
Vol.:(0123456789)1 3

Evolutionary Intelligence (2020) 13:415–425
https://doi.org/10.1007/s12065-019-00305-7

RESEARCH PAPER

Comparisons of metaheuristic algorithms for unrelated parallel
machine weighted earliness/tardiness scheduling problems

Oğuzhan Ahmet Arık1 

Received: 14 March 2019 / Revised: 3 July 2019 / Accepted: 10 October 2019 / Published online: 17 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper investigates unrelated parallel machine scheduling problems where the objectives are to minimize total weighted
sum of earliness/tardiness costs. Three different metaheuristic algorithms are compared with others to determine what kind
(swarm intelligence based, evolutionary or single solution) of metaheuristics is effective to solve these problems. In this study,
artificial bee colony (ABC), genetic algorithm and simulated annealing algorithm are chosen as swarm intelligence based
algorithm, evolutionary algorithm and single solution algorithm. All proposed algorithms are created without modification
in order to determine effectiveness of these metaheuristics. Experimental results show that ABC outperforms its opponents
in view of solution quality as swarm intelligence based metaheuristic algorithm.

Keywords  Artificial bee colony · Genetic algorithm · Simulated annealing · Earliness/tardiness · Parallel machine ·
Scheduling

1  Introduction

Weighted earliness/tardiness scheduling problems with
common due date are significant for just-in-time (JIT) phi-
losophy. Each company that accepts JIT philosophy wants
to complete jobs on their due dates. This is significant for
profitability of the company because each early or tardy job
has a cost. If a job is completed before its due date, then this
job is an early job and there are some costs for the company.
For instance, the company has to stock this job until its due
date, then the company will pay for stocking cost and/or
insurance cost. If a job is completed after its due date then
this job is a tardy job and there are some costs because of
tardiness. For instance, the company will have to delay the
shipment or the company will have to lose some of its earn-
ings because of the contract signed with the costumer. Com-
mon due dates are used in order to determine a shipment
date for the jobs that will be transshipped simultaneously
in a common transportation vehicle (cargo, air-cargo, truck
etc.). Most of costumers of the company are from different
countries and orders of a costumer must be completed until

shipment date of transportation vehicle (cargo, air-cargo,
truck etc.). If some of orders in a shipment are completed
before shipment date, the company has to stock these ones
until the shipment date and there will be a holding, stocking
or assuring costs for these stocks. On the contrary, if some
of orders in a shipment completed after the shipment date,
this situation leads a penalty cost such as loss of reputation,
reshipment of tardy jobs and perhaps loss of costumer. Due
dates or common due date can be determined by internal or
external costumers. The internal costumer may want to have
all jobs on a certain date, for instance the packaging depart-
ment may want to package all jobs in a specific order on a
their predetermined date. Furthermore, an external costumer
may want to have all jobs simultaneously. In that sense, the
external costumer sends its transportation vehicle to the
company to pick up all of their order. Therefore the optimal
schedule is important for decreasing total earliness/tardiness
cost. Although finding the optimal schedule is critical for
earliness/tardiness problems in JIT company, the problem
is in the class of NP hard.

The common due date consideration in parallel machine
problems has been investigated by researchers since 1990.
While some of researchers have considered the common due
date as a predetermined value, others have considered it as a
decision variable. Adamopoulos and Pappis [1] considered
common due date as a decision variable in parallel machine

 *	 Oğuzhan Ahmet Arık
	 oaarik@nny.edu.tr

1	 Industrial Engineering Department, Nuh Naci Yazgan
University, 38170 Kayseri, Turkey

http://orcid.org/0000-0002-7088-2104
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-019-00305-7&domain=pdf

416	 Evolutionary Intelligence (2020) 13:415–425

1 3

scheduling problems and they proposed a heuristic proce-
dure that is to minimize total cost of weighted common due
date, earliness and tardiness cost. Their proposed heuristic’s
complexity is O(n3) so their proposed heuristic is a polyno-
mial time heuristic for a NP-Hard problem. Even if the com-
plexity of their proposed heuristic is polynomial, they only
used small test instances to check the performance of the
proposed algorithm. Bank and Werner [2] proposed some
heuristic methods for parallel machine scheduling problem
with pre-determined common due date and release dates
where the objective is to minimize total cost of earliness
and tardiness. Bank and Werner [2] presented two differ-
ent type algorithms. The first type of algorithms was con-
structive algorithms and the other was iterative algorithms.
They stated that the performance of constructive algorithms
depends on some parameters settings and the performance
of iterative algorithms depends on shifting jobs from one
machine to another. They compared their proposed algo-
rithms with some metaheuristics and they concluded that
none of the tested variants is clearly superior to the remain-
ing ones in general. Yang et al. [3] introduced an evolution-
ary strategy method for parallel machine earliness/tardiness
scheduling problem with common due date. They stated
that computational results of different scale problems show
that the method can effectively solve the parallel machine
scheduling problem with relatively large scale. Xiao and Li
[4] considered the problem of assigning a common due date
to a set of jobs and scheduling the jobs on a set of parallel
machines so that the weighted sum of the due date, total
earliness, and total tardiness is minimized. They developed
a heuristic is to solve the problem. Mönch and Unbehaun
[5] proposed three decomposition heuristics for the parallel
machine batch scheduling with pre-determined common due
date where the objective is to minimize total earliness/tardi-
ness cost. Their first heuristic is to apply and exact algorithm
for non-batching problem and then it uses some job sequenc-
ing rules and dynamic programming in order to form batches
for the early and tardy job sets and sequence them optimally.
Their second algorithm uses genetic algorithm in order to
assign jobs to each machine and then, it uses again sequenc-
ing rules and dynamic programming techniques to the early
and tardy jobs sets on each single machine in order to form
batches. Their third algorithm firstly separated equally jobs
as early and tardy and then uses again genetic algorithm and
applies again dynamic programming and sequencing rules.
They reported their computational experiments and stated
that the property-based heuristic beats the genetic algorithm-
based heuristics with respect to solution quality in case of
a large number of jobs. Toksarı and Güner [6–9] investi-
gated parallel machine scheduling problem under effects of
learning and deterioration with common due date where the
objective is to minimize total earliness/tardiness cost. Sriran-
gacharyulu and Srinivasan [10] considered the problem of

