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Abstract
A spatial co-location pattern describes coexistence of spatial features whose instances frequently appear together in geo-
graphic space. Numerous studies have been proposed to discover interesting co-location patterns from spatial data sets, but 
most of them only use the location information of instances. As a result, they cannot adequately reflect the influence between 
instances. In this paper, we take additional attributes of instances into account in the process of co-location pattern mining, 
and propose a new approach for discovering the high influence co-location patterns. In our approach, we consider the spa-
tial neighboring relationships and the similarity of instances simultaneously, and utilize the information entropy approach 
to measure the influence of any instance exerting on its neighbors and the influence of any feature in a co-location pattern. 
Then, an influence index for measuring the interestingness of a co-location pattern is proposed and we prove the influence 
index measure satisfies the downward closure property that can be used for pruning the search space, and thus an efficient 
high influence co-location pattern mining algorithm is designed. At last, extensive experiments are conducted on synthetic 
and real spatial data sets. Experimental results reveal the effectiveness and efficiency of our method.

Keywords High influence co-location pattern · Influence index · Spatial instances with attributes · Information entropy

1 Introduction

In recent decades, rapid development of spatial related 
technologies made large amounts of spatial data available. 
It becomes popular to analyze spatial phenomena and dis-
cover knowledge from spatial data sets. Spatial co-location 
pattern mining plays an important role in this domain. A 
spatial co-location pattern is a subset of spatial features, 
whose instances frequently appear in the spatial proximity. 
For instance, the location where collybia albuminosa grows 
usually has nest of termites, so {collybia albuminosa, nest of 
termites} is a co-location pattern. {rhinoceros, oxpeckers} is 
another real example of co-location pattern because the rhi-
noceros often live with oxpeckers. Co-location patterns may 
yield important insight in many applications, such as Earth 
science, public health, biology, transportation, etc. Due to 

the wide application of co-location patterns, researchers 
have developed multiple approaches of mining co-location 
patterns.

So far, most of the spatial co-location pattern mining did 
not consider the influence of different features [1–9], a few 
paper related to this topic studied either the spatial co-loca-
tion pattern mining on extended spatial objects (points, line-
strings, polygons) [10–13], or the high impact co-location 
pattern mining on point-type objects [14], based on buffer 
overlap of instances. Almost all the spatial co-location pat-
tern mining approaches made their progress on the proximity 
of instances, without considering the non-spatial attributes 
of instances. The influence between different features is hard 
to be reflected only by the spatial proximity, since we need 
to consider more non-spatial attributes of instances to help 
us analyze the implicit interaction between features. For 
example, supermarkets and convenience stores have differ-
ent influence on the same residents, besides the distance 
factors, many non-spatial attributes of them such as scale, 
commodity diversity, service level, etc. also work. Attributes 
can reflect the influence between instances, while previous 
spatial co-location pattern mining approaches did not focus 
on the influence reflected by instances’ attributes.
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An example of five spatial instances is shown in Fig. 1, 
where the instances belong to feature A (shopping center), 
B (store) and C (grocery), and adjacent instances within 
a preset distance threshold are linked with solid lines. 
Although instances A.1, B.1 and C.1 form a clique for 
candidate co-location patterns {A, B, C}, we cannot accu-
rately describe the influence between the three instances. 
Therefore, we add 8-dimensional attributes as described in 
Sect. 3.1 to the sample instances in Fig. 1. The principle 
of our insight is depicted in Fig. 2, in which one curve 
denotes an attribute vector for one of the five instances in 
Fig. 1, we can conclude the influence between instances 

by calculating the similarity of instances via vector values 
of attributes, as well as other computation.   

It is challenging to introduce the influence of non-spatial 
attributes to co-location pattern mining. In this paper, we 
propose a novel approach that mines high influence co-loca-
tion patterns by using spatial neighborhoods of instances 
and similarity of instances with attributes. In summary, the 
contributions of this paper are listed as follows:

(1) We introduce the additional attributes of spatial instances, 
construct a new equation for calculating the similarity of 
instances with cosine similarity function and Mahalano-
bis distance function, and apply information entropy 
approaches for computing the influence of instances.

(2) We define the concepts of influence ratio and influence 
index for co-location patterns, and prove them satisfy 
the downward closure property which can be used for 
pruning search space. Then, a novel High Influence 
Co-location Pattern Mining  (HICPM) algorithm is 
designed to mine high influence co-location patterns.

(3) We conduct extensive experiments on synthetic and 
real data sets, the results show that our approach can 
find high influence co-location patterns effectively and 
efficiently.

The remainder of this paper is organized as follows: 
related works are introduced in Sect. 2. Section 3 gives defi-
nitions and equations, proof of downward closure property, 
HICPM algorithm, and time complexity analysis. Section 4 
conducts experiments on real and synthetic data sets and 
analyzes results. Finally, Sect. 5 summarizes the paper and 
proposes the work in the future.

2  Related works

Related work can be elaborated in two aspects as follows:
Spatial co-location pattern mining Agrawal et al. [15, 

16] firstly published a founding paper of mining association 
rules between sets of items in large databases in 1993, it 
animated the pattern mining researches on methodologies 
and applications actively so far [17–19]. Koperski et al. [1] 
introduced spatial association rules to analyze geographic 
information databases in 1995. Shekhar et al. [2] pioneered 
to define the concept of co-location pattern mining in 2001, 
and propose join-based method for discovering prevalent 
co-location patterns from spatial data sets.

