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Abstract
Recently, the ear biometric has received much attention for human recognition due to its unique shape and rich local fea-
tures. However, extracting discriminative features from ear images is a crucial task in presence of illumination changes, low 
contrast, noise, and pose variations. With the aim of neutralizing the effect of these factors, this paper proposes an automatic 
enhancement technique using meta-heuristic optimization to enhance the ear images. Here, we modified a recent and simple 
yet meta-heuristic optimization technique known as Jaya algorithm by introducing a mutation operator to enhance the ear 
images in few iterations and the proposed approach is named as enhanced Jaya algorithm. Then, we employed a pose-invariant 
local feature extractor, SURF to extract local features. Finally, the k-NN classifier has used to evaluate the rate of correct 
identification. Extensive experiments are conducted on four standard datasets and the performance evaluation is carried out 
by qualitative and quantitative measures. Experimental results clearly indicate the proposed enhancement approach is com-
petitive as compared to two classical methods HE, CLAHE, and two meta-heuristic algorithms PSO and DE-based image 
enhancement techniques.
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1  Introduction

In the last decades, biometric systems are being widely used 
as a major domain of security applications in the electroni-
cally advanced society. It has led to the development of many 
biometric systems using different biometric traits. Among 
numerous biometric traits, the ear shape has become a very 
much popular and well-accepted biometric trait for human 
recognition owing to its unique shape, stable structure, and 
salient features. In addition, the ear biometric is a good alter-
native to other successful physiological modalities including 

fingerprint, iris, and palmprint because it is non-intrusive 
and less cooperation is needed from the users for recognition 
operation. This biometrics requires a low expensive camera 
to capture 2D ear images like face biometric trait but hav-
ing promising recognition performance than face. Again, 
as size of ear shape is smaller, it can easily combine with 
other biometric trait to overcome the problems of unimodal 
biometric systems.

In 1890, first-person Alphonse Bertillon suggested that 
the shape of the outer ear can be used for human identifica-
tion. After a long duration in 1989, the American police 
officer Alfred Iannarelli [21] developed a manual meas-
urement based ear identification system. He performed 
extensive experiments on ten thousand ear images based on 
twelve unique features or measurements of ear for identifi-
cation of different shape of the ears. During latter part of 
20th century, Burge and Burger [6] were the first to propose 
a computer based ear biometric system. With the intention 
of studying the uniqueness of the ear prints, one project 
the Forensic Ear identification (FearID) was commenced 
by nine institutes from Italy, the UK and the Netherlands 
in 2006. The outcome of their study brought to the public 
with the conclusion that earprints can be used as biometric 
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in a semi-automated identification system. Since then, ear 
biometrics has been deployed in many areas including iden-
tity recognition, serveilance, law enforcement, and forensics 
applications [16].

However, ear biometrics based on 2D ear images still 
undergo poor recognition performance due to improper 
acquisition such as poor contrast, blur, illumination vari-
ations, and noise. Various enhancement techniques are 
generally used to resolve the above problems occurring 
at the time of capturing the 2D ear images. In the biom-
etric systems, contrast enhancement step is very important 
towards improvement of recognition performance. This 
enhancement operation can be broadly classified into two 
categories such as spatial domain and frequency domain. 
The most commonly used enhancement techniques of the 
spatial domain are classified into four types based on the 
operation performed on the pixels of the image such as 
pixel-wise operation [42], filter operation [18, 41], transfor-
mation [42], and multi-scale enhancement [25]. The linear 
contrast enhancement, gamma correction are the example of 
pixel-wise enhancement. The proposed image enhancement 
approach in this paper is based on filter operation. All his-
togram based enhancement approaches are based on trans-
formation operation.

In order to reduce the effect of low contrast from 2D 
images the following enhancement techniques are widely 
used such as histogram equalization (HE) [42], and con-
trast-limited adaptive histogram equalization (CLAHE) [36]. 
In HE, the intensity of each pixel of the image is modi-
fied based on relative frequency of the intensity of every 
pixels. Due to this both object and background are equally 
enhanced, which tends to introduce noise in the background. 
It also over-enhances the image contrast in presence of high 
peaks in the histogram. Unlike evaluating a single histo-
gram for the entire image, the AHE enhancement technique 
divides the image into a number of tiles and computes his-
tograms of each region to redistribute the intensity values of 
these regions. Finally, the enhanced intensity values of the 
neighboring tiles are combined using bilinear interpolation 
to obtain the entire image. The main benefit of AHE is the 
enhancement of local detail information contents and noise 
enhancement is still a problem. To minimize the noise, the 
CLAHE introduced one extra step clipping the height of 
the local histograms before the computation of its CDF. In 
CLAHE, histogram clipping step does not fully assure to 
eliminate noise. In addition, the selection of the clipping 
limit is image dependent.

Unlike traditional image enhancement techniques, 
recently many meta-heuristic optimization algorithms are 
deployed to search for the optimal parameters of the trans-
fer function which maps the intensity values of the pixels 
into enhanced intensity values of the input image. Gorai 
et al. [18] proposed an approach based on particle swarm 

optimization (PSO) [14, 28] which gave promising results on 
the standard images. Similarly, Sarangi et al. [41] explored 
differential evolution (DE) [11, 43] to enhance the standard 
images which also gave promising results. Recently, many 
meta-heuristic algorithms [12] have been studied to obtain 
optimal parameters value of the transformation function, 
but most of them suffer from large computational times 
and proper tuning of the algorithmic-specific parameters to 
achieve better performance.

The main contribution of our paper is to develop an 
automated image enhancement approach in order to resolve 
the above mentioned issues in the existing enhancement 
methods. Initially, enhanced Jaya algorithm (EJA) has been 
exploited to enhance contrast level of the ear images in 
the preprocessing stage of the ear biometric system in less 
computation overhead. The enhanced ear images contain 
more detail information that allows extracting rich features 
in order to improve recognition performance. In the next 
stage, we employed a local feature extractor, the Speeded-up 
Robust Features (SURF) has been employed to extract the 
most discriminant local descriptors under pose variations. 
Finally, the nearest neighbor classifier is trained using mini-
mum training set including two samples per each subject for 
person identification in the matching stage.

The rest of the paper is organised as follows. Section 2 
describes background study of the problem. Detail descrip-
tion of ear biometric system and a review of existing works 
available for ear localization and recognition in Sect. 3. 
Section 4 presents the proposed ear biometric system. A 
comprehensive analysis of the experimental results of pro-
posed approach is compared to the results of two classical 
approaches and two meta-heuristic approaches of ear images 
enhancement in Sect. 5. Section 6 emphasizes conclusion 
and future scope.

2 � Problem formulation

Image enhancement is one of the important tasks in the 
preprocessing module of a biometric system. The main 
objective of an efficient image enhancement algorithm is to 
highlight the fine detail contents of the input image which 
can easily separate the object from the background. Hence, 
enhanced image can be utilized to extract more discrimi-
nating features that improves recognition performance of 
the biometric system. The proposed image enhancement 
technique is based on a spatial operation or filter operation 
which is performed using two functions. First, the transfor-
mation function is used to modify the pixel intensity val-
ues based on both statistical global and local information 
and four parameters. Second, the fitness or cost function is 
required to estimate the information content of an image. 
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The mathematical expression of the transformation function 
and fitness function are given in the following subsections.