scheduling n jobs on two identical parallel machines in order
to minimize the mean squared deviation of job completion
times about a given common due date. They proposed a heu-
ristic to provide quick solutions for problems of larger size.
Drobouchevitch and Sidney [11] considered a problem of
scheduling n identical nonpreemptive jobs with a common
due date on m uniform parallel machines where the objec-
tive is to determine an optimal value of the due date and an
optimal allocation of jobs onto machines so as to minimize
a total cost of earliness, tardiness and due date values. They
proposed a two-phase algorithm to solve the problem. Kim
et al. [12] presented a mathematical programming model and
two types of heuristics for parallel machine earliness/tardi-
ness scheduling problem where the common due date is a
decision variable and the objective is to minimize the sum of
due-date assignment, earliness and tardiness penalties. Their
two types of heuristics were: (a) a fast two-stage heuristic
with obtaining an initial solution and improvement; and (b)
two meta-heuristics, tabu search and simulated annealing,
with new neighbourhood generation methods. They stated
that each of the heuristic types outperforms the existing one.
Beyranvand et al. [13] considered the quadratic program-
ming formulation of the unrelated parallel machine sched-
uling problem with restrictive common due date. Awasthi
et al. [14] investigated single and parallel machine earli-
ness/tardiness scheduling problems with common due date.
They presented an exact polynomial algorithms for optimiz-
ing a given job sequence for single and parallel machines
with the run-time complexities of O(n log n) and O(mn2log
n) respectively. Lin et al. [15] investigated the problem of
minimizing total weighted earliness and tardiness penalties
on identical parallel machines against a restrictive common
due date. They proposed a fast ruin-and-recreate (FR&R)
algorithm is proposed to obtain high-quality solutions to this
complex problem. They stated that computational results
provide evidence of the efficiency of FR&R, which con-
sistently outperform existing algorithms when applied to
benchmark instances.

Although earliness/tardiness parallel machine scheduling
problem is a well-known and classical problem in the litera-
ture, the problem is in NP hard class. For combinatorial opti-
mization problem such as scheduling problems in NP hard
class, metaheuristics promise to find near optimal solution
for these problems within a reasonable time. Metaheuristic
algorithms are classified into swam intelligence based algo-
rithms, evolutionary algorithms and single solution algo-
rithms. All of these algorithms are adaptable for different
types of combinatorial problems (see [16–19]). In fact, a
hybrid method including any two different algorithms can
be used in order to solve and to find near-optimal or optimal
solutions for these problems. For unrelated parallel machine
weighted earliness/tardiness scheduling problem, in order to
find what kind of algorithms are more efficient than others,

417Evolutionary Intelligence (2020) 13:415–425	

1 3

this study investigates the performance of ABC, GA and SA
algorithms that are well-known examples of swam intelli-
gence based algorithms, evolutionary algorithms and single
solution algorithms. The difference of the paper from the
literature for the problem and its variants is to make a com-
parison among different types of well-known metaheuristic
algorithms and to suggest one of alternatives for the readers.

2 � Mathematical model for unrelated parallel
machine weighted earliness/tardiness
scheduling problems

In this section, a position-dependent mixed integer program-
ming model for unrelated parallel machine weighted earli-
ness/tardiness scheduling problems with common due-date
is introduced. If a job is completed after its due date then
that job is a tardy job and tardiness of that job can be calcu-
lated as follows:

where Ti is tardiness of the i th job, Ci is completion time of
the i th job and D is the common due-date for all jobs. If a
job is completed before its due date then that job is an early
job and earliness of that job can be calculated as follows:

where Ei is tardiness of the i th job. In a JIT company, jobs
are wanted to be completed on its due-dates. Earliness and
tardiness are not desired because each early/tardy job has
some costs such as insurance, holding, stocking, additional
cargo, etc., for the company. The company may define costs
of earliness and tardiness amounts of jobs and then the total
cost of earliness and tardiness can be calculated as follows:

where � is the cost for one time-unit earliness and � is the
cost for one time-unit tardiness. A position-dependent mixed
integer linear programming model for unrelated parallel
machine weighted earliness/tardiness scheduling problems
with common due-date is as follows:

Indexes

i:	� index for jobs,
j:	� index for machines,
r:	� Index for position numbers on machines,

