two even functions) and choosing the tightest 
maximum entropy bound. The tightest entropy bound is the 
one closest to the entropy of the true source, and it can be used 
to estimate the entropy of the source signals. The ICA-EBM 
algorithm can be used to separate the source signals that come 
from different distributions and achieve superior separation 
performance to other ICA algorithms [13]. Thus, we use the 
ICA-EBM as a speech enhancement algorithm for separation 
of the speech from the noisy speech signals.

In this paper, we propose a forensic speaker verifica-
tion system based on the ICA-EBM algorithm to improve 
forensic speaker verification performance in the presence 
of different types of environmental noise and reverberation 
conditions. The ICA-EBM algorithm is used to separate the 
clean speech from noisy speech signals. A fusion of feature 
warping with MFCC and DWT-MFCC is used to extract the 
features from the enhanced speech signals. These features 
are used to train a modern i-vector based speaker verifica-
tion system.

Although the ICA-EBM algorithm was used to sepa-
rate mixed speech signals under clean conditions [13], the 
effectiveness of using the ICA-EBM to separate speech from 
noise has not been investigated yet for improving state-of-
the-art i-vector forensic speaker verification performance in 
the presence of various types of environmental noise and 
reverberation conditions. This is the original contribution 
of this research.

The structure of the paper is organized as follows: Sect. 2 
presents a model of independent component analysis. Speech 
and noise data set describe in Sect. 3. Section 4 presents the 
construction of noisy and reverberant data. The proposed 
approach of speaker verification based on the ICA-EBM 
is described in Sect. 5. Section 6 presents the simulation 
results, and Sect. 7 concludes the paper.

2 � Model of independent component 
analysis

In real forensic situations, police agencies often record 
the interview speech from a suspect in a police interview 
room where reverberation is usually present. However, 
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the surveillance speech signals from the criminal are usu-
ally recorded using hidden microphones in open areas. 
These surveillance speech signals are often mixed with 
different types of environmental noise [21]. The effect of 
reverberation is not as much of a problem as environmen-
tal noise when the surveillance forensic recordings are 
made in open areas. Thus, we assume that using instan-
taneous ICA in forensic speaker verification could sepa-
rate the environmental noise from the noisy surveillance 
recordings and improve forensic speaker verification 
performance under noisy environments. Let the source 
signals (speech and noise) emitted from n sources be 
represented as s(t) = {s1(t), s2(t),… , sn(t)} . These signals 
can be recorded using m microphones and the observed 
noisy signals represented as x(t) = {x1(t), x2(t),… , xm(t)} . 
Instantaneous ICA assumes the mixing process is linear 
so that the observed noisy surveillance speech signals can 
be represented as:

where A is mixing matrix.
The purpose of ICA is to estimate the source signals 

from the observed noisy surveillance signals when both 
sources and the parameters of the mixing matrix are 
unknown. The estimate of the source signals, ŝ , can be 
represented by:

where W is the unmixing matrix. The unmixing matrix can 
be defined as:

where A−1 is the inverse of the mixing matrix and the ICA 
assumes the number of observation and source signals is 
equal [22].

To simplify the ICA algorithm, preprocessing must be 
applied before using the fast ICA algorithm and can be 
divided into two stages: centering and whitening. Cen-
tering can be performed by removing the mean from the 
noisy surveillance recordings so that the noisy recordings 
(x) have a zero mean. Whitening is another preprocessing 
stage in the ICA algorithm. It involves linearly transform-
ing the noisy speech signal such that its components are 
uncorrelated and their variances equal unity [17]. The 
noisy surveillance recordings can be whitened by

where V is the matrix of eigenvectors of the covariance of 
the noisy surveillance recordings x, and D−1∕2 is the inverse 
square root diagonal matrix of eigenvalues.

(1)x = As

(2)ŝ = Wx

(3)W = A−1

(4)xw = VD−1∕2VTx

2.1 � Fast ICA

Hyvärinen proposed the fast ICA algorithm [18]. Fast ICA 
for one unit is a simple algorithm to estimate one row vec-
tor of the unmixing matrix by finding the maximum non-
Gaussian value of one independent component. There are 
four steps to estimate one unit for the fast ICA algorithm: 

1.	 Select an initial guess for w.
2.	 Estimate w+ = E{xw g(w

T xw)} − E{g�(wT xw)}w

	   where w+ is the new row vector of the unmixing 
matrix, E is the sample mean, and the first and the sec-
ond derivatives of the contrast function can be repre-
sented by g and g′ respectively. The Gaussian contrast 
function is used in this work and is defined as: 

 where a is a constant equal to one.
3.	 Let w∗ =

w+

‖w+‖
4.	 If not converged, return to step 2.

The criterion of convergence is that the dot product between 
previous and new row vectors of the unmixing matrix is 
almost equal to one. To estimate all source signals, the one 
unit fast ICA algorithm runs for n times and the deflation 
decorrelation was used in this work to prevent different row 
vectors of the unmixing matrix from converging to the same 
maxima.

3 � Speech and noise data set

This section describes the Australian Forensic Voice Com-
parison (AFVC) and QUT-NOISE databases which will be 
used to construct the noisy and reverberant data described 
in the next section.

3.1 � AFVC database

The AFVC database [23] contains 552 speakers recorded in 
three speaking styles. The speaking styles for each speaker 
include informal telephone conversation, pseudo-police 
interview and information exchange over the telephone. A 
telephone was used to record the information exchange over 
the telephone and informal telephone conversation styles, 
while a microphone was used to record the pseudo-police 
interview style. The sampling frequency of the speech data 
for all speaking styles was 44.1 kHz with 16 bit/sample reso-
lution [24]. The AFVC database is used in the proposed sys-
tem because this database contains different speaking styles 
for each speaker and these speaking styles are often found 

(5)G(u) = −exp(−au2∕2)
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in most real forensic situations. We used informal telephone 
conversation and pseudo-police interview styles in this paper 
because in most real forensic scenarios, the enrolment foren-
sic audio recordings are often recorded in a police interview 
room and the criminal may use a mobile phone in public 
places to commit a criminal offence [25]. A brief description 
of speaking styles used in this paper is given below: 

1.	 Informal telephone conversation style
	   Informal telephone conversation style was recorded 

when two speakers (friends or colleagues) talked 
through telephone for 10 min about whatever they want. 
Thus, it is easy to record informal conversation with 
minimal instruction.

2.	 pseudo-police interview style
	   This style is a live interview and it needs three 

researchers for recording pseudo-police style, one to 
interview one speaker, a second to simultaneously inter-
view the other speaker and third to monitor the record-
ing quality.

	   The success of the interview task depends on the 
skill of the interviewers. Questions asked are based on 
the response to the previous questions. For real modern 
police interview style, the police asked the suspect to 
describe events, initially eliciting mostly uninterrupted 
monologues. Questions asked in the interview are to 
help the suspect keep speaking and give more informa-
tion. Narration of the past events and opening questions 
are most commonly questions in pseudo-police inter-
view style.

3.2 � QUT‑NOISE database

The QUT-NOISE database [26] consists of 20 noise ses-
sions. The duration of each session is approximately 30 min. 
QUT-NOISE was recorded in five common noise (CAR, 
STREET, HOME, CAFE, and REVERB). The noise was 
sampled at 48 kHz with 16 bit/ sample resolution. We used 
three types of noise (CAR, STREET, and HOME) from 
the QUT-NOISE database because these types of noise are 
more likely to occur in real forensic scenarios [21]. A brief 
description of the noise scenario used in this paper is given 
below: 

1.	 STREET
	   The STREET noise was recorded in two locations: 

an inner-city and outer-city. The inner-city recordings 
consist of pedestrian traffic and bird noise. The outer-
city recordings consist mainly of cycles of traffic noise 
and traffic light changes.

2.	 CAR​
	   The CAR noise was recorded in driving window-

down and window-up conditions. These recordings con-

sist of car-interior noise such as bag movement, keys, 
and indicators, as well as characteristics of the wind for 
car window-down.