2.1 � Transformation function

Transformation function updates the pixels intensity values 
to new intensity values based on Eq. (1) derived from global 
and local statistical information of the input image. To 
extract global statistical information, all the pixels’ intensity 
values of the image of dimension (P × Q) are utilized. Simi-
larly, for extracting local statistical information, it depends 
on the neighborhood pixels intensity values of a predefined 
(n × n) window. The mathematical form of the parametric 
transformation function g(p, q) for both global and local 
enhancement is derived as follows:

where K(p, q) is known as image enhancement function, 
which is expressed using the global mean (M) and local 
standard deviation ( � ) in Eq.  (2). Similarly, �(p, q) and 
�(p, q) denote the local mean and local standard deviation of 
the current pixel, which is calculated using (n × n) neighbor-
hood pixels intensities centred around current pixel (p, q). 
Image enhancement function, global mean, local mean, and 
local standard deviation of an image f(p, q) are given in 
Eqs. (2), (3), (4) and (5) respectively.

Finally, Eq. (1) can be rewritten by substituting Eqs. (2) in 
(1) to get the required transformation function as:

The transformation function in Eq. (6) enhances the contrast 
level of the input image centred at the local mean. The four 
positive real-valued parameters (a, b, c, k) of the transforma-
tion function decides the intensity values of the enhanced 
image. Since these four parameters play an important role 
to vary the contrast level of the input image over a broader 

(1)g(p, q) = K(p, q) ∗ [f (p, q) − c.�(p, q)] + �(p, q)a

(2)K(p, q) =
k.M

�(p, q) + b

(3)M(p, q) =
1

p × q

P∑

p=1

Q∑

q=1

f (p, q)

(4)�(p, q) =
1

n

n∑

1=1

n∑

q=1

f (p, q)

(5)�(p, q) =

(
1

n

n∑

p=1

n∑

q=1

(f (p, q) − �(p, q))2

) 1

2

(6)g(p, q) =
k.M

�(p, q) + b
[f (p, q) − c�(p, q)] + �(p, q)a

range. Hence, the proposed enhancement technique opti-
mizes those four parameters value over the predefined ranges 
of the transformation function to enhance the intensity val-
ues of the input image.

2.2 � Evaluation of fitness function

In order to measure the amount of enhancement of an 
enhanced image, an fitness function is used after assigning a 
specific parameters values of a, b, c, and k on the transforma-
tion function. The higher fitness value of an enhanced image 
indicates more enhancement has acquired. Designing a good 
fitness function, it depends on measurement parameters 
used. In general, the enhanced image maximizes a number 
of edges and entropy in comparison with the input image. 
An enhanced image expands the gray-levels over a wide 
range which increases the details edge information. Simi-
larly, the entropy increases due to enhancement of intensity 
of the pixels in the enhanced image. In this work, the fitness 
function is used for the proposed approach is sum of edge 
intensities, number of edge pixels (edgels), and entropy of 
the enhanced image. These three evaluation measures are 
combined to define an effective fitness function. An effec-
tive fitness function should be chosen to measure the fitness 
value of the enhanced image. This leads to an increase in 
entropy value because of more information present in the 
enhanced image [8]. The fitness function is presented in the 
form of equation as follows:

where Ienhanced is the enhanced image obtained from the 
transformation function in Eq. (6) and Iedge is the edge image 
obtained from Sobel edge detection. The edgels (Iedge) is the 
number of edge pixel in the edge image of enhance image. 
E(Iedge) the is sum of all the pixel intensity values of the 
enhanced image which is corresponding to edge pixels of the 
edge image and H(Ienhanced) is the entropy value of enhanced 
image. E(Iedge) is calculated as follows:

The entropy of the enhanced image Ienhanced determines the 
information content which is calculated as follows:

(7)
F(Ienhanced) = log(log(E(Iedge)))

×
edgels(Iedge)

M × N
× H(Ienhanced)

(8)E(Iedge) =

P∑

p=1

Q∑

q=1

Ienhanced ∗ Iedge

(9)H(Ienhanced) = −

Lmax−1∑

i=0

p(i) ∗ log2(p(i))
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where p(i) indicates the probability of occurrence of pixels 
with gray level i ∈ (0, Lmax − 1) and Lmax indicates the maxi-
mum gray level present in the enhanced image (Ienhanced).

2.3 � Jaya algorithm and enhanced Jaya algorithm

All meta-heuristic optimization approaches are randomized 
algorithms which need controlling parameters to control 
the path of the candidate solutions towards a global opti-
mal solution. Thus, these algorithms require proper tuning 
of the control parameters to guide candidate solutions to 
converge at global optimal solution. Among all meta-heu-
ristic algorithms, Jaya algorithm does not need algorithm-
specific control parameters. This subsection provides an in-
depth description of Jaya algorithm (JA) and the proposed 
enhanced Jaya algorithm (EJA).

2.3.1 � Jaya algorithm

Jaya algorithm (JA) [35] is a recent and simple yet meta-heu-
ristic algorithm introduced by Venkata Rao. The name Jaya 
algorithm has originated from Sanskrit language, meaning of 
the word Jaya is victory. The principle behind this algorithm is 
always getting the optimal solution by following best and avoid-
ing the worst solutions. However, it is parameters free, this key 
fact makes JA popular among many researchers. In recent years, 
it has been used in various optimization problems in different 
domains of engineering applications [29, 44, 47, 48].

JA utilizes two operators such as selection and updating 
the candidate solutions. After selection of best for each can-
didate solution from the present solution and the next solu-
tion based on their fitness values. JA relies on the present 
best and worst solution to update each individual solution 
for the next generation. At each generation, the candidate 
solutions are updated to move toward a global optimal solu-
tion with the principle of following the best and avoiding the 
worst solutions. Mathematical expression [35] for updating 
candidate solutions are as follows:

where Xi,j(g) is the value of the jth parameter for ith solu-
tion at iteration g, Xi,best(g) and Xi,worst(g) is the value of the 
ith parameter for the best solution and the worst solution at 
iteration g respectively, r1,i,j and r2,i,j are two random numbers 
generated in the range of [0, 1] at iteration t, finally Xi,j(g + 1) 
represent the updating value of jth parameter for ith candi-
date solution in the next iteration (g + 1) . Continuous upgrad-
ing every candidate solution at next iteration using Eq. (10) 
exploits neighborhood positions that leads to converge at 
global solution. In addition, two random numbers r1,i,j and 
r2,i,j enhance the exploration capability of Jaya algorithm. 

