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Abstract
This paper investigates unrelated parallel machine scheduling problems where the objectives are to minimize total weighted 
sum of earliness/tardiness costs. Three different metaheuristic algorithms are compared with others to determine what kind 
(swarm intelligence based, evolutionary or single solution) of metaheuristics is effective to solve these problems. In this study, 
artificial bee colony (ABC), genetic algorithm and simulated annealing algorithm are chosen as swarm intelligence based 
algorithm, evolutionary algorithm and single solution algorithm. All proposed algorithms are created without modification 
in order to determine effectiveness of these metaheuristics. Experimental results show that ABC outperforms its opponents 
in view of solution quality as swarm intelligence based metaheuristic algorithm.

Keywords  Artificial bee colony · Genetic algorithm · Simulated annealing · Earliness/tardiness · Parallel machine · 
Scheduling

1  Introduction

Weighted earliness/tardiness scheduling problems with 
common due date are significant for just-in-time (JIT) phi-
losophy. Each company that accepts JIT philosophy wants 
to complete jobs on their due dates. This is significant for 
profitability of the company because each early or tardy job 
has a cost. If a job is completed before its due date, then this 
job is an early job and there are some costs for the company. 
For instance, the company has to stock this job until its due 
date, then the company will pay for stocking cost and/or 
insurance cost. If a job is completed after its due date then 
this job is a tardy job and there are some costs because of 
tardiness. For instance, the company will have to delay the 
shipment or the company will have to lose some of its earn-
ings because of the contract signed with the costumer. Com-
mon due dates are used in order to determine a shipment 
date for the jobs that will be transshipped simultaneously 
in a common transportation vehicle (cargo, air-cargo, truck 
etc.). Most of costumers of the company are from different 
countries and orders of a costumer must be completed until 

shipment date of transportation vehicle (cargo, air-cargo, 
truck etc.). If some of orders in a shipment are completed 
before shipment date, the company has to stock these ones 
until the shipment date and there will be a holding, stocking 
or assuring costs for these stocks. On the contrary, if some 
of orders in a shipment completed after the shipment date, 
this situation leads a penalty cost such as loss of reputation, 
reshipment of tardy jobs and perhaps loss of costumer. Due 
dates or common due date can be determined by internal or 
external costumers. The internal costumer may want to have 
all jobs on a certain date, for instance the packaging depart-
ment may want to package all jobs in a specific order on a 
their predetermined date. Furthermore, an external costumer 
may want to have all jobs simultaneously. In that sense, the 
external costumer sends its transportation vehicle to the 
company to pick up all of their order. Therefore the optimal 
schedule is important for decreasing total earliness/tardiness 
cost. Although finding the optimal schedule is critical for 
earliness/tardiness problems in JIT company, the problem 
is in the class of NP hard.

The common due date consideration in parallel machine 
problems has been investigated by researchers since 1990. 
While some of researchers have considered the common due 
date as a predetermined value, others have considered it as a 
decision variable. Adamopoulos and Pappis [1] considered 
common due date as a decision variable in parallel machine 
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scheduling problems and they proposed a heuristic proce-
dure that is to minimize total cost of weighted common due 
date, earliness and tardiness cost. Their proposed heuristic’s 
complexity is O(n3) so their proposed heuristic is a polyno-
mial time heuristic for a NP-Hard problem. Even if the com-
plexity of their proposed heuristic is polynomial, they only 
used small test instances to check the performance of the 
proposed algorithm. Bank and Werner [2] proposed some 
heuristic methods for parallel machine scheduling problem 
with pre-determined common due date and release dates 
where the objective is to minimize total cost of earliness 
and tardiness. Bank and Werner [2] presented two differ-
ent type algorithms. The first type of algorithms was con-
structive algorithms and the other was iterative algorithms. 
They stated that the performance of constructive algorithms 
depends on some parameters settings and the performance 
of iterative algorithms depends on shifting jobs from one 
machine to another. They compared their proposed algo-
rithms with some metaheuristics and they concluded that 
none of the tested variants is clearly superior to the remain-
ing ones in general. Yang et al. [3] introduced an evolution-
ary strategy method for parallel machine earliness/tardiness 
scheduling problem with common due date. They stated 
that computational results of different scale problems show 
that the method can effectively solve the parallel machine 
scheduling problem with relatively large scale. Xiao and Li 
[4] considered the problem of assigning a common due date 
to a set of jobs and scheduling the jobs on a set of parallel 
machines so that the weighted sum of the due date, total 
earliness, and total tardiness is minimized. They developed 
a heuristic is to solve the problem. Mönch and Unbehaun 
[5] proposed three decomposition heuristics for the parallel 
machine batch scheduling with pre-determined common due 
date where the objective is to minimize total earliness/tardi-
ness cost. Their first heuristic is to apply and exact algorithm 
for non-batching problem and then it uses some job sequenc-
ing rules and dynamic programming in order to form batches 
for the early and tardy job sets and sequence them optimally. 
Their second algorithm uses genetic algorithm in order to 
assign jobs to each machine and then, it uses again sequenc-
ing rules and dynamic programming techniques to the early 
and tardy jobs sets on each single machine in order to form 
batches. Their third algorithm firstly separated equally jobs 
as early and tardy and then uses again genetic algorithm and 
applies again dynamic programming and sequencing rules. 
They reported their computational experiments and stated 
that the property-based heuristic beats the genetic algorithm-
based heuristics with respect to solution quality in case of 
a large number of jobs. Toksarı and Güner [6–9] investi-
gated parallel machine scheduling problem under effects of 
learning and deterioration with common due date where the 
objective is to minimize total earliness/tardiness cost. Sriran-
gacharyulu and Srinivasan [10] considered the problem of 