A spatial co-location pattern c is defined as a set of spatial 
features. The spatial features represent the kinds of instances 
in space, denoted as fi , while instances of fi represent indi-
vidual objects at a specified location, denoted as fi ⋅ j . 
Instances are adjacent when they are within the distance 
threshold range. Adjacent instances of diverse features form 

Fig. 1  An example of spatial 
instances

B.3

A.1

B.1

B.4

C.1

Fig. 2  Similarity of instances in terms of attributes

Fig. 3  Illustration of spatial co-location patterns
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cliques, those instances in cliques will be defined as row_
instance(c) of a co-location pattern c only if they present all 
the features of the pattern and no subsets of them can do so. 
Table_instance(c) denotes T(c), is a set which contains all 
row_instance(c). Participation ratio PR(c, fi) is defined as 
the fraction of number of non-repetitive instances of feature 
fi involved in table_instance(c) divided by total instances of 
the feature fi . Participation index PI(c) takes the minimum of 
PR (c, fi) . A co-location pattern c will be considered preva-
lent if PI(c) is no less than the preset threshold  PIthreshold.

Example 1 Figure 3 shows features A, B, C with 9, 20 and 
21 instances respectively. A co-location pattern c = {A, B, 
C} has table-instances of {{A.1, B.1, C.1}, {A.2, B.4, C.2}, 
{A.2, B.6, C.3}, {A.9, B.11, C.12}, {A.9, B.13, C.12}}. 
Thus, PR(c, A) = 3/9, PR(c, B) = 5/20, PR(c, C) = 4/21, 
and PI(c) = min{PR(c, fi)} = 4/21 ≈ 0.19. Assumed 
 PIthreshold = 0.15, the co-location pattern {A, B, C} is 
prevalent.

A landmark event in this field is the full-join algorithm 
proposed by Huang et al. [3] in 2004, it can mine complete 
and correct prevalent co-location patterns. As the run-
ning time of the full-join algorithm rises significantly with 
instances increase, Yoo et al. [4] proposed a partial-join 
algorithm, which divides instances into disjoint clusters to 
reduce computation for join operations. Yoo et al. [5, 6] pro-
posed join-less algorithm based on star neighbor material-
ized model and integrated the ideas of join-less and partial-
join, to make it run faster than full-join method in dense data 
sets, and compared their time complexity. Huang et al. [20] 
use a compact prefix tree structure called FP-tree for mining 
prevalent co-location patterns, Wang et al. [7] propose iCPI-
tree for updating previous CPI-tree based algorithm [8] for 
improving efficiency of co-location pattern mining. In order 
to compress the large number of co-location patterns mined, 
researchers proposed new concepts and algorithms for min-
ing closed patterns [21], maximal frequent patterns and com-
pressed prevalent patterns [9]. The forms of instances stud-
ied tend to be diversified into uncertain data [22], interval 
data [23], fuzzy data [24], extended spatial objects [10–13], 
incremental data [25, 26], suitable for practical scenarios. 
Different from participation index mostly applied to co-loca-
tion pattern mining, Xiong et al. [11] introduced extended 
spatial objects with buffer, and proposed coverage computa-
tion with MBBR model and apply it to test route selection. 
Kim et al. [12] constructed a transaction-based framework 
for co-location pattern mining, making association analysis 
applicable and extended spatial objects usable, for getting 
geographic context awareness of ubiquitous GIS. Li et al. 
[13] proposed a grid based transaction for extended spatial 
objects, and introduced a statistical test to validate the signif-
icance of candidate co-location patterns rather than a global 

threshold, for identifying correlation between child cancer 
cases and pollutant emissions. Chai et al. [27] suggested 
a node-priority based large-scale overlapping community 
detection method. Chen [14] noticed participation index and 
coverage computation did not reflect the effect of instances 
thus defined buffer as the effect of instances and proposed an 
algorithm for co-location pattern mining with high impact. 
In view of the shortcomings of locational information and 
geometric computation cost, this paper introduces attributes 
to instances for further exploration.

Influence analysis With the rapid development of social 
networks, influence analysis has been widely studied. Xiang 
et al. [28] evaluated relationship power from interactive 
action and user similarity. Sathanur et al. [29] introduced 
transfer entropy as a measure of directed causal influence for 
online social interactions. Peng et al. [30] evaluated influ-
ence of a node via two factors. One was intimacy degree 
reflecting the proximity between users, the other was activ-
ity degree determining active nodes. Bakshy et al. [31] 
counted pairwise influence by score and predict global 
influence of a user by sum of scores, and suggested disjoint 
influence tree with features to estimate user’s global influ-
ence. Huang et al. [32] tended to measure individual social 
influence by the number of followers and the sensitivity of 
finding good items. Peng et al. [33] presented an evalua-
tion model to measure direct and indirect influence based on 
social relationship graph, by introducing friend entropy and 
interaction frequency entropy to describe social influence 
in mobile social networks. This paper concerns the influ-
ence between adjacent instances, without consideration to 
the influence beyond distance threshold and indirect influ-
ence of instances.

3  Formal definitions and the algorithm

In this section, we define the high influence co-location pat-
tern formally and prove the downward closure property of 
the pattern. Then, we design an algorithm with a pruning 
strategy for mining high influence co-location patterns and 
analyze time complexity of the algorithm. Table 1 lists the 
key notations used in this paper.

3.1  Definitions and properties

In the data sets of this paper, spatial instances are expressed 
as vectors, which contain feature symbol, instance number, 
latitude, longitude, attributes. Vector values of some spatial 
instances in Figs. 1 and 3 are listed in Table 2.