(10)
Xi,j(g + 1) = Xi,j(g) + r1,i,j ∗ (Xi,best(g) − |Xi,j(g)|)

− r2,i,j ∗ (Xi,worst(g) − |Xi,j(g)|)

After updating the candidate solutions at current iteration n, 
then the selection process is used to select the best individual 
solution between the current solution Xj(g) and the updating 
next solution Xj(g + 1) based on fitness values for the next 
iteration (g + 1) which is described in [35] as follows:

As a result, all candidate solutions of the next iteration are 
best than their corresponding solutions in the current itera-
tion. In accordance with the selection of the candidate solu-
tions for next iteration, all their fitness function values are 
modified and considered as the input to next iteration.

2.3.2 � Enhanced Jaya algorithm

One major issue of Jaya algorithm is slow convergence to 
the global best solution. In order to achieve fast explora-
tion and convergence to optimal solution, we incorporate 
an efficient mutation strategy in the Jaya algorithm to avoid 
slow convergence and it is termed as the enhanced Jaya algo-
rithm (EJA). In the experimental evidence, the combination 
of mutation operator with Jaya algorithm can enhance the 
candidate solutions diversity and searching capability. As a 
result, the mutation operator increases the convergence rate 
that leads to reach at the optimal solution in less iterations.

As mentioned in [41], DE outperforms the PSO based 
image enhancement in terms of performance and faster con-
vergence to the global optimal solution. In each generation, 
DE executes mutation operation for the entire population 
before crossover and selection operations. Hence, DE can 
explore the search space faster than other existing evolution-
ary algorithms. However, it takes high computational time 
for execution and occasionally, its performance degrades in 
case of stagnation of the population that leads to premature 
convergence or slow convergence to the optimal solution. 
For this reason, we randomly incorporated the mutation 
operator of DE in the Jaya algorithm to enhance diversity in 
the solutions after performing updating and selection opera-
tions on the candidate solutions. In the proposed EJA, we 
used an adaptive selection of the mutation operator to bal-
ance exploitation and explorations in less computation time. 
This mutation operator mathematically expressed as

where j ∈ {1, 2,… ,K} , jth candidate solution of the popula-
tion of size K. Similarly, r1 , r2 , and r3 are the indices of the 
candidate solutions from {1, 2,… ,K} . The nth and (n + 1) th 
represents solutions of the current and next iterations. F is 
the scaling factor lies in the range of [0,1] to control the 
difference vector in the mutation operation and avoid stag-
nation in the population. In this work, we have used an adap-
tive scaling factor which is described as

(11)Xj(g + 1) =

{
Xj(g), if f (Xj(g)) > f (Xj(g + 1))

Xj(g + 1), otherwise

(12)Xj(g + 1) = Xr1
(g) + F ∗ (Xr2

(g) − Xr3
(g))



447Evolutionary Intelligence (2020) 13:443–461	

1 3

where I is the initial value of scaling factor F which is 0.8, 
g is the current iteration and Gmax is the maximum itera-
tion. In addition, we can also adaptively evaluate the rate 
of mutation in Eq. (14) and the mutation operation will be 
performed when uniformly generated a random real number 
is greater than and equal to the rate of mutation.

The mutation rate varies from 1 to 0 in the successive itera-
tions. Initially, the rate of mutation operation is less and 
gradually it increases in the last part of the iterations. In this 
way, it enhances the exploration capability of the algorithm. 
Finally, EJA balances both exploitation and exploration 
capability using upgrading and mutation operators.

2.4 � Speeded‑up robust feature transform (SURF)

An efficient local feature descriptors, named Speeded-Up 
Robust Features (SURF)proposed by Herbert Ray and his col-
leagues [4]. SURF detects scale and in-plane rotation-invariant 
interest points (key points) and its corresponding descriptors are 
generated. It provides a better result in computationally quite 
faster than another proficient local feature descriptor Scale 
Invariant Feature Transform (SIFT). In order to make all com-
putations faster, integral images and Hessian matrix are used to 
detect interest points. The interest points are the blob-like struc-
tures at regions where the determinant of the Hessian is maxi-
mum. In an integral image I for a given point x with coordinate 
x[p, q]T the hessian matrix H(x;�) at scale � is defined as:

where Lxx(p, �) , Lxy(p, �) , Lyx(p, �) and Lyy(p, �) are the con-
volution of the Gaussian second order derivatives �

2

�x2
g(�) , 

�2

�x�y
g(�) , �2

�y�x
g(�) and �

2

�y2
g(�) . The computation of the Hes-

sian matrix is expensive and time consuming. Hence, Hes-
sian can be computed approximately using box filters. For 
scale invariant, SURF uses a pyramidal scale space, like 
SIFT. But, it is different from SIFT; the SURF can directly 
change the scale because of the box filters and integral 
image. The scale space is analysed by up-scaling the filter 
size of a certain dimensions (9 × 9, 15 × 15, 27 × 27, etc.) . 
The key-points are localized in the image and over scales; a 
non-maximum suppression in a 3 × 3 × 3 neighborhood is 
applied. Then, the descriptor is calculated for all interest 
points by considering a circular region near the interest 
points and the sum of Haar wavelet responses in horizontal 
(dx) and vertical (dy) directions are computed. In order to 
make descriptors rotation invariant, an orientation selection 

(13)F = I + rand ∗ ((Gmax − g)∕Gmax)

(14)rand(0, 1) ≥

(
1 −

g

Gmax

)

(15)H(x;�) =

[
Lxx(p, �) Lxy(p, �)

Lyx(p, �) Lyy(p, �)

]

method has introduced in [4]. The square region is divided 
into 4 × 4 grids to preserves spatial information. For each 
subdivision, authors computed the horizontal and vertical 
Haar wavelet responses at 5 × 5 equally spaced sample 
points. The sum of the wavelet responses in dx and dy for 
each subdivision is used as first set of entries in feature 
descriptor. In addition, the sum of absolute values of the 
responses, |dx| and |dy| are computed to obtain the informa-
tion about the polarity of the intensity changes. Hence, for 
ith subdivision the feature descriptor Vi is given by

These local feature descriptors (Vi) are concatenated to form 
a 64 dimensional feature descriptor which expresses the 
interest point and nearest neighbors. Next, feature descrip-
tor of the interest points are matched. In our work, matching 
of descriptors can be done by three distance measures such 
as Euclidean distance (d1) , Canberra distance measures (d2) , 
nearest neighbor distance ratio (d3) . The distance between 
two descriptors D1 and D2 using Euclidean distance is given 
by

If nearest neighbor ratio in Eq. (19) is less than � , then 
(D1,D2) descriptors have better match, otherwise they have 
no match. In our experiments, in most of the cases Euclid-
ean distance metric in Eq. (17) outperforms than Canberra 
distance in Eq. (18) and nearest neighbor distance ratio in 
Eq. (19).