3.	 HOME
	   This noise was recorded in two locations for home: 

kitchen and living room. The kitchen noise consists of 
silence interrupted by kitchen noise. The living room 
was recorded in the presence of children singing and 
playing alongside a television.

For most speaker recognition algorithms [27–29], the clean 
speech signals from existing speech corpora are mixed 
with short periods of environmental noise collected sepa-
rately and the SNR is varied as desired using the mixing 
coefficients. However, while a large number of speakers in 
the speech corpora available to researchers through these 
algorithms allow a wide variety of speakers to be evalu-
ated for speaker verification systems, most existing noise 
corpora such as NOISEX-92 [30], freesound.org [31] and 
AURORA-2 [32] have limited duration (less than 5 min). 
The limited duration of noise corpus has hindered the ability 
to evaluate speaker verification systems in a wide range of 
environmental noise in real forensic scenarios. Therefore, 
we mixed a random session of environmental noise from 
the QUT-NOISE database with clean speech signals from 
the AFVC database resulting in two-channel noisy speech 
signals to achieve a closer approximation to real forensic 
scenarios.

4 � Construction of noisy and reverberant 
data

The robustness of i-vector speaker verification based on the 
ICA-EBM algorithm under conditions of noisy surveillance 
and/or reverberant interview data cannot be evaluated by 
using the clean speech signals from the AFVC only. Thus, 
we designed new data to evaluate forensic speaker verifica-
tion performance based on the ICA-EBM algorithm when 
surveillance data are mixed with different types of environ-
mental noise and/or interview data reverberated. Firstly, we 
designed a multi-channel noisy surveillance speech data by 
mixing clean telephone speech from the AFVC corpus for 
surveillance with noise from the QUT-NOISE corpus [26]. 
Secondly, the reverberant interview data was generated by 
convolving impulse response of the room with the micro-
phone data from the AFVC corpus for interview.

4.1 � Simulating multi‑channel noisy surveillance 
data

The aim of designing the multi-channel noisy surveillance 
speech signals was to evaluate the effectiveness of i-vector 
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speaker verification based on the ICA-EBM algorithm when 
surveillance recordings are mixed with different types of noise 
only. We extracted the surveillance recordings from short seg-
ments (10–40 s) of 200 speakers using the informal telephone 
conversation style after applying the VAD algorithm [33] 
to remove silent regions. We applied the VAD algorithm to 
clean speech rather than noisy surveillance recordings in this 
work because noisy surveillance recordings can be manually 
segmented in forensic applications when encountering noisy 
speech [2].

In most real forensic situations, the criminal may use mobile 
to commit criminal offenses. The surveillance recordings from 
the criminal are usually corrupted by different types of envi-
ronmental noise in open areas. Thus, the effect of reverberation 
on noisy surveillance recordings will not be investigated in 
this work [34]. Each segment of the surveillance data was cor-
rupted by one random segments of the environmental noises 
(HOME, CAR, and STREET) from the QUT-NOISE corpus 
[26], resulting in a two-channel noisy surveillance recordings 
at SNRs ranging from − 10 to 10 dB. The sampling frequency 
of the noise was 48 kHz and down-sampled to 44.1 kHz before 
mixing with the clean speech signal to match the sampling 
frequency with the surveillance speech signals.

Figure 1 shows the configuration of sources (z(n) and e(n)) 
and microphones ( x1 and x2 ) in instantaneous ICA algorithm. 
The observed noisy surveillance data recorded by the micro-
phones, x, can be modeled as follows:

(6)x = As(n)

(7)
[
x1
x2

]
=

[
a11 a12
a21 a22

] [
z(n)

e(n)

]

(8)A =

[
1.0 1.0

1.0 0.6

]

where z(n) is the clean speech, e(n) is environmental noise, 
and A is the mixing matrix. The observed noisy surveil-
lance signals can be recorded by using a mixing matrix. As 
the parameters of the mixing matrix are based on the con-
figuration of the sources and the microphones, the ampli-
tude of the source signal is proportional to the inverse of 
the distance from the source to the microphone. Thus, the 
inverse of each parameter of the mixing matrix is propor-
tional to the distance between each source and microphone 
[35]. The relationship between the distance of sources and 
microphones dij and parameters of the mixing matrix aij can 
be expressed by the following equation:

In most real forensic scenarios, the police often record 
surveillance speech signal from the criminal using hidden 
microphones. The distance between the microphones and 
surveillance speech signal should be less than or equal to 
the distance between the microphones and noise signals to 
obtain the noisy speech signals that have less effective to 
environmental noise. These noisy surveillance speech sig-
nals can be used as the input signals to speaker verification 
system based on the ICA algorithm in real forensic applica-
tions. Therefore, the values of the mixing matrix are chosen 
according to Eq. (8).

4.2 � Simulating reverberant interview data

The aim of designing the reverberant interview data was to 
investigate the effect of different reverberation environments 
on forensic speaker verification performance based on the 
ICA-EBM algorithm. The impulse response computed from 
the fixed room dimensions 3 × 4 × 2.5 (m) using the image 
source algorithm described in [36]. The impulse response 
of a room was computed by using reverberation time ( T20 = 
0.15 s). The T20 was used instead of T60 in this work because 
T20 reduces the computational time when computing the 
time reverberation in a simulated room impulse response [4]. 
Table 1 and Fig. 2 show the reverberation test room param-
eters and position of suspect and microphone in a room, 
respectively. In adding reverberation, the distance between 
the microphone and the suspect could be in horizontal level 
in the room to achieve a closer approximation to forensic sit-
uations, as shown in Table 1 and Fig. 2 because in most real 
forensic scenarios, the police often put the microphone on 
the table in a room and the distance between the microphone 
and the suspect could be in horizontal level to record the 
speech from the suspect. The interview speech signals were 
obtained from the full-length utterances of 200 speakers 
using the pseudo-police interview style. Silent regions from 
the interview data were removed using the VAD algorithm 

(9)dij =
1

aij
.

Fig. 1   Configuration of sources and microphones in instantaneous 
ICA mixtures
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[33]. The room impulse response was convolved with each 
of the interview data to produce the reverberated speech at 
0.15 s reverberation time.

5 � Proposed approach

The proposed approach of forensic speaker verification 
based on the ICA-EBM algorithm will be presented in this 
section when interview recordings are kept under clean or 
reverberant conditions and surveillance recordings are mixed 
with different types of environmental noise, as shown in 
Fig. 3.

5.1 � Speech enhancement based on the ICA‑EBM 
algorithm

The ICA-EBM algorithm is used in the proposed system as 
a multiple channel speech enhancement algorithm because 
this algorithm achieves better separation performance than 
other ICA algorithms due to its tighter bound and superior 
convergence behavior [13]. By using a small class of non-
linear contrast functions, the ICA-EBM algorithm performs 
source separations, which are sub- or super-Gaussian, uni-
modal or multimodal, symmetric or skewed. The algorithm 

uses the entropy bound estimator to approximate the entro-
pies of different types of distribution. The ICA-EBM algo-
rithm minimizes the mutual information of the estimated 
source signals to estimate the unmixing matrix. The algo-
rithm uses a line search procedure, which forces the unmix-
ing matrix to be orthogonal for better convergence behavior. 
The mutual information cost function can be defined as:

where H(yn) is the differential entropy of the nth separated 
sources y and entropy of the observations H(x) is a term 
independent with respect to the unmixing matrix W which 
can be treated as a constant C.

Minimization of the mutual information among the esti-
mated source signals is related to the maximization of the 
log-likelihood cost function as long as the model of the 
probability density function (PDF) matches the PDF of the 
true latent source signal [37]. The bias is introduced in the 
estimation of the unmixing matrix due to the deviation of the 
model from the true PDF of the source signal. This bias can 
be removed by integrating a flexible density model for each 
source signal into the ICA algorithm to minimize the bias 
of the unmixing matrix providing separated source signals 
from a wide range of the PDF accurately [38].

