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Abstract
Chemical Reaction Optimization (CRO) is a recently established population based metaheuristic for optimization problems 
inspired by the natural behavior of chemical reactions. Optimization is a way of ensuring the usability of resources and 
related technologies in the best possible way. We experience optimization problems in our daily lives while some problems 
are so hard that we can, at best, approximate the best solutions with heuristic or metaheuristic methods. This search (CRO) 
algorithm inherits several features from other metaheuristics like Simulated Annealing and Genetic Algorithm. After its 
invention, it was successfully applied to various optimization problems that were solved by other metaheuristic algorithms. 
The robustness of CRO algorithm was proved when the comparisons with other evolutionary algorithms like Particle Swarm 
Optimization, Genetic Algorithm, Simulated Annealing, Ant Colony Optimization, Tabu Search, Bee Colony Optimization 
etc. showed the superior results. As a result, the CRO algorithm has been started to use for solving problems in different fields 
of optimization. In this paper, we have reviewed the CRO based algorithms with respect to some well-known optimization 
problems. A brief description of variants of CRO algorithm will help the readers to understand the diversified quality of 
CRO algorithm. For different problems where CRO algorithms were used, the study on parameters and the experimental 
results are included to show the robustness of CRO algorithm.
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1  Introduction

In the universe, every natural process has its own pattern or 
form. But all the processes tend to maintain a common pat-
tern and that uses the least resource to give maximum pro-
duction. In scientific terminology, we describe this incident 
as an optimization. The events of optimization can be found 
from searching food of ants to the ecosystem. Researchers 
developed many systems for the betterment of mankind 
where optimization is a key factor. Optimization plays a 
very crucial role both in industrial and scientific world [1]. 

The scientists mimic different natural optimized phenom-
ena to use their properties in scientific studies to lessen the 
time, money and error. These methods lack behind optimal 
results but can solve NP-hard problems near optimally in 
polynomial time. The benefit attracts the industries and thus 
becomes popular to industries and research communities. 
In general, these methods are termed as natured-inspired 
computing [2].

The most of optimization related problems are considered 
as non-deterministic polynomial hard or in short NP-hard 
problems [3]. Exact algorithms fail to solve most of them in 
polynomial time. For small instances, exact algorithms like 
Dynamic programming, Greedy method, Tree search, Graph 
search etc. may give optimal results but they take exponen-
tial time for the large instances or for a large number of 
instances. Besides Greedy method, Tree and Graph searches 
may misdirect for large instances and thus lose the optimal 
characteristics. That is why, the scientists become inspired 
to use heuristic or metaheuristic algorithms for solving such 
NP-hard problems. Basically, there is a small difference 
between heuristic and metaheuristic where both are non-
exacts. Heuristic algorithms are designed to solve specific 
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problems while metaheuristics are problem independent. 
Metaheuristic has the advantage over heuristic that it does 
not get stuck in local optima. Metaheuristic algorithms can 
be classified as population-based and trajectory-based. For 
example, Genetic Algorithm, Particle Swarm Optimization 
are population-based as they use multiple agents or solutions 
while Simulated annealing is trajectory-based because of 
using single agent or solution [4].

At present most of the new metaheuristic algorithms are 
based on a metaphor of some natural or man-made pro-
cesses as they have been developed by taking inspiration 
from nature or man-made process [5]. Many algorithms 
have been designed by capturing inspiration from biological, 
physical and chemical systems. However, majority of them 
are based on biological systems [6]. Evolutionary Comput-
ing (EC) is special field in research which draws inspiration 
from the Darwinian natural evolution. EC relates the power-
ful process of natural evolution to a particular way to solve 
such kind of problems by trial and error [7]. The algorithms 
which are involved in EC referred as Evolutionary Algo-
rithms (EA) [8]. An Evolutionary Algorithm is inspired by 
the mechanism of biological evolution which may include 
reproduction, mutation, recombination and selection.

The main advantage of these algorithms is that they can 
return the optimal or the near-optimal results within polyno-
mial time. The industrial world also wants to use approxima-
tion solutions since time plays an important role, cost as well 
as error rate is very much connected to time.

For last 2 decades, different nature-inspired algorithms 
gained enormous popularity in solving different NP-hard 
problems. Some of the familiar algorithms are Genetic 
Algorithm (GA) [9] inspired by Darwin’s theory of evolu-
tion, Particle Swarm Optimization (PSO) [10] inspired by 
the behavior of bird flocking or fish schooling, Ant Colony 
Optimization (ACO) [11] mimics the behavior of ant while 
searching food, Simulated Annealing (SA) [12] encouraged 
by the physical process of heating a material and then slowly 
lowering the temperature to decrease defects.

In 2010 Lam and Li [13] introduced a nature-inspired 
metaheuristic algorithm named Chemical Reaction Optimi-
zation (CRO) that mimics the interaction behavior of mole-
cules participated in a chemical reaction. Using the theory of 
thermodynamics CRO algorithm showed promising results 
for solving different optimization problems. The different 
algorithms based on CRO were proposed for various com-
binatorial and continuous optimization problems for finding 
optimal or near optimal solutions. Some problems for which 
optimal or near optimal solutions may not be gotten by the 
few renowned approaches where CRO may potentially solve 
those problems and thus the popularity of application of 
this algorithm increases. The CRO algorithm was applied 
to some NP-hard problems such as: Quadratic Assignment 
[13, 14], Grid Scheduling [15], Cognitive Radio Spectrum 

Allocation [16], 0–1 Knapsack [17], Multiple-choice Knap-
sack [18], Stock Portfolio selection [19], Global Numeric 
Optimization [20], Longest Common Subsequence [21], 
Shortest Common Supersequence [22], Printed Circuit 
Board Drilling [23], Directed Acyclic Graph Scheduling 
[24], Optimal cluster analysis [25], Capacitated Arc Rout-
ing [26], Stock Market Forecasting [27], Static Bike Repo-
sitioning [28], Vehicle Routing [29], SCM Transportation 
Scheduling with TPL [30] etc.

In this paper, we have reviewed the problems which were 
solved by CRO. During the review process, we noticed that 
the researchers tried to achieve better results when they 
made some changes in the basic CRO algorithm. These 
changes might modify the basic framework of the algorithm 
to suit different problems. In most cases, the changes are 
made according to the definitions and properties of the prob-
lems. Such variants of tasks are very fine for the problems 
and give the readers and the researchers a new direction to 
work on. The energy conversion and transfer are maintained 
in different entities that makes the CRO unique among other 
metaheuristics. Other attributes can easily be comprised 
with the molecule that gives the advantage and flexibility 
in designing different operators to achieve the best perfor-
mance. In addition, the advantages of the GA and SA are 
deployed in CRO [31–33].

Some of the common variants of the algorithm might 
be hybridized with other algorithms, adding or reducing 
search operators, adapting CRO algorithm for parallel or 
multi-objective problems etc. The main motivation for 
working on these variants is to help readers so that they 
can find some common approaches used by the research-
ers to solve a particular problem using CRO algorithm. A 
general review of CRO algorithm in [31] gives the basic 
idea about how the search operators work along with the 
theoretical background. But recently it can be observed that 
researchers prefer to make changes to the basic structure of 
the algorithm. These changes help to get the expected results 
earlier. So, the future research or study on a metaheuristic 
algorithm should include the variants and their usefulness. 
Besides parameters play an important role in the optimi-
zation algorithm. It is a big challenge to find out suitable 
values of parameters. Our study on parameters values would 
give the readers idea about how the parameters were set and 
used previously. Lastly, our novel approach of getting some 
statistical results of the experimental values of the reviewed 
paper will help the readers to catch the effect of variants. 
The statistical analysis of the results will give a clear picture 
how the future research will be derived from CRO and other 
metaheuristic algorithms.

The paper organizes as follows: Section 2 briefly dis-
cusses optimization. Section  3 gives the motivation of 
CRO. Section 4 gives a theoretical description of CRO algo-
rithm along with its components. Section 5 is for energy 
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conversion. Section 6 illustrates main CRO algorithm frame-
work along with its pseudo-code. Section 7 narrates the vari-
ants of CRO algorithm whereas Sect. 8 reviews different 
applications solved by CRO algorithm. In Sect. 9 a brief 
study on parameters and experimental results are given, and 
Sect. 10 is for conclusions.

2 � Optimization

Single objective optimization is a study on selecting the best 
value from a set of feasible values. In our practical life, we 
see a lot of optimization problems. In general, we can say 
that, if we have more than one solution to a problem then 
selecting the best solution is the optimization. So, if S be the 
set of all possible solutions then we have to find a solution, 
s that is best among all the solutions, where s ∈ S . For an 
optimization problem, a solution or search space can be con-
stituted by all possible solutions where each point represents 
a feasible solution. Now optimization is finding the optimal 
point (minimum or maximum depending on the nature of 
the problem) in the solution (search) space. An optimization 
problem constitutes three components: a set of variables, a 
set of constraints and a function which is known as objective 
or fitness function.

If V be the set of variables where V = {v1, v2, v3,… , vn} 
and C be the set of constraints where C = {c1, c2, c3,… , cn} . 
The constraints are used to limit the values of variables. 
Here n denotes problem dimensions whereas, m represents 
the number of constraints. Now a solution, s is defined as the 
values of variables V where the variables are restricted by 
C. Besides S is the search space that defines set of all feasi-
ble solutions. Now, if the objective functional value of each 
solution is f then for a minimization problem, the objective 
function can be described as in [13] shown below.

Here R denotes a set of real numbers, EQ and IEQ mean 
index sets of equalities and inequalities respectively. Equa-
tion (1) shows the objective function for a minimization 
problem. The objective function will search the maximum 
value of f(T) if we consider maximization problem.

On the other hand, the optimization problem with more 
than one objective functions or target solutions is called 
multi-objective optimization problem (MOOP). Most of 
the real-world problems and their solutions are required to 
be treated as multi-objective optimizations. Different from 
a single objective problem, a MOOP has more than one tar-
get or solution. MOOP does not mean to find one solution 

(1)

ObjectiveFunction = min
T∈Rn

f (T)

subject to

{
ci(T) = 0 i ∈ EQ

ci(T) ≤ 0 i ∈ IEQ

corresponds to each objective function. The air ticket res-
ervation can be represented as a MOOP. There are many 
varieties of tickets available at different prices. The ticket 
with higher price has higher facilities for the customer. If the 
problem is considered simply, it has two objectives: prices 
and facilities. Instead of finding only one optimal solution, 
there is a set of optimal solutions (known as Pareto-opti-
mal solutions) by trade-off between prices and facilities. In 
MOOP, the target is to find these optimal solutions. There 
is only one optimal solution corresponding to each amount 
of price for this problem and each customer has to choose 
one such solution according to their abilities. Though there 
is a set of optimal solutions, practically each customer wants 
one optimal solution. These problems may be solved in two 
ways: one is ideal multi-objective optimization and another 
one is preference-based multi-objective optimization. To 
deal with the multi-objective optimization, a set of trade-off 
optimal solutions are determined and then one solution is 
selected among all trade-off solutions according to higher 
level information (such as customer ability in air ticket prob-
lem). On the other hand, in preference-based multi-objective 
optimization, multi-objective functions are converted to a 
single-objective function using higher level information 
and then the problem is solved in the same way as single-
objective optimization [34].