scheduling n jobs on two identical parallel machines in order 
to minimize the mean squared deviation of job completion 
times about a given common due date. They proposed a heu-
ristic to provide quick solutions for problems of larger size. 
Drobouchevitch and Sidney [11] considered a problem of 
scheduling n identical nonpreemptive jobs with a common 
due date on m uniform parallel machines where the objec-
tive is to determine an optimal value of the due date and an 
optimal allocation of jobs onto machines so as to minimize 
a total cost of earliness, tardiness and due date values. They 
proposed a two-phase algorithm to solve the problem. Kim 
et al. [12] presented a mathematical programming model and 
two types of heuristics for parallel machine earliness/tardi-
ness scheduling problem where the common due date is a 
decision variable and the objective is to minimize the sum of 
due-date assignment, earliness and tardiness penalties. Their 
two types of heuristics were: (a) a fast two-stage heuristic 
with obtaining an initial solution and improvement; and (b) 
two meta-heuristics, tabu search and simulated annealing, 
with new neighbourhood generation methods. They stated 
that each of the heuristic types outperforms the existing one. 
Beyranvand et al. [13] considered the quadratic program-
ming formulation of the unrelated parallel machine sched-
uling problem with restrictive common due date. Awasthi 
et al. [14] investigated single and parallel machine earli-
ness/tardiness scheduling problems with common due date. 
They presented an exact polynomial algorithms for optimiz-
ing a given job sequence for single and parallel machines 
with the run-time complexities of O(n log n) and O(mn2log 
n) respectively. Lin et al. [15] investigated the problem of 
minimizing total weighted earliness and tardiness penalties 
on identical parallel machines against a restrictive common 
due date. They proposed a fast ruin-and-recreate (FR&R) 
algorithm is proposed to obtain high-quality solutions to this 
complex problem. They stated that computational results 
provide evidence of the efficiency of FR&R, which con-
sistently outperform existing algorithms when applied to 
benchmark instances.

Although earliness/tardiness parallel machine scheduling 
problem is a well-known and classical problem in the litera-
ture, the problem is in NP hard class. For combinatorial opti-
mization problem such as scheduling problems in NP hard 
class, metaheuristics promise to find near optimal solution 
for these problems within a reasonable time. Metaheuristic 
algorithms are classified into swam intelligence based algo-
rithms, evolutionary algorithms and single solution algo-
rithms. All of these algorithms are adaptable for different 
types of combinatorial problems (see [16–19]). In fact, a 
hybrid method including any two different algorithms can 
be used in order to solve and to find near-optimal or optimal 
solutions for these problems. For unrelated parallel machine 
weighted earliness/tardiness scheduling problem, in order to 
find what kind of algorithms are more efficient than others, 
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this study investigates the performance of ABC, GA and SA 
algorithms that are well-known examples of swam intelli-
gence based algorithms, evolutionary algorithms and single 
solution algorithms. The difference of the paper from the 
literature for the problem and its variants is to make a com-
parison among different types of well-known metaheuristic 
algorithms and to suggest one of alternatives for the readers.