(10)I(y1, y2,… , yN) =

N∑

n=1

H(yn) − log |det(W)| − H(x)

Table 1   Reverberation test room parameter

Configuration Suspect position ( x
s
, y

s
, z

s
) Microphone 

position 
( x

m
, y

m
, z

m
)

1 (2, 1, 1.3) (1.5, 1, 1.3)
2 (2, 1, 1.3) (2.6, 1, 1.3)
3 (2, 1, 1.3) (2.9, 1, 1.3)

Fig. 2   Position of suspect and microphone in a room. Microphone 
and suspect are at 1.3 m height and the height of the room is 2.5 m

Interview (clean or reverberant data) 

Speech enhancement based on 
the ICA-EBM algorithm 

Noisy surveillance data 

Length normalized GPLDA classifier 

Fusion of feature warping 
with DWT-MFCC and MFCC  

Fusion of feature warping 
with DWT-MFCC and MFCC  

I-vector extrac�on I-vector extrac�on 

Decision 

Fig. 3   Flowchart of the proposed approach of forensic speaker verifi-
cation based on the ICA-EBM algorithm
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To achieve this, the cost function and its gradient can be 
rewritten with respect to each row vector of the unmixing 
matrix wn , n = 1, 2, 3,… ,N . This can be done by expressing 
the volume of the N-dimensional parallelepiped, spanned by 
the row vectors of W, as the inner product of the nth row vec-
tors and unit Euclidian length vector hn , that is perpendicular 
to all row vectors of the unmixing matrix except wn [13]. 
Therefore, the mutual information cost function in Eq. 10 
can be rewritten as a function of only wn as:

The gradient of Eq. 11 can be computed as:

where V �(.) and gk(n)(.) are the first order derivative of the 
negentropy V(.) and the kth contrast functions Gk(n)(.) , 
respectively, and E is the expected operator.

The line search algorithm for the orthogonal ICA-EBM 
can be obtained by the following equations:

where g�
k(n)

(.) is the second derivative of the kth contrast 
functions Gk(n)(.).

The line search algorithm for ICA-EBM given in Eqs. 13 
and 14 repeats over different row vectors of the unmixing 
matrix until convergence. The criteria of the convergence 
satisfies the following equation:

with a typical value of � is 0.0001. After each row vector of 
the unmixing matrix W has been updated, the symmetrical 
decorrelation method is performed to remain the unmixing 
matrix orthogonal and it can be obtained by the following 
equation:

5.2 � Feature warped MFCC

MFCCs are the most popular technique for extracting fea-
tures in speaker verification systems. A block diagram of 
the MFCC feature extraction is shown in Fig. 4. The first 
stage of extracting MFCC features involves framing the 

(11)Jn(wn) =

N∑

n=1

H(yn) − log
|||h

T
n
wn

||| + C.

(12)
�Jn(wn)

�wn

= −V �
k(n)

{E[Gk(n)(yn)x]}E[gk(n)(yn)x] −
hn

hT
n
wn

(13)w+
n
=

E[xgk(n)(yn)] − E[g�
k(n)

(yn)]wn

E[gk(n)(yn)yn] − E[g�
k(n)

(yn)]

(14)wnew
n

=
w+
n

‖‖wn
+‖‖

(15)1 − max(abs[diag(WnewWT )]) ≤ �

(16)Wnew = (WWT )
−1

2 W.

speech signals into several segments using Hamming win-
dow. Then, the fast Fourier transform (FFT) can be used 
to transform a frame of the acoustic speech signals from 
the time domain into the frequency domain. The shape of 
the magnitude spectrum contains information about the 
resonance properties of the vocal tract which is consid-
ered a better feature for speaker verification systems. After 
that, a triangular filter bank is applied to capture the sub-
band energies. The MFCC features are computed using 
a psychoacoustically motivated filter bank, followed by 
using discrete cosine transform (DCT). The MFCC can 
be represented as:

where m is the number of mel filter banks, Y(m) is the output 
of M- channel filter bank, and n is the index of the cep-
stral coefficients. The first 10–20 cepstral coefficients are 
typically extracted from each frame. In order to capture the 
dynamic characteristics of the speech signals, the first and 
second time derivatives of the MFCC are usually appended 
to each feature [39].

Pelecanos and Sridharan [40] proposed feature warp-
ing technique to decrease the effect of noise and channel 
distortion by transforming the distribution of the cepstral 
features into standard normal distribution. The warping 
process executes as follows: 

1.	 Extracting the MFCC features from the acoustic speech 
signals i = 1, 2,… ,D where D is the number of feature 
extraction dimension.

2.	 Ranking features in dimension i in ascending order for 
a given sliding window (typically 3 s).

3.	 Warping the cepstral feature z in dimension i of the cen-
tral frame to its warped value 

 where x̂ is the warped feature. Suppose the raw cepstral 
feature z has rank R and window size N. The value of x̂ 
can be estimated by putting R = N and solving x̂ using 
the numerical integration and then repeating for each 
decremented value of R.

(17)cn =

M∑

m=1

[
log(Y(m)

]
cos

[
�n

M

(
m −

1

2

)]
,

(18)
(N + 1∕2 − R)

N
= ∫

x̂

z=−∞

1
√
2𝜋

exp

�
−
z2

2

�
dz
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Fig. 4   A block diagram of the MFCC feature extraction
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4.	 The warped value can be found by lookup in a standard 
normal table.

5.	 Repeating the process by shifting the sliding window for 
a single frame each time

Feature warping achieves robustness to additive noise 
and channel mismatch which retains the speaker-specific 
information that is lost by using cepstral mean subtraction 
(CMS), cepstal mean variance normalization (CMVN), and 
relative spectral (RASTA) processing [40]. Thus, feature 
warping will be used in the proposed system.

5.3 � Wavelet transform

The wavelet transform is a technique for analyzing speech 
signals. It uses an adaptive window that provides low time 
resolution at low-frequency subbands and high time resolu-
tion at high-frequency subbands [41]. The DWT is a type of 
wavelet transform, and it can be defined as

where �  is the time function with fast decay and finite 
energy called the mother wavelet, j is the level number, �(K) 
is the speech signal, and  N and K are scaling and translation 
parameters, respectively. The DWT can be performed using 
a pyramidal algorithm [42].

The block diagram of the DWT is shown in Fig. 5. The 
speech signal ( � ) is decomposed into different frequency 
sub-bands by using two filters, � and � which are a high-pass 
and low-pass filters, respectively. The half coefficients of the 
speech signals are discarded by using the down-sampling 
operator ( ↓ 2 ) after applying the filter. The approximation 
coefficients (CA1) can be obtained by convolving the low-
pass filter with the speech signal and applying the down-
sampling operator to the output of the filter � . The detailed 
coefficients (CD1) can be obtained by convolving the high 
pass filter with the speech signals and applying the down-
sampling to the output of the filter � . The speech signals can 

(19)D(j,K) =
∑

j

∑

K

�(K)2
−j

2 �(2−jN − K)

also be decomposed by applying the DWT to the approxima-
tion coefficients (CA1).

5.4 � Fusion of feature warping with MFCC 
and DWT‑MFCC

The approach to extracting the features from the interview 
and enhanced surveillance data is based on the DWT tech-
nique. The interview and enhanced surveillance data were 
framed into several segments using a Hamming window, 
with 30 ms size and 10 ms shift. The frame of the inter-
view and enhanced surveillance data were split into low-
frequency sub-band (approximation coefficients) and high-
frequency sub-band (detail coefficients). The approximation 
and detail coefficients were concatenated into a single fea-
ture vector. The MFCCs were used to extract the features 
from the DWT of the interview/enhanced surveillance data. 
The first and second derivatives of the cepstral coefficients 
were added to the MFCCs. Feature warping technique with 
a 301 frame window was applied to the features extracted 
from the DWT-MFCC. The feature warped MFCC was used 
to extract the features from the full band of the interview/
enhanced surveillance data. Finally, the fusion of feature 
warping with MFCC and DWT-MFCC was obtained by con-
catenating the features extracted from the feature warped 
DWT-MFCC and feature warped MFCC of the full band 
interview/enhanced surveillance data into a single feature 
vector, as shown in Fig. 6.