Figure 1 represents the solution space for an optimization 
problem that seeks the maximum objective value. Each point 
on the three-dimensional graph defines the objective func-
tion value for each feasible solution depending on param-
eters 1 and 2. Since the problem is maximization problem 
so the maximum value of z index is the optimal solution. 
The optimal solution can be easily identified by the naked 
eye from the Fig. 1, but finding the optimal solution is a 
very tough task since it can be at any point in a large solu-
tion space. Besides, any approach can be trapped by the 
local optima. An exact algorithm generally traverses the 
whole solution space and then gives the optimal solution 

Fig. 1   A solution/search space of a maximization optimization prob-
lem
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which is a very much time and space inefficient approach. 
Heuristic algorithms start from a position in the space and 
then calculating the problem-related information. They 
traverse the space that takes less time but might get stuck 
in local optima. Moreover, the heuristic algorithm is very 
much problem dependent. That means the way they follow 
for a problem will be different for another problem due to 
the different problem information. For example, a person 
unknown in a city wants to go to a point “Y” from another 
point “X”. When he looks for a path, people will help him 
with path related information like “Go to the train”, “walk 
in that direction” etc. But when the same person wants to 
go to point “Z” from “X”, the direction of the path would 
be different. On the other hand, meta-heuristic algorithms 
are the problem independent approaches where they start 
from a random position and jump into a different portion 
of the solution space. Besides, they have no prior informa-
tion about the problem and thus there is a higher possibility 
to find near optimal solution. Meta-heuristic algorithms are 
designed inspiring from the different optimized phenom-
ena occurred in nature. Almost all meta-heuristic algo-
rithms accept the worse values and thus can skip the trap of 
local optima. Recent studies show that evolutionary multi-
objective optimization basically focuses those portions of 
the front which satisfy the preference of the decision maker 
(DM) rather than consider the whole Pareto front. It can be 
observed that the uniqueness of the DM which is not the 
case for several decision making situations. A negotiation 
can help to the several DMs to adjust their preferences by 
following some negation rounds. However, it can be possible 
to modify several DMs to incorporate the CRO to satisfy the 
preferences of the DMs [35].

3 � Motivation

Chemical Reaction Optimization is a nature-inspired 
metaheuristic algorithm which has solved many optimiza-
tion problems by outperforming many other existing opti-
mization algorithms. Though there are many metaheuris-
tics algorithms, the number of optimization problems are 
many times bigger compare to the number of successful 
metaheuristics. In most of the cases, metaheuristics solve 
some definite classes of problems while get poor results for 
other classes of problems compare to other metaheuristics. 
In other words, no metaheuristic can solve all types of opti-
mization problems efficiently.

That is why, by realizing the need of a new optimization 
technique Lam and Li proposed Chemical Reaction Optimi-
zation (CRO) in 2010. CRO is based on the phenomena of 
chemical reaction with optimization. Already it has shown 
its supremacy over various existing algorithms by solving 
many popular optimization problems and has the ability 

to solve such problems that have been failed to solve suc-
cessfully by other metaheuristics. The diversification and 
intensification characteristics help CRO to take the favor of 
both SA and GA. CRO can be easily modified for different 
problems to get better optimization results.

4 � Chemical Reaction Optimization

Chemical reaction optimization (CRO) is a technique which 
loosely pairs chemical reactions with optimization [31, 36]. 
The functions of CRO operate on two laws of thermody-
namics. The first law declares that energy cannot be pro-
duced or destroyed; energy can be transformed from one 
kind to another and transferred from one entity to another. 
In a chemical reaction, there are chemical substances and 
surroundings around these. Every chemical substance has 
potential energy (PE) , kinetic energy (KE) and the energy 
of surroundings is symbolically representing as the buffer 
energy.

A chemical reaction can be either endothermic or exo-
thermic. The initial buffer size (SBO) can characterize these 
two types of chemical reactions. If (SBO) > 0 , then the reac-
tion is endothermic and if (SBO) = 0 , then it is exothermic. 
The second law says that the entropy of a system always 
tends to increase over time. The energy stored in a molecule 
is referred to as potential energy. When it is converted into 
kinetic energy, then the system becomes more disordered 
and entropy increases. The algorithm is a step-wise search-
ing process for minimum energy (optimal solution) [31].

A chemical reaction is accomplished by some sub-reac-
tions and after every sub-reaction, a more stable product is 
generated. At the same time, a checking is done whether 
the product is at the optimal point or not. It is a multi-step 
optimal point searching. This behavior is very similar to 
many real-world optimization problems. Researchers mimic 
this natural phenomenon to solve the optimization problem. 
The two factors that have taken the researchers interests in 
a chemical reaction are:

•	 Chemical Reaction always gives a more stable product 
with minimum energy in it.

•	 The chemical reaction is a stepwise searching for an opti-
mal solution.

The effectiveness and potential distinction of CRO regard-
ing other metaheuristics can be determined by the following 
terms [31, 36].

•	 CRO is a framework which facilitates to exploit the dif-
ferent operators (extra operators) along with its basic four 
operators to solve different optimization problems. One 
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can also modify the working procedures of the basic four 
operators of the CRO according to the requirements.

•	 CRO gives the opportunity to use variable size popula-
tion, which allows the system to adapt automatically the 
problem being solved. When diversification is required 
decomposition is triggered to produce more molecules 
due to explore the solution space for finding out the opti-
mal solution. In the case of intensification, the algorithm 
triggers synthesis for merging molecules. This increases 
the probability of resultant molecules to be selected for 
manipulation.

•	 The basic principle of CRO is that it follows the law 
of conservation of energy. Energy can be converted and 
transferred from one form to different entities forms. The 
total amount of energy held by the molecules and the 
buffer remains same which makes the CRO unique than 
other metaheuristics.

•	 Problem specific heuristics can easily be incorporated 
into elementary reactions. One can design a molecule for 
different attributes that suit the problem to be solved as 
well as give the flexibility to design and manage different 
operators.

•	 CRO takes the advantages of both Simulated Annealing 
and Genetic Algorithm.

•	 It is easy to implement using object-oriented program-
ming where a molecule is defined as a class and elemen-
tary reactions are as methods.

•	 Since population size does not need to be synchronized, 
it is easy to adapt CRO to run in parallel.

The objective function of the optimization problem is rep-
resented by potential energy in CRO. Besides, some other 
terminologies of the chemical reaction are represented in 
CRO algorithm such as molecules, kinetic energy, the num-
ber of hits etc. The meanings of these terminologies used in 
CRO are given below:

•	 Molecule: A solution in the search space. The structure 
of the molecule or solution can be an array, vector or 
matrix.

•	 Popsize: Set of all feasible solutions. A 2-D matrix where 
each row represents the value of a solution.

•	 Potential Energy: The objective function value related to 
corresponding molecule.

•	 Kinetic Energy: Numerical value signifies the amount of 
tolerance to accept the worst solution.

•	 NumHit: Number of collisions by a particular molecule.
•	 KE Loss Rate: Percentage of the upper limit of reduction 

of KE.
•	 MoleColl: A parameter to choose whether the chemical 

reaction is uni-molecular or inter-molecular.
•	 Initial KE: Initial value of the kinetic energy assigned to 

each molecule in the initialization stage.

•	 buffer: Energy of surroundings.
•	 �, � : Threshold values for the intensification and diversi-

fication.
•	 MinStruct: The molecule structure that has minimum 

potential.
•	 MinPE: When a molecule attains its MinStruct, MinPE 

is its corresponding potential energy value.
•	 MinHit: It is the number of hits when a molecule has 

MinStruct.

Collision is the basic element for a chemical reaction. With-
out any collision, no chemical reaction will occur. Even in 
CRO one of the main components is a collision. Four basic 
collisions are considered here. CRO has some features 
that differentiate the algorithm from other meta-heuristic 
algorithms. The manipulated agents are molecules which 
represent the solution space. Only one elementary reaction 
takes place in each iteration depending on the conditions 
of the selected molecules. Decompositions are triggered as 
well as generates more molecules to explore the solution 
space while diversification is required. In the case of inten-
sification, syntheses are triggered to merge molecules that 
results in higher probability for selection of the resultant 
molecules for manipulation. CRO also follows the energy 
conservation rule. During each of basic four reactions, the 
total amount of energy (PE and KE) held by the molecules 
and the buffer remains unchanged. CRO also facilitates the 
parallel processing [36]. But one of the features of CRO 
that differentiates the algorithm from other meta-heuristic 
algorithms is, besides basic four collisions, researchers can 
add new collision(s) or deduce any of the basic collisions. 
It can be pointed out that GA also gives us such facilities 
however CRO gives better results with less execution time. 
Such results can be observed in [17, 30, 37, 38].

Figure 2 describes the basic chemical collisions for CRO 
algorithm. The four basic chemical collisions are deployed 
in CRO inspired from both GA and SA which are primarily 
divided into two categories depending on the participants 
in the collision. These two categories are uni-molecular and 
bi-molecular. Uni-molecular collisions are the collisions 

Fig. 2   Chemical collision in CRO
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where single molecule collides with the surrounding sur-
face and inter-molecular are the collisions where two or 
more molecules collide with each other. In the case of uni-
molecular collision, if the criterion of decomposition is met 
the decomposition is executed, otherwise on-wall ineffective 
collision is performed. On the other hand, in the case of an 
inter-molecular collision if the criterion of synthesis is met 
then synthesis is done, otherwise, inter-molecular ineffective 
collision is performed. To observe the difference, flowcharts 
of CRO and GA are shown in Figs. 3 and 4 respectively.

4.1 � On‑wall ineffective collision

Single molecule collides with the wall of the surface and 
returns the same number of product in the on-wall inef-
fective collision. The molecularity remains in this reac-
tion. This collision is used to implement local search in the 
search space. Basically, a very small change occurs in the 
molecular structure of the participant molecule and thus 
traverses neighborhood space. In this collision, the molecule 
m slightly changes to m′ , i.e., m → m′ . Figure 5 represents 
the on-wall ineffective collision where molecule, m collides 
with the surface and produces m′ [31].