We compute similarity of instances on attribute vec-
tors of instances, with integration of cosine similarity and 
Mahalanobis distance equations as follows:
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• Cosine similarity on attribute vectors of instances

 Cosine similarity represents the angle between two vec-
tors with cosine function. Assumed that Xfi⋅j

 and Yfi′ ⋅j′ are 
two attribute vectors of instances fi ⋅ j , fi′ ⋅ j′ , then their 
cosine similarity shall be computed as follows:

whe re  do t  ·  d eno t e s  vec to r  do t  p roduc t , 
Xfi⋅j

⋅ Yfi� ⋅j� =
∑

xfi⋅j ⋅ yfi� ⋅j� , ||Xfi⋅j
|| is the length of vector Xfi⋅j

 , 

��Xfi⋅j
�� =

�∑
(Xfi⋅j

)2 =
�

Xfi⋅j
⋅ Xfi⋅j

.

• Mahalanobis distance on attribute vectors of instances

 Mahalanobis distance (also called Dz statistics) is an 
effective approach to calculate similarity between two 
unknown sample sets, it can be defined as the differ-
ence between two random variables which obey the same 

(1)Sim
(
Xfi⋅j

, Yfi� ⋅j�
)
=

Xfi⋅j
⋅ Yfi� ⋅j�

||Xfi⋅j
||||Yfi� ⋅j� ||

distribution and share same covariance matrix. Mahalano-
bis distance for the attribute vectors Xfi⋅j

 and Yfi′ ⋅j′ shall be 
computed as follows:

where D2 denotes Mahalanobis distance of attribute vectors 
of instances fi ⋅ j and fi′ ⋅ j′ , �−1 (also notated Icm) denotes 
inverse covariance matrix of variables, T denotes vector 
shall be transposed.

Although cosine similarity and Mahalanobis distance 
can express similarity between vectors, their emphases are 
different. Cosine similarity emphasizes the consistency of 
directions of vectors and is no sensitive to the numerical dif-
ferences of vectors, while Mahalanobis distance emphasizes 
the numerical difference and is no sensitive to the consist-
ency of directions of vectors. As the attributes of our data 
sets contain sequence data and numerical data, we expect 
to integrate cosine similarity and Mahalanobis distance 
and construct a new measure for reflecting the similarity of 
instances with attributes more accurately.

(2)D2(Xfi⋅j
, Yfi� ⋅j� ) = (Xfi⋅j

− Yfi� ⋅j� )
T
�

−1(Xfi⋅j
− Yfi� ⋅j� )

Table 1  Key notations used in this paper

Notations Definitions Brief description

F A set of features Different types of features in space
O A set of instances Entity objects at specific spatial locations
k Size of a pattern c The number of features in a spatial co-location pattern c
R Distance threshold A threshold for judging whether an instance is in the proximity of other instances
Sim(X, Y) Cosine similarity A measure that computes the cosine of the angle between vectors X and Y
D

2(X,Y) Mahalanobis distance A measure that computes the difference between vectors X and Y
Icm Inverse covariance matrix A variable is used for computing D2(X,Y)

S Composite similarity An index that integrates Sim(X, Y) and D(X,Y)
Ne Neighbor entropy A measure that reflects the aggregation of neighbors around an instance
Ase Attribute similarity entropy A measure that reflects the attribute similarities of instance with its neighbors
�1 Weight of Ne –
�2 Weight of Ase –
Inf Influence of an object The degree that an instance (or a feature) affects its neighbors (or other features)
InR Influence ratio The ratio of the influence of a feature in a co-location pattern c to the total influence of the feature
InI Influence index The minimum among influence ratios of all the features in the pattern c
InIthreshold High influence threshold A preset threshold for checking whether a pattern c is a high influence co-location pattern

Table 2  Vector values of some spatial instances in Figs. 1 and 3

Name Latitude Longitude Attri_1 Attri_2 Attri_3 Attri_4 Attri_5 Attri_6 Attri_7 Attri_8

A.1 40.0133 116.4103 1.5808 − 0.0691 − 0.6302 − 0.1745 0.6037 − 0.0387 0.0332 0.0099
B.1 40.0028 116.4305 0.3046 − 2.2936 0.4754 0.2930 1.2066 0.0778 0.0424 − 0.0235
C.1 40.0238 116.4180 − 0.6603 2.0363 0.1616 − 0.1130 0.8702 0.1334 0.0156 0.0006
… … … … … … … … … … …
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• Similarity between instances with attributes

 Noticing the cosine similarity ranges in [− 1, 1] and the 
Mahalanobis distance ranges in [0, M] (M denotes a finite 
constant), we construct a new measure called similarity 
between instances with attributes which ranges in [0, 1]. 
When cosine similarity takes 1 and Mahalanobis distance 
takes 0, that means the attribute vectors of the neighbor 
pairs are coincident, i.e. the attribute vectors are in the 
same orientation and length, at this moment, the similar-
ity takes 1 as the maximum. And when cosine similar-
ity takes − 1 and Mahalanobis distance is M, that is to 
say, the attribute vectors of the neighbor pairs are in the 
opposite orientation and the attribute vectors have differ-
ent length, at this moment, the similarity takes 0 as the 
minimum. The similarity of instances fi ⋅ j and fi′ ⋅ j′ is 
defined as follows.