Parameters

Pij:	� processing time of job i for machine j,
D:	� common due date for all jobs,

(1)Ti = max(Ci − D, 0) ∀i

(2)Ei = max(D − Ci, 0) ∀i

(3)f = �

n
∑

i=1

Ei + �

n
∑

i=1

Ti

�:	� weight for early jobs,
�:	� weight for tardy jobs,
n:	� number of jobs
m:	� number of machines

Decision variables

P[r],j:	� processing time of the job at position r of machine j,
C[r],j:	� completion time of the job at position r of machine

j,
Ci:	� completion time of job i,
Xi,r,j:	� if job i is assigned at position r of machine j , then it

is equal to 1, else 0
Ei:	� earliness time of job i
Ti:	� tardiness time of job i

Objective function

Constraints

(4)min z ∶ �

n
∑

i=1

Ei + �

n
∑

i=1

Ti

(5)P[r],j =

n
∑

i

Xi,r,jPij ∀r, j

(6)C[r],j = P[r],j + C[r−1],j ∀r, j

(7)C[0],j = 0 ∀j

(8)Ci =

n
∑

r

m
∑

j

Xi,r,jC[r],j ∀i

(9)Ei ≥ D − Ci ∀i

(10)Ti ≥ Ci − D ∀i

(11)
n
∑

i

xi,r,j ≤ 1 ∀r, j

(12)
n
∑

r

m
∑

j

xi,r,j = 1 ∀i

(13)

xi,r,j +

n
∑

I=1

xI,r+1,j ≤ 2 (I ≠ i), (r = 1, 2,… , n − 1) ∀i, j

(14)xi,r+1,j ≤ xI,r,j (I ≠ i), (r = 1, 2,… , n − 1) ∀i, j

(15)P[r],j,C[r],j ≥ 0 ∀r, j

418	 Evolutionary Intelligence (2020) 13:415–425

1 3

The objective function (4) is to minimize the sum of total
weighted earliness/tardiness costs for all jobs. Constraint
(5) shows the calculation for actual processing times of jobs
assigned at position r of machine j . Constraint (6) ensures
that completion time of the job at position r of machine j is
equal to sum the of the actual time of same job and previous
job’s completion time in same machine. Constraint (7) shows
that each machine is ready to process jobs at the beginning.
Constraint (8) is to determine completion time of job i by
transforming machine and position indexes. Constraint (9)
assures that earliness of a job must be equal to time interval
between common due date and early job’s completion time.
Constraint (10) assures that tardiness of a job must be equal
to time interval between common due date and tardy job’s
completion time. Constraint (11) ensures that a job can be
assigned at a position of a machine at most once. Constraint
(12) shows that each job must be assigned on a position of
a machine. Constraint (13) assures that each job must come
after another job and no position number is idle between two
jobs. Constraint (14) shows that if a job assigned on previous
position, then the current position may be used for another
job or not. For Constraints (13–14), I index is an alias of i
index and it is also index for jobs. Constraints (15–17) show
that Xi,r,j are binary decision variables and other decision
variables are non-negative.

3 � Solution approaches

In this section, three different metaheuristics are introduced
for unrelated parallel machine weighted earliness/tardiness
scheduling problems with common due-date. These are arti-
ficial bee colony (ABC), genetic algorithm (GA) and simu-
lated annealing (SA) algorithm. These metaheuristics are
well known samples of swarm intelligence based algorithms,
evolutionary algorithms and single solution algorithms. The
solution (encoding) representation of each proposed algo-
rithm is directly encoding by using numbers of positions and
machines i.e., if there are 4 jobs and 3 machines then there
are 12 genes in a chromosome (solution). Figure 1 illustrates
an example for encoding in a solution for this study.

The encoding strategy illustrated in Fig. 1 is common
for all proposed metaheuristics to make a fair comparison.

3.1 � Artificial bee colony algorithm

The artificial bee colony (ABC) algorithm is a swarm based
meta-heuristic algorithm that was introduced by Karaboga
[20] for optimizing numerical problems. It was inspired by

(16)Ci,Ei, Ti ≥ 0 ∀i

(17)Xi,r,j ∈ {0, 1}

the intelligent foraging behavior of honey bees as seen in
Fig. 2. As a well-known optimization approach, ABC algo-
rithm provides robust and near-optimal solutions. In basic
structure of ABC, there is a population including individuals
called food positions and the individuals are evaluated with
artificial bees in order to discover the best food resource or the
area of good food resources. Artificial bees are classified in
three groups as employed bees, onlooker bees and scout bees.
As an assumption in ABC, the number of food resources is
equal to the number of employed bees. In initialization phase,
scout bees fly randomly to food resources and discover these
resources’ nectar amounts. Then, employed bees exploit the
food resources by using the knowledge gained from scout bees.
Then feedbacks of employed bees are used for selection of
effective food resources and onlooker bees fly to neighbors
of effective food resources. If an employed bee whose food

Fig. 1   Encoding strategy for a solution for all proposed metaheuris-
tics in this study

Fig. 2   The behaviour of honey bee foraging for nectar [20]

419Evolutionary Intelligence (2020) 13:415–425	

1 3

source has been exhausted, then that bee becomes a scout
bee. This process goes on until a stopping condition has been
occurred. The general schema of ABC algorithm is given in
Fig. 3. ABC algorithm is a swarm based algorithm that com-
bines benefits of local and global searches and it also has a
feedback structure that disables to investigate bad solutions
that have been previously investigated.