5.5 � I‑vector based speaker verification

I-vector through length-normalized GPLDA has become 
the modern technique for speaker verification systems [43]. 
Such systems consist of two stages: i-vector feature extrac-
tion and length-normalized GPLDA.

5.5.1 � I‑vector representation

The introduction of i-vector based speaker verification was 
inspired by the discovery that session variability in joint fac-
tor analysis contains speaker information which can be used 
to distinguish between speakers more efficiently [44]. In an 
i-vector based speaker verification system, the speaker and 
channel-dependent Gaussian mixture model (GMM) super-
vector, � , can be represented by

where � is the speaker and session independent mean of 
the universal background model (UBM) super-vector, � is a 
low-rank total variability matrix, and � represents i-vectors 
which have a standard normal distribution.

(20)� = � + ��

V 

h    2 

CD1 g    2 

h    2 

CA1 
g    2 

CA2 

CD2 

Fig. 5   Block diagram of the DWT
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The description of training the total variability matrix 
is available in [45] and [46]. McLaren and van Leeuwen 
[47] investigated different types of total variability repre-
sentations, such as concatenated and pooled techniques 
with i-vector system. For the concatenated total-variability 
technique, the total-variability of telephone and microphone 
subspaces are trained separately using speech from those 
sources, then both subspaces transformation are combined 
to create a single total-variability space. For the pooled 
technique, the total variability is trained on microphone and 
telephone speech utterances. Their studies found that the 
pooled technique provides a better representation of i-vector 
speaker verification than the concatenated total variability 
technique. Thus, the pooled total variability technique is 
used in this work.

5.5.2 � Length‑normalized GPLDA classifier

Kenny has introduced GPLDA and heavy-tailed PLDA 
(HTPLDA) for i-vector speaker verification systems [48]. 
Kenny found that HTPLDA achieved significant improve-
ment in speaker verification performance over GPLDA 
because the heavy-tailed behavior showed a better match for 
i-vector distribution [48]. The length-normalized GPLDA 
was proposed by Garcia-Romero and Espy-Wilson [49] to 
convert the heavy-tailed i-vector into Gaussian distribution. 
In the proposed system, we used length-normalized GPLDA 
classifier because it achieves similar performance with 
efficient computation when compared with the HTPLDA 

approach [49]. The length normalization i-vector, �norm
r

 , can 
be defined as

where r is the number of recordings for a given speaker, �1 
is the eigenvoice matrix, �1 is the speaker factor, and �r is the 
residual. The between-speaker variability �̄norm + �1�1 can 
be represented by a low rank of covariance matrix �1�

T
1
 . 

The within-speaker variability can be represented by �−1 and 
assumes that the precision matrix ( � ) is full rank.

The details of the length-normalized GPLDA technique 
and the estimation of the model parameters are described in 
[48] and [49]. The scoring can be calculated using the batch 
likelihood ratio [48]. Given the i-vectors of the interview 
�norm

interview
 and surveillance �norm

surveillance
 , the score can be com-

puted as follows,

where H1 : the speakers are the same and H0 the speakers 
are different.

5.6 � Experimental set‑up

The proposed approach was evaluated using the length-
normalized GPLDA based speaker verification framework. 
In the development phase, we extracted 78-dimensional 
fusion of feature warping with DWT-MFCC and MFCC 
from the development speech signals. The UBM contain-
ing 256 Gaussian components were used through our 
experimental results. We kept the number of the UBM in 
low values in order to reduce the computational complex-
ity cost, and it’s easy to adapt to real forensic applications. 
The UBMs were trained on microphone and telephone data 
using 348 speakers from the AFVC database [23]. The 
UBMs were used to estimate the Baum-Welch statistics 
before training the total variability subspace of dimen-
sion 400, which was used to compute the i-vector speaker 
representations. The dimension of the i-vectors reduced to 
200 using linear discriminant analysis (LDA). The i-vec-
tors length normalization was used before GPLDA mod-
eling using centering and whitening of the i-vectors [49]. 
In the interview and verification phases, the interview and 
surveillance speaker models were created from the inter-
view and enhanced surveillance speech signals to repre-
sent them in i-vector subspace. The hidden parameters of 
the PLDA were estimated using variational posterior dis-
tribution. Scoring in the length-normalized GPLDA was 
conducted using the batch likelihood ratio to calculate the 
similarity score between the interview and surveillance 
speaker models [48]. We used the Microsoft Research 
(MSR) identity toolbox [50] to evaluate length-normalized 

(21)�norm
r

= �̄norm + �1�1 + 𝜖r

(22)score = ln
P(�norm

interview
,�norm

surveillance
|H1)

P(�norm
interview

|H0)P(�
norm
surveillance

|H0)

Interview/enhanced surveillance speech signals

DWT

MFCC+∆+∆∆

Concatenate approximate 
and detail coefficients 

into a single vector

Feature warping

MFCC+∆+∆∆

Feature warping
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Fig. 6   Flowchart of fusion of feature warping with MFCC and DWT-
MFCC approach
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GPLDA speaker verification performance. Table 2 shows 
a summary of the experimental set-up used for simulation 
of the proposed approach.

6 � Simulation results

In this section, we investigate the effectiveness of using the 
ICA-EBM as a speech enhancement algorithm to improve 
forensic speaker verification performance under noisy, as 
well as noisy and reverberant environments. The perfor-
mance of the proposed forensic speaker verification based 
on the ICA-EBM approach was evaluated using the EER.

6.1 � Baseline speaker verification systems

In order to investigate the effectiveness of the ICA-EBM 
algorithm for improving forensic speaker verification per-
formance under noisy environments, as well as noisy and 
reverberant environments, we compared speaker verifica-
tion performance based on the ICA-EBM algorithm with 
clean interview-noisy surveillance and reverberant inter-
view-noisy surveillance speaker verification baselines. 
These baselines do not use speech enhancement algo-
rithms (ICA-EBM or traditional ICA) to improve forensic 
speaker verification performance under noisy and rever-
berant environments, but they use the same feature extrac-
tion and classifier techniques as in the proposed approach 
of forensic speaker verification system. The interview data 
for these baselines were obtained from full-length utter-
ance of 200 speakers using the pseudo-police style. Silent 
regions were removed using the VAD algorithm [33]. The 
surveillance data were obtained from 10 s duration from 
200 speakers using the informal telephone conversation 
style after removing silent regions using the VAD algo-
rithm. Table 3 shows a description of the data used in 

baseline speaker verification systems. A brief description 
of the two baselines is described below

6.1.1 � Clean interview‑noisy surveillance speaker 
verification baseline

The clean interview-noisy surveillance speaker verifica-
tion baseline is obtained by keeping interview recordings 
under clean conditions and surveillance recordings were cor-
rupted by a random session of HOME, CAR, and STREET 
noises from the QUT-NOISE corpus using a single micro-
phone ( x1 ) at SNRs ranging from − 10 to 10 dB. A fusion 
of feature warping with MFCC and DWT-MFCC was used 
to extract the features from the interview and surveillance 
recordings. According to our previous experimental results 
[51], the fusion of feature warping with MFCC and DWT-
MFCC improved forensic speaker verification performance 
under noisy environments compared with traditional MFCC 
or other combination of MFCC and DWT-MFCC with and 
without feature warping. Level 3 and Daubechies 8 were 
used in the fusion of feature warping with MFCC and DWT-
MFCC because our previous experimental results [51] dem-
onstrated that level 3 achieved improvements in speaker 
verification performance than other levels under noisy 
environments over the majority of SNR values. The inter-
view and surveillance speaker models were created from the 
speech signals to represent them in i-vector subspace. The 

Table 2   A summary of the 
experimental set-up used for 
simulation of the proposed 
approach

Type of feature used Fusion of feature warping 
with DWT-MFCC and 
MFCC

Number of features used 78
Type of classifier used Length-normalized GPLDA
Number of Gaussian components used in the UBM 256
Types of data used for training UBM Microphone and telephone 

data from the AFVC 
database

Number of speakers used for training UBM 348
Dimension of total variability matrix 400
Dimension of i-vector after using LDA 200

Table 3   A description of the data used in baseline speaker verifica-
tion systems

Type of style used in interview data Pseudo-police style
Duration of interview data Full length
Number of speakers used in interview data 200
Type of style used in surveillance data Informal telephone 

conversation 
style

Number of speakers used in surveillance data 200
Duration of surveillance data 10 s
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length-normalized GPLDA and batch likelihood ratio were 
used to compute the similarity score between those speaker 
models, as shown in Fig. 7.