where S( fi ⋅ j, fi′ ⋅ j′ ) denotes similarity of instances fi ⋅ j and 
fi′ ⋅ j

′ , D(Xfi⋅j
, Yfi� ⋅j� ) denotes square root of the Mahalanobis 

distance.
Using the example data set in Fig. 3, we give an illus-

trated comparison of cosine similarity, square root of 
Mahalanobis distance and similarity between instances as 
in Fig. 4, where the similarity of instances rises sequen-
tially in [0, 0.5], the cosine similarity increases in minor 
fluctuations, while the square root of Mahalanobis distance 
decreases in relatively large fluctuations. We compare the 
values of ordinates that the neighbor pairs on the abscissa 
reflect on the three curves and find that when the values 
of ordinates for cosine similarity are the same, the smaller 

(3)

S(fi ⋅ j, fi� ⋅ j
�) =

1 + cos(Xfi⋅j
, Yf

i
� ⋅j

� )

2 + D(Xfi⋅j
, Yfi� ⋅j� )

, S(fi ⋅ j, fi� ⋅ j
�) ∈ [0, 1]

the square root of the Mahalanobis distance is, the greater 
the similarity of instances is, as depicted by the neigh-
bor pairs of A.2–B.4, A.3–B.9 and when the values of 
ordinates for square root of the Mahalanobis distance are 
the same, the greater the cosine similarity is, the greater 
the similarity of instances is, as depicted by the neighbor 
pairs of A.7–C.10, A.1–B.1. Therefore, we reckon that the 
constructed similarity of instances can better smooth the 
floating variation of cosine similarity and Mahalanobis 
distance and reasonably reflect our expectation on the con-
cept of influence which is defined on the basis of similarity 
between instances with attributes. 

• Introduction of information entropy

 Information entropy was introduced by Shannon, in his 
paper “A Mathematical Theory of Communication” pub-
lished in 1948. It tells how much information that an event 
contains, the more uncertain an event is, the more informa-
tion it contains. The computation of information entropy is 
widely applied in many areas for decades. In this paper, we 
use the concept and computation method of “average self-
information” in Shannon’s information entropy theory, that 
is, the average self-information of random variable X, sym-
bolized as H(X), is defined as:

where X denotes a discrete random variable whose output is 
xi , i = 1, 2,…, n, and P(xi ) is the probability of occurrence of 
output xi , I(xi) denotes the self information of event X = xi.

As we aim at discovering high influence co-location 
patterns in this paper, the available information of data sets 
is the number of neighbors of instances and the similarity 
of instances with attributes, so we use the Eq. 4 to calcu-
late the entropies for measuring the information contained 
in neighbor of instance and attribute similarity of instance 
as follows.

• Neighbor entropy of instance

 Neighbor entropy denoted as Ne(fi ⋅ j) , is computed on 
neighbor number of instance fi ⋅ j with Eq. 5:

where Nfi⋅j
 denotes the number of neighbors and itself of 

instance fi ⋅ j . The entropy is arranged for calculating the 
influence of instances on their surrounding neighbors.

(4)H(X) =

n∑
i=1

P
(
xi
)
I
(
xi
)
= −

n∑
i=1

P(xi) logP(xi)

(5)

Ne(fi ⋅ j) = −

Nfi ⋅j∑
1

1

Nfi⋅j

log10
1

Nfi⋅j

−

((
−

1

Nfi⋅j

log10
1

Nfi⋅j

))

Fig. 4  Comparison on cosine similarity, square root of Mahalanobis 
distance, and similarity of instances
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• Attribute similarity entropy of instance

 Attribute similarity entropy denoted as Ase(fi ⋅ j) , is com-
puted on the similarities of instance ( fi ⋅ j)’s attributes with 
its neighbors’ attributes, the equation is as follows:

where S(fi ⋅ j, fi ⋅ j) denotes the similarity of instances with 
attributes for the instance fi ⋅ j with itself, S(fi ⋅ j, fk ⋅ m) 
denotes the similarity of instances with attributes between 
the instance fi ⋅ j and any of its neighbors (i.e. instances 
fk ⋅ m).

Definition 1 (Influence of instance) Influence of instance 
is defined as the degree that an instance affects its adjacent 
instances to tend to be the same on attributes, denoted as 
Inf( fi ⋅ j ), which represents all the influence that instance fi ⋅ j 
exerts on its adjacent instances. By means of information 
entropy approaches, we construct the neighbor entropy and 
attribute similarity entropy for instances. The influence of 
instance fi ⋅ j can be computed with the entropies as follows:

where Ne(fi ⋅ j) denotes the neighbor entropy of instance 
fi ⋅ j , Ase(fi ⋅ j) denotes the attribute similarity entropy of 
instance fi ⋅ j . �1 denotes the weight of Ne(fi ⋅ j) , �2 denotes 
the weight of Ase (fi ⋅ j) . In this paper, we let �1 = 0.2 , 
�2 = 0.8 and assume that the influence of attributes is more 
bigger than that of neighbors as per our practical experience.