2 � Mathematical model for unrelated parallel 
machine weighted earliness/tardiness 
scheduling problems

In this section, a position-dependent mixed integer program-
ming model for unrelated parallel machine weighted earli-
ness/tardiness scheduling problems with common due-date 
is introduced. If a job is completed after its due date then 
that job is a tardy job and tardiness of that job can be calcu-
lated as follows:

where Ti is tardiness of the i th job, Ci is completion time of 
the i th job and D is the common due-date for all jobs. If a 
job is completed before its due date then that job is an early 
job and earliness of that job can be calculated as follows:

where Ei is tardiness of the i th job. In a JIT company, jobs 
are wanted to be completed on its due-dates. Earliness and 
tardiness are not desired because each early/tardy job has 
some costs such as insurance, holding, stocking, additional 
cargo, etc., for the company. The company may define costs 
of earliness and tardiness amounts of jobs and then the total 
cost of earliness and tardiness can be calculated as follows:

where � is the cost for one time-unit earliness and � is the 
cost for one time-unit tardiness. A position-dependent mixed 
integer linear programming model for unrelated parallel 
machine weighted earliness/tardiness scheduling problems 
with common due-date is as follows:

Indexes

i:	� index for jobs,
j:	� index for machines,
r:	� Index for position numbers on machines,

Parameters

Pij:	� processing time of job i for machine j,
D:	� common due date for all jobs,

(1)Ti = max(Ci − D, 0) ∀i

(2)Ei = max(D − Ci, 0) ∀i

(3)f = �

n
∑

i=1

Ei + �

n
∑

i=1

Ti

�:	� weight for early jobs,
�:	� weight for tardy jobs,
n:	� number of jobs
m:	� number of machines

Decision variables

P[r],j:	� processing time of the job at position r of machine j,
C[r],j:	� completion time of the job at position r of machine 

j,
Ci:	� completion time of job i,
Xi,r,j:	� if job i is assigned at position r of machine j , then it 

is equal to 1, else 0
Ei:	� earliness time of job i
Ti:	� tardiness time of job i

Objective function

Constraints

(4)min z ∶ �

n
∑

i=1

Ei + �

n
∑

i=1

Ti

(5)P[r],j =

n
∑

i

Xi,r,jPij ∀r, j

(6)C[r],j = P[r],j + C[r−1],j ∀r, j

(7)C[0],j = 0 ∀j

(8)Ci =

n
∑

r

m
∑

j

Xi,r,jC[r],j ∀i

(9)Ei ≥ D − Ci ∀i

(10)Ti ≥ Ci − D ∀i

(11)
n
∑

i

xi,r,j ≤ 1 ∀r, j

(12)
n
∑

r

m
∑

j

xi,r,j = 1 ∀i

(13)

xi,r,j +

n
∑

I=1

xI,r+1,j ≤ 2 (I ≠ i), (r = 1, 2,… , n − 1) ∀i, j

(14)xi,r+1,j ≤ xI,r,j (I ≠ i), (r = 1, 2,… , n − 1) ∀i, j

(15)P[r],j,C[r],j ≥ 0 ∀r, j
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The objective function (4) is to minimize the sum of total 
weighted earliness/tardiness costs for all jobs. Constraint 
(5) shows the calculation for actual processing times of jobs 
assigned at position r of machine j . Constraint (6) ensures 
that completion time of the job at position r of machine j is 
equal to sum the of the actual time of same job and previous 
job’s completion time in same machine. Constraint (7) shows 
that each machine is ready to process jobs at the beginning. 
Constraint (8) is to determine completion time of job i by 
transforming machine and position indexes. Constraint (9) 
assures that earliness of a job must be equal to time interval 
between common due date and early job’s completion time. 
Constraint (10) assures that tardiness of a job must be equal 
to time interval between common due date and tardy job’s 
completion time. Constraint (11) ensures that a job can be 
assigned at a position of a machine at most once. Constraint 
(12) shows that each job must be assigned on a position of 
a machine. Constraint (13) assures that each job must come 
after another job and no position number is idle between two 
jobs. Constraint (14) shows that if a job assigned on previous 
position, then the current position may be used for another 
job or not. For Constraints (13–14), I index is an alias of i 
index and it is also index for jobs. Constraints (15–17) show 
that Xi,r,j are binary decision variables and other decision 
variables are non-negative.