6.1.2 � Reverberant interview‑noisy surveillance speaker 
verification baseline

The interview recordings were convolved with the room 
impulse response at 0.15 s reverberation time using the 
image source algorithm [36]. The first configuration of the 
room was used in this simulation, as shown in Table 1 and 
Fig. 2. The surveillance recordings were mixed with differ-
ent levels and types of noise using a single microphone ( x1 ). 
Fusion of feature warping with MFCC and DWT-MFCC 
approach was used to extract the features from the interview 
and surveillance recordings because our previous experi-
mental results [25] demonstrated that the fusion approach 
improved forensic speaker verification performance under 
noisy and reverberant environments compared with other 
feature extraction techniques. Level 4 and Daubechies 8 
were used in a fusion of feature warping with MFCC and 
DWT-MFCC to extract the features from the interview and 
surveillance recordings because our previous experimental 
results [51] demonstrated that level 4 achieved improve-
ments in noisy and reverberant speaker verification perfor-
mance than other levels under different types of noise at 
SNRs ranging from − 10 to 10 dB. The i-vector through 
length-normalized GPLDA and batch likelihood ratio were 

used to calculate the similarity score between the i-vectors 
of interview and surveillance recordings, as shown in Fig. 8.

6.2 � Clean interview‑noisy surveillance conditions

In this section, we describe forensic speaker verification per-
formance based on the ICA-EBM when interview recordings 
are kept under clean conditions and surveillance recordings 
are mixed with different types and levels of noise. In the 
simulation results of noisy surveillance conditions, we chose 
level 3 and Daubechies 8 of DWT to extract the features 
from the noisy surveillance recordings in order to provide a 
fair comparison with the baseline of clean interview-noisy 
surveillance speaker verification system. The performance 
of forensic speaker verification system was evaluated using 
the EER and minimum decision cost function (mDCF), cal-
culated using Cmiss = 10 , Cfa = 1 , Ptarget = 0.01.

6.2.1 � The performance improvement from using ICA‑EBM

Speaker verification performance based on the ICA-EBM 
was evaluated and compared with the clean interview-
noisy surveillance speaker verification baseline and the tra-
ditional ICA (Fast ICA), as shown in Table 4. The SNRs 
on the Table 4 were calculated from the first microphone 
( x1 ). The results show that using the ICA-EBM algorithm 
achieved significant improvements in speaker verification 
performance than the clean interview-noisy surveillance 
speaker verification baseline when surveillance recordings 
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Add CAR, STREET, and 
HOME noises to 

surveillance recordings

Fusion of feature warping 
with DWT-MFCC and MFCC

Fusion of feature warping 
with DWT-MFCC and MFCC
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Length normalized GPLDA 
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Fig. 7   Flowchart of the clean interview-noisy surveillance speaker 
verification baseline
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Fig. 8   Flowchart of the reverberant interview-noisy surveillance 
speaker verification baseline
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are corrupted by different types of noise at low SNRs rang-
ing from − 10 to 0 dB. The improvement in EER of speaker 
verification based on the ICA-EBM decreased when SNR 
increased. The performance of the ICA-EBM degraded 
compared with the clean interview-noisy surveillance base-
line when surveillance recordings are corrupted by different 
types of environmental noise at SNRs ranging from 5 dB to 
10 dB.

The ICA-EBM algorithm improved speaker verifica-
tion performance over the traditional ICA when surveil-
lance recordings are corrupted by different levels and types 
of noise. The reduction in EER for ICA-EBM over ICA, 
EERred , can be computed as

where EERICA and EER(ICA−EBM) are the equal error rates for 
conventional ICA and ICA-EBM approaches, respectively. 
The average EER reduction can be calculated by computing 
the mean in EERred for different types of noise at each noise 
level, as shown in Fig. 9. The average EER reduction for the 
ICA-EBM algorithm ranges from 12.68% to 7.42% com-
pared with conventional ICA when surveillance recordings 
are mixed with different types of noise at SNRs ranging from 
− 10 to 0 dB. From the above results, it is clear that ICA-
EBM is more desirable than traditional ICA due to its supe-
rior separation performance than traditional ICA algorithm.

Table 5 shows a comparison mDCFs for speaker verifi-
cation based on ICA-EBM algorithm and clean interview-
noisy surveillance speaker verification baseline under 

(23)EERred =
EERICA − EER(ICA−EBM)

EERICA

different types of environmental noise at SNRs ranging 
from − 10 to 10 dB. It is clear from Table 5 that speaker 
verification based on the ICA-EBM algorithm significantly 
improved mDCF at low SNR (− 10 to 0 dB) in the presence 
of STREET, CAR and HOME noise. There was a degra-
dation in the performance of speaker verification based on 
the ICA-EBM algorithm than the clean interview-noisy sur-
veillance speaker verification baseline over the majority of 
SNRs ranging from 5 dB to 10 dB.

6.2.2 � Time performance

In this section, the computation time of forensic speaker 
verification based on the ICA-EBM algorithm was tested 

Table 4   EER for speaker verification when interview recordings are kept under clean conditions and surveillance recordings are corrupted by 
different types of environmental noise

Lower EER indicates better performance
Bold value indicates that the lowest EER values for proposed approach of forensic speaker verification based on the ICA-EBM algorithm when 
interview recordings are kept under clean condition and surveillance recordings are corrupted by different types of environmental noise

Methods Type of noise SNR (dB)

−10 −5 0 5 10

Clean interview-noisy surveillance speaker verification baseline STREET 33.500 26.00 18.000 10.020 5.5000
Traditional ICA STREET 12.547 11.407 13.000 11.467 11.5000
Proposed approach of forensic speaker verification based on the ICA-EBM algo-

rithm
STREET 11.000 10.650 10.900 10.894 11.000

Clean interview-noisy surveillance speaker verification baseline CAR​ 30.500 19.854 11.500 7.213 3.500
Traditional ICA CAR​ 10.957 10.5000 10.080 11.500 10.246
Proposed approach of forensic speaker verification based on the ICA-EBM algo-

rithm
CAR​ 10.000 10.211 9.874 10.500 9.794

Clean interview-noisy surveillance speaker verification baseline HOME 36.447 24.500 15.000 9.500 5.658
Traditional ICA HOME 13.856 12.500 11.500 12.400 12.326
Proposed approach of forensic speaker verification based on the ICA-EBM algo-

rithm
HOME 11.500 10.643 10.942 11.334 11.354

-10 -5 0 5 10
SNR

0

2

4

6

8

10

12

14
Av

era
ge

 Re
du

ctio
n i

n E
ER

 %

Fig. 9   Average EER reduction for the ICA-EBM algorithm com-
pared with the traditional ICA when interview recordings are kept 
under clean conditions and surveillance recordings are mixed with 
STREET, CAR, and HOME noises at SNRs ranging from − 10 to 10 
dB
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and compared with the computation time of clean inter-
view-noisy surveillance speaker verification baseline and 
traditional ICA using a processor Intel(R) Core (TM) 
i7-4600U CPU 2.70 GHz and MATLAB 2017 a. The 
interview speech signals for different speaker verifica-
tion methods were extracted from full duration utterances 
from 200 speakers using the pseudo-police style. The VAD 
algorithm [33] was used to remove silent regions from the 
interview speech signals. The surveillance recordings were 
obtained from random sessions of one utterance of 10 s 
duration from 200 speakers using the informal telephone 
conversation style after removing silent regions using the 
VAD algorithm.