Let N(⋅) is neighbourhood search operator where m′ is 
obtained by perturbing m by the operator. Thus, the structure 
of new molecule (solution) is similar to original one. Now, 
we have m� = N(m) and PEm� = f (m�) where f (⋅) is an objec-
tive function [31].

Let t ∈ [KELossRate, 1] be a random number, uni-
formly distributed from KELossRate to 1. Now, we get, 
KEm� = (PEm − PEm� + KEm) × t and the remaining energy 
(PEm − PEm� + KEm) × (1 − t) is transformed to buffer.

Now, m′ is accepted as a new molecule (solution) by 
replacing m only when Eq. (2) is satisfied. Let PEm = 8 , 
PEm� = 10 and KEm = 4 , i.e., although the new solution m′ 
is worse than the original one m, the variation is accepted 
due to PEm� ≤ PEm + KEm is satisfied. We can say that the 
PEm has allowed the acceptance of a worse individual in 
order to escape the local optima at an early stage. After get-
ting acceptance, a certain portion of KE of the transformed 
molecule m′ is withdrawn to the buffer. In this case, when 
a molecule experiences more of this elementary reaction, 
it will have more KE transferred to the buffer. Hence, the 
chance of getting a worse solution is lower in a subsequent 
change [31, 33].

4.2 � Decomposition

Decomposition is the uni-molecular collision where a single 
molecule collides with the wall of the surface and produces 

(2)PEm + KEm ≥ PEm�

Fig. 3   Flowchart of CRO

Fig. 4   Flowchart of GA

Fig. 5   On-wall ineffective collision
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two new molecules. Assume that m produces m′
1
 and m′

2
 , i.e., 

m → m�
1
+ m�

2
 . In Fig. 6, we can see that a molecule m collides 

with the wall of the container and produces two new molecules 
m′

1
 and m′

2
 [31].

Decomposition is launched in order to explore the other 
parts of the solution space when selected molecule does not 
experience any new minimum value in terms of number of 
hits � as well as by triggering On-wall ineffective collision. 
Massive change occurs in the structure of the molecule and 
thus, the system can jump into another region of the solution/
search space and implements global search. Any mechanism is 
allowed to produce m′

1
 and m′

2
 from m. Since more molecules 

are created by decomposition, the total sum of PEm and KEm 
may not be sufficient [31, 33]. In other words, we may have

But due to violation of the energy conservation rule this 
decomposition is rejected. To accept this decomposition, 
a small portion of energy from buffer is drawn randomly. 
Let �1 and �2 be two independent and identically distributed 
numbers uniformly produced in the the range of [0, 1]. We 
modify the energy conservation condition for decomposition 
as follows:

Here, some energy from buffer is transferred to the molecule 
when it collides with the wall of the surface. The existing 
molecule m is replaced by the two newly generated ones 
when Eq. (4) is satisfied. Let PEm = 8 , KEm = 12 , PEm�

1

= 9 
and PEm�

2

= 10 . In this example, we can see that both new 
molecules are worse than the original one. However, the new 
molecules are accepted due to Eq. (4) is satisfied [31, 33].

The remaining energy,  E
dec

= (PE
m
+ KE

m
+ �

1

×�
2
× buffer) − (PEm�

1

+ PEm�
2

) is randomly shared by the 
KEm′

1

 and KEm′
2

 where,

Here �3 is a random number generated in the range of [0, 1] 
and also the energy of buffer is updated by the following 
equation [31].

(3)PEm + KEm < PEm�
1

+ PEm�
2

(4)PEm + KEm + �1 × �2 × buffer ≥ PEm�
1

+ PEm�
2

(5)KEm�
1

= Edec × �3 and

(6)KEm�
2

= Edec × (1 − �3)

Molecularity changes in decomposition reaction and thus 
it proves that CRO algorithm gives the feature of variable 
population size which is helpful for finding near optimal 
solution.

4.3 � Inter‑molecular ineffective collision

The inter-molecular ineffective collision is a reaction where 
two or more molecules participate in the collision to pro-
duce the same number of products. Such that two molecules 
m1 and m2 slightly change to m′

1
 and m′

2
 respectively, i.e., 

m1 + m2 → m�
1
+ m�

2
 . Molecularity does not change by this 

type of collision. Like on-wall ineffective collision, inter-
molecular ineffective collision implements local search. A 
small change in the molecular structure appears in the par-
ticipants of the collision. We get m′

1
 and m′

2
 by m�

1
= N(m1) 

and m�
2
= N(m2) [31].

Figure 7 shows the inter-molecular ineffective collision 
where two molecules m1 and m2 collide each other and pro-
duce two new solutions m′

1
 and m′

2
.

The energy conservation condition can be stated as:

As more molecules are participated in this reaction, the total 
sum of energy of the molecular sub-system is larger than that 
of the On-wall ineffective collision. Thus, the probability of 
the molecules to explore their immediate surroundings is 
increased. In other words, the molecules get higher flexibil-
ity to be transformed to more diverse molecular structures. 
Same operator for On-wall ineffective collision can be used 
to produce new molecules (solutions). The existing mole-
cules m1 and m2 are replaced by the two newly generated 
ones when Eq.  (8) is satisfied. Let PEm1

= 4 , PEm2
= 5 , 

KEm1
= 3 , KEm2

= 2 , PEm�
1

= 6 and PEm�
2

= 7 . Here, it can 
be seen that both new molecules are worse than the two 
originals. But the changes are accepted because of satisfying 
Eq. (8). Then, the KEs of the two newly generated ones share 
the remaining energy E

inter
= (PE

m
1

+ PE
m

2

+ KE
m

1

+ KE
m

2

)−

(PE
m

�
1

+ PE
m

�
2

) in the sub-system, i.e.,

(7)buffer� = (1 − �1�2)buffer

(8)PEm1
+ PEm2

+ KEm1
+ KEm2

≥ PEm�
1

+ PEm�
2

Fig. 6   Decomposition collision Fig. 7   Inter-molecular ineffective collision
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where �4 is a random number generated in the range of [0, 1].

4.4 � Synthesis

Two or more molecules collide each other and produce only 
one molecule in the synthesis reaction. From more than one 
molecule the algorithm returns only one molecule and sug-
gests a massive change in structure. It is opposite of the 
decomposition reaction and performs a global search like 
decomposition. Assume that m1 and m2 collide with each 
other and produce a new one m′ , i.e., m1 + m2 → m� . In 
Fig. 8, two molecules m1 and m2 collide with each other and 
synthesize into a single molecule m′.

The energy conservation can be stated as:

Let PEm1
= 4 , PEm2

= 5 , KEm1
= 3 , KEm2

= 2 and 
PEm� = 12 . Here, we can observe that the new molecule is 
worse than the two originals. However, the new molecule 
is accepted because of the role of KEs of the original mol-
ecules [31, 33]. If Eq. (11) is satisfied , the the resulting KEm′ 
just keeps all the remaining energy, i.e.,

Because of synthesis a greater change has been done on 
m′ with respect to m1 and m2 . For this reason, KEm′ is usually 
higher than KEm . So, the resulting molecule m′ has higher 
ability to explore a new solution region as well as the system 
can skip the trap of local optima and jump into another por-
tion of the solution or search space.

In general, the principles of a chemical reaction are 
controlled by the first two laws of thermodynamics [39]. 
These two laws of thermodynamics have been considered 
in order to design the algorithm efficiently and effectively. 
Researchers treat potential energy (PE) and kinetic energy 
(KE) as the energy of a molecule and central energy buffer 
as the energy of the surroundings. If the reaction is endother-
mic then the energy from surroundings is transformed into 

(9)KEm�
1

= Einter × �4 and

(10)KEm�
2

= Einter × (1 − �4)

(11)PEm1
+ PEm2

+ KEm1
+ KEm2

≥ PEm�

(12)KEm� = (PEm1
+ PEm2

+ KEm1
+ KEm2

) − (PEm� )

energy of molecule and if the reaction is exothermic then 
energy from a molecule is transformed into the energy of 
surroundings. The potential energy of a reaction is referred 
to the objective function of an optimization problem and 
kinetic energy as a numeric value that quantifies how much 
a molecule can tolerate the worst value. So the acceptance 
of a change in a chemical reaction is checked using Eq. (13). 
Potential energy is considered as the energy which is stored 
in the molecules against molecular configuration. When the 
mentioned energy is converted into other pattern, the system 
becomes more disordered. As an example, when the mol-
ecules having higher kinetic energies (basically altered from 
potential energy) varies in a faster way, the whole system 
becomes more disordered and thus its entropy rises. Thus, 
all proceeding systems show a symptom to reach a state of 
equilibrium, where the level of potential energy reaches to 
a minimum scale.

5 � Energy conservation of CRO

CRO is a population based meta-heuristic algorithm that imi-
tates the behavior of chemical reactions and the algorithm was 
designed by Lam and Li [31]. Basically, CRO is a technique 
that loosely couples with chemical reactions [36]. In a chemi-
cal reaction, each chemical substance holds potential energy 
(PE) and kinetic energy (KE) itself and the energy of the sur-
roundings is symbolically representing as the buffer. So, from 
the first law of thermodynamics we can write,

where PEi(t) and KEi(t) denote the potential and kinetic 
energy of the molecule i at time t respectively, buffer(t) is 
the energy of the surrounding as well as the energy of the 
central buffer at time t, and Z is a constant.

However, each molecule has some essential attributes 
such as the molecular structure, potential energy, kinetic 
energy, and other parameters. If any molecule holds exces-
sive energy that means the molecule is in the unstable con-
dition. An unstable molecule always tries to get a stable 
condition with lower energy by undergoing the four basic 
mentioned reactions. The two ineffective collisions represent 
a small change in the molecular structure that refers to the 
effect of intensification as well as local search. On the other 
hand, a massive change in the molecular structure is noticed 
in the case of decomposition and synthesis reactions that 
give the effect of diversification as well as global search. As 
CRO follows the energy conservation rule so, any of the four 
reactions will only be triggered when the following equation 
is satisfied [31].

(13)
PopSize(t)∑

i=1

(PEi(t) + KEi(t)) + buffer(t) = Z

Fig. 8   Synthesis reaction
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where t denotes the number of reactants, z and z′ is the struc-
tures of the molecule before and after the reaction. Some 
problems may conduct negative potential energy (PE) which 
is obtained from the objective function of the problem. But 
theoretically, energy can not be a negative value as well as 
it is not accepted at all. In this case, one can add an offset to 
the negative objective function value to make each negative 
PE positive. So, there is no violation of the law of conserva-
tion of energy [31, 36].