Karaboga proposed ABC algorithm for continuous optimi-
zation problems where the objective is to maximize or mini-
mize a f

(

���⃗xm
)

 function and each member xmi of ���⃗xm vector is
bounded with a lower bound li and an upper bound ui . In this
study, solutions in proposed ABC are represented as in Fig. 1.
Let us assume 𝛽 is vector for genes in a solution and there are
nm ( n is number of jobs and m is number of machines) genes
𝛽 =

(

𝛽1, 𝛽2, 𝛽3,… , 𝛽nm
)

 . There is a f
(

𝛽
)

 function as
follows:

where Ei

(

𝛽
)

 is the earliness of i th job for 𝛽 solution and

Ti

(

𝛽
)

 is the tardiness of i th job for 𝛽 solution. Ei

(

𝛽
)

 and

Ti

(

𝛽
)

 are calculated by using Eqs. (1–2) and completion

times Ci

(

𝛽
)

 of jobs in 𝛽 solution.

(18)f
(

𝛽
)

= 𝛼

n
∑

i=1

Ei

(

𝛽
)

+ 𝛽

n
∑

i=1

Ti

(

𝛽
)

If we set number of employed bees (number of food
researches or individual in the population) in proposed
ABC as SN (solution number) then there are SN different
𝛽 vectors such as 𝛽l where l = 1, 2,… , SN . So the purpose
of the forecasting is to find best forecasted values close to
the observed values then there is a best 𝛽∗ vector that have
optimum or near optimum as follows:

In initialization phase of ABC, all the vectors 𝛽l
(l = 1, 2,… , SN) are initialized by scout bees. Since each
food source 𝛽l , is a set of genes in solution representation in
Fig. 1, each 𝛽l vector holds nm variables, ( �lt  ,
t = 1, 2, 3,… , nm ), which are to be optimized so as to find
m i n i m u m f

(

𝛽∗
)

 . Fo r i n i t i a l i z a t i o n o f a l l
𝛽l (l = 1, 2, 3,… SN) , a procedure illustrated in Fig. 4 is
used.

The procedure illustrated in Fig. 4 is also used in pro-
posed GA in this study. Employed bees search for a new set
of genes or a new solution ( ⃗𝜐l ) that have more suitable to be
the best candidate. The searching procedure for a neighbor-
ing solution by using existing 𝛽l is simply swapping two
random genes’ positions in 𝛽l for proposed ABC algorithm.
After searching procedure taking place, a repair operation

(19)f
(

𝛽∗
)

= min

(

f
(

𝛽1

)

, f
(

𝛽2

)

,… , f
(

𝛽SN

))

Fig. 3   Artificial bee colony
algorithm for optimization prob-
lems [20]

Send the scouts onto the initial food sources
REPEAT
Send the employed bees onto the food sources and determine their nectar amounts
Calculate the probability value of the sources with which they are preferred by the onlooker bees
Send the onlooker bees onto the food sources and determine their nectar amounts
Stop the exploitation process of the sources exhausted by the bees
Send the scouts into the search area for discovering new food sources, randomly
Memorize the best food source found so far
UNTIL (requirements are met)

Begin,
Define n (number of job),
Define m (number of machines),
Declare K = n*m (number of genes in a
chromosome),
Define P (population size),
Declare POP(P,K) (solution population),
For p=1 to P

For k=1 to K
If k ≤ n then

POP(p,k) = k
Else

POP(p,k) = 0
End If

Next k,
Next p,

For p=1 to P
For k=1 to K

X1 = Random integer [1,K],
X2 = Random integer [1,K],
Y1 = POP(p,X1),
Y2 = POP(p,X2),
POP(p,X1) = Y2,
POP(p,X2) = Y1,

Next k,
Next p,

For p=1 to P
For k=1 to K

If (k mod n) = 0 then
Nk = k,

For o = 1 to n
For j= Nk – (n-1) to Nk-1

If POP(p,j) = 0 and POP(p,j+1)>0 then
POP(p,j) = POP(p,j+1)
POP(p,j+1) = 0

End if
Next j,

Next o,
End If

Next k,
Next p,
Stop.

* Randomly assign all jobs on
the first machine.

*Randomly assign jobs from the first
machine to other machines.

* Regulate the schedule and fix infeasible
solutions in the population.

Fig. 4   Pseudo code for generating initial population

420	 Evolutionary Intelligence (2020) 13:415–425

1 3

regulates the solution as in the proposed GA in this study,
if necessary.