The combination time for different speaker verification 
methods is obtained by keeping interview data under clean 
conditions and surveillance recordings were mixed with a 
random session of CAR, STREET and HOME noises from 
the QUT-NOISE database at SNRs ranging from −10 to 10 
dB, resulting in a two-channel noisy surveillance recordings, 
according to Eqs. 7 and 8. Fusion of feature warping with 
MFCC and DWT-MFCC was used to extract the features 
from the interview and surveillance recordings. Level 3 and 

db8 were used in a fusion of feature warping with MFCC 
and DWT-MFCC. The interview and surveillance speaker 
models were created from the speech signals to represent 
them in i-vector subspace. Then, the length normalized 
GPLDA and batch likelihood ratio were used to compute 
the similarity score between those speaker models.

Table 6 shows the computation time (s) for different 
speaker verification methods when interview recordings 
are kept under clean conditions and surveillance recordings 
are corrupted with different types of environmental noise. 
The SNRs on the Table 6 were calculated from the first 
microphone ( x1 ). It is clear from this table that the proposed 
method takes a longer time than the other methods when 
interview recordings are kept under clean conditions and 
surveillance recordings are mixed with different types and 
levels of environmental noise.

6.2.3 � Effect of utterance duration

In these simulation results, the interview recordings were 
obtained from the full duration utterances of 200 speakers 
using pseudo-police style under clean conditions. However, 

Table 5   Comparison mDCFs for speaker verification based on ICA-EBM algorithm and clean interview-noisy surveillance speaker verification 
baseline

Bold value indicates that the lowest mDCFs values for ICA-EBM algorithm when interview recordings are kept under clean condition and sur-
veillance recordings are corrupted by different types of environmental noise

Methods Type of noise SNR (dB)

−10 −5 0 5 10

Clean interview-noisy surveillance speaker verification baseline STREET 0.0996 0.0974 0.0801 0.0590 0.0339
ICA-EBM algorithm STREET 0.0575 0.0573 0.0570 0.0586 0.0579
Clean interview-noisy surveillance speaker verification baseline HOME 0.0991 0.0924 0.0803 0.0511 0.0325
ICA-EBM algorithm HOME 0.05682 0.05603 0.0572 0.0554 0.0572
Clean interview-noisy surveillance speaker verification baseline CAR​ 0.0995 0.0884 0.0669 0.0389 0.0240
ICA-EBM algorithm CAR​ 0.0563 0.05631 0.05633 0.0570 0.05631

Table 6   The computation time (s) for different speaker verification methods when interview recordings are kept under clean conditions and sur-
veillance recordings are corrupted with different types of environmental noise

Methods Type of noise SNR (dB)

−10 −5 0 5 10

Clean interview-noisy surveillance speaker verification baseline STREET 12381 12275 12213 12178 12093
Traditional ICA STREET 16275 16195 16122 16098 16038
Proposed approach of forensic speaker verification based on the ICA-EBM algorithm STREET 21576 21492 21423 21392 21388
Clean interview-noisy surveillance speaker verification baseline CAR​ 12295 12265 12210 12167 12081
Traditional ICA CAR​ 16266 16187 16101 16088 16025
Proposed approach of forensic speaker verification based on the ICA-EBM algorithm CAR​ 21563 21483 21408 21381 21367
Clean interview-noisy surveillance speaker verification baseline HOME 12322 12308 12286 12253 12185
Traditional ICA HOME 16331 16285 16222 16187 16124
Proposed approach of forensic speaker verification based on the ICA-EBM algorithm HOME 21667 21573 21520 21483 21426
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we extracted the surveillance recordings from 10 s, 20 s 
and 40 s using informal telephone conversation style. Ran-
dom sessions of HOME, STREET, and CAR noises from 
the QUT-NOISE corpus were mixed with the surveillance 
recordings at different SNR values using two microphones, 
as in Eqs. 7 and 8. Since the performance of forensic speaker 
verification based on the ICA-EBM algorithm decreased 
EER compared with other techniques when surveillance 
recordings mixed with various types of environmental 
noise at SNRs ranging from − 10 to 0 dB, as described in 
Sect. 6.2.1, the effect of utterance length was evaluated on 

the performance of forensic speaker verification based on 
the ICA-EBM algorithm in this section.

Figure 10 shows the effect of utterance surveillance dura-
tion on speaker verification performance based on the ICA-
EBM algorithm when interview recordings are kept under 
clean conditions and surveillance recordings are mixed with 
different levels and types of noise. It is clear that speaker 
verification performance based on the ICA-EBM algorithm 
improved when surveillance utterance length increased from 
10 to 40 s under noisy environments.

6.3 � Reverberant interview‑noisy surveillance 
conditions

Forensic speaker verification based on the ICA-EBM algo-
rithm was evaluated and compared with the reverberant 
interview-noisy surveillance speaker verification baseline 
and the traditional ICA algorithm. The effect of reverbera-
tion time, surveillance utterance duration, and suspect/
microphone position on the performance of speaker verifi-
cation based on the ICA-EBM algorithm is also discussed 
in this section. In the simulation results of noisy surveil-
lance and reverberant interview conditions, we chose level 
4 and Daubechies 8 of DWT to extract the features from the 
noisy surveillance and reverberant interview speech signals 
in order to provide a fair comparison with the baseline of 
reverberant interview-noisy surveillance speaker verification 
system. The performance of forensic speaker verification 
system was evaluated using the EER and mDCF, calculated 
using Cmiss = 10 , Cfa = 1 , Ptarget = 0.01 . Part of the simula-
tion results in this section have been published in [52].

6.3.1 � The performance improvement from using ICA‑EBM

In these simulation results, the reverberation interview sig-
nals are obtained by convolving the interview recordings 
with the room impulse response at 0.15 s reverberation time 
using the image source algorithm described in [36]. The 
first configuration of the room was used in these simula-
tion results, as shown in Table 1 and Fig. 2. The surveil-
lance recordings were corrupted by one random segment of 
environmental noises (STREET, HOME and CAR) at SNRs 
ranging from − 10 to 10 dB, resulting in a two-channel noisy 
surveillance recordings, according to Eqs. 7 and 8. The noisy 
surveillance recordings were kept without reverberation 
conditions because the noisy surveillance data are usually 
recorded in open areas in most real forensic scenarios [34].

Table 7 shows EER for speaker verification when inter-
view recordings reverberated at 0.15 s and surveillance 
recordings are mixed with different types of noise. The 
SNRs on the Table 7 were computed from the first micro-
phone ( x1 ). The results show that speaker verification per-
formance based on the ICA-EBM decreased EER over the 
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Fig. 10   Effect of utterance surveillance duration on speaker verifica-
tion performance based on the ICA-EBM algorithm when interview 
recordings are kept under clean condition and surveillance recordings 
are mixed with different levels and types of noise
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reverberant interview-noisy surveillance speaker verification 
baseline when surveillance recordings are mixed with differ-
ent types of noise at low SNRs ranging from − 10 to 0 dB. 
The improvement in the performance decreased when SNR 
increased. The performance of the ICA-EBM algorithm 
degraded compared with the reverberant interview-noisy 
surveillance speaker verification baseline when surveillance 
recordings are mixed with different types of noise at SNRs 
ranging from 5 to 10 dB.

Figure 11 shows average EER reduction for the ICA-
EBM algorithm compared with the traditional ICA algo-
rithm for different types of noise and reverberation. When 
interview recordings reverberated at 0.15 s and the surveil-
lance recordings were corrupted with different types of noise 
at SNRs ranging from − 10 to 0 dB, the performance of 
speaker verification based on the ICA-EBM achieved aver-
age EER reduction ranging from 7.25 to 8.31% compared 
with the traditional ICA.