Definition 2 (Influence of feature) Given a spatial feature fi 
and its instance set S

(
fi
)
 , the influence of feature fi is defined 

as the total influence of all spatial instances belonging to this 
feature. It is described as follows:

Definition 3 (Influence of feature in a co-location pattern) 
Given a k-size co-location pattern c = {f1, f2,… , fk} , fi ∈ c , 
k ⩾ 2. The influence of feature fi in pattern c is defined as 
the sum of the minimum influence of instances belonging 
to the feature fi exert on other features’ instances in table_
instance(c). It is described as follows:

(6)

Ase(fi ⋅ j) = −

Nfi ⋅j�
1

S(fi ⋅ j, fi� ⋅ j
�)

∑Nfi ⋅j

1
S(fi ⋅ j, fk ⋅ m)

log10
S(fi ⋅ j, fi� ⋅ j

�)

∑Nfi ⋅j

1
S(fi ⋅ j, fk ⋅ m)

−

⎛⎜⎜⎝
−

S(fi ⋅ j, fi ⋅ j)∑Nfi ⋅j

1
S(fi ⋅ j, fk ⋅ m)

log10
S(fi ⋅ j, fi ⋅ j)∑Nfi ⋅j

1
S(fi ⋅ j, fk ⋅ m)

⎞⎟⎟⎠

(7)
Inf(fi ⋅ j) = �1 ⋅ Ne(fi ⋅ j) + �2 ⋅ Ase(fi ⋅ j), �1 + �2 = 1

(8)Inf
(
fi
)
=

∑
fi⋅j∈S(fi)

Inf(fi ⋅ j)

(9)Inf
(
c, fi

)
=

∑
fi⋅j∈T(c)

Infmin(fi ⋅ j)

Definition 4 (Influence ratio of feature in a spatial 
co-location pattern) Given a k-size co-location pattern 
c = {f1, f2,… , fk} , fi ∈ c , k ⩾ 2. The influence ratio of fea-
ture fi in pattern c ( InR(c, fi) ) is defined as the ratio of the 
influence of feature fi in the co-location pattern c to the total 
influence of feature fi . It is described as follows:

Definition 5 (Influence index of the co-location pattern) 
Given a k-size co-location pattern c = {f1, f2,… , fk} , fi ∈ c , 
k ⩾ 2. The influence index of the pattern c (InI(c)) is defined 
as the minimum among influence ratios of all the features in 
the pattern c. It is described as follows:

Definition 6 (High- influence co-location pattern) A spa-
tial co-location pattern c will be defined as a high influence 
co-location pattern only if its InI(c) is not smaller than the 
preset threshold  InIthreshold.

Example 2 Based on the table-instances and instances’ 
attributes from the sample data set of Fig. 3, we illustrate 
the process of mining high influence co-location patterns in 
Table 3. Assumed  InIthreshold = 0.001, as InI(c) ⩾ InIthreshold, 
we can conclude that all the co-location patterns in Table 3 
are high influence patterns.

3.2  The downward closure property

Downward closure property (also called antimonotone prop-
erty) and Apriori principle are two cornerstones for mining spa-
tial co-location patterns. It’s already proven that participation 
ratio (PR) and participation index (PI), which are the measures 
of traditional co-location pattern mining satisfy the downward 
closure property and Apriori principle [3, 34], i.e. PR and PI 
decrease monotonously with the increase of pattern sizes, and 
any instance fi ⋅ j which belongs to the table_instances(c) surely 
belongs to the table_instance(c′ ) when c′ ⊆ c . Through calcula-
tion and proof, we find that influence ratio and influence index 
also satisfy the downward closure property.

Lemma 1 (Downward closure property of the high influ-
ence co-location patterns) Influence ratio (InR) and influ-
ence index (InI) decrease monotonously as the increasing of 
co-locations’ sizes.

Proof Assumed c′ ⊆ c , |c| = k, |c�| = m , so k > m. (|c| denotes 
the size of c). T(c) denotes table-instance of the co-location 
pattern c. According to the above definitions and equations, 
the following proofs can be made:

(10)InR
(
c, fi

)
=

Inf(c, fi)

Inf(fi)

(11)InI(c) = mink
i=1

{InR(c, fi)}
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Assumed fl ∈ c , fl ∉ c�.
If InR

(
c, fl

)
= mink

i=1
{InR(c, fi)} , then min

k
i=1

{InR(c, fi)}

< min
m
i=1

{InR(c�, fi)} holds. Otherwise, the inequality is also 
true.

∴InI(c) < InI
(
c�
)
 . So proof is completed. The lemma 

holds. □

Theorem 1 (Apriori principle of high influence co-location 
patterns) If a co-location pattern c is with high influence, 
then all its sub-patterns c′ ⊆ c are also with high influence. 
Conversely, if a co-location pattern c is not with high influ-
ence, then all of its super-patterns c��(c ⊆ c��) must not be 
with high influence.

Proof Based on Lemma 1, Theorem 1 is clearly true. □

3.3  High influence co‑location pattern mining 
algorithm

We propose the HICPM algorithm for mining high influence 
co-location patterns with a pruning strategy. The pseudo 
code is listed in Table 4. 

The description of pseudo code is as follows:

(1) Set variables �1 , �2 , R,  InIthreshold, compute inverse 
covariance matrices, and use R for generating neighbor 
pairs, as for data preprocessing;

(2) Generate 1-size candidate co-location patterns (i.e. fea-
tures) and table-instances (i.e. instances) (steps 1–2); 
compute cosine similarity and Mahalanobis distance 
then generate similarity of attributes for any neighbor 
pair (steps 3–7); generate star-type neighborhoods and 
compute influence of instances and features (steps 
8–13);

(3) Initialize data structure; start the iteration from 2-size 
candidate co-location patterns: k-size candidate co-
location patterns come from k-1-size high influence co-

∵InR
�
c, fi

�
=

Inf(c, fi)

Inf(fi)
=

∑
fi⋅j∈T(c)

Infmin(fi ⋅ j)

Inf(fi)
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location patterns, where any sub-sets of a candidate co-
location pattern were not high influential, the candidate 
co-location pattern would be pruned (steps 14–16); gen-
erate star-type instances for k-size candidate co-location 
patterns (steps 17–20); As 2-size star-type instances are 
clique ones, they can be directly processed (step 21); for 
3-size or larger size, it’s necessary to check if the star-
type instances were clique ones, before that, the candi-
date co-location patterns would be coarsely filtered, i.e. 
if influence ratio of star-type instances in a candidate 
co-location pattern was less than preset  InIthreshold, the 
candidate co-location pattern would be pruned (step 
22); generate the clique instances for k-size candidate 
co-location patterns (steps 23–24); generate k-size high 
influence co-location patterns (step 25); continue the 
iteration and return all sizes high influence co-location 
patterns (steps 26–28).