Employed bees find a new 𝜐⃗l and they evaluate its profit-
ability (fitness). After producing a new set of genes 𝜐⃗l , its
fitness is calculated and a greedy selection is applied
between 𝜐⃗l and 𝛽l . The fitness value of 𝛽l is illustrated with
fitnessl

(

𝛽l

)

 notation and it is calculated as follows:

In ABC algorithm, employed bees give information about
their own sets of genes to onlooker bees. Then, onlooker
bees start selecting probabilistically their sets by using the
feedback from employed bees. This selection phase is done
with a fitness based selecting technique and the probability
pl of the set 𝛽l can be determined as follows:

After a set 𝛽l for an onlooker bee is probabilistically cho-
sen, a neighbourhood set 𝜐⃗l is determined by swapping oper-
ation, and its fitness value is computed by using Eq. (20). As
in the employed bees phase, a greedy selection is applied
between 𝜐⃗l and 𝛽l . Thus, the number of onlooker bees
recruiting better solution spaces is increased. In this phase,
to disable to inefficient set, a counter failurel

(

𝛽l

)

 for each 𝛽l

takes places. If fitnessl
(

𝛽l

)

 is better than fitnessl
(

𝜐⃗l
)

 , then

failurel

(

𝛽l

)

 increases one. If fitnessl
(

𝛽l

)

 is not better than

fitnessl
(

𝜐⃗l
)

 , then failurel
(

𝛽l

)

 is set as zero. If failurel
(

𝛽l

)

reaches a pre-determined limit , then the employee bee deal-
ing with 𝛽l becomes a scout bee that abandons 𝛽l and finds a
random set of genes. The number of scout bees is generally
limited for preventing ABC becoming a random search algo-
rithm. The algorithm runs until a pre-determined stopping
condition occurrence.

3.2 � Genetic algorithm

Genetic algorithm (GA) is a metaheuristic search method
for optimization problems and it is well-known example
of evolutionary algorithms. GA uses stochastic random
search methods to generate new alternative solutions from
initially generated solution population. Each solution in
the initial population is evaluated by comparing with oth-
ers in order to determine how much proper (fitness value)
this candidate to be the best solution. Then, these can-
didates are transmitted into matching pool for crossover

(20)fitnessl

(

𝛽l

)

= 1∕
(

1 + f
(

𝛽l

))

(21)pl =
fitnessl

�

𝛽l

�

∑SN

l=1
fitnessl

�

𝛽l

� ∀l

process in order to randomly generate new solutions from
good solutions in the current population. After some popu-
lation generations, crossover process drives solutions in
the population to be similar to each other. Thus, a mutation
process randomly takes place to protect the diversity of
the population. After these processes, solutions in the new
population are evaluated again. If the stopping criterion
occurs, then GA stops and displays the best solution. Oth-
erwise, GA continues to search for better solutions until
stopping criteria occurs.

The general schema of GA in this study is illustrated
with a pseudo code in Fig. 5. Encoding strategy of GA in
this study illustrates the indexes of jobs assigned on any
position number of machines. This strategy makes com-
putationally easy to execute GA operations. This encoding
strategy is common for all methods investigated in this
paper and can be seen in Fig. 1. Evaluation and selection
steps in this GA do not let the worse solution in the current
population to transmit to matching pool. After crossover
and mutation steps, if the feasibility of solutions is going
wrong, then a repair operation takes place to fix infeasible
solutions. Thus, GA only searches for the fitness of objec-
tive function instead of the fitness of constraints of the
model. These are the advantages of proposed GA.

Generating initial population In order to generate an
initial solution for the problem, the pseudocode in Fig. 4
is proposed in this study. After generating randomly an
initial population, feasibilities of candidate solutions in the
population must be controlled. The pseudo code in Fig. 4
checks the feasibility and fixes solutions in the population
if it is required.

Evaluating The evaluation step in GA depends on fitness
values of solutions in the population. Let k (k = 1,… ,P)
is the index for population and P is the size of population.
The fitness value fk of solution k in the current population
is calculated as follows:

where Ek
i
 is earliness of job i and Tk

i
 is tardiness of job i in

solution k in the current population.
Selection The selection step in this GA is roulette

wheel selection. Selection probability values of solutions
are used to determine which solutions will be transmitted
into the matching pool. The selection probability values
are calculated as follows:

(22)

fk = max

{(

�

n
∑

i=1

E1

i
+ �

n
∑

i=1

T1

i

)

,… ,

(

�

n
∑

i=1

EP
i
+ �

n
∑

i=1

TP
i

)}

−

(

�

n
∑

i=1

Ek
i
+ �

n
∑

i=1

Tk
i

)

(23)Pk =
fk

∑

fk
,

421Evolutionary Intelligence (2020) 13:415–425	

1 3

where Pk is the selection probability for solution k by com-
paring its fitness value with sum of all fitness values.

Crossover Crossover step in GA takes place after the
selection step. This step is required to generate new alter-
native solutions by using a selected solution pair from the
matching pool. Crossover is a random step with a prob-
ability pc . In this study, two points crossover method is
preferred. Once crossover step occurs for a selected pair
of solutions, a repair operation may be required in order

to fix infeasible solutions. Figure 6 illustrates an example
for crossover and repair steps.

Mutation Mutation is another random step with a prob-
ability pm in GA in order to protect solution diversity in the
population because crossover step in GA makes solutions in
the population get similar to each other after some genera-
tions. In this study, randomly selected two genes are replaced
with each other. Then, if it is required, a repair step may take
place to fix infeasibility. Figure 7 illustrates an example for
mutation and repair steps.