3 � Generic ear biometric system

A biometric system works in two phases: one ear enrolment 
phase and second ear recognition phase. In the enrolment 
phase, the biometric system is trained using multiple images 
for each person and all the feature sets of the individuals are 
stored in the database. Similarly, in the recognition phase, an 
individual is recognized by the biometric system. A generic ear 
recognition system is as shown in Fig. 1, which is basically con-
sists of four modules: ear localization, ear image enhancement, 
feature extraction, and matching/classification. First module is 
the ear localization module in which the ear shape is localized 
and cropped from the side face image. The input ear image 
may be affected by low contrast, illumination variation, and 
noise which influences the recognition performance through 

(16)Vi = {Σdx,Σdy,Σ|dx|,Σ|dy|}

(17)d1 =

√
Σ64

i=1
(D1i − D2i)

(18)d2 = Σ64

i=1

|D1i − D2i|
|D1i| + |D2i|

(19)d3 =
d1(D1,D2)

d1(D1,D3)
< 𝜃
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misclassification. Hence, the second module is the image 
enhancement in which the quality of the ear image is enhanced 
to extract discriminative features in the feature extraction mod-
ule. The feature set of the enhance ear image can be generated 
using global or local feature extraction technique. As the feature 
set contains redundant features, it is necessary to select unique 
features or discriminant features using either feature selection 
or reduction technique. Then, the reduced feature set is used for 
person recognition in the recognition module.

Various ear localization and recognition approaches have 
proposed in the literature, we describe a review of some recent 
and well-known approaches of ear localization and recogni-
tion in 2D images. Yuan et al. [51] have employed skin-colour 
and elliptical contour information for ear localization. Ibra-
him et al. [22] utilized a bank of curved and stretched Gabor 
wavelets known as banana wavelets, which is similar to ear 
structure used for ear localization. Islam et al. [24] proposed 
an Adaboost technique which yields huge time for ear locali-
zation. Prakash et al. in [33] presented a template matching 
based ear localization technique in which template has been 
resized according to the size of the side face to make it suit-
able for each test images. Prakash et al. [34] used hierarchical 
clustering of the edge map to localize ear. Prakash et al. [31] 
utilized connected components of a graph from the edge map 
and selected a set of connected component as probable ear 
candidates. Recently, we have efficiently used modified Haus-
dorff distance for ear localization. Sarangi et al. [39] presented 
a new scheme of automatic ear localization based on template 
matching with the modified Hausdorff distance. Recently, 
Emeršič et al. [17] proposed a novel ear detection technique 
based on convolutional encoder-decoder networks (CEDs).

In the literature, ear recognition methods can be catego-
rized into the five categories: holistic approaches, structural 
approaches, spectral approaches, local descriptor-based 
approaches, and deep learning approaches. The holistic 
approaches use statistical measures which are evaluated from 
the image as a whole. Victor et al. [46] applied principal 
component analysis (PCA) method on the training ear images 
to compute eigenvectors and test ear images are projected 
on the basis eigenvectors for ear recognition. Zhang et al. 
[52] proposed an ear recognition system using a combina-
tion of independent component analysis (ICA) and a radial 

basis function network (RBFN). Xie and Mu [49] proposed 
an improved locally linear embedding (IDLLE) algorithm 
for dimensionality reduction of multi-pose ear recognition 
using KNN classifier. The performance of improved LLE 
has improved over LLE, PCA and KPCA. Yuan and Mu [50] 
proposes ear recognition system based on sparse representa-
tion to deal with ear recognition under partial occlusion.

The structural approaches use ear shape and structure to 
recognize the persons. Burge and Burger [6] represented 
ear as an adjacency graph from the Voronoi diagram of its 
edge segments and novel graph matching algorithm has used 
for ear recognition. Hurley et al. [20] proposed a novel fea-
ture extraction technique, force field transformation for ear 
localization and recognition. Choras [9] has used geometric 
features to represent the ear shape for ear recognition.

The spectral approaches utilize different frequency spec-
trums to recognize the persons. Sana and Gupta [37] pro-
posed an efficient ear biometric system in which authors 
used multi-resolution discrete wavelet transform (DWT). 
Kumar and Wu [27] utilized a log-Gabor based combina-
tion approach for ear identification. Abate et al. [1] proposed 
a rotation invariant descriptor technique for ear recognition 
using generic Fourier descriptor to extract features from ear 
images. Basit and Shoaib [3] proposed a ear recognition 
method based on discrete curvelet transform (DCT).

In the last decade, many researchers have published local 
features-based ear recognition techniques. The local features 
represent an image into multiple image patches or the key-
points which can characterize by multiple feature vectors or 
descriptors. As a result, the descriptors contain detail local 
information which is more robust to occlusion or clutter. Many 
researchers have explored well-known single local feature or 
fusion of multiple local features representation to improve rec-
ognition performance in the ear biometric systems under illu-
mination, pose, scale variation, partial occlusion, and clutter. 
Guo et al. [19] presented a texture based local feature called 
Local Similarity Binary Pattern (LSBP). Bustard and Nixon [7] 
considered ear image as a planar surface and created a homog-
raphy transform using SIFT feature points to register ears accu-
rately. Damer and Führer [10] used multi-scale dense HOG fea-
tures, Pflug et al. [30] utilized local phase quantization (LPQ) 
descriptor, Benzaoui et al. [5] employed binarized statistical 

Fig. 1   The generic ear recogni-
tion system
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image features (BSIF), and Sarangi et al. [38] explored pyra-
mid histogram of oriented gradients (PHOG) as a descriptor 
of 2D ear shapes to extract discriminative features for ear rec-
ognition. Some authors tried to use multiple representations to 
increase the recognition performance namely, Badrinath and 
Gupta [2] performed feature-level fusion of different poses of 
ear images to form a fused template for ear verification; Kisku 
et al. [26] exploited scale invariant feature transform (SIFT) 
feature descriptors for the ear recognition; Prakash and Gupta 
[32] fused the speeded-up robust feature (SURF) on enhanced 
ear images; Sarangi et al. [40] proposed a feature-level fusion 
of two local features PHOG and LDP representation for each 
ear shape and reduced combined feature dimension using KDA.

Most recently, Emeršič et al. [15], Dodge et al. [13] and 
Zhang et al. [53] proposed CNN based ear recognition under 
uncontrolled conditions with illumination, pose, scale vari-
ations, partial occlusions, and clutter.

4 � Proposed technique

Like other biometrics, the proposed ear biometric system con-
sists of three main components: preprocessing, feature extrac-
tion, and matching. Figure 2 illustrates the major steps of the 

proposed ear biometric system. The ear images can be easily 
captured using the low-resolution camera at a distance because 
of which it suffers from pose variation, illumination changes, 
partial occlusion, and clutter. After the acquisition of 2D side 
face image using the camera, the preprocessing module starts to 
localize ear shape form the side face image and then enhance-
ment technique is used to improve the quality of the ear image. 
This preprocessing stage plays a vital role in the improvement 
of recognition performance. The enhancement technique 
increases the discriminant features contained in the original 
ear image that leads to improve the recognition performance. 
We have explored a new and simple yet meta-heuristic opti-
mization algorithm known as Jaya algorithm which does not 
require algorithmic-specific control parameters and only one 
updating operation (10) is used for exploitation and exploration 
operations. In our work, we have used proposed enhanced Jaya 
algorithm (EJA) to improve the diversity in the search space by 
introducing the superiority of Differential evolution’s mutation 
operator in the simple Jaya algorithm. To examine the effec-
tiveness of the enhancement approach, we use SURF feature 
extraction technique to make our algorithm robust to handle 
scale, rotation invariant, and occlusion. Then, for simplicity, we 
use k-NN classifier for identification of subjects.