6 � Chemical Reaction Optimization 
algorithm

Like all other evolutionary algorithms, CRO has three 
stages: Initialization, iteration, and finalization [31]. In the 
initialization stage, molecules are generated. Each molecule 
has following characteristics:

•	 Molecular Structure.
•	 Potential Energy.
•	 Initial Kinetic Energy.
•	 Initial NumHit.

The initialization stage begins with the initialization of the 
different parameters of CRO algorithm. The iteration stage 
consists of some operations between molecules. In the itera-
tion stage, if any of stopping criteria does not meet then the 
algorithm proceeds to the final stage. The final stage deter-
mines a globally optimal solution from the local optimal 
solutions using its objective function value and terminates 
the algorithm.

In the iteration stage, a conditional loop starts executing 
until the stopping criterion is not satisfied. The molecule 
has lost its kinetic energy according to KELossRate that 
is initialized at very first. A threshold value (t) is gener-
ated between 0 and 1 randomly to determine whether the 
reaction will be uni-molecular or inter-molecular. Every 
molecule of the population is iterated and modified by 
one of the four operators of CRO algorithm. The value of 
a variable t decides which operator will be used to modify 
the solutions. If t > MoleColl , a uni-molecular collision is 
selected, otherwise, inter-molecular collision is selected. 
In the case of uni-molecular collision, if the criterion 
of decomposition is met the decomposition is executed, 
otherwise on-wall ineffective collision is performed. On 
the other hand, in the case of an inter-molecular colli-
sion if the criterion of synthesis is met then synthesis is 
done, otherwise, inter-molecular ineffective collision is 
performed to modify the selected molecules. After each 

(14)

t∑

i=1

(PEzi + KEzi) ≥ PEz�i

iteration NumHit of any particular molecule increases if 
the reaction is unimolecular or NumHit of two or more 
molecules increases if the reaction is inter-molecular. The 
two ineffective collisions perform local search (intensifica-
tion) while synthesis and decomposition perform global 
search (diversification) [32].

Besides, after each iteration, the resultant molecule 
is checked with the original one to observe whether the 
molecule is best or not. The algorithm undergoes through 
these different reactions until it meets the stopping criteria. 
In the finalization stage, the global best solution with the 
objective function value is returned as output. The steps 
of CRO algorithm are shown in Fig. 9. The pseudo code 
of CRO algorithm is given in Algorithm 1.

Fig. 9   Steps of CRO algorithm
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In general, if we describe the CRO algorithm using gen-
eral words as used in other evolutionary algorithms then we 
can see from the Algorithm 1 that CRO algorithm starts with 
setting up parameters and creating solution set. Solution set 
generation technique and parameters are very much problem 
dependent. Then in the iteration phase, searching of a better 
solution is done locally or globally which is determined by 
the values of parameters. In CRO, search operators might 
include very well-known operators like mutation or crosso-
ver used in Genetic Algorithm [9]. After each searching, a 
new solution is generated and will be included in the solu-
tion set if that has better solution quality than the current 
solution. Iteration phase is regulated by different factors. 
When the iteration phase includes the best solution in the 
solution set with the respective objective function value 
then it will be returned as output. The generalized form of 
CRO algorithm is shown in Algorithm 2. Some implemented 
codes are provided here.1,2,3 One can follow this for better 
understanding as well as to get idea for implementation of 
the CRO algorithm.

7 � Variants of CRO algorithm

Chemical Reaction Optimization (CRO) algorithm has a 
feature that is flexibility to change the basic framework for 
any sort of problem. Considering the fact, researchers have 
designed variants of CRO for different problems. Some of 
them are discussed below.

7.1 � CRO algorithm with Greedy strategy

CRO algorithm with Greedy strategy was used to solve 0–1 
knapsack problem [17]. The name signifies that with the 
CRO algorithm a greedy-based function is used. The authors 
use basic CRO algorithm and a repair function which is 
invoked after every reaction. The Repair function has been 
built based on the greedy strategy and it has two phases: Add 
phase and Drop phase. Before Add phase, items are sorted 
on the basis of profit to weight ration.

Now in the Add phase, the sorted items are checked from 
the beginning and changed the values from zero to one until 
the feasibility is violated. Then in the Drop phase, a random 
item is picked and if the value is zero then changed to one if 
the feasibility is not violated. According to the authors, Add 
phase improves the fitness of the feasible solution whereas 
Drop phase confirms the feasibility of a solution. Besides, 
a Repair operator is used to validate the balance between 
CPU time and cost, skip the local optima trap. Figure 10 
represents the steps of CROG algorithm.

7.2 � Artificial chemical reaction optimization

The multiple-choice knapsack problem is solved using Arti-
ficial CRO [18]. The concept of ACRO is very similar to 
CRO wherein CRO we have to consider potential energy as 
the objective function for both minimization and maximi-
zation problem. But in ACRO enthalpy is considered as an 
objective function if the problem is minimization problem 
and entropy is considered as the objective function for maxi-
mization problem. Now like CRO, ACRO has three stages 
where, in the initialization stage, reactant/solution is gener-
ated defined by reactantnum which is referred as popsize in 
CRO. Then in iteration phase, one reaction is executed until 
the termination condition is met. Then in the finalization 
stage, the best solution is returned as output. Now, ACRO 
has two types of reactions: monomolecular and bimolecu-
lar. Monomolecular reactions are redox1 and decomposi-
tion. Here one molecule works as a reactant. Bimolecular 
reactions are synthesis, redox2 and displacement reactions. 
ACRO has one more basic reaction than CRO but the basic 
change in ACRO is that after each reaction if enthalpy is 
not decreased or entropy is not increased then a reversible 1  https​://sites​.googl​e.com/site/slimb​echik​h/sourc​ecode​s.

2  http://cro.eee.hku.hk.
3  https​://githu​b.com/oyld/cro.

https://sites.google.com/site/slimbechikh/sourcecodes
http://cro.eee.hku.hk
https://github.com/oyld/cro
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reaction occurs. This incident differentiates ACRO from 
CRO. Figure 11 shows the execution process of ACRO 
algorithm.

7.3 � Parallel CRO

One of the distinguishing features of CRO is that the algo-
rithm can be parallelized without much synchronization 
[31]. Like other evolutionary algorithms, CRO algorithm 
does not need to maintain the flow if it is run on multiple 
processors. Each CRO maintains its own population as well 
as reaction and synchronization can be made after few itera-
tions or computational time. Parallel CRO has been used to 
solve quadratic assignment problem [14]. Here the best solu-
tion for every process is sent to the central node after a cer-
tain time. The central node removes all the solutions except 
the best one among the received solutions. Then the copy 
of the global best solution is sent to every node where CRO 
is running and the global best solution replaces any random 
solution. Thus, the parallelization occurs. It is very clear 
from the process that no prior synchronization is needed 
among the processors. After a couple of time, the processor 
selects its best solution and sends it to the central node and 
after selecting global best solution one copy is received and 
a random solution is replaced by the global best solution. 
Advantages of PCRO over other parallel versions of evo-
lutionary algorithms are varying molecules (population) in 
each processor and the energy in each buffer is transferred 
during communication and that effect on the local and global 
searches of the process [14]. Figure 12 shows the block dia-
gram of PCRO algorithm where each processor works with 
its own CRO and through communication string, they com-
municate with the central node.

7.4 � Real coded CRO

The concept of Real Coded Chemical Reaction Optimization 
(RCCRO) algorithm has been given in [40] for the continu-
ous optimization problem. Three modifications have been 
reported for RCCRO. The first modification is the solution 
representation. Every solution of the continuous optimiza-
tion problem is a real number vector where the molecular 
structure is formed of floating points having specific upper 
and lower bounds. Besides, continuity of the solution is a 

key factor for this type of problem. The continuity does 
not effect on global search but for local search, continu-
ity remains a key problem. Therefore, the two local search 
reaction operators are modified to ensure the continuity of 
the solution. In general, evolutionary computation adds per-
turbation to an existing solution to generate new one [41]. 
Here in RCCRO, the perturbation is used for neighborhood 
search. There are many probability distributions such as 
Gaussian, logarithm, exponential etc. where neighborhood 
search can be incorporated to produce probabilistic pertur-
bation. The third modification is boundary constraints han-
dling. Since the continuous optimization problem is bounded 
so boundary constraints need to be handled. There are many 
approaches to handling them whereas most popular are the 
random and reflecting approaches.

7.5 � Mutation CRO

Mutation CRO (MCRO) was proposed in order to solve 
global numerical optimization problem [20]. Mutation 
CRO is a hybridization of CRO algorithm and two opera-
tors: Turning and Mutation operators. The turning operator 
is merged to neighborhood search. In MCRO, three reactions 
(on-wall ineffective collision, decomposition, and inter-
molecular ineffective collisions) are considered for neigh-
borhood. Turning operator improves the quality of solution 
and reliability of the algorithm [20]. Mutation operator is 
incorporated into solution generation and every reaction 
operator. The authors considered three types of mutation 
operators: uniform, non-uniform, and polynomial. They 
claimed that mutation operator increases the probability 
of finding optimal solution and can skip the trap of local 
optima. The steps of Mutation CRO shows in Fig. 13.

Fig. 10   Steps of CROG algorithm Fig. 11   Steps of ACRO algorithm

Fig. 12   Block diagram of PCRO algorithm
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7.6 � Hybridization of CRO and PSO

Hybridization of CRO and PSO was used to solve continu-
ous optimization problem [42]. Here criteria of both the 
CRO and PSO algorithms are preserved. Out of four reac-
tion operators of CRO, only two neighborhood operators 
and a PSO operator (PSOUpdate) are used. The algorithm 
consists of three stages: initialization, iteration, and finaliza-
tion. In initialization stage, the population which is referred 
as a molecule in CRO and particle in PSO is generated along 
with the assignment of parameters of both PSO and CRO 
algorithms.

Then in the iteration stage, a checking is done with a 
parameter and a random variable. If the random variable is 
greater than the parameter then the PSOUpdate operator is 
executed or one of the neighborhood operators of CRO is 
executed. Iteration stage continues until termination condi-
tion is met and then the best solution is returned as output 
in finalization stage. A pictorial view of steps of the hybrid 
CRO and PSO is shown in Fig. 14.

7.7 � Multi‑objective CRO

In real world application, there are many problems which 
consist of more than one objective interdependent on each 
other. Solving one objective does not generate the solution. 
That sort of problem is a multi-objective problem (MOP) 
[32]. The general form of MOP is described as follows:

Here N is the number of objective functions, P is a num-
ber of inequality constraints and Q is the number of equality 
constraints. xL

i
 and xU

i
 are the lower and upper bounds of 

variable x. If a solution satisfies (P + Q) constraints then the 
solution is a feasible one.