Fig. 5   Pseudo code for genetic algorithm

Fig. 6   Crossover and repair steps

Fig. 7   Mutation and repair steps

422	 Evolutionary Intelligence (2020) 13:415–425

1 3

Repair The chromosome in Figs. 6 and 7 represents a
solution for 4 jobs and 3 machines. There are 12 (4 * 3) genes
in each chromosome. The first four-gene in the chromosome
belongs to the first machine’s jobs and the second four-gene
belongs to the second machine’s jobs. When crossover or
mutation operation takes place as seen in Fig. 6, a repair
operation regulates sequence of genes to disable idle genes
get in between two genes having jobs. Furthermore, if there
is an idle gene before a gene having job, then idle gene and
that gene are replaced as illustrated in Figs. 6 and 7.

3.3 � Simulated annealing algorithm

Simulated annealing (SA) is another metaheuristic method
in order to deal with optimization problems. SA is inspired
from the annealing process in metal work. SA’s best advan-
tage by comparing it with other search methods is avoiding

from a local optimum by using stochastic search. SA starts
with an initial system temperature and this temperature is
decreased at each iteration. At each system temperature, SA
looks for neighboring solutions in order to improve its cur-
rent best solution. While temperature is decreasing at each
iteration, number of searching for neighboring solutions at
each iteration is being increased by SA. Furthermore, if SA
sticks around a local optimum, then a stochastic movement
for new search point takes place to release SA from the local
optimum. This process ends when the system temperature
reaches the stopping temperature. Figure 8 shows the pseudo
code for SA in this study. In this proposed SA, searching
procedure for neighboring solutions is simply swapping two
random genes’ positions as in ABC algorithm. Encoding
strategy of SA in this study illustrates the indexes of jobs
assigned on any position number of machines. This strategy
makes computationally easy to execute SA operations. This

Fig. 8   Pseudo code for SA

423Evolutionary Intelligence (2020) 13:415–425	

1 3

encoding strategy is common for all methods investigated in
this paper and can be seen in Fig. 1.

4 � Experimental results

In this section, some test instances are generated to deter-
mine which proposed metaheuristic is better than others. 16
test instances group and 10 instances in each group are gen-
erated. Numbers of jobs in instances are 100, 200, 300 and
400. Numbers of machines in instances are 5, 10, 15 and 20.
The processing times are uniformly generated Pij = U[1, 20]
for 160 instances. As earliness and tardiness weights ( �, � ),
two sets are used {(2, 3); (3, 2)} for all test instances. The
common due date D for each instances are determined with
the way proposed by Bank and Werner [2] as follows:

where

Each proposed metaheuristic was coded with C# pro-
gramming language and MS Access database by using
a standard desktop having i5 CPU and 8 GB RAM. The
parameter settings of metaheuristic are determined by con-
sidering general parameter settings in the literature. For
proposed GA, crossover and mutation probabilities are set
as 0.85 and 0.15. The initial temperature and temperature
decrease rate of proposed SA are set as 106 and 0.8. The
numbers of employee bees, onlooker bees and scout bees are
set as 30, 30 and 1 for proposed ABC. The limit value for
failures of proposed ABC is equal to 15 times of the product
of number of machines and number of jobs for each instance.
Each proposed metaheuristic is executed 10 times until pre-
determined solution time limits for each test instances. Aver-
age solution values of each test instance group for earliness
and tardiness weights ( � = 2, � = 3 ) are given in Table 1.
Average solution values of each test instance group for
earliness and tardiness weights ( � = 3, � = 2 ) are given in
Table 2.

As seen from Table 1, ABC algorithm gives better results
than its opponents in average. All results obtained from all
proposed metaheuristics for � = 2 and � = 3 are analyzed
with ANOVA for objective function values. The ANOVA
results for total weighted earliness/tardiness values obtaining
by different methods give us a p value as zero. Therefore,
we can say that methods are significantly different consider-
ing solution quality. Furthermore, the interval plot in Fig. 9
show us ABC gives better solution in a more narrow interval.

(24)D =
⌊

1

3

n

m
P̄
⌋

(25)P̄ =

∑n

i=1

∑m

j=1
Pij

nm

As seen from Table 2, ABC algorithm gives better results
than its opponents in average. All results obtained from all
proposed metaheuristics for � = 3 and � = 2 are analyzed
with ANOVA for objective function values. The ANOVA
results for total weighted earliness/tardiness values obtain-
ing by different methods give us a p value as 0.001. There-
fore, we can say that methods are significantly different

Table 1   Average solutions of each test instance group for earliness
and tardiness weights ( � = 2, � = 3)

of jobs # of machines GA SA ABC

100 5 10,998.10 10,660.96 6757.48
10 8599.18 4638.92 6633.18
15 7168.72 2475.80 6529.02
20 6325.08 2173.22 6055.82

200 5 45,853.78 45,995.52 27,474.70
10 32,550.32 22,993.08 22,016.18
15 26,869.38 13,431.34 21,744.40
20 22,934.06 8548.06 20,618.86

300 5 105,891.64 97,018.80 61,661.68
10 73,109.92 52,909.92 44,662.72
15 59,288.08 33,783.36 44,330.24
20 50,088.28 21,287.92 42,330.88

400 5 189,709.04 161,330.10 106,966.16
10 131,987.66 87,281.46 73,296.06
15 104,607.16 63,380.84 73,106.84
20 90,388.30 40,784.38 69,535.60
Average 60,398.04 41,793.36 39,607.49