Table 7   EER for speaker verification when interview recordings reverberated at 0.15 s and surveillance recordings are mixed with different types 
of noise

Bold value indicates that the lowest EER values for proposed approach of forensic speaker verification based on the ICA-EBM algorithm when 
interview recordings reverberated at 0.15 s reverberation time and surveillance recordings are mixed with different types of environmental noise

Methods Type of noise SNR (dB)

−10 −5 0 5 10

Reverberant interview-noisy surveillance speaker verification baseline STREET 36.500 26.500 18.500 12.400 7.680
Traditional ICA STREET 14.600 14.032 15.062 14.379 14.300
Proposed approach of forensic speaker verification based on the ICA-EBM algo-

rithm
STREET 12.932 12.733 13.045 13.012 13.500

Reverberant interview-noisy surveillance speaker verification baseline CAR​ 28.000 20.500 14.230 9.800 7.500
Traditional ICA CAR​ 13.673 13.758 13.900 13.500 13.410
Proposed approach of forensic speaker verification based on the ICA-EBM algo-

rithm
CAR​ 12.859 12.826 12.771 13.000 13.410

Reverberant interview-noisy surveillance speaker verification baseline HOME 38.410 29.340 20.000 14.000 10.350
Traditional ICA HOME 15.000 14.500 14.400 14.575 14.500
Proposed approach of forensic speaker verification based on the ICA-EBM algo-

rithm
HOME 14.341 14.032 14.000 14.477 14.266
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Fig. 11   Average EER reduction for the ICA-EBM algorithm com-
pared with the traditional ICA when interview recordings reverber-
ated at 0.15 s reverberation time and surveillance recordings are 
mixed with STREET, CAR, and HOME at SNRs ranging from − 10 
to 10 dB

Table 8   comparison mDCFs for speaker verification based on the ICA-EBM algorithm and reverberant interview-noisy surveillance speaker 
verification baseline

Bold value indicates that the lowest mDCFs values for the ICA-EBM algorithm when interview recordings reverberated at 0.15 s reverberation 
time and surveillance recordings are mixed with different types of environmental noise

Methods Type of noise SNR (dB)

−10 −5 0 5 10

Reverberant interview-noisy surveillance speaker verification baseline STREET 0.0994 0.0951 0.0852 0.0685 0.0497
ICA-EBM algorithm STREET 0.0691 0.0677 0.0680 0.0686 0.0682
Reverberant interview-noisy surveillance speaker verification baseline HOME 0.100 0.0953 0.0844 0.0665 0.0527
ICA-EBM algorithm HOME 0.0706 0.0705 0.0704 0.0701 0.0705
Reverberant interview-noisy surveillance speaker verification baseline CAR​ 0.0989 0.0904 0.0697 0.0545 0.0425
ICA-EBM algorithm CAR​ 0.0666 0.0672 0.0679 0.0680 0.0689
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Table 8 shows comparison mDCFs for speaker verifi-
cation based on the ICA-EBM algorithm and reverberant 
interview-noisy surveillance speaker verification baseline. 
It is clear that speaker verification performance based on the 
ICA-EBM algorithm improved mDCF over the reverberant 
interview-noisy surveillance speaker verification baseline 
when interview recordings reverberated at 0.15 s reverbera-
tion time and the surveillance recordings were mixed with 
various types of environmental noise at low SNR values 
(− 10 to 0 dB). Forensic speaker verification performance 
based on the ICA-EBM algorithm degraded compared with 
the reverberant interview-noisy surveillance speaker verifi-
cation baseline at SNRs ranging from 5 to 10 dB.

6.3.2 � Time performance

In this section, the computation time of forensic speaker 
verification based on the ICA-EBM algorithm was tested 
and compared with the computation time of reverberant 
interview-noisy surveillance speaker verification baseline 
and traditional ICA using a processor Intel(R) Core (TM) 
i7-4600U CPU 2.70 GHz and MATLAB 2017 a. The full 
duration of the interview recordings was obtained from 200 
speakers using the pseudo-police style. Silent regions from 
the interview recordings were removed using the VAD algo-
rithm. The interview recordings were convolved with the 
impulse response of the room at 0.15 s reverberation time 
to generate the reverberated speech. The first configuration 
of the room is used in these experimental results, as shown 
in Table 1. The surveillance recordings were obtained from 
10 s duration of one utterance from 200 speakers using the 
informal telephone conversation style after removing silent 
regions using the VAD algorithm. The surveillance record-
ings were mixed with one random session of the environ-
mental noises (CAR, STREET and HOME noises) from the 
QUT-NOISE database at SNRs ranging from − 10 to 10 

dB, resulting in two-channel noisy speech signal accord-
ing to Eqs. 7 and 8. Fusion of feature warping with MFCC 
and DWT-MFCC was used to extract the features from the 
interview and surveillance recordings. Level 4 and db8 were 
used in a fusion of feature warping with MFCC and DWT-
MFCC. The interview and surveillance speaker models were 
created from the speech signals to represent them in i-vector 
subspace. Then, the length normalized GPLDA and batch 
likelihood ratio were used to compute the similarity score 
between those speaker models.

Table 9 shows the computation time (s) for different 
speaker verification methods when interview recordings 
reverberated at 0.15 s reverberation time and surveillance 
recordings are mixed with different types of environmental 
noise. The SNRs on the Table 9 were calculated from the 
first microphone ( x1 ). It is clear from this table that the pro-
posed method takes a longer time than the other methods 
when interview recordings reverberated at 0.15 s reverbera-
tion time and surveillance recordings are mixed with differ-
ent types and levels of environmental noise.

6.3.3 � Effect of reverberation time

In these simulation results, the reverberated interview 
speech was obtained by convolving the interview signals 
with room impulse response using different reverberation 
times ( T20 = 0.15 s, 0.20 s, and 0.25 s). The first configu-
ration of the room was used in this simulation results, as 
shown in Table 1. The surveillance recordings were cor-
rupted with different levels and types of noise, resulting in a 
two-channel noisy surveillance recording at SNRs ranging 
from − 10 to 10 dB, according to Eqs. 7 and 8. Since the 
performance of speaker verification based on the ICA-EBM 
algorithm decreased EER compared with other techniques 
when interview recordings reverberated at 0.15 s and sur-
veillance recordings corrupted by different types of noise at 
SNRs ranging from − 10 to 0 dB, as described in Sect. 6.3.1, 

Table 9   The computation time (s) for different speaker verification methods when interview recordings reverberated at 0.15 s reverberation time 
and surveillance recordings are corrupted with different types of environmental noise

Methods Type of noise SNR (dB)

−10 −5 0 5 10

Reverberant interview-noisy surveillance speaker verification baseline STREET 13533 13508 13476 13423 13397
Traditional ICA STREET 18355 18321 18273 18246 18193
Proposed approach of forensic speaker verification based on the ICA-EBM algorithm STREET 23756 23738 23686 23639 23591
Reverberant interview-noisy surveillance speaker verification baseline CAR​ 13487 13449 13396 13363 13325
Traditional ICA CAR​ 18287 18233 18185 18146 18117
Proposed approach of forensic speaker verification based on the ICA-EBM algorithm CAR​ 23747 23710 23653 23624 23545
Reverberant interview-noisy surveillance speaker verification baseline HOME 13685 13623 13587 13525 13488
Traditional ICA HOME 18763 18746 18710 18683 18654
Proposed approach of forensic speaker verification based on the ICA-EBM algorithm HOME 23973 23879 23834 23769 23715
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the effect of reverberation time was evaluated on speaker 
verification performance based on the ICA-EBM algorithm 
in this section.

Figure  12 shows the effect of reverberation time on 
speaker verification performance based on the ICA-EBM 
algorithm when interview recordings reverberated at dif-
ferent reverberation times ranging from 0.15 to 0.25 s and 
surveillance recordings are mixed with different types and 
levels of environmental noise. The SNRs on the x-axis in 
Fig. 12 were calculated from the first microphone ( x1 ). 
The results show that noisy forensic speaker verification 

performance based on the ICA-EBM degrades as the rever-
beration time increases.