Two types of CRO were reported to propose for the multi-
objective problem. One was non-dominated sorting CRO 

(15)

Min f (x) = [f1(x), f2(x), f3(x),… , fN(x)]
T

gj(x) ≥ 0 j = 1, 2,… ,P

hk(x) = 0 k = 1, 2,… ,Q

xL
i
≤ xi ≤ xU

i
i = 1, 2,… ,N

(NCRO) [32] and other was decomposition based CRO 
(MOCRO/D) [43].

NCRO algorithm works as follows: firstly, offspring 
population Pq is generated by applying CRO’s operators. 
Next, the population Pq is evaluated. During the evaluation, 
adaptation in potential energy assignment and offspring 
generation are done. After the evaluation, the population is 
combined therefore the new combined population is greater 
than initial population size but it is not twice as the initial 
since update procedure of CRO rejects the non-promising 
population. Now the combined population is sorted accord-
ing to the non-domination criteria. Therefore, a solution 
having least potential energy is the best solution remains at 
the top of the new combined population. In NCRO potential 
energy is calculated using Pareto rank and crowding distance 
measure.

During calculation, the solutions having crowding dis-
tance zero are removed or replaced by randomly generated 
different objective vector since the solutions having zero 
crowding distance are the duplicate one having the same 
number of objective functions for other solutions. When 
the combined population is sorted and evaluated then the 
algorithm chooses the best N number of populations for 
the further iteration. Figure 15 shows the steps of NCRO 
algorithm. Decomposition of a multi-objective optimization 
problem can be done in many ways. The authors in [43] 
choose Tchebycheff Aggregation approach.

Therefore, the scalar optimization problem [32] can be 
defined as:

Here z∗ is the reference point and w is the weighting 
vector having m points in it. Decomposition based CRO 
(MOCRO/D) works as decomposing the multi-objective into 
a single one. Then using CRO each singular objective func-
tion is solved. Neighborhood relations among these types 
of single objective subproblems are defined in accordance 
with the distances between their weight vectors [43]. Besides 
Extended CRO based on Decomposition (MOECRO/D) 
was also proposed for MOP. The main difference between 
MOCRO/D and MOECRO/D is the different optimization 
operators.

(16)
Minimize g(x|w, z∗) = maxi∈{1,2,…,m}{wi|fi(x) − z∗

i
|}

Subject to x ∈ �

Fig. 13   Steps of MCRO algorithm Fig. 14   Steps of hybrid CRO and PSO algorithm
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8 � Application

Chemical Reaction Optimization is a more up-to-date meta-
heuristic approach than other evolutionary algorithms like 
a genetic algorithm or ant colony optimization. But it gains 
much popularity within a very short period of time. In [31] 
some applications of CRO algorithm were described. In this 
paper, we will discuss some new problems those were solved 
by CRO or variants of CRO algorithm.

8.1 � 0–1 Knapsack problem

The 0–1 knapsack problem is very well known problem 
which is a NP-hard. The problem is as follows: given a 
weight and a profit of each item, the task is to find the opti-
mal combination of items where maximum profit will be 
gained within a limit of weight. If it is the ith item with profit 
value pi and weight capacity is C then the objective function 
of 0–1 knapsack problem [17] is as below:

Dynamic programming approach was proposed to solve 
this problem but since the problem is NP-hard, so for the 
large instances, this approach takes exponential time. CRO 
algorithm with greedy strategy was proposed to solve 0–1 
knapsack problem for large instances by Truong et al. [17]. 
Mutation and crossover operators are used for neighbor-
hood operator whereas half-total exchange operator is used 
for decomposition and synthesis operator for synthesis reac-
tion. A new Repair function is incorporated with every reac-
tion operator. CROG was compared with Genetic Algorithm, 
Ant colony optimization, and Quantum-Inspired Evolution-
ary algorithm. For comparison profit, execution time and the 
standard deviation are used. The problem instances include 
100, 250 and 500 items and the results of profit show that 
average result of 20 run by CRO has the highest profit than all 

(17)

Objective Function = Maximize

n∑

i=1

xipi

Subject to

n∑

i=1

xipi ≤ C, xi ∈ {0, 1},∀i ∈ {1, 2,… , n}

other cited algorithms. Besides, the CROG takes the least time 
and standard deviation for all these instances. Although the 
outcome of CROG shows promising results, reform function 
needs some modification for proper implementation. In future, 
different knapsack problems can be implemented using CROG 
and detailed study on parameters and reaction operators can 
enhance the algorithm.

8.2 � Multiple choice Knapsack problem

Artificial Chemical Reaction Optimization (ACRO) algorithm 
was proposed by Truong et al. [18] to solve multiple-choice 
knapsack problem. The problem is a hard combinatorial prob-
lem that states: given the two-dimensional number of items 
having a particular weight and a profit of each item. The task 
is to select one item from each row such that maximum profit 
can be gained having a weight less or equal a particular weight. 
So, for m classes of items, where each item has a cost cij and a 
weight wij , the objective function [18] is:

An integer string represents the solution and crossover 
operator is used for neighborhood search and the two-exchange 
operator is used for decomposition and variants of synthesis 
operator for synthesis reaction. ACRO algorithm was compared 
with the Genetic algorithm using three problem instances hav-
ing class size 10 and 100 and item size 10, 100 and 1000.

Profit, computational time and the standard deviation were 
used for the comparison. The outcomes of GA and ACRO 
show that ACRO algorithm has better performance in profit, 
time and standard deviation for all instances. In the future, 
parallel version of ACRO can be implemented for better results 
(Table 1).

8.3 � Quadratic assignment problem

Quadratic Assignment problem (QAP) is an abstract principle 
of an unquestionable renowned Travelling Salesman Problem. 
The problem states as n facilities are assigned to n locations 
so that each facility must be located in only one location. Now 
the task is to minimize the cost which is the summation of 

(18)

Objective Function = Minimize

m∑

i=1

ni∑

j=1

cijxij

Subject to

m∑

i=1

ni∑

j=1

wijxij ≤ W

ni∑

j=1

xij = 1,

∀i ∈ {1, 2,… ,m}, xj ∈ {0, 1},

∀i ∈ {1, 2,… ,m}, j ∈ Ni

Fig. 15   Steps of NCRO algorithm
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multiplication of distance and the flow generated by any loca-
tion to all possible locations. The objective function of QAP 
[13] is:

where fij is the flow between the facilities i and j, dpq is the 
distance between location p and q. Lam and Victor proposed 
CRO algorithm for quadratic assignment problem [13] and 
Parallel CRO was proposed by Xu et al. [14] to solve the 
same problem. Since the review of CRO has been given 
in [31], so in this paper, we are giving a review of PCRO. 
Parallel CRO has same solution structure and reaction opera-
tors but uses a parallel algorithm and it performs using 1, 2, 
4 and 8 processors at a time. When the number of proces-
sors is one then it performs like simple sequential CRO. 
The outcome of PCRO was compared with sequential CRO 
and results show that with the involvement of more proces-
sors the solution quality has improved along with low com-
putational time consumption. The authors are planning to 
design and trying more molecular communication patterns. 
Besides, for a heterogeneous environment, the asynchro-
nous transfer will be implemented and thus, the algorithm 
will be redesigned. Decisively, PCRO needs to be reviewed 
provisionally.

8.4 � Continuous optimization

Hybridization of CRO and PSO algorithm was proposed 
by Nguyen to solve 23 benchmark objective functions [42]. 
Both the searching properties of CRO and PSO apply in 
the algorithm and that is why, the power of hybrid PSO 
and CRO increases. Neighborhood operators of CRO and 
PSOUpdate operator of PSO are used here. Since two dif-
ferent algorithms are hybridized so parameters selection 
was a key factor. For CRO, synthesis threshold is deducted 
since global searching operators are not needed. Besides, for 
PSOUpdate operator, a new parameter � is used for checking 
PSO coefficient. That means after having � times of local 
search PSOUpdate operator is used. Two versions of hybrid 
CRO and PSO algorithms were proposed. The versions are 
categorized according to the boundary constraints. The 
algorithm terminates when it reaches the maximum func-
tion evaluations. Continuous optimization problem was 
solved by CRO and Real-coded CRO. The outcomes of the 
hybrid CRO and PSO were compared with three versions 

(19)

min

n∑

i,j=1

n∑

p,q=1

fijdpqxipxql

Subject to

n∑

i=1

xij = 1, i ≤ j ≤ n;xij ∈ {0, 1},

1 ≤ i, j ≤ n

of RCCRO. Objective function value and standard devia-
tion for multiple runs were used for the comparison of HP-
CRO1, HP-CRO2, RCCRO1, RCCRO2, and RCCRO4. The 
experimental results show that HP-CRO outperforms RCC-
CRO for maximum cases. Especially HP-CRO2 has the best 
results in 18 cases whereas HP-CRO1 ranks 1st in five cases. 
Besides, the graphical representation of functional evalua-
tion and computational time between HP-CRO and RCCRO 
show that HP-CRO outperforms RCCRO. In future minimi-
zation of some parameters with HP-CRO for more objective 
functions can be used. Besides, HP-CRO algorithm can be 
utilized for the multi-objective problem as well.

8.5 � Global numerical optimization

Mutation CRO (MCRO) algorithm was applied to solve 
global numerical optimization problem by Ngambusabong-
sopa et al. [20]. Basically, 23 objective functions are divided 
into three categories where category I is termed as high 
dimensional unimodal function. Category II is preferred to 
as high-dimensional multi-modal position and category III 
as low-dimensional multi-modal position. Solutions/mole-
cules are represented as a real vector. The turning operator is 
used in neighborhood searching and decomposition reaction. 
Synthesis operator is used in the synthesis reaction. Besides, 
with each reaction operator and in the population genera-
tion mutation operator is used. Authors tried three types of 
mutation operators: uniform, non-uniform and polynomial, 
where polynomial mutation operator shows much better per-
formance than other two. Hence for comparing the outcome 
of MCRO with hybrid CRO and PSO and Real Coded CRO, 
the authors use polynomial mutation operator. The value of 
objective function, convergence speed and computational 
time were compared among the algorithms. The experimen-
tal results show that out of 23 instances, only in five cases 
MCRO algorithm is not better than all other algorithms in 
case of fitness values whereas in the case of convergence rate 
MCRO ranked first for 20 instances. Computational times 
of all algorithms for low-dimensional multi-modal functions 
are almost same whereas for other two categories OCRO 
have best results. For future MCRO can be implemented for 
other numerical optimization problems and practical engi-
neering optimization problems.