Table 2   Average solutions of each test instance group for earliness
and tardiness weights ( � = 3, � = 2)

of jobs # of machines GA SA ABC

100 5 9644.08 15,929.20 8472.58
10 6458.62 6946.88 5613.22
15 5234.32 3507.08 4948.66
20 4437.66 2366.06 4370.74

200 5 40,453.62 65,414.26 34,831.58
10 25,754.36 33,941.94 20,518.40
15 20,187.26 20,041.12 17,285.84
20 16,807.00 11,877.70 15,506.52

300 5 92,042.34 135,129.96 79,287.30
10 58,640.36 74,558.06 44,721.48
15 45,449.22 50,519.82 36,905.56
20 37,296.20 31,218.36 32,171.60

400 5 164,315.70 228,654.88 142,258.82
10 104,044.30 119,000.02 77,466.20
15 80,129.84 90,735.54 61,997.76
20 67,351.34 60,275.66 55,012.42
Average 48,640.39 59,382.28 40,085.54

424	 Evolutionary Intelligence (2020) 13:415–425

1 3

considering solution quality. Furthermore, the interval plot
in Fig. 10 show us ABC gives better solution in a more nar-
row interval.

As a conclusion of above analyses for the problem, we
can say that ABC algorithm as swarm intelligence based
metaheuristic outperforms well-known samples of evolu-
tionary and single solution metaheuristics. Each type of
metaheuristic has own its advantages. For a fair comparison,
the encoding strategies of all methods are the same and this
strategy is illustrated in Fig. 1. For instance, evolutionary
algorithms have a population based structure to help search-
ing multiple solutions, a selection mechanism that helps to

focus on better candidate solutions, and an escape mecha-
nism from local optima. Single point or solution methods
such as SA are relatively easy to code and to apply arbitrary
problems and cost functions. Swarm intelligence based algo-
rithms such as ABC imitate intelligent swarms’ self organ-
izing and information sharing models among individuals in
the swarm so positive or negative feedbacks of individuals
in the swarms help to improve the quality of the solution.
Furthermore, each metaheuristic can be hybrid with other
heuristics or metaheuristic considering advantages and dis-
advantages of alternative methods.

Fig. 9   Interval plots f results
obtained proposed algorithms
( � = 2 and � = 3)

Fig. 10   Interval plots f results
obtained proposed algorithms
( � = 3 and � = 2)

425Evolutionary Intelligence (2020) 13:415–425	

1 3

5 � Conclusion

In this study, we investigated metaheuristic algorithm
alternatives among well-known samples of swarm intelli-
gence based, evolutionary and single solution algorithms
for unrelated parallel machine earliness/tardiness schedul-
ing problems with common due date. ABC, GA and SA
were chosen for comparison in view of solution quality in a
pre-determined time limitation. All proposed algorithms are
created without modification in order to determine solution
qualities of these metaheuristics. Furthermore, the encoding
strategies of all methods are the same for a fair compari-
son. Experimental results show that ABC outperforms its
opponents in view of solution quality as swarm intelligence
based metaheuristic algorithm. Future researchers may use
a hybrid algorithm having main structure and advantages
of ABC for unrelated parallel machine earliness/tardiness
scheduling problems with common due date. Furthermore,
ABC algorithm can be used for the same problem with other
constrains such as release dates, setup times and.

Compliance with ethical standards 

Conflict of interest  The author declared that there is no conflict of in-
terest.

References

	 1.	 Adamopoulos GI, Pappis CP (1998) Scheduling under a com-
mon due-date on parallel unrelated machines. Eur J Oper Res
105:494–501. https​://doi.org/10.1016/S0377​-2217(97)00057​-X

	 2.	 Bank J, Werner F (2001) Heuristic algorithms for unrelated paral-
lel machine scheduling with a common due date, release dates,
and linear earliness and tardiness penalties. Math Comput Model
33:363–383. https​://doi.org/10.1016/S0895​-7177(00)00250​-8

	 3.	 Yang Y-J, Liu M, Wu C (2001) Evolutionary strategy method
for parallel machine earliness/tardiness scheduling problem
with common due date. Tien Tzu Hsueh Pao/Acta Electron Sin
29:1478–1481

	 4.	 Xiao W-Q, Li C-L (2002) Approximation algorithms for common
due date assignment and job scheduling on parallel machines.
IIE Trans Inst Ind Eng 34:466–477. https​://doi.org/10.1080/07408​
17020​89288​83

	 5.	 Mönch L, Unbehaun R (2007) Decomposition heuristics for
minimizing earliness–tardiness on parallel burn-in ovens with a
common due date. Comput Oper Res 34:3380–3396. https​://doi.
org/10.1016/j.cor.2006.02.003

	 6.	 Toksarı MD, Güner E (2008) Minimizing the earliness/tardiness
costs on parallel machine with learning effects and deteriorat-
ing jobs: a mixed nonlinear integer programming approach. Int J

Adv Manuf Technol 38:801–808. https​://doi.org/10.1007/s0017​
0-007-1128-3

	 7.	 Toksarı MD, Güner E (2009) Parallel machine earliness/tardiness
scheduling problem under the effects of position based learning
and linear/nonlinear deterioration. Comput Oper Res 36:2394–
2417. https​://doi.org/10.1016/j.cor.2008.09.012