3 � Solution approaches

In this section, three different metaheuristics are introduced 
for unrelated parallel machine weighted earliness/tardiness 
scheduling problems with common due-date. These are arti-
ficial bee colony (ABC), genetic algorithm (GA) and simu-
lated annealing (SA) algorithm. These metaheuristics are 
well known samples of swarm intelligence based algorithms, 
evolutionary algorithms and single solution algorithms. The 
solution (encoding) representation of each proposed algo-
rithm is directly encoding by using numbers of positions and 
machines i.e., if there are 4 jobs and 3 machines then there 
are 12 genes in a chromosome (solution). Figure 1 illustrates 
an example for encoding in a solution for this study.

The encoding strategy illustrated in Fig. 1 is common 
for all proposed metaheuristics to make a fair comparison.

3.1 � Artificial bee colony algorithm

The artificial bee colony (ABC) algorithm is a swarm based 
meta-heuristic algorithm that was introduced by Karaboga 
[20] for optimizing numerical problems. It was inspired by 

(16)Ci,Ei, Ti ≥ 0 ∀i

(17)Xi,r,j ∈ {0, 1}

the intelligent foraging behavior of honey bees as seen in 
Fig. 2. As a well-known optimization approach, ABC algo-
rithm provides robust and near-optimal solutions. In basic 
structure of ABC, there is a population including individuals 
called food positions and the individuals are evaluated with 
artificial bees in order to discover the best food resource or the 
area of good food resources. Artificial bees are classified in 
three groups as employed bees, onlooker bees and scout bees. 
As an assumption in ABC, the number of food resources is 
equal to the number of employed bees. In initialization phase, 
scout bees fly randomly to food resources and discover these 
resources’ nectar amounts. Then, employed bees exploit the 
food resources by using the knowledge gained from scout bees. 
Then feedbacks of employed bees are used for selection of 
effective food resources and onlooker bees fly to neighbors 
of effective food resources. If an employed bee whose food 

Fig. 1   Encoding strategy for a solution for all proposed metaheuris-
tics in this study

Fig. 2   The behaviour of honey bee foraging for nectar [20]
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source has been exhausted, then that bee becomes a scout 
bee. This process goes on until a stopping condition has been 
occurred. The general schema of ABC algorithm is given in 
Fig. 3. ABC algorithm is a swarm based algorithm that com-
bines benefits of local and global searches and it also has a 
feedback structure that disables to investigate bad solutions 
that have been previously investigated.

Karaboga proposed ABC algorithm for continuous optimi-
zation problems where the objective is to maximize or mini-
mize a f

(

���⃗xm
)

 function and each member xmi of ���⃗xm vector is 
bounded with a lower bound li and an upper bound ui . In this 
study, solutions in proposed ABC are represented as in Fig. 1. 
Let us assume 𝛽  is vector for genes in a solution and there are 
nm ( n is number of jobs and m is number of machines) genes 
𝛽 =

(

𝛽1, 𝛽2, 𝛽3,… , 𝛽nm
)

 . There is a f
(

𝛽
)

 function as 
follows:

where Ei

(

𝛽
)

 is the earliness of i th job for 𝛽  solution and 

Ti

(

𝛽
)

 is the tardiness of i th job for 𝛽  solution. Ei

(

𝛽
)

 and 

Ti

(

𝛽
)

 are calculated by using Eqs. (1–2) and completion 

times Ci

(

𝛽
)

 of jobs in 𝛽  solution.

(18)f
(

𝛽
)

= 𝛼

n
∑

i=1

Ei

(

𝛽
)

+ 𝛽

n
∑

i=1

Ti

(

𝛽
)

If we set number of employed bees (number of food 
researches or individual in the population) in proposed 
ABC as SN (solution number) then there are SN different 
𝛽  vectors such as 𝛽l where l = 1, 2,… , SN . So the purpose 
of the forecasting is to find best forecasted values close to 
the observed values then there is a best 𝛽∗ vector that have 
optimum or near optimum as follows:

In initialization phase of ABC, all the vectors 𝛽l 
(l = 1, 2,… , SN) are initialized by scout bees. Since each 
food source 𝛽l , is a set of genes in solution representation in 
Fig.  1, each 𝛽l vector holds nm variables, ( �lt  , 
t = 1, 2, 3,… , nm ), which are to be optimized so as to find 
m i n i m u m  f

(

𝛽∗
)

 .  Fo r  i n i t i a l i z a t i o n  o f  a l l 
𝛽l (l = 1, 2, 3,… SN) , a procedure illustrated in Fig.  4 is 
used.