Fig. 2   Block diagram of the 
proposed ear biometric system
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The main advantage of our approach is that it does not 
need algorithmic-specific control parameters and we adap-
tively select mutation operation which makes it fully auto-
matic ear enhancement technique. We used the proposed 
enhanced Jaya algorithm (EJA) for searching the optimal 
values of the parameters (a, b, c, and k) of the transformation 
function described in Eq. 6 in order to improve the quality 
of the input image. Experimentally, the upper and lower 
boundary of the four parameters has been fixed, which are 
given as follows: a ∈ [0, 1.5] , b ∈ [1,

gmean

2
] , c ∈ [0, 1] , and 

d ∈ [0, 1.5] . Xi,j is the ith candidate solution with jth param-
e t e r  i n  t h e  p o p u l a t i o n .  Xi,j = [0, 1, 0, 0] a n d 
Xth
i,j
= [1.5,

gmean

2
, 1, 1.5] are lower and upper bound of the 

parameters values of the candidate solutions. Algorithm 1 
presents the basic steps of the proposed enhanced Jaya algo-
rithm. All the candidate solutions of the population are ran-
domly initialized using given formula as follow:

Each candidate solution contains four parameters. They are 
randomly computed within a range of predefined search 
space based on the lower and upper bounds of each param-
eters. The population size N is set ten times the number of 
parameters which is 40 in our all enhancement experiments. 
After initialization of the population, the fitness function is 
used to evaluate the best and the worst solution of the popu-
lation. Next, the fitness value for each solution evaluated in 
two phases. In the first phase, the transformation function in 
Eq. 6 used to modify the pixel values of the original image, 
and then in the second phase, the fitness value evaluated 
using Eq. 7 for enhanced image. In order to maintain diver-
sity in the search space, the candidate solutions are updated 
using Eq. 10 to converge in the direction of the best optimal 
solution with the help of the best solution and the worst 
solution. Every solutions move towards an optimal solution 
by following best solution and avoiding the worst solution 
of each generation. This updating operation of the Jaya algo-
rithm is merely responsible for exploitation and exploration 
in the search space. For this reason, the Jaya algorithm needs 
more number of iterations to reach near the best solution. 
Therefore, the proposed approach intended to introduce the 
mutation operation for improving diversity in the search 
space which reduces the number of iterations to converge 
the optimal solution. The mutation operation of DE algo-
rithm is very much efficient to explore the search space. The 
same mutation operator in Eq. 12 has been employed in the 
proposed approach to improve diversity and fast convergence 
to the optimal solution. In this work, the mutation operator 
is applied to all candidate solutions of the specific iterations 
when a uniformly generated random number in the range of 
[0,1] is greater than (1 − g

Gmax

) . It is observed that the prob-
ability of selecting mutation strategy depends on the 

(20)Xi = Xlow
i,j

+ rand ∗ (X
high

i,j
− Xlow

i,j
)

iteration index i.e. a few number of mutation operation have 
performed at the initial iterations and the probability of 
selecting mutation operation increases in the last stage of the 
iterations when the value of (1 − g

Gmax

) reduces from 1 to 0. 
Algorithm 1 describes the pseudo-code of the enhanced Jaya 
algorithm (EJA).

5 � Experimental results

In this section, four different experiments of ear image 
enhancement are conducted to demonstrate the effective-
ness of the proposed algorithm. First, the subjective evalu-
ation of the original and enhanced images; second, SURF 
feature key-points matching; third, experiment is to exam-
ine the quantitative metrics such as detail variance (DV), 
background variance (BV), and edge counts; finally, evaluat-
ing the performance of the ear identification system based 
on enhanced ear images as inputs. The performance of the 
proposed image enhancement technique is compared to 
two classical well-known algorithms which are Histogram 
Equalisation (HE) and Contrast-Limited Adaptive Histo-
gram Equalisation (CLAHE) and two popular meta-heuris-
tic search algorithms such as Particle swarm optimization 
(PSO) and Differential evolution (DE) based image enhance-
ment techniques, respectively. The experimental design and 
results are discussed in the following subsections.

5.1 � Databases used

In this paper, all the experiments are carried out on the ear 
images from four widely used databases such as IIT Delhi 
(IITD) [23], University of Notre Dame collection E (UND-
E) [45], collection J2 (UND-J2) [45], and the Annotated 
Web Ears (AWE) [16] standard databases. The IITD data-
base contains ear images of the students and staff from the 
IIT Delhi, India. Recently, an extended version of ear data-
base is available of 221 subjects with 793 images, where 
each subject age group varies from 14 to 58 years. In this 
database, most of the images are a very low contrast with 
large intra-class dissimilarity due to pose variation. Next, 
authors have selected two more databases from the Univer-
sity of Notre Dame (UND) such as collection E and collec-
tion J2 to handle more difficulties. The UND-E database 
contains 464 side face images from 114 subjects and 3–9 
samples per subject. Images of the same subject are captured 
in different time with a large variation of pose and illumina-
tion effect. Similarly, The UND-J2 database consists of 2413 
side face images taken from 415 subjects with 2–22 sam-
ples per subject. It can be noticed that most of the images 
have different objects in the background along with side face 
which is a challenging task to locate the ear region among 
multiple objects. In addition, female subject’s images are 
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occluded by hair and earrings. Recently, an unconstrained 
ear images collected ‘in the wild’ of the ears of public fig-
ures collected by a web crawler named as AWE database. 
It consists of ten thousand ear images of 100 subjects with 
10 samples per subject. In this database, images of the same 
subject have a huge variation in terms of illumination, pose, 
scale, and visual quality distortions. After ear localization 
all the ear images of four databases were resized for the 
enhancement and recognition as follows: IITD ear images 
resized [ 50 × 150 ], UND-E ear images resized [ 80 × 180 ], 
UND-J2 ear images resized [ 80 × 180 ], and AWE ear images 
resized [ 100 × 100 ] respectively.

In order to evaluate the performance of the image 
enhancement techniques, we perform identification opera-
tion comparisons on the enhanced images of each tech-
nique. In this experiment to determine the effectiveness of 
enhanced images of each database, we selected three sam-
ples for each subject from the database. Out of two samples 
are used as training samples and the remaining one is used as 
a test sample from every subject. In this way, three different 
combinations of datasets are built with two training samples 
and one test sample and an average of identification rates are 
determined for performance evaluation. The distribution of 
training and test samples of the four datasets are illustrated 
in Table 1.