8.6 � Printing circuit board drilling problem

Printed Circuits Board (PCB) production has a major role 
in computers and electronic equipments number of holes 
of various diameters differs a lot [23]. The time to drill the 
holes depends on the order by which the numerically con-
trolled drilling machine drills the holes. The problem is con-
sidered as an instance of the Traveling Salesman Problem 
(TSP) where time matrix is comparable with distance matrix 



409Evolutionary Intelligence (2019) 12:395–420	

1 3

Table 1   Application of CRO [31]

Problem References CRO type Years Solution struc-
ture

Neighborhood 
operator

Decomposition 
operator

Synthesis 
operator

Additional func-
tion/operator

0–1 Knapsack 
problem

[17] CROG 2013 Binary string Mutation, 
Crossover

Half-total 
exchange

Synthesis Repair function

Multiple choice 
Knapsack 
problem

[18] ACRO 2013 Integer string Crossover Two-exchange Variant of 
synthesis

Reversible reac-
tion

Quadratic 
assignment 
problem

[14] PCRO 2010 Permutation 
vector

Two-exchange Circular shift Distance pre-
serving

None

Continuous 
optimization 
problem

[42] HP-CRO 2014 Real vector Gaussian per-
turbation

Not applied Not applied PSOUpdate

Global numeri-
cal optimiza-
tion

[20] MCRO 2015 Real vector Turning Turning Synthesis None

Printing circuit 
board drilling 
problem

[23] CRO 2015 Integer vector Two-exchange, 
crossover

Half-total 
exchange

Alternative-
select

None

Neural network 
for effective 
prediction of 
stock market

[44] ACRO In press Binary vector Random mask-
ing

Two-exchange Probabilistic 
select

Redox1, Redox2

Longest com-
mon subse-
quence

[21] CRO 2015 Position matrix Random 
deletion, 
crossover

Random dele-
tion

Probabilistic 
select

Correction func-
tion

Shortest com-
mon superse-
quence

[22, 45] CRO 2016 Integer vector Two-exchange, 
crossover

Half-total 
exchange

Probabilistic 
select

Reform function

DAG schedul-
ing problem

[24] CRO 2013 Integer vector Crossover, 
circular shift

Circular shift Probabilistic 
select

None

Environmen-
tally sustain-
able NDP

[46] CRO 2014 Binary string One-difference Random-
exchange

Synthesis 
operator

Repair function

Artificial neural 
network

[47] CRO 2015 Integer string Gaussian per-
turbation

Gaussian per-
turbation

Probabilistic 
select

None

Multi-objective 
problem

[32, 43] NCRO, 
MOCRO/D, 
MOECRO/D

2015 Single objec-
tive sub-
problem

Polynomial 
mutation

Polynomial 
mutation

Multiple 
molecular 
collision

None

Set covering 
problem

[48] hCRO 2015 Solution vector Perturbation 
heuristics

Customized 
two-exchange

Probabilistic 
combination 
scheme

None

Static bike 
repositioning 
problem

[28] Enhanced CRO 2016 Integer string Mutation, 
crossover

Half-total 
exchange

Synthesis None

Vehicle routing 
problem

[29] hCRO 2016 Integer string Single swap 
mutation

Order crosso-
ver

Partially 
mapped 
crossover

None

SCM trans-
portation 
scheduling

[30] CRO 2017 Two dimen-
sional matrix

Mutation Half-total 
exchange

Synthesis None
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and cities are compared with holes. Therefore, the objective 
function [13] can be associated with the objective function 
of TSP and extrapolated in Eq. (20) where c(i, j) defines the 
time needed to shield holes between i and j.

CRO algorithm was applied to solve the above problem 
by Eldos et al. [23] where the reactions were renamed as 
on-wall ineffective collision as deformation, inter-molecular 
ineffective collision as collaboration and synthesis as a com-
bination. An integer vector is used as the solution represen-
tation where the numbering of each hole appears once. The 
integer vector shows the order of holes to drill. Deformation 
reaction is done having one or two or three elements swap-
ping to create a new solution. The two-exchange operator 
is used in decomposition reaction where two solutions are 
produced from the one reactant. The alternative select opera-
tor is applied for conflation and crossover operator is applied 
for confederation. A random data set having problem size of 
22 to 130 holes and PCB442 benchmark instances were used 
for the experiment. The outcome of the CRO was compared 
with the optimal value. Authors show that the efficiency of 
the algorithm increases with the increasing number of itera-
tions. Additionally, decomposition and synthesis reaction 
rates play a vital part. The authors are thinking to modify 
the reaction operators to upgrade the performance of CRO.

8.7 � Neural network for efficient prediction of stock 
market indices

The uncertainty of stock market indices rises the difficul-
ties in prediction. The characteristics of stock indices are 
nonlinear, highly volatile, discontinuous and that is why it 
needs an artificial neural network to predict. Artificial CRO 
was proposed by Nayak et al. to learn the artificial neural 
network [44]. Binary strings are used for solution represen-
tation. The probabilistic select operator is applied for syn-
thesis reaction. Crossover operator is used for displacement 
reaction. Exchange operator is applied for Redox2 reaction 
and one-difference operator is used for the Redox1 reaction. 
Besides two-exchange operator is applied in a decomposi-
tion reaction. A maximum number of iteration or minimum 
error signal is used for the termination condition. ACRO 
algorithm is executed to search optimal weight and bias set 
for the artificial neural network. The outcomes of ACRO 

(20)

Objective Function = min

n∑

i=1

n∑

j=1

x(i, j)c(i, j)

Subject to

n∑

i=1

x(i, j) = 1, 1 ≤ j ≤ n;

n∑

j=1

x(i, j) = 1,

1 ≤ i ≤ n;x(i, j) ∈ {0, 1}

were compared with MLP, RBFNN and MLR algorithms. 
Seven benchmark instances of stock indices are used as data-
set where prediction is done for 1-day ahead, 1-week ahead 
and 1 month ahead. Sliding window concept is applied for 
training and testing the data. Accuracy, POCID and Error 
Rate are used for the comparison. The experimental results 
show that ACRO shows better error rate for all instances in 
all types of predictions. Besides, the gain percentage in the 
accuracy of ACRO over all other algorithms is between 10 to 
50 percentages and POCID values of ACRO are better than 
all other algorithms for all types of predictions. In future, 
higher order neural networks might be considered and 
hybridization of ACRO and another evolutionary algorithm 
to strengthen the searching capabilities can be achieved.

8.8 � Longest common subsequence

Longest Common Subsequence (LCS) is one of the 
renowned NP-hard combinatorial problems. The prob-
lem states that given a set of strings, the task is to find the 
common subsequence of all strings that is longest in the 
length. This problem is a maximization problem. A lot of 
approaches were proposed to solve the problem. CRO algo-
rithm was proposed by Islam et al. [21] to solve LCS prob-
lem when the number of strings was two. Position matrix 
of a valid solution is represented as the molecule. Random 
deletion and the crossover are used for the neighboring 
operator. Random deletion operator is used for decomposi-
tion reaction and the probabilistic select operator is used for 
synthesis reaction. With all the basic four reaction opera-
tors a new correction function is used to solve the resultant 
subsequence if the sequence is broke down. The authors of 
the paper [21] did not solve the LCS problem for multiple 
string. The work has been extended by Islam et al. [37] and 
solved the LCS problem for multiple string. The results of 
the proposed CRO for multiple string were compared with 
results of some related works.

8.9 � Shortest common supersequence

Another renowned NP-hard problem is Shortest Common 
Supersequence (SCS). The definition of the problem is, 
given a set of strings formed by a particular alphabet; the 
task is to find the shortest string in length that is the superse-
quence of all strings. Supersequence is the string where the 
sequence of every string of a given set of strings is embed-
ded. Objective function of SCS problem derived from [45] 
can be written as:

(21)

Objective Function F(l) = min(lm)

Subject to wm ∈ W, sm ∈ S and

wm > sm for m = 0, 1, 2,… , k
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Here S be the set of input strings where every instance 
is referred to si , W is the set of supersequences and L be the 
set of the distances of supersequences. Exact, approximate, 
heuristic and meta-heuristic algorithms were proposed to 
solve the problem. CRO algorithm was also applied to this 
problem by Saifullah et al. [22, 45]. In [22] they applied 
CRO for small instances like the number of strings 500 and 
length of each string 100. Along with the entire four reaction 
operators a new Reform function is used after each reaction. 
The task of Reform function is to check whether constraints 
of SCS are violated in new supersequence or not. The out-
comes of CRO were compared with Dynamic programming 
and other three approximation algorithms. CRO gives better 
near-optimal results than all other approximate algorithms 
in less execution time. In [45] population generation func-
tion is improved and Reform function is updated where 
Reform function contains two phases. In the first phase it 
checks the validity of new supersequence whereas in the 
second phase, it repairs the violated supersequences. Thus, 
CRO algorithm is applied for higher instances. CRO algo-
rithm was compared with ant colony optimization, deposi-
tion and reduction, an artificial bee colony and Enhanced 
Beam Search algorithm. For SCS Enhanced Beam Search 
was the previous state-of-art. For comparison length of the 
supersequence, execution time and standard deviation are 
used. The outcomes show that CRO outperforms all existing 
algorithms both in length and time. Thus, CRO is proved to 
be the state-of-art for the SCS problem. In the future, paral-
lel version of CRO can be implemented for SCS problem. 
Besides, the parameters of CRO can be tuned to get better 
results.

8.10 � DAG scheduling

A connection consisting of a class of duties with precedence 
constraints is consistently modeled as a Directed Acyclic 
Graph (DAG) [24].The major criteria for DAG scheduling 
is to optimize the makespan, which is known as the gap 
between the time when the first task in the DAG executes 
and the time when the final task completes execution. Heu-
ristic and meta-heuristic algorithms were preferred for find-
ing a proper solution of DAG scheduling. CRO algorithm 
was proposed by Xu et al. to solve DAG scheduling [24]. 
A scheduling solution is considered as the solution or mol-
ecule. The molecule is encoded as an integer string where 
the first half of the solution describes scheduling order and 
last half describes the resource allotment. Overall sched-
ule length of all tasks named as makespan is the potential 
energy. For neighborhood search crossover operator, circular 
shift for decomposition and probabilistic select operator for 
synthesis are used. The outcomes of the CRO were com-
pared with heuristic algorithm HEFT_B and HEFT_T and 
meta-heuristic algorithm Genetic algorithm (GA). Makespan 

was used as the comparison criteria. Average makespan of 
all algorithms shows that CRO has the least and best values 
than all other existing methods. In future authors are plan-
ning to implement three things. One is studying parameters 
for better performance, the second is implementation of 
parallel CRO for DAG scheduling and lastly implementa-
tion of Dynamic Voltage Scaling in CRO for bi-objective 
optimization.