The procedure illustrated in Fig. 4 is also used in pro-
posed GA in this study. Employed bees search for a new set 
of genes or a new solution ( ⃗𝜐l ) that have more suitable to be 
the best candidate. The searching procedure for a neighbor-
ing solution by using existing 𝛽l is simply swapping two 
random genes’ positions in 𝛽l for proposed ABC algorithm. 
After searching procedure taking place, a repair operation 

(19)f
(

𝛽∗
)

= min

(

f
(

𝛽1

)

, f
(

𝛽2

)

,… , f
(

𝛽SN

))

Fig. 3   Artificial bee colony 
algorithm for optimization prob-
lems [20]

Send the scouts onto the initial food sources 
REPEAT 
Send the employed bees onto the food sources and determine their nectar amounts 
Calculate the probability value of the sources with which they are preferred by the onlooker bees 
Send the onlooker bees onto the food sources and determine their nectar amounts 
Stop the exploitation process of the sources exhausted by the bees 
Send the scouts into the search area for discovering new food sources, randomly 
Memorize the best food source found so far 
UNTIL (requirements are met)

Begin,
Define n (number of job), 
Define m (number of machines), 
Declare K = n*m (number of genes in a 
chromosome), 
Define P (population size), 
Declare POP(P,K) (solution population),
For p=1 to P

For k=1 to K
If  k ≤ n then  

POP(p,k) = k
Else 

POP(p,k) = 0
End If 

Next k,
Next p,

For p=1 to P
For k=1 to K

X1 = Random integer [1,K],
X2 = Random integer [1,K],
Y1 = POP(p,X1),
Y2 = POP(p,X2),
POP(p,X1) = Y2, 
POP(p,X2) = Y1,

Next k, 
Next p,

For p=1 to P
For k=1 to K

If (k mod n) = 0 then 
Nk = k, 

For o = 1 to n 
For j= Nk – (n-1) to Nk-1

If  POP(p,j) = 0 and POP(p,j+1)>0 then  
POP(p,j) = POP(p,j+1)
POP(p,j+1) = 0

End if 
Next j,

Next o,
End If

Next k,
Next p,
Stop.

* Randomly assign all jobs on 
the first machine.

*Randomly assign jobs from the first
machine to other machines.

* Regulate the schedule and fix infeasible 
solutions in the population. 

Fig. 4   Pseudo code for generating initial population
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regulates the solution as in the proposed GA in this study, 
if necessary.

Employed bees find a new 𝜐⃗l and they evaluate its profit-
ability (fitness). After producing a new set of genes 𝜐⃗l , its 
fitness is calculated and a greedy selection is applied 
between 𝜐⃗l and 𝛽l . The fitness value of 𝛽l is illustrated with 
fitnessl

(

𝛽l

)

 notation and it is calculated as follows:

In ABC algorithm, employed bees give information about 
their own sets of genes to onlooker bees. Then, onlooker 
bees start selecting probabilistically their sets by using the 
feedback from employed bees. This selection phase is done 
with a fitness based selecting technique and the probability 
pl of the set 𝛽l can be determined as follows:

After a set 𝛽l for an onlooker bee is probabilistically cho-
sen, a neighbourhood set 𝜐⃗l is determined by swapping oper-
ation, and its fitness value is computed by using Eq. (20). As 
in the employed bees phase, a greedy selection is applied 
between 𝜐⃗l and 𝛽l . Thus, the number of onlooker bees 
recruiting better solution spaces is increased. In this phase, 
to disable to inefficient set, a counter failurel

(

𝛽l

)

 for each 𝛽l 

takes places. If fitnessl
(

𝛽l

)

 is better than fitnessl
(

𝜐⃗l
)

 , then 

failurel

(

𝛽l

)

 increases one. If fitnessl
(

𝛽l

)

 is not better than 

fitnessl
(

𝜐⃗l
)

 , then failurel
(

𝛽l

)

 is set as zero. If failurel
(

𝛽l

)

 
reaches a pre-determined limit , then the employee bee deal-
ing with 𝛽l becomes a scout bee that abandons 𝛽l and finds a 
random set of genes. The number of scout bees is generally 
limited for preventing ABC becoming a random search algo-
rithm. The algorithm runs until a pre-determined stopping 
condition occurrence.