5.2 � Parameters Tuning

After ear localization operation, all the ear images were con-
verted to the gray-scale images prior to the preprocessing 
operation. Then, low-pass filter was employed to minimize 
the illumination effect using the kernel or filter. Here, we 
experimentally determined different filter size for four data-
bases such as for IITD kernel size is [ 3 × 3 ] for low resolu-
tion images, UND-E kernel size is [ 11 × 11 ] because most 
of the images are high contrast images, UND-J2 kernel size 
is [ 5 × 5 ], and AWE kernel size is [ 7 × 7 ]. Next, for image 
enhancement many parameters of the classical PSO, classi-
cal DE, and proposed EJA have to tuned to obtain optimal 
results i.e., to improve the contrast level of the ear images on 
the four databases. We have set experimentally the param-
eters of the PSO, DE, and EJA as mentioned in Table 2. As 

we know, the original Jaya algorithm is a parameter-free, 
simple, and computationally faster but it takes more genera-
tions to converge the optimal solution in comparison with 
DE and PSO. We have used adaptive mutation rate in the 
proposed approach when a real random value in the range [0, 
1] is greater than the mutation rate, then mutation operation 
is performed for all the candidate solutions of the popula-
tion in that iteration. Unlike DE where mutation operation is 
performed in every generation, in EJA initially, more muta-
tion operations are performed and gradually it reduces to 
zero in last generations. We introduced mutation operator 
in the Jaya algorithm to achieve higher exploration and fast 
convergence to optimal solution.

5.3 � Performance measures

This section analyses experimental results of two classical 
and three meta-heuristic-based enhancement techniques on 
the four popular standard ear image databases. Two classi-
cal approaches are HE and CLAHE. Similarly, three meta-
heuristic approaches are PSO, DE, and the proposed EJA. 
Figure 3 indicates the visual performance analysis of the 
enhanced sample images of our approach on the mentioned 
four databases. Figure 4 presents SURF key-points match-
ing between original sample images and between enhanced 
images using our approach that indicates comparison of 
the enhanced images have more matching points on sam-
ples from four mentioned databases. Then, Figs. 5, 6, 7 
and 8 show the visual presentation of sample images and 
their enhanced images obtained using HE, CLAHE, PSO, 
DE, and our EJA techniques on mentioned databases. Fur-
ther, Figs. 9, 10, 11 and 12 indicate the rate of identifica-
tion performance of four k-NN classifiers with four set of 
enhanced images obtained in preprocessing stage by using 
HE, CLAHE, and proposed EJA approaches. Tables 3, 4, 
5, and 6 illustrate the quantitative performance measures 

Table 1   Allocation of samples for training and test sets on four data-
sets

Datasets Number of sub-
jects

Training sample 
size

Testing 
sample 
size

IITD 221 442 221
UND-E 114 228 114
UND-J2 273 546 273
AWE 100 200 100

Table 2   Parameters setting of PSO, DE, and proposed EJA for image 
enhancement

Classical PSO Classical DE Enhanced JA

Population size = 40 Population size = 40 Population size = 40

Max. Generation = 50 Max. Generation = 50 Max. Generation = 50

– Scaling factor 
( F = 0.8)

Scaling factor ( F = 0.8

)
Inertia weight 

( W = 1.4)
– –

Acceleration coef-
ficients

(C1 = 2.8 , C2 = 1.4) – –
– – Adaptive mutation
– Crossover rate 

C = 0.6

–
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in terms of DV, BV, edge counts of four sample images 
on IITD, UND-E, UND-J2, AWE databases respectively. 
Similarly, Tables 7, 8, 9 and 10 give the rate of identifi-
cation performance of the ear biometric systems based on 
HE, CLAHE, and EJA enhancement techniques used in pre-
processing stage and ear image representation using SURF 
feature descriptors on IITD, UND-E, UND-J2, and AWE 
databases respectively.

At first, a subjective performance measure of the 
enhanced images is illustrated by using histograms of input 
and enhanced images. The histograms of the enhanced 
images are more flat or spread over the histogram of input 
images in the interval [0, 255]. Second, the performance 
measure based on SURF feature key-points matching, it 
counts a number of key points matched which is more in 
case of enhanced images. Third performance measure is a 
quantitative measure in which, we estimate detail variance 
(DV), background variance (BV), and edge counts of the 
input and enhanced images for comparison. DV and BV 
is the average local variance of the foreground details and 
background respectively. The variance of each pixel is esti-
mated using the gray-levels of the eight neighboring pix-
els over an entire image. From the variance image if pixels 
local variance is greater than the threshold then the vari-
ance of those pixels is the part of average foreground detail 
variance (DV), otherwise, the variance of those pixels is the 
part of average background variance (BV). In the case of 
an enhanced image the DV value increases, while the BV 

value is not considerably changed compared to the original 
image, then contrast enhancement is realized. Also, a num-
ber of edges of the enhanced image are a comparison with 
the original image.

Finally, we examined the quality of the enhanced image 
based on the rate of identification performance of the pro-
posed ear biometric system. Identification operation of the 
biometric system is evaluated on the basis of one-to-many 
comparison against all training samples to validate the iden-
tity of a test sample. The performance of the identification 
is measured using accuracy or correct identification or rate 
of identification, which is defined as the rate at which a 
number of samples are correctly classified out of total test 
samples. The rate of identification is measured in terms of 
ranks; rank-1 indicates the fraction of samples correctly 
classified based on first rank comparison results; similarly, 
rank-2 implies correct identification based on second rank 
comparison results and so on. The rate of correct identity of 
the probe samples within the top k ranks matching scores 
obtained from gallery samples is referred to as a rank-k iden-
tification rate. This is graphically represented using Cumula-
tive Match Characteristic (CMC) curve, which evaluates the 
rank-wise cumulative sum of correct identification. Hence, 
it illustrates the rank in the x-axis and the cumulative rank 
accuracy in the y-axis.

Fig. 3   Histogram based visual analysis of original and ours images
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5.4 � Analysis of numerical results

In this subsection, we discuss the experimental results of 
four different performance measures of HE, CLAHE, PSO, 
DE, and EJA based image enhancement approaches applied 
on the four above-mentioned ear image databases. These 
databases have low contrast, different lighting conditions, 
pose, and scale variation images. Figure 3 illustrates the 

visual representation of the original images and EJA based 
enhanced images and their corresponding histograms on 
IITD, UND-E, UND-J2, and AWE databases. The Fig. 3 
indicates the original images have narrow histograms and 
enhanced images have flat histograms. Consequently, the 
original low contrast image indicates one peak in the his-
togram and the original high contrast image indicates two 
peaks in the histogram of UND-E database sample image 

Fig. 4   SURF keypoints match-
ing for first and third rows 
with Poor contrast images and 
second and four rows with 
enhanced images
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but their enhanced images have flat histogram. In addi-
tion, Fig. 4 presented the SURF feature key-points match-
ing of original and enhanced images from the mentioned 
databases. It has found that if the enhanced image is not 
properly enhanced then it has less key-points matching. 
Tables 3, 3, 4 and 5 show the quantitative metrics such as 

DV, BV, and edge count of original and enhanced images 
have been generated using HE, CLAHE, PSO, DE and pro-
posed techniques on the mentioned databases. The quan-
titative measure of the edge count (EC) of all enhanced 
images on four mentioned databases, the proposed approach 
based enhancement produce have more edge counts than 