8.11 � Environmentally sustainable network design 
problem

The bilevel Network Design Problem (NDP) is a two-level 
problem where the upper level works finding the optimal 
decision on selecting either link improvements or link addi-
tions to an existing road network and lower level accounts 
for the route choice behavior of network users. Previously 
the only cost was considered during designing a road net-
work. But in [46] environment sustainable NDP problem 
is designed where the cost is incorporated with noise and 
vehicle emission. The bilevel NDP that incorporates with the 
noise and vehicle emission costs was solved using enhanced 
CRO by Szeto et al. [46]. The problem states in two lev-
els where the upper-level deals with improving the routes 
by minimizing total cost (TC) that includes Total System 
Travel Time Cost (TSTC), Total Emission Cost (TEC) and 
Total Noise Cost (TNC). Therefore, the objective function 
of multi-objective upper level [28] is:

The lower level of the problem captures the behavior of 
transportation network users. The authors emphasize the dif-
ferent environment issues for example noise and multi-types 
of emission cost for designing road network. The proposed 
problem is nonlinear, non-convex and NP-hard. Thus to get 
global optimum value is difficult. CRO algorithm is designed 
keeping in mind that the problem is bi-level. A binary string 
is used for representing the solution. One-difference is used 
for the neighborhood search whereas decomposition and 
synthesis operators are used for decomposition and synthe-
sis reaction respectively. Besides a repair function is used if 
the solution found after the reaction is infeasible. Authors 
demanded three basic differences between basic CRO and 
their enhanced CRO algorithm. At first, they applied several 
conditions for occurring on-wall ineffective collision and 
decomposition reactions. It ensures that in every reaction a 
new solution is generated that does not exist in CRO and that 
affects in computational time. Besides due to using different 
conditions, one parameter is deducted. Secondly, enhanced 
CRO can handle multiple level problems whereas the CRO 
can solve the single level problem. Lastly, a repair function 
is used for an infeasible solution which is also unique than 
main CRO. Two benchmark road networks with the different 

(22)minTC = TSTC + TEC + TNC
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zones, nodes, links and budgets were used for comparison. 
The comparison was done in two ways. One is between 
CRO and GA and another is between inclusions of different 
costs in the objective function. Objective function value and 
computation time are the performance comparison criteria. 
Standard deviation is used as statistical measures for sto-
chastic algorithms like GE and CRO. Comparison results 
between CRO and GE show that CRO has better objective 
function value than GA in most cases and in case of com-
putational time CRO outperforms GE in all areas. In future 
other meta-heuristic algorithms can be compared with CRO 
for this problem and some other factors can be incorporated 
with objective during designing networks.

8.12 � Artificial neural network

Artificial Neural Network is the family of a model that is 
inspired by the central nervous system of human to real-
ize the parallel information processing and transformation. 
Evolutionary algorithm shows better performance than 
traditional back propagation method [47]. Chemical Reac-
tion Optimization was proposed by Yu et al. for training 
phase of Artificial Neural Network (ANN) [47]. An integer 
string with limiting value is used to represent the solution. 
Besides, Gaussian perturbation method is used for neighbor-
hood search and decomposition reaction whereas probabil-
istic select operator is used in the synthesis reaction. Two 
stopping criteria are introduced. One is maximum function 
evaluation and another is with fitness detection. Three data-
sets such as Iris classification, Wisconsin breast cancer clas-
sification and Pima Indian diabetes datasets are used. The 
outcomes of CRO algorithm were compared with some well-
known meta-heuristic approaches such as particle swarm 
optimization, evolutionary programming, group search 
optimizer etc. Error rate was considered as the performance 
comparison criteria. For the three benchmark datasets, CRO 
algorithm takes least error rate than all other algorithms. The 
evolution of the network structure and on the weight adapta-
tion there is no restriction in CROANN and that is why, the 
algorithm does not suffer from the “structural hill-climbing” 
problem conformed in the constructive and pruning applica-
tions of ANN. The authors have a plan to get a systematic 
analysis of variance on the parameters and implement a Stu-
dent’s t-test to show significance of the results. Furthermore, 
CROANN can be applied to solve several real-world clas-
sification problems, and other problems including function 
approximation, data processing, and robotics.

8.13 � Multiobjective problem using NCRO

Multiobjective problems (MOP) are the real world problem 
where various conflicting and incommensurable objectives 

are there. Main challenge of multiobjective problem is 
that at the same time some objectives are minimizing and 
some are maximizing with respect to several constraints. 
Different evolutionary algorithms have gained popularity 
to solve different MOP. In [32] Chemical Reaction Opti-
mization algorithm was proposed by Bechikh et al. to solve 
MOP and the authors name the algorithm as non-dominated 
sorting CRO (NCRO). Along with NCRO, they proposed 
a new Non-Dominated sorting algorithm (NDSA) named 
as quick-NDSA (Q-NDSA). For generating the population, 
the optimized CRO algorithm is applied. Besides, energy 
management law of CRO is applied to update the population 
and to determine the solutions remain in the population. To 
do that each molecule is marked with number of offsprings, 
their children and collision types so that energy management 
law of CRO can easily be applied. Next, after applying the 
rules the children those have violated the rules are removed 
from the population. Besides, law of conservation of energy 
is strictly maintained. The results of CRO were assimilated 
with Non-dominated Sorting Genetic Algorithm (NSGA-II), 
Indicator-based Evolutionary Algorithm (IBEA), Approx-
imation-Guided EMO (AGE) and Multiobjective Evolu-
tionary Algorithm (MOEA/D). Test problem within EMO 
community are used as benchmark problem. First seven 
test problems of DTLZ suite, WFG5 problem and variation 
of DTLZ-1 and DTLZ-2 that called as scaled-DTLZ1 and 
scaled-DTLZ2 are used as problem instances. Hypervolume 
indicator (HV) that means the portion of objective space that 
is denoted by the Pareto Front approximation returned by 
the algorithm is used for performance comparison. Besides 
Wilcoxon Rank sum test in pairwise fashion is used along 
with HV where if the median of two algorithms are equal 
then hypothesis H0 is proved and if not then hypothesis H1 
is proved. Finally computational time calculated for all algo-
rithms and compared with each other. Though HV indica-
tor shows promising results for the NCRO, but the NCRO 
is time consuming than MOEA/D algorithm. Similarly, no 
prior performance metric is used for performance measures 
and parameters tuning has no mathematical explanation. 
Authors cannot assert that their results can be generalized 
for real world multi-objective problem which lead to some 
future investigation.

8.14 � Multiobjective problem using MOCRO 
and MOECRO

Multiobjective problems are efficiently solved by decompos-
ing into singular objective sub-problems by different evolu-
tionary algorithms. Chemical Reaction Optimization (CRO) 
and Extended Chemical Reaction Optimization (ECRO) 
algorithms were proposed to solve multi-objective problem 
(MOP) by Li et al. [43]. The algorithms are MOCRO/D and 
MOECRO/D respectively. The basic idea of MOCRO/D and 
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MOECRO/D algorithms is decomposing MOP into single 
objective sub-problems and solving each subproblem sepa-
rately. Each molecule of CRO algorithm is considered as 
a single objective sub-problem. Polynomial mutation is 
used for inter-molecular ineffective collision that uses three 
molecules as a reactant and thus enhance more molecular 
information interactive each other at a certain probability. 
Multiple molecular collisions are used for synthesis reac-
tion that could increase global search ability. Tchebycheff 
approach is used for MOCRO/D which is decomposing 
MOP into number of scalar optimization problem. CRO is 
used for each sub-problem. Here an MOP is decomposed 
into N single objective sub-problems by selecting N weight 
vectors. Besides, the molecules and their neighbors cre-
ate a group during chemical reaction process. MOCRO/D 
minimizes all N sub-problems simultaneously in a single 
run. Depending on the weight vector the neighborhood of a 
molecule is defined. Each subproblem is optimized using the 
information of the neighbor molecule. In the first step, the 
algorithm searches locally by on-wall ineffective collision 
and inter-molecular ineffective collision. However global 
search is implemented by decomposition and synthesis. Bal-
ance in the energy is maintained using law of conservation 
of energy.

The difference between MOCRO/D and MOECRO/D is 
the improvement of global search ability. Here the polyno-
mial mutation is used in decomposition operator for local 
search. The inter-molecular ineffective collision is used for 
global search using three molecules. The synthesis reac-
tion is also used for global search using three molecules 
as a reactant. MOCRO/D and MOECRO/D were compared 
with NNIA, OMOPSO, NSGA-II, IM-MOEA, IBEA, 
NCRO algorithms. For performance calculations, inverted 
generational distance (IGD) was applied. For benchmark 
instance of ZDT, DTLZ, CEC09 experimental results show 
that MOECRO/D have better results than all other for com-
plex PF whereas MOCRO/D obtains a better converged and 
diversified set of nondominated solutions of general PF. The 
authors have a plan to improve the distribution of the Pareto 
optimal solution set obtained by MOECRO/D algorithm and 
implement it for solving dynamic multi-objective optimiza-
tion problems. Besides,many-objective optimization prob-
lems can be investigated further.

8.15 � Set covering problem

Set covering problem is the classical NP-hard problem that 
finds the least cost subsets from a set of elements. The prob-
lem can be stated as: If there are n number of elements in 
a set S then collection of k number of subsets in the set X 
where X = {Xi ⊂ S, 1 ≤ i ≤ k} and each subset is associated 
with a cost in a set of costs, C = {c1, c2,… , ck} , we have 
to find the least cost prime cover of set S. Prime cover of S 

means there will be no redundant subset in X for set S. Yu 
et al. [48] proposed CRO algorithm for solving set cover-
ing problem. Two different encoding schemes are used to 
represent the solution. One is binary vector and another is 
solution vector representing subset indices. Authors used 
the reverse cumulative scheme to assign subset indices. Per-
turbation heuristics are used for neighborhood searching, 
customized decomposition operator is used for decomposi-
tion reaction and probabilistic combination scheme is used 
for synthesis reaction. The proposed algorithm was tested 
on 65 non-unicost SCP instances where the instances were 
divided into 11 different sets. Parameters are generally set 
applying trial and error detestable methodology. The out-
comes of the heuristic-based CRO (hCRO) algorithm were 
compared with Lagrangian heuristic, the genetic algorithm, 
a probabilistic greedy search heuristic an indirect genetic 
algorithm, a metaheuristic for randomized priority search 
and a metaheuristic algorithm based on gravity algorithm. 
Although for non-unicast instances almost all the algorithms 
have optimal solutions, but for unicast instances CRO algo-
rithm has better near optimal than all other algorithms. The 
author also proposed some variants of CRO at the end of 
their paper, where random pic scheme is used in neighbor-
hood operator to generate hCRO/IR algorithm, the remove-
repair scheme is used in neighborhood operator to represent 
hCRO/NR algorithm and crossover operator is used in an 
intermolecular ineffective collision to make hGA algorithm. 
Simulation on the variants of hCRO algorithm shows that 
hCRO algorithm has the best results than all of its variants.