3.2 � Genetic algorithm

Genetic algorithm (GA) is a metaheuristic search method 
for optimization problems and it is well-known example 
of evolutionary algorithms. GA uses stochastic random 
search methods to generate new alternative solutions from 
initially generated solution population. Each solution in 
the initial population is evaluated by comparing with oth-
ers in order to determine how much proper (fitness value) 
this candidate to be the best solution. Then, these can-
didates are transmitted into matching pool for crossover 

(20)fitnessl

(

𝛽l

)

= 1∕
(

1 + f
(

𝛽l

))

(21)pl =
fitnessl

�

𝛽l

�

∑SN

l=1
fitnessl

�

𝛽l

� ∀l

process in order to randomly generate new solutions from 
good solutions in the current population. After some popu-
lation generations, crossover process drives solutions in 
the population to be similar to each other. Thus, a mutation 
process randomly takes place to protect the diversity of 
the population. After these processes, solutions in the new 
population are evaluated again. If the stopping criterion 
occurs, then GA stops and displays the best solution. Oth-
erwise, GA continues to search for better solutions until 
stopping criteria occurs.

The general schema of GA in this study is illustrated 
with a pseudo code in Fig. 5. Encoding strategy of GA in 
this study illustrates the indexes of jobs assigned on any 
position number of machines. This strategy makes com-
putationally easy to execute GA operations. This encoding 
strategy is common for all methods investigated in this 
paper and can be seen in Fig. 1. Evaluation and selection 
steps in this GA do not let the worse solution in the current 
population to transmit to matching pool. After crossover 
and mutation steps, if the feasibility of solutions is going 
wrong, then a repair operation takes place to fix infeasible 
solutions. Thus, GA only searches for the fitness of objec-
tive function instead of the fitness of constraints of the 
model. These are the advantages of proposed GA.

Generating initial population In order to generate an 
initial solution for the problem, the pseudocode in Fig. 4 
is proposed in this study. After generating randomly an 
initial population, feasibilities of candidate solutions in the 
population must be controlled. The pseudo code in Fig. 4 
checks the feasibility and fixes solutions in the population 
if it is required.

Evaluating The evaluation step in GA depends on fitness 
values of solutions in the population. Let k (k = 1,… ,P) 
is the index for population and P is the size of population. 
The fitness value fk of solution k in the current population 
is calculated as follows:

where Ek
i
 is earliness of job i and Tk

i
 is tardiness of job i in 

solution k in the current population.
Selection The selection step in this GA is roulette 

wheel selection. Selection probability values of solutions 
are used to determine which solutions will be transmitted 
into the matching pool. The selection probability values 
are calculated as follows:

(22)

fk = max

{(

�

n
∑

i=1

E1

i
+ �

n
∑

i=1

T1

i

)

,… ,

(

�

n
∑

i=1

EP
i
+ �

n
∑

i=1

TP
i

)}

−

(

�

n
∑

i=1

Ek
i
+ �

n
∑

i=1

Tk
i

)

(23)Pk =
fk

∑

fk
,
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where Pk is the selection probability for solution k by com-
paring its fitness value with sum of all fitness values.

Crossover Crossover step in GA takes place after the 
selection step. This step is required to generate new alter-
native solutions by using a selected solution pair from the 
matching pool. Crossover is a random step with a prob-
ability pc . In this study, two points crossover method is 
preferred. Once crossover step occurs for a selected pair 
of solutions, a repair operation may be required in order 

to fix infeasible solutions. Figure 6 illustrates an example 
for crossover and repair steps.

Mutation Mutation is another random step with a prob-
ability pm in GA in order to protect solution diversity in the 
population because crossover step in GA makes solutions in 
the population get similar to each other after some genera-
tions. In this study, randomly selected two genes are replaced 
with each other. Then, if it is required, a repair step may take 
place to fix infeasibility. Figure 7 illustrates an example for 
mutation and repair steps.