3.4  Time complexity

The HICPM algorithm shares the same process of forming 
star-neighborhoods and cliques with join-less. With refer-
ence to the time complexity analysis of join-less [6], we 
compare the time complexity of the two algorithms at first:

Let Thi, Tjl be the time cost for HICPM and join-less 
respectively, S denotes the input spatial data sets, 
Tstar_neighborhoods(S) denotes the time cost for materialization 
of star-type neighborhoods from neighbor pairs set Nb, 
Thi(2) , Tjl(2) denotes the time cost that HICPM and join-less 
respectively spend for finding 2-size co-location patterns, ∑
k>2

Thi(k) , 
∑
k>2

Tjl(k) denotes the time cost that HICPM and 

join-less respectively spend for finding k-size (k > 2) co-
location patterns, Tcompu_influ(S) denotes the time cost that 
HICPM spends for computing the influence of instances and 
features, Tcompu_InI(c)(2) , Tcompu_PI(c)(2) denotes the time cost 
that HICPM and join-less respectively spend for computing 
the influence index or participation index for 2-size co-loca-
tion patterns, Tcompu_InI(c)(k) , Tcompu_PI(c)(k) denotes the time 
cost that HICPM and join-less respectively spend for com-
puting the influence index or participation index for k-size 
co-location patterns. Then,

As Tcompu_influ(S) > 0 , Tcompu_InI(c)(2) > Tcompu_PI(c)(2) , 
Tcompu_InI(c)(k) > Tcompu_PI(c)(k)

So we know that the HICPM algorithm spends more time 
than join-less does.

Secondly, we analyze the time complexity of HICPM 
algorithms:

Let n denotes the number of instances, |Ck| denotes the 
number of k-size candidate patterns, tcompu_InI(c)(k) denotes 
the average time cost that HICPM spends for computing the 
influence index for k-size co-location patterns, c denotes a 
constant.

∵Thi = Tgen_neighborhoods(S) + Tstar_neighborhoods(S)

+ Thi(2) +
∑
k>2

Thi(k)

Tjl = Tgen_neighborhoods(S) + Tstar_neighborhoods(S)

+ Tjl(2) +
∑
k>2

Tjl(k)

Thi − Tjl = Thi(2) − Tjl(2) +
∑
k>2

(Thi(k) − Tjl(k))

= Tcompu_influ(S) + Tcompu_InI(c)(2) − Tcompu_PI(c)(2)

+
∑
k>2

(Tcompu_InI(c)(k) − Tcompu_PI(c)(k))

∴Thi > Tjl

Table 4  The pseudo code of HICPM algorithm (key notations please 
refer to Table 1)
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As the data preprocessing takes time of O(n2) to generate 
the spatial relationships between instances, and the num-
ber of instances is usually much larger than the number of 
features and the average number of neighbors per instance.

Therefore, the time complexity of HICPM algorithm is 
O(n2).

4  Experimental evaluation

The experiments use a synthetic data set and a real data set, 
performed by R 3.5.2 and Java 1.7.0_51, Java SE 1.7.0_51-
b13, Java Server VM (24.51-b03, mixed mode), run on a nor-
mal PC with Intel core i7-6700 CPU @ 3.40 GHz, 3.41 GHz, 
16.0 GB memory, Windows 10 (64-bit). We use R for synthe-
sizing data and calculating the Icm and use Java for executing 
other tasks. The real data set and synthetic data set come 
from Beijing’s points of interest (POIs) with attributes, down-
loaded from Baidu Map API on April 22, 2018 [35].

4.1  Data description

The real data set contains 16,307 instances with 8-dimen-
sional attributes, i.e. unit_price, overall_rating, service_rat-
ing, facility_rating, hygiene_rating, image_num, groupoon_
num and comment_num.

∵Thi = Tgen_neighborhoods(S) + Tstar_neighborhoods(S) + Thi(2) +
∑
k>2

Thi(k)

= Tgen_neighborhoods(S) + Tstar_neighborhoods(S) + Tcompu_influ(S)

+ Tcompu_InI(c)(2) +
∑
k>2

(Tcompu_InI(c)(k))

∴Thi = Tgen_neighborhoods(S) + Tstar_neighborhoods(S) + Tcompu_influ(S)

+ Tcompu_InI(c)(2) +
∑
k>2

(Tcompu_InI(c)(k)

≤ O
(
n2
)
+ c × O(n) + |Ck| × tcompu_InI(c)(k)

≈ O
(
n2
)

The synthetic data set contains 23,083 instances with 
8-dimensional attributes, i.e. ave_price, person_visit, invest-
ment, turnover, loyalty, comment_num, rank_rating, com-
plaint_num, synthesized by R with the means and variances 
referring to the annual growth rate of industries in Beijing 
in 2018.1

The two data sets involve 9 kinds of features i.e. beauty 
store, restaurant, school, enterprise, hospital, hotel, resi-
dence, health-care center, shop.

4.2  Effectiveness of HICPM algorithm

In this section, the effectiveness of HICPM algorithm is 
shown on the real data set, by comparison with that of join-
less algorithm.