The EER degradation for the ICA-EBM when the rever-
beration time increased from 0.15 to 0.25 s, EERdeg , can be 
calculated

where EER(T=0.15 s) and EER(T=0.25 s) are the equal error 
rates for the ICA-EBM algorithm when interview record-
ings reverberated at 0.15 s and 0.25 s, respectively and sur-
veillance speech signals are corrupted by different types 
of environmental noise. The average EER degradation can 
be calculated by computing the mean in EERdeg for differ-
ent types of noise at each noise level. At − 10 dB SNR, 
the average EER degradation of the ICA-EBM is 16.40%, 
19.17%, and 17.07%, when the time of reverberation varied 
from 0.15 to 0.25 s and surveillance recordings were cor-
rupted by HOME, STREET, and CAR noises, respectively. 
The reverberation time is a parameter that represents the 
length of the room impulse response. High reverberation 
time leads to increased distortion in the feature vectors [53]. 
Therefore, speaker verification performance decreases when 
the reverberation time increases.

6.3.4 � Effect of utterance duration

In real forensic scenarios, the full-length interview utter-
ance of the speech signals from a suspect is often recorded 
in a police room where reverberation is usually present. 
However, the surveillance recordings are often mixed with 
different types of noise, and the utterance length of the sur-
veillance recordings is uncontrolled (typically ranged from 
few seconds to 40 s) [54]. Thus in this work, the full dura-
tion of the interview recordings was convolved with the 
room impulse response at 0.15 s to produce the reverber-
ated interview signals using the first configuration of the 
room, as shown in Table 1. The length of the surveillance 
recordings varied from 10 to 40 s. We mixed the surveillance 
recordings with different levels and types of environmental 
noise, resulting in a two-channel noisy surveillance record-
ing at SNRs ranging from − 10 to 10 dB, according to Eqs. 7 
and 8.

Figure 13 shows the effect of utterance surveillance 
duration on speaker verification performance based on the 
ICA-EBM algorithm when interview recordings reverber-
ated at 0.15 s and surveillance recordings are mixed with 
different levels and types of noise. The SNRs on the x-axis 
in Fig. 13 were calculated from the first microphone ( x1 ). 
It demonstrates that the EER for the ICA-EBM algorithm 
reduced when the utterance length of the surveillance signals 

(24)EERdeg =
EER(T=0.25 s) − EER(T=0.15 s)

EER(T=0.25 s)
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Fig. 12   Effect of the reverberation time on speaker verification based 
on the ICA-EBM algorithm when interview recordings reverberated 
at different reverberation times ranging from 0.15 to 0.25 s and sur-
veillance recordings are mixed with different types and levels of envi-
ronmental noise
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increased in the presence of different types of environmental 
noise.

6.3.5 � Effect of changing position between microphone 
and suspect

In these simulation results, the interview recordings rever-
berated at 0.15 s, and 10 s of the surveillance recordings 
is corrupted by a random session of HOME, CAR, and 
STREET noises at SNRs ranging from − 10 to 10 dB using 
two microphones as in Eqs. 7 and 8. In order to investigate 
the effect of changing position between microphone and sus-
pect on the performance of speaker verification based on 
the ICA-EBM algorithm, we used three different configura-
tions of microphone/suspect position, as shown in Table 1 
and Fig. 2. Since the performance of speaker verification 
based on the ICA-EBM decreased EER compared with other 
techniques when interview recordings reverberated at 0.15 
s and surveillance recordings mixed with different types of 
noise at SNRs ranging from − 10 to 0 dB, as described in 
Sect. 6.3.1, the effect of microphone and suspect position 
was evaluated on the speaker verification performance based 
on the ICA-EBM algorithm in this section.

Table 10 shows the effect of microphone and suspect posi-
tions on the speaker verification performance based on the 
ICA-EBM algorithm when interview recordings reverber-
ated using different configurations and surveillance record-
ings are corrupted by different levels and types of noise. 
The SNRs on the Table 10 were calculated from the first 
microphone ( x1 ). The simulation results show that chang-
ing microphone/suspect position affects the speaker verifi-
cation performance based on the ICA-EBM. Configuration 
1, which has the shortest distance between the microphone 
and suspect decreased EER compared with other configura-
tions. The performance of speaker verification based on the 
ICA-EBM algorithm decreased when the distance between 
the suspect and microphone increased. The impulse response 
of the room consists of early and late reflections. The char-
acteristics of the early reflections, typically 50 ms after the 
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Fig. 13   Effect of utterance surveillance duration on speaker verifica-
tion performance based on the ICA-EBM when interview recordings 
reverberated at 0.15 s reverberation time and surveillance recordings 
are mixed with different types and levels of environmental noise

Table 10   Effect of microphone 
and suspect positions on 
the speaker verification 
performance based on the 
ICA-EBM when interview 
recordings reverberated using 
different configurations and 
surveillance recordings are 
mixed with different types and 
levels of noise

Configura-
tion

Type of noise SNR (dB)

−10 −5 0 5 10

1 STREET 12.932 12.733 13.045 13.012 13.500
2 STREET 13.251 13.189 13.567 13.550 14.321
3 STREET 13.542 13.398 14.153 14.140 14.672
1 CAR​ 12.859 12.826 12.771 13.000 13.410
2 CAR​ 13.186 13.165 13.105 13.467 13.851
3 CAR​ 13.457 13.389 13.365 13.761 14.223
1 HOME 14.341 14.032 14.000 14.477 14.266
2 HOME 14.615 14.354 14.348 14.731 14.589
3 HOME 14.891 14.769 14.690 14.950 14.896
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arrival of the direct sound, depends strongly on the suspect/
microphone positions [55]. The duration of the early reflec-
tions could increase and leads to increased spectral alteration 
of the original speech signal when the distance between the 
suspect and microphone increases. Thus, the performance of 
speaker verification based on the ICA-EBM degrades when 
the distance between the suspect and microphone increases.

7 � Conclusion

In this paper, we present a new approach to improve forensic 
speaker verification performance under noisy and reverber-
ant environments. This approach is based on using the ICA-
EBM to reduce the effect of noise from noisy surveillance 
speech signals. Features extracted from the enhanced sur-
veillance speech signals were obtained by using a fusion of 
feature-warping with MFCC and DWT-MFCC. The i-vector 
length-normalized GPLDA framework was used as a clas-
sifier. Forensic speaker verification performance based on 
the ICA-EBM algorithm was evaluated under conditions of 
noise only, as well as noise and reverberation.

Simulation results demonstrate that the proposed speaker 
verification based on the ICA-EBM improved EER over the 
traditional ICA algorithm when interview recordings are 
kept under clean or reverberant conditions and surveillance 
recordings are mixed with different types of environmental 
noise at SNRs ranging from − 10 to 10 dB. The ICA-EBM 
algorithm is better suited to noisy speech separation appli-
cations due to its good convergence behavior. Speech/audio 
signals are usually either super-Gaussian or slightly skewed 
in nature and, hence, they perform well with ICA-EBM, 
compared with traditional ICA methods, due to its tighter 
bounds and superior convergence properties.

Although the proposed method has superior performance 
for noisy surveillance and reverberant interview recordings, 
it does not perform as well as the clean interview-noisy sur-
veillance and reverberant interview-noisy surveillance base-
lines when interview recordings reverberated or kept under 
clean conditions and surveillance recordings are corrupted 
by different types of environmental noise at SNRs ranging 
from 5 dB to 10 dB. Further work is required to use an SNR 
estimation before the proposed speaker verification based 
on the ICA-EBM algorithm to determine whether or not 
the ICA-EBM is used as a speech enhancement algorithm. 
The effectiveness of using the convolutive ICA algorithm to 
separate clean interview speech signals from the reverbera-
tion can also be investigated in future work.
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