Fig. 5   Pseudo code for genetic algorithm

Fig. 6   Crossover and repair steps

Fig. 7   Mutation and repair steps



422	 Evolutionary Intelligence (2020) 13:415–425

1 3

Repair The chromosome in Figs. 6 and 7 represents a 
solution for 4 jobs and 3 machines. There are 12 (4 * 3) genes 
in each chromosome. The first four-gene in the chromosome 
belongs to the first machine’s jobs and the second four-gene 
belongs to the second machine’s jobs. When crossover or 
mutation operation takes place as seen in Fig. 6, a repair 
operation regulates sequence of genes to disable idle genes 
get in between two genes having jobs. Furthermore, if there 
is an idle gene before a gene having job, then idle gene and 
that gene are replaced as illustrated in Figs. 6 and 7.

3.3 � Simulated annealing algorithm

Simulated annealing (SA) is another metaheuristic method 
in order to deal with optimization problems. SA is inspired 
from the annealing process in metal work. SA’s best advan-
tage by comparing it with other search methods is avoiding 

from a local optimum by using stochastic search. SA starts 
with an initial system temperature and this temperature is 
decreased at each iteration. At each system temperature, SA 
looks for neighboring solutions in order to improve its cur-
rent best solution. While temperature is decreasing at each 
iteration, number of searching for neighboring solutions at 
each iteration is being increased by SA. Furthermore, if SA 
sticks around a local optimum, then a stochastic movement 
for new search point takes place to release SA from the local 
optimum. This process ends when the system temperature 
reaches the stopping temperature. Figure 8 shows the pseudo 
code for SA in this study. In this proposed SA, searching 
procedure for neighboring solutions is simply swapping two 
random genes’ positions as in ABC algorithm. Encoding 
strategy of SA in this study illustrates the indexes of jobs 
assigned on any position number of machines. This strategy 
makes computationally easy to execute SA operations. This 

Fig. 8   Pseudo code for SA
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encoding strategy is common for all methods investigated in 
this paper and can be seen in Fig. 1.

4 � Experimental results

In this section, some test instances are generated to deter-
mine which proposed metaheuristic is better than others. 16 
test instances group and 10 instances in each group are gen-
erated. Numbers of jobs in instances are 100, 200, 300 and 
400. Numbers of machines in instances are 5, 10, 15 and 20. 
The processing times are uniformly generated Pij = U[1, 20] 
for 160 instances. As earliness and tardiness weights ( �, � ), 
two sets are used {(2, 3); (3, 2)} for all test instances. The 
common due date D for each instances are determined with 
the way proposed by Bank and Werner [2] as follows:

where

Each proposed metaheuristic was coded with C# pro-
gramming language and MS Access database by using 
a standard desktop having i5 CPU and 8 GB RAM. The 
parameter settings of metaheuristic are determined by con-
sidering general parameter settings in the literature. For 
proposed GA, crossover and mutation probabilities are set 
as 0.85 and 0.15. The initial temperature and temperature 
decrease rate of proposed SA are set as 106 and 0.8. The 
numbers of employee bees, onlooker bees and scout bees are 
set as 30, 30 and 1 for proposed ABC. The limit value for 
failures of proposed ABC is equal to 15 times of the product 
of number of machines and number of jobs for each instance. 
Each proposed metaheuristic is executed 10 times until pre-
determined solution time limits for each test instances. Aver-
age solution values of each test instance group for earliness 
and tardiness weights ( � = 2, � = 3 ) are given in Table 1. 
Average solution values of each test instance group for 
earliness and tardiness weights ( � = 3, � = 2 ) are given in 
Table 2.

As seen from Table 1, ABC algorithm gives better results 
than its opponents in average. All results obtained from all 
proposed metaheuristics for � = 2 and � = 3 are analyzed 
with ANOVA for objective function values. The ANOVA 
results for total weighted earliness/tardiness values obtaining 
by different methods give us a p value as zero. Therefore, 
we can say that methods are significantly different consider-
ing solution quality. Furthermore, the interval plot in Fig. 9 
show us ABC gives better solution in a more narrow interval.