(1) Comparison on Top-5 Co-location Patterns Mined by 
HICPM Algorithm and Join-less Algorithm

When the experimental variables are set with R = 10 m, 
�1 = 0.2 , �2 = 0.8 ,  InIthreshold = PIthreshold = 0.001, we can see 
in Table 5 that the HICPM algorithm can find patterns that 
the join-less algorithm miss, i.e. the 2-size pattern {B, I} 
and 4-size patterns {A, B, H, I}, {A, D, H, I}, {A, F, H, I}, 
{A, B, D, H}. Besides, the mining results show that another 
2-size patterns {C, F}, {B, C} and twelve 3-size patterns 
{A, F, I}, {B, D, F}, etc. can solely be mined by HICPM 
algorithm. That is because when R is small, there are few 
instances found in neighborhoods, the join-less algorithm 
seldom find prevalent co-location patterns as the participa-
tion ratios are too small to satisfy the threshold, however, 
the HICPM algorithm uses the more effective InI which is 
only related to attributes of instances and regardless of the 
prevalence.

Both of them can find the same size co-location patterns 
at same rank, e.g. 3-size patterns {A, B, I}, {B, F, H}, {B, 

Table 5  Comparison on Top-5 
co-location patterns

2-size patterns 3-size patterns 4-size patterns

Top-5 high influence co-
location patterns (mined by 
HICPM algorithm)

{B,F} 0.234660
{A,B} 0.227399
{B,H} 0.179887
{B,I} 0.177815
{A,H} 0.136592

{A,B,H} 0.022428
{A,H,I} 0.016476
{A,B,I} 0.015820
{B,F,H} 0.013153
{B,H,I} 0.012246

{A,B,H,I} 0.002328
{A,D,H,I} 0.001127
{A,F,H,I} 0.001034
{A,B,D,H} 0.001019

Top-5 prevalent co-location 
patterns (mined by join-less 
algorithm)

{A,H} 0.057796
{B,F} 0.055469
{A,B} 0.053645
{A,I} 0.050394
{B,H} 0.044271

{A,H,I} 0.007392
{A,B,H} 0.006510
{A,B,I} 0.004167
{B,F,H} 0.003516
{B,H,I} 0.003385

Null

1 National bureau of statistics of China: http://data.stats .gov.cn/searc 
h.htm. Accessed 20 Jan 2019.

http://data.stats.gov.cn/search.htm
http://data.stats.gov.cn/search.htm
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H, I}, or the same size patterns at different rank, e.g. 2-size 
patterns {B, F}, {A, B}, {B, H}, {A, H} and 3-size patterns 
{A, B, H}, {A, H, I}. It happens because the two algorithms 
share the same R, i.e. they use same table-instances, so some 
table-instances with high influence and participation ratio 
can be found. However, the assumption in this paper that 
influence of instances only exists in neighborhood is set 
manually to simplify the analysis, once influence range is 
set beyond R, more co-location patterns with high influence 
will be solely discovered by HICPM algorithm.

Besides, when R = 20 m while other variables remain, the 
results show that the two algorithms can mine same num-
ber of co-location patterns at diverse sizes, i.e. the 2-size 
patterns are identical, one pattern is different in 3-size pat-
terns and in 4-size patterns respectively. When R varies in 
[30, 200] while other variables remain, the join-less algo-
rithm mines more co-location patterns at all size and finds 
co-location patterns at higher size. Although most of high 
influence patterns can also be found by join-less algorithm, 
a few patterns can only be mined by the HICPM algorithm. 
It appears that the two algorithms show similar character-
istics at higher size when  InIthreshold is set at a relatively low 

level. Nevertheless, the HICPM algorithm can sequence the 
patterns as per their influential level. Therefore, the HICPM 
algorithm can be reckoned as a new co-location pattern min-
ing approach different from previous ones.

(2) Comparison on Mining Results of HICPM Algorithm 
and Join-less Algorithm

The mining results of the two algorithms are compared with 
the varying variables.

• Effect of distance threshold on pattern number

In Fig.  5a, b, �1 = 0.2 , �2 = 0.8 ,  InIthreshold = PIthreshold  
= 0.001, R varies in [10, 200]. When R = 10 m, the HICPM 
algorithm can discover 2-size patterns four more, 3-size pat-
terns twelve more, 4-size patterns four more, than the pat-
terns mined by join-less algorithm. When R = 20 m, the two 
algorithms mine same number of patterns at all sizes. When 
R ⩾ 30 m, the join-less algorithm can mine more co-location 
patterns, as more cliques appear, the participation ratio (PR) 
grow faster than InR. The opposite is true when R < 20 m.

Fig. 5  Effect of distance threshold [for join-less in (a) and HICPM in (b)],  InIthreshold/PIthreshold [for HICPM/join-less in (c)] and weight �
1
/�

2
 [for 

HICPM in (d)], on pattern number
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• Effect of  InIthreshold/PIthreshold on pattern number

In Fig. 5c, R = 40 m, �1 = 0.2 , �2 = 0.8 ,  InIthreshold/PIthreshold 
varies in [0.001, 0.121]. It can be seen that pattern number 
falls sharply when the  InIthreshold/PIthreshold rises from 0.001 
to 0.021. The reason is that most of patterns have their InI/
participation index (PI) below 0.001.