Fig. 5   Four original images 
row-wise start from left to right 
enhanced gray-scale images 
using HE, CLAHE, PSO, DE, 
and proposed EJA enhance-
ment techniques on IIT Delhi 
database

Fig. 6   Four original images 
row-wise from left to right 
enhanced gray-scale images 
using HE, CLAHE, PSO, DE, 
and proposed EJA enhancement 
techniques on UND-E database
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other mentioned enhancement approaches. However, in 
all four samples of IITD database DV values of HE-based 
enhancement have greater values than other enhancement 
techniques. Hence, it is clear that the performance HE-
based enhancement performs better in IITD database than 

other mentioned enhancement approaches. In other three 
databases, the proposed EJA-based enhancement approach 
provides better DV values in most of the sample images. 
Similarly, Tables 7, 8, 9 and 10 indicated an average rate of 
person identification using HE, CLAHE, PSO, DE, and EJA 

Fig. 7   Four original images 
row-wise from left to right 
enhanced gray-scale images 
using HE, CLAHE, PSO, DE, 
and proposed EJA enhancement 
techniques on UND-J2 database

Fig. 8   Four original images 
row-wise from left to right 
enhanced gray-scale images 
using HE, CLAHE, PSO, DE, 
and proposed EJA enhancement 
techniques on AWE database
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on the four mentioned databases. It is clearly observed that 
the proposed approach EJA outperforms over other tech-
niques. As DE’s mutation operator has been used in EJA 
for more exploration and early convergence, which makes 
EJA rate of identification results slightly better than DE 
approach but EJA consumes less execution time in com-
parison to PSO and DE algorithm. In quantitative com-
parison based on person identification operation, we have 
taken two samples from each subject for training and one 
sample for testing in identification operation using different 
enhancement approaches at preprocessing stage in the ear 

biometric system. In real world applications, we can increase 
the number of training samples per subject and employing 
dense local descriptors to represent ear images then the rate 
of identification ranks of proposed ear biometrics approach 
based on EJA image enhancement would be far better than 
the results have obtained in the experiments.

From the experimental results, it clearly observed, the 
proposed EJA approach is computationally faster and per-
formance-wise efficient in case of illumination variation, 
low contrast, extraction of fine detail features, and presence 
of noise. It is also clear that the proposed approach is fully 

Fig. 9   Identification rate curves 
of the proposed ear biometrics 
using HE, CLAHE, PSO, DE, 
and EJA on IITD database
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Fig. 10   Identification rate 
curves of the proposed ear 
biometrics using HE, CLAHE, 
PSO, DE, and EJA on UND 
(Collection E) database
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Fig. 11   Identification rate 
curves of the proposed ear 
biometrics using HE, CLAHE, 
PSO, DE, and EJA on UND 
(Collection J2) database
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automatic does not require parameters tuning for improving 
identification performance.

5.5 � Computational execution time

In this section, we present the total average execution time 
of the proposed ear image enhancement using EJA and being 
compared with PSO and DE based ear image enhancement 

approaches. According to Algorithm 1, the average execu-
tion time ( Texe ) is sum of average time of three operations 
such as updating candidate solutions ( Tupd ), calculating fit-
ness value for every candidate solutions ( Tfit ), and evaluating 
mutation ( Tmut ). The total time taken ( Texec ) by the proposed 
approach as follows:

(21)Texec = Tupd + Tfit + Tmut

Fig. 12   Identification rate 
curves of the proposed ear 
biometrics using HE, CLAHE, 
PSO, DE, and EJA on AWE 
database
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Table 3   Number of edge counts (EC), detail variance (DV) and 
background variance (BV) of the IITD database with nomenclature 
[Method name-Subject number-Image number]

Database image DV BV EC

Original_040_1 0.167645 0.006696 246
HE_040_1 0.298301 0.006873 318
CLAHE_040_1 0.250168 0.005736 280
PSO_040_1 0.204537 0.005829 423
DE_040_1 0.208754 0.004822 395
EJA_040_1 0.203799 0.004989 97
Original_086_1 0.166281 0.005983 204
HE_086_1 0.303620 0.006929 317
CLAHE_086_1 0.242126 0.006989 266
PSO_086_1 0.199807 0.005654 427
DE_086_1 0.205634 0.003951 396
EJA_086_1 0.238101 0.005244 350
Original_120_2 0.166281 0.005983 204
HE_120_2 0.303620 0.006929 317
CLAHE_120_2 0.242126 0.006989 266
PSO_120_2 0.235318 0.004821 355
DE_086_1 0.003893 0.003893 397
EJA_120_2 0.204090 0.004271 400
Original_142_3 0.481217 0.005919 200
HE_142_3 0.362601 0.003052 198
CLAHE_142_3 0.335027 0.006058 221
PSO_142_3 0.267517 0.004224 337
DE_142_3 0.261184 0.004070 347
EJA_142_3 0.263690 0.004000 352

Table 4   Number of edge counts (EC), detail variance (DV) and back-
ground variance (BV) of the UND-E database with nomenclature 
[Method name-Subject number-Image number]

Database image DV BV EC

Original-9-2 0.003872 0.003872 353
HE-9-2 0.368001 0.003486 512
CLAHE-9-2 0.347582 0.004632 516
PSO-9-2 0.405535 0.002191 665
DE-9-2 0.367844 0.005761 718
EJA-9-2 0.412613 0.002181 667
Original-32-1 0.466752 0.006295 359
HE-32-1 0.362474 0.003654 547
CLAHE-32-1 0.266633 0.006592 511
PSO-32-1 0.502376 0.006169 723
DE-32-1 0.244810 0.004630 432
EJA-32-1 0.239645 0.004556 438
Original-64-4 0.448097 0.005718 359
HE-64-4 0.359623 0.003271 404
CLAHE-64-4 0.336431 0.004141 439
PSO-64-4 0.435694 0.006673 514
DE-64-4 0.427487 0.006399 517
EJA-64-4 0.421637 0.006660 522
Original-9-2 0.351690 0.004135 312
HE-9-2 0.313107 0.006601 493
CLAHE-9-2 0.321950 0.006765 501
PSO-9-2 0.359173 0.005675 616
DE-9-2 0.385511 0.005173 623
EJA-9-2 0.404374 0.004826 643
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In this work, we execute each approach 25 times to com-
pute the average execution time. The experiments are imple-
mented in MATLAB (R2017b) running on an Intel Core i5 
PC with 2.6 GHz processor, 4 GB RAM, and Window 10 
Operating System. For EJA, the average runtime for three 
operations ( Tupd ), ( Tfit ), and ( Tmut ) are computed to 0.017, 
13.065, and 0.195 seconds respectively with the total execu-
tion time ( Texce ) is 13.28 second. In EJA, adaptive muta-
tion rate decides mutation operation. In the experiments, 
it has been observed that the average number of mutation 
operation is 26 out of 50 generations. However, mutation 
operator in DE is used for every generation and it takes 0.38 
seconds which is approximately double as compared to the 
proposed EJA. Furthermore, two more operators (crosso-
ver and selection) of DE needs additional execution time as 
compared to the proposed EJA. Similarly, the average execu-
tion time of PSO based enhancement approach is very close 
to the proposed EJA due to slight difference in upgrading 