(24)D =
⌊

1

3

n

m
P̄
⌋

(25)P̄ =

∑n

i=1

∑m

j=1
Pij

nm

As seen from Table 2, ABC algorithm gives better results 
than its opponents in average. All results obtained from all 
proposed metaheuristics for � = 3 and � = 2 are analyzed 
with ANOVA for objective function values. The ANOVA 
results for total weighted earliness/tardiness values obtain-
ing by different methods give us a p value as 0.001. There-
fore, we can say that methods are significantly different 

Table 1   Average solutions of each test instance group for earliness 
and tardiness weights ( � = 2, � = 3)

# of jobs # of machines GA SA ABC

100 5 10,998.10 10,660.96 6757.48
10 8599.18 4638.92 6633.18
15 7168.72 2475.80 6529.02
20 6325.08 2173.22 6055.82

200 5 45,853.78 45,995.52 27,474.70
10 32,550.32 22,993.08 22,016.18
15 26,869.38 13,431.34 21,744.40
20 22,934.06 8548.06 20,618.86

300 5 105,891.64 97,018.80 61,661.68
10 73,109.92 52,909.92 44,662.72
15 59,288.08 33,783.36 44,330.24
20 50,088.28 21,287.92 42,330.88

400 5 189,709.04 161,330.10 106,966.16
10 131,987.66 87,281.46 73,296.06
15 104,607.16 63,380.84 73,106.84
20 90,388.30 40,784.38 69,535.60
Average 60,398.04 41,793.36 39,607.49

Table 2   Average solutions of each test instance group for earliness 
and tardiness weights ( � = 3, � = 2)

# of jobs # of machines GA SA ABC

100 5 9644.08 15,929.20 8472.58
10 6458.62 6946.88 5613.22
15 5234.32 3507.08 4948.66
20 4437.66 2366.06 4370.74

200 5 40,453.62 65,414.26 34,831.58
10 25,754.36 33,941.94 20,518.40
15 20,187.26 20,041.12 17,285.84
20 16,807.00 11,877.70 15,506.52

300 5 92,042.34 135,129.96 79,287.30
10 58,640.36 74,558.06 44,721.48
15 45,449.22 50,519.82 36,905.56
20 37,296.20 31,218.36 32,171.60

400 5 164,315.70 228,654.88 142,258.82
10 104,044.30 119,000.02 77,466.20
15 80,129.84 90,735.54 61,997.76
20 67,351.34 60,275.66 55,012.42
Average 48,640.39 59,382.28 40,085.54
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considering solution quality. Furthermore, the interval plot 
in Fig. 10 show us ABC gives better solution in a more nar-
row interval.

As a conclusion of above analyses for the problem, we 
can say that ABC algorithm as swarm intelligence based 
metaheuristic outperforms well-known samples of evolu-
tionary and single solution metaheuristics. Each type of 
metaheuristic has own its advantages. For a fair comparison, 
the encoding strategies of all methods are the same and this 
strategy is illustrated in Fig. 1. For instance, evolutionary 
algorithms have a population based structure to help search-
ing multiple solutions, a selection mechanism that helps to 

focus on better candidate solutions, and an escape mecha-
nism from local optima. Single point or solution methods 
such as SA are relatively easy to code and to apply arbitrary 
problems and cost functions. Swarm intelligence based algo-
rithms such as ABC imitate intelligent swarms’ self organ-
izing and information sharing models among individuals in 
the swarm so positive or negative feedbacks of individuals 
in the swarms help to improve the quality of the solution. 
Furthermore, each metaheuristic can be hybrid with other 
heuristics or metaheuristic considering advantages and dis-
advantages of alternative methods.

Fig. 9   Interval plots f results 
obtained proposed algorithms 
( � = 2 and � = 3)

Fig. 10   Interval plots f results 
obtained proposed algorithms 
( � = 3 and � = 2)
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5 � Conclusion

In this study, we investigated metaheuristic algorithm 
alternatives among well-known samples of swarm intelli-
gence based, evolutionary and single solution algorithms 
for unrelated parallel machine earliness/tardiness schedul-
ing problems with common due date. ABC, GA and SA 
were chosen for comparison in view of solution quality in a 
pre-determined time limitation. All proposed algorithms are 
created without modification in order to determine solution 
qualities of these metaheuristics. Furthermore, the encoding 
strategies of all methods are the same for a fair compari-
son. Experimental results show that ABC outperforms its 
opponents in view of solution quality as swarm intelligence 
based metaheuristic algorithm. Future researchers may use 
a hybrid algorithm having main structure and advantages 
of ABC for unrelated parallel machine earliness/tardiness 
scheduling problems with common due date. Furthermore, 
ABC algorithm can be used for the same problem with other 
constrains such as release dates, setup times and.
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