• Effect of weight �1∕�2 on pattern number

In Fig.  5d, R = 40  m,  InIthreshold = PIthreshold = 0.001, the 
weight �1∕�2 varies in [0, 1]. The figure depicts the growth 
of pattern number when �1 rises from 0 to 1 (i.e. �2 falls 
from 1 to 0, as �1 + �2 = 1 ). It shows that when �1 rises, that 
means the importance of neighborhood number increases or 
the importance of attribute similarity decreases, we can find 
more high influence patterns. A compromise is made for 
balance as �1 = 0.2 , �2 = 0.8 in this paper.

4.3  Performance of HICPM Algorithm

In this section (1), time performance of HICPM algorithm 
with variation of thresholds is shown on the real data set and 
the synthetic data set, by comparison with that of join-less 
algorithm. In this section (2), scalability of HICPM algo-
rithm with variation of the number of instances, attribute 
dimensions and features is verified on the synthetic data set, 
by comparison with that of join-less algorithm.

(1) Comparison on time performance of HICPM algorithm 
and join-less algorithm running on the real data set and 
synthetic data set

 Time performance of the algorithms is shown with the vari-
ation of two kinds of threshold in Fig. 6 (using real data) and 
Fig. 7 (using synthetic data).

  

• Effect of R on time performance

 In Fig. 6a, �1 = 0.2 , �2 = 0.8 ,  InIthreshold = PIthreshold = 0.001, 
R varies in [20, 200]. It shows that the curves run closely, the 
gap between them expands in general with the rise of R. The 
gap is 0.189 s(s) at R = 20 m as the minimum, and is 6.769 s 
at R = 200 m as the maximum. The HICPM algorithm runs 
slightly slower than the join-less algorithm as the former 
uses the same clique-forming of the latter and runs more 
steps to calculate the influence of features.

• Effect of  InIthreshold/PIthreshold on time performance

 In Fig.  6b, R = 40  m, �1 = 0.2 , �2 = 0.8 ,  InIthreshold/
PIthreshold (InI/PI) varies in [0.001, 0.121]. It can be seen 
that the curves decline with the rise of InI/PI and the curve 
of HICPM algorithm runs over that of join-less algorithm. 
The gap between curves is 0.091 s at InI/PI = 0.121 as the 
minimum, and is 0.197 s at InI/PI = 0.001 as the maximum. 
Additional experiments conducted with InI/PI < 0.001 indi-
cate that most of the features have InI and PI values concen-
trated in (0, 0.001].

• Effect of thresholds on time performance

 The following curves in Fig. 7 reflect the time performance 
of the two algorithms running on the synthetic data set with 
the same experimental conditions as aforementioned for 
analyzing Fig. 6.

Fig. 6  Comparison on time performance of HICPM algorithm and join-less algorithm running on the real data set, with the variation of R in (a) 
and  InIthreshold/PIthreshold in (b)
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In Fig. 7a, the minimal gap between curves is 0.33 s at 
R = 40 m, and the maximal gap is 9.685 s at R = 180 m. In 
Fig. 7b, the minimal gap is 0.128 s at InI/PI = 0.121 and the 
maximal gap is 0.305 s at InI/PI = 0.001.

(2) Comparison on scalability of HICPM algorithm and 
join-less algorithm running on the synthetic data set

To verify the scalability, we test the scalability of the algo-
rithms on the synthetic data set. Variation of variables share 
the same experimental conditions: R = 40  m, �1 = 0.2 , 
�1 = 0.8 ,  InIthreshold = PIthreshold = 0.001.

• Effect of number of instances on scalability

 Figure 8a depicts that the two curves run closely, the gap 
between them expands in general with the increase of 
instances. The minimal gap is 0.033 s at n = 600, while the 
maximal gap is 0.262 s at n = 20,600. It demonstrates from 
actual data that the efficiency of the two algorithms is differ-
ent as they run at same level of time complexity.

• Effect of number of attribute dimensions on scalability

It can be seen in Fig. 8b that the two algorithms are insen-
sitive to the variation of number of attribute dimensions, 
as the points on the curves fluctuate in a tiny range which 
is approximately 4%. So it seems hopeful to apply more 
dimensional attributes to explore more details of spatial rela-
tionships and changes. Time performance of the HICPM 
algorithm is in average 0.257 s more than that of the join-
less algorithm, it is the cost for the former to run more steps.

• Effect of number of features on scalability

In Fig. 8c, it is shown that the curve of the HICPM algorithm 
runs above that of the join-less algorithm, while the curves 
rise steeply at f = 6, 8 and 9, as the number of instances 
belonging to the features at f = 6, 8, 9 is much more than the 
number of instances of features at f = 3, 4, 5 and 7. It is also 
noticed that the gap between the curves changes a lot at f = 8, 
the repeated experiments reveal that it may be a bit deviation 
caused by computer system.

5  Conclusion

The main work of this paper is to mine high influence co-
location patterns from spatial instances with attributes. 
Based on number of neighbors and similarity between 
instances, the InI of features in co-location patterns is 
calculated for mining high influence co-location patterns. Fi
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This paper proves the InI satisfies the downward closure 
property, and proposes a HICPM algorithm with pruning 
strategy. With extensive experiments and comparisons on 
real and synthetic data sets, we analyzed the effectiveness, 
performance and scalability of the HICPM and join-less 
algorithms and found HICPM could discover high influ-
ence co-location patterns, at a time cost level slightly higher 
than join-less. A high influence co-location pattern can be 
reckoned as a concise compression of traditional co-location 
patterns in the aspect of influence. This paper establishes 
a basic framework for mining high influence co-location 
patterns, many details shall be probed further, e.g. flexible 
influential distance, principal component analysis for high-
dimensional data [36], weight of attributes and influence of 
extended spatial objects.
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