candidate solutions. However, in PSO, first velocity of the 
birds (candidate solutions) is evaluated then the position of 
individual birds (candidate solution) is updated with respect 
to the velocity of individual birds. In EJA, positions of the 
candidate solutions are directly updated with the help of 
the current best and worst solutions. Table 11 indicates the 
average execution time in seconds for PSO, DE, and the 
proposed EJA based ear image enhancement approaches. It 
clearly indicates that execution time of the proposed EJA is 
less in comparison to classical PSO and DE based enhance-
ment approaches. In terms of space complexity, EJA requires 
less memory space than other meta-heuristic optimization 
algorithms because it does not require any algorithm-spe-
cific parameters for tuning and directly upgrading the can-
didate solutions. Hence, the overall results reveal that the 
proposed EJA is an efficient image enhancement approach 
for the practical applications.

Table 5   Number of edge counts (EC), detail variance (DV) and back-
ground variance (BV) of the UND-J2 database with nomenclature 
[Method name-Subject number-Image number]

Database image DV BV EC

Original-20-2 0.106253 0.005388 163
HE-20-2 0.357107 0.002965 242
CLAHE-20-2 0.245084 0.005465 205
PSO-20-2 0.457124 0.006840 270
DE-20-2 0.383312 0.006010 189
EJA-20-2 0.372988 0.006462 261
Original-72-2 0.078559 0.004772 196
HE-72-2 0.362690 0.003084 435
CLAHE-72-2 0.199160 0.005700 335
PSO-72-2 0.441229 0.007229 461
DE-72-2 0.301438 0.006999 462
EJA-72-2 0.298567 0.007027 470
Original-72-2 0.095220 0.004861 242
HE-72-2 0.356044 0.002727 409
CLAHE-72-2 0.217198 0.005320 379
PSO-72-2 0.408792 0.005373 275
DE-72-2 0.407284 0.006672 478
EJA-72-2 0.414617 0.006758 497
Original-72-2 0.167498 0.002198 239
HE-72-2 0.364460 0.002807 313
CLAHE-72-2 0.240268 0.004950 291
PSO-72-2 0.506332 0.002697 282
DE-72-2 0.478785 0.003274 524
EJA-72-2 0.478181 0.003255 523

Table 6   Number of edge counts (EC), detail variance (DV) and 
background variance (BV) of the AWE database with nomenclature 
[Method name-Subject number-Image number]

Database image DV BV EC

Original-20-08 0.188705 0.006876 152
HE-20-08 0.301522 0.006131 198
CLAHE-20-08 0.278653 0.005392 184
PSO-20-08 0.250440 0.006632 170
DE-20-08 0.328728 0.005722 234
EJA-20-08 0.448370 0.004834 230
Original-42-05 0.423109 0.001617 198
HE-42-05 0.372765 0.002591 188
CLAHE-42-05 0.334818 0.005628 221
PSO-42-05 0.351148 0.003945 216
DE-42-05 0.399482 0.006094 240
EJA-42-05 0.382164 0.006380 227
Original-60-04 0.309747 0.006212 190
HE-60-04 0.277941 0.005536 206
CLAHE-60-04 0.428995 0.004002 207
PSO-60-04 0.222355 0.006589 214
DE-60-04 0.565369 0.004183 370
EJA-60-04 0.590189 0.005491 382
Original-100-09 0.103785 0.007353 163
HE-100-09 0.283432 0.007533 175
CLAHE-100-09 0.269048 0.005985 176
PSO-100-09 0.294041 0.006134 206
DE-100-09 0.320890 0.004934 231
EJA-100-09 0.367298 0.006775 284
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6 � Conclusion

In this paper, we proposed an ear biometric system by 
incorporating a new ear enhancement approach at the pre-
processing stage using enhanced Jaya (EJA) meta-heuristic 
algorithm. The EJA introduces a mutation operator with the 
aim of faster convergence and improvement of the quality of 
ear images to enhance the performance of the ear biometric 
system. The proposed approach is tested with four bench-
mark databases from the literature. Computational results of 
the proposed enhancement technique are compared with two 
well-accepted conventional enhancement techniques such as 
histogram equalization, CLAHE, and two well-known meta-
heuristic optimization like PSO and DE-based enhancement 
techniques. The qualitative and quantitative results based 

on four databases clearly indicate the superiority of the pro-
posed technique. It is also observed that proposed approach 
of image enhancement can be well-suited in the ear biomet-
ric system owing to the improved contrast of the original ear 
images that leads to extract more discriminative features in 
the feature extraction stage and subsequently increases the 
recognition performance.

There are some limitations that require future study. We 
can try other dense local feature descriptors instead of SURF 
with the expectation of improvement in the performance. 
Again, the proposed approach can also be improved by 
incorporating a multi-objective meta-heuristic optimization 
technique. Besides, another direction of research can be the 
use of deep learning based image enhancement approach in 
ear biometrics.

Table 7   Comparison of average identification rate of the proposed ear 
biometrics using HE, CLAHE, PSO, and DE on IITD database

The bold value indicates the best average identification rate

Enhancement techniques Average identification rate 
(%)

Rank-1 Rank-5

Histogram equalization (HE)
 Euclidean distance 87.33 94.57
 Canberra distance 86.87 93.21
 Nearest neighbor 82.8 90.95

CLAHE
 Euclidean distance 89.14 90.49
 Canberra distance 72.85 76.27
 Nearest neighbor 67.11 74.82

PSO
 Euclidean distance 88.23 90.04
 Canberra distance 85.11 88.23
 Nearest neighbor 80.13 78.43

DE
 Euclidean distance 90.04 95.5
 Canberra distance 85.11 88.23
 Nearest neighbor 80.13 78.43

Proposed EJA
 Euclidean distance 91.4 95.02
 Canberra distance 85.11 88.23
 Nearest neighbor 80.13 78.43

Table 8   Comparison of average identification rate of the proposed ear 
biometrics using HE, CLAHE, PSO, and DE on UND-E database

The bold value indicates the best average identification rate

Enhancement techniques Average identification rate 
(%)

Rank-1 Rank-5

Histogram equalization (HE)
 Euclidean distance 61.4 66.66
 Canberra distance 62.28 85.08
 Nearest neighbor 64.91 80.7

CLAHE
 Euclidean distance 68.42 83.33
 Canberra distance 64.03 84.21
 Nearest neighbor 72.80 84.21

PSO
 Euclidean distance 70.47 82.94
 Canberra distance 67.71 88.77
 Nearest neighbor 71.22 92.38

DE
 Euclidean distance 71.92 85.94
 Canberra distance 68.05 88.56
 Nearest neighbor 70.22 95.87

Proposed EJA
 Euclidean distance 72.63 95.71
 Canberra distance 68.71 89.77
 Nearest neighbor 71.89 94.54
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