	 8.	 Toksarı MD, Güner E (2010) The common due-date early/tardy
scheduling problem on a parallel machine under the effects of
time-dependent learning and linear and nonlinear deteriora-
tion. Expert Syst Appl 37:92–112. https​://doi.org/10.1016/j.
eswa.2009.05.014

	 9.	 Toksarı MD, Güner E (2010) Parallel machine scheduling prob-
lem to minimize the earliness/tardiness costs with learning effect
and deteriorating jobs. J Intell Manuf 21:843–851. https​://doi.
org/10.1007/s1084​5-009-0260-3

	10.	 Srirangacharyulu B, Srinivasan G (2011) Minimising mean
squared deviation of job completion times about a common due
date in multimachine systems. Eur J Ind Eng 5:424–447. https​://
doi.org/10.1504/EJIE.2011.04274​0

	11.	 Drobouchevitch IG, Sidney JB (2012) Minimization of earliness,
tardiness and due date penalties on uniform parallel machines
with identical jobs. Comput Oper Res 39:1919–1926. https​://doi.
org/10.1016/j.cor.2011.05.012

	12.	 Kim J-G, Kim J-S, Lee D-H (2012) Fast and meta-heuristics
for common due-date assignment and scheduling on par-
allel machines. Int J Prod Res 50:6040–6057. https​://doi.
org/10.1080/00207​543.2011.64459​1

	13.	 Beyranvand MS, Peyghami MR, Ghatee M (2012) On the quad-
ratic model for unrelated parallel machine scheduling problem
with restrictive common due date. Optim Lett 6:1897–1911. https​
://doi.org/10.1007/s1159​0-011-0385-0

	14.	 Awasthi A, Lässig J, Kramer O (2014) Common due-date prob-
lem: exact polynomial algorithms for a given job sequence. In:
Proceedings - 15th international symposium on symbolic and
numeric algorithms for scientific computing, SYNASC 2013,
2014, pp 258–264

	15.	 Lin S-W, Ying K-C, Chiang Y-I, Wu W-J (2016) Minimising total
weighted earliness and tardiness penalties on identical parallel
machines using a fast ruin-and-recreate algorithm. Int J Prod Res
54:6879–6890. https​://doi.org/10.1080/00207​543.2016.11900​41

	16.	 Guha R, Ghosh M, Kapri S et al (2019) Deluge based genetic algo-
rithm for feature selection. Evol Intell. Special Issue:1–11. https​://
doi.org/10.1007/s1206​5-019-00218​-5

	17.	 Sharma S, Kumar S, Sharma K (2019) Improved Gbest artificial
bee colony algorithm for the constraints optimization problems.
Evol Intell. Special Issue:1–7. https​://doi.org/10.1007/s1206​
5-019-00231​-8

	18.	 Yang Z, Wang L, Cai Y, Kimie K (2018) A polychromatic sets
theory based algorithm for the input/output scheduling problem
in AS/RSs. Evol Intell 12:333–340

	19.	 Islam MR, Saifullah CMK, Mahmud MR (2019) Chemical
reaction optimization: survey on variants. Evol Intell. 12:395–
420. https​://doi.org/10.1007/s1206​5-019-00246​-1

	20.	 Karaboga D (2005) An idea based on honey bee swarm for numer-
ical optimization. Technical Report TR06, Engineering Faculty,
Computer Engineering Department, Erciyes University

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/S0377-2217(97)00057-X
https://doi.org/10.1016/S0895-7177(00)00250-8
https://doi.org/10.1080/07408170208928883
https://doi.org/10.1080/07408170208928883
https://doi.org/10.1016/j.cor.2006.02.003
https://doi.org/10.1016/j.cor.2006.02.003
https://doi.org/10.1007/s00170-007-1128-3
https://doi.org/10.1007/s00170-007-1128-3
https://doi.org/10.1016/j.cor.2008.09.012
https://doi.org/10.1016/j.eswa.2009.05.014
https://doi.org/10.1016/j.eswa.2009.05.014
https://doi.org/10.1007/s10845-009-0260-3
https://doi.org/10.1007/s10845-009-0260-3
https://doi.org/10.1504/EJIE.2011.042740
https://doi.org/10.1504/EJIE.2011.042740
https://doi.org/10.1016/j.cor.2011.05.012
https://doi.org/10.1016/j.cor.2011.05.012
https://doi.org/10.1080/00207543.2011.644591
https://doi.org/10.1080/00207543.2011.644591
https://doi.org/10.1007/s11590-011-0385-0
https://doi.org/10.1007/s11590-011-0385-0
https://doi.org/10.1080/00207543.2016.1190041
https://doi.org/10.1007/s12065-019-00218-5
https://doi.org/10.1007/s12065-019-00218-5
https://doi.org/10.1007/s12065-019-00231-8
https://doi.org/10.1007/s12065-019-00231-8
https://doi.org/10.1007/s12065-019-00246-1

	Comparisons of metaheuristic algorithms for unrelated parallel machine weighted earlinesstardiness scheduling problems
	Abstract
	1 Introduction
	2 Mathematical model for unrelated parallel machine weighted earlinesstardiness scheduling problems
	3 Solution approaches
	3.1 Artificial bee colony algorithm
	3.2 Genetic algorithm
	3.3 Simulated annealing algorithm

	4 Experimental results
	5 Conclusion
	References