8.16 � Static bike repositioning problem

Now-a-days another NP-hard problem called Static Bike 
Repositioning Problem (static BRP) becomes popular. This 
problem can be defined as, to lower the total unmet demand 
at night, the number of bicycles in each station are moved 
from stations with excess bikes to those with insufficient 
bikes and the number of bikes each station requires remain 
unchanged during the repositioning operation is called a 
static bike repositioning problem [28]. This repositioning 
problem can be formulated as follows:

Here � is the weight associated with the vehicle’s total 
operational time and �j is an auxiliary variable associ-
ated with each station. This function aims to minimize the 
weighted sum of two terms: the total number of the unsatis-
fied customers (or total unmet demand) reflected by 

∑
j∈m �j 

and the vehicle’s total operational time 
∑

j,k∈m0,i≠j
fjk.wjk.

Previously, many approaches were proposed to solve 
this problem. In order to improve the traditional CRO, 

(23)Min x =
∑

j∈m

�j + �
∑

j,k∈m0,i≠j

fjk.wjk
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some novel operators, new rules, an intensive search and 
two neighbor-node sets for limiting the search space was 
introduced to solve routing problems more efficiently [28]. 
Another subroutine technique has incorporated to determine 
the loading and unloading quantities at each visited station 
that makes this method superior to other methods. This tech-
nique invokes linear programming or max-flow for solving 
the sub-problems in each iteration. From the results it is 
clear that this enhanced version of CRO achieves superior-
ity in solution quality and CPLEX in terms of speed. And 
the concept of neighbor-node is really a good idea that gives 
advantage to increase probability of running the intensive 
search. So this is safe to say that, this enhanced version 
of CRO has all the capabilities to outperform all existing 
algorithms.

8.17 � Vehicle routing problem

The vehicle routing problem is to find possible optimal 
routes so that minimum number of vehicles used, cost is 
minimized and other environment defined constraints are to 
be satisfied. The problem is defined as an undirected graph, 
G = (V ,E) where V = {v0, v1,… , vn} is the vertex set and 
E = {vp, vq} ∶ vp, vq ∈ V is the edge set [29]. A hybrid algo-
rithm of Chemical Reaction Optimization and Unified Tabu 
Search was proposed by Thu-Lan Dam et al. for solving 
vehicle routing problem [29]. Solution representation is a 
string where at first the route is encoded with “−” and finally 
customer index is added. Four operators of chemical reac-
tion optimization are implemented but for good solution, in 
inter-molecular operator Unified Tabu Search is imported. 
Two datasets were used for the experiment. For benchmark 
of quality and computing time were compared with UTS, 
OCGA, PSO, HybPSO and GAB algorithm. Ranking of 
algorithms was done on using Friedman test. The experi-
mental results show that CROUTS yields ten best results 
within fourteen instances with less computing time. One of 
the main contribution of this paper is showing the potential 
of CRO with other meta-heuristic algorithms.

8.18 � SCM transportation scheduling problem 
with TPL

The transportation scheduling problem of supply chain man-
agement (SCM) network is a popular NP-hard combinatorial 
problem which is being studied in recent years. In this prob-
lem, any industry or manufacturing company tries to deliver 
products, raw materials or services within their distribution 
network with the help of limited vehicle resources in hand. 
The target of the vehicle scheduling problem of SCM net-
work is to minimize the overall transportation cost within 
a wide territory. Recently in 2017, a model was proposed 

to solve this problem using CRO by Mahmud et al. [30]. In 
the beginning, the transportation nodes of the SCM network 
were divided into three types according to their certain char-
acteristics. In their proposed model, they considered two 
types of vehicles resources, one is the self-support vehicle 
of a company, and another is the third party logistics vehi-
cles (TPL). At first, a transportation route combining two 
special kinds of nodes is created as a solution which is rep-
resented by a two-dimensional array. Using this structure, a 
large number of transportation routes throughout the whole 
network is generated as the population or solution space. 
Next, for another single kind of transportation destination 
node, a matrix is generated randomly where the two types 
of TPL vehicle resources are selected to serve in some par-
ticular nodes. Then, four reaction operators of CRO are re-
designed to pick out the best sequences of nodes from both 
approaches. Finally, the best solution or in this case, the best 
transportation routes which consist of minimum transporta-
tion cost by maintaining all the constraints of the model 
is found. The experiment results of the proposed CRO in 
this paper was compared with two Ant Colony Optimiza-
tion algorithms based model and show that CRO performs 
significantly better in case of minimizing the transportation 
cost than the other ACO algorithms.

8.19 � RNA structure prediction

The RNA structure prediction (RSP) is a problem that 
anticipates RNA secondary structure. In this problem we 
have to compute the correct secondary structure from an 
given RNA sequence. The objective of the problem is to 
maximize the number of stem to produce RNA secondary 
structure and select the most stable structure. The stabil-
ity of a structure relies on the Gibss free energy ( ΔG ) 
where a structure with minimum energy is accepted. The 
total energy of different structures of the same sequence is 
calculated by ΔG . To calculate the free energy of a helix 
in the RNA secondary structure the individual nearest-
neighbour hydrogen bond model is used. To predict RNA 
structure the following objective function is used [38].

where 1 ≤ j ≤ m;m = number of secondary structure for one 
sequence.

However, in this paper a repair operator is designed to 
verify and remove the repeated stem from the solution of 
an RNA sequence with basic four operators that makes 
the process more time efficient. The experiment results 
of the proposed CRO were compared with genetic algo-
rithm, simulated annealing algorithm, coincidence algo-
rithm, two-level particle swarm optimization algorithm 
and changing range bat algorithm and it can be noticed 
that CRO performs better than other algorithms [38].

(24)R = min{ΔGj}
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9 � Study on parameters and experimental 
results

The performance of every meta-heuristic algorithm mostly 
depends on the parameter settings of the algorithm. Mis-
lead in the settings might cause a lot of computational time 
or divergence in the objective function value. So parameter 
settings and the experimental results have a very deep rela-
tion between them. Study on parameters and analysis of 
experimental results are discussed briefly below.

9.1 � Study on parameters

Chemical Reaction Optimization has seven basic param-
eters. These are Popsize, KELossRate, MoleColl, � , � , 
Buffer and InitialKE. A number of parameters may vary 
depending on the designing of CRO for the problem. 
Even different variants of CRO include new parameters 
or deduct some basic parameters such as in hybridization 
of CRO and PSO (HP-CRO), both � and � parameters are 
deducted. Notations of basic parameters of CRO with their 
definitions are given in Table 2.

In Table 2 the term Popsize is referred to the number of 
molecules/solutions. The number may be changed when the 
algorithm undergoes decomposition or synthesis reaction. 
So, Popsize is the number of solutions at the initial stage 
and it is not mandatory that the number will be same for 
the whole process. KELossRate is the percentage of loss of 
kinetic energy after every reaction. Basically, we consider a 
certain amount of kinetic energy would be transferred from 
the molecule to the surroundings. The energy of the sur-
roundings is Buffer. The transferred amount is defined as 
KELossRate. Another parameter is MoleColl. This param-
eter is used to determine whether the reaction is unimolecu-
lar or inter-molecular. Generally, the value of MoleColl is 
between zero and one. Now, in every iteration, a random 
value between zero and one is compared with MoleColl. 
If the value is more than the MoleColl then the reaction is 
unimolecular otherwise, the reaction is inter-molecular. The 
threshold � is for decomposition which is used to find out 
whether the reaction is decomposition or on-wall ineffective 
collision. Similarly, � is coined as synthesis threshold and 
used to determine a reaction between synthesis and inter-
molecular ineffective collision. InitialKE is a value assigned 
to every molecule as kinetic energy at the initial stage. For 
the different problems discussed earlier, the parameter val-
ues are given in Table 3 so that a reader can get an idea about 
the values of the basic parameters of CRO.

Variations in values prove that for different problems 
the values would be different and it is a big challenge for 
the researchers to identify the best set of parameters for a 

specific problem. A pattern might be found from the table 
that in the case of maximization problems like 0–1 knapsack 
problem or longest common subsequence the value of buffer 
will be 0 along with decomposition and synthesis thresholds 
will be as minimum as it can be. But in the case of minimiza-
tion problems like DAG scheduling problem or Set Covering 
problem buffer will be as maximum as it can be along with 
the two thresholds.

9.2 � Termination condition

Three types of termination conditions are used with CRO 
algorithm in the iteration phase. These are:

•	 Number of function evaluation.
•	 Computational time.
•	 Non-decreasing objective function value.
•	 Obtaining a fixed objective function value.

A number of function evaluations is a trial and error based 
approach where the number of iterations is determined based 
on the results obtained for a number of runs on a differ-
ent number of iterations. For example, for multi-objective 
optimization problems in [32, 43], multiple-choice knapsack 
problem [18] all algorithms were compared having a fixed 
number of function evaluation values. It is a lengthy process 
but might give a better solution. Fixed computational time is 
used as stopping criteria too. Here same computational times 
for all algorithms are used and the performance is compared 
having better solution quality in fixed consumption of time. 
Besides non-decreasing objective function value and fixed 
objective function value defined by a threshold are also used 
as the termination criteria.

9.3 � Experimental result analysis

The outcomes of CRO for different problems were com-
pared with the different evolutionary algorithms like the 
genetic algorithm, particle swarm intelligence, ant colony 

Table 2   Parameters of CRO

Notation of parameter Definition

Popsize Number of initial solutions
KELossRate Percentage of loss of kinetic energy 

after each reaction
MoleColl Used to decide the reaction to be 

unimolecular or inter-molecular
� Decomposition threshold
� Synthesis threshold
Buffer Initial energy at the surroundings
InitialKE Initial kinetic energy of each molecule
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optimization, simulated annealing etc. The performance is 
measured on the basis of some criteria such as convergence 
speed, execution time, objective function value, the error 
rate in percentage etc. Besides, CRO being a stochastic 
algorithm multiple runs of CRO having same experimental 
setup are used for computing results. Average or the best of 
all runs is considered as the result of CRO. For reviewing 
the performance of CRO overall algorithms for the different 
problems, we consider two methods: average improvement 
percentage (APR) and average speed rate (ASR). Average 
improvement percentage is the average rate of better objec-
tive function value error rate of CRO in percentage than all 
other algorithms. Equation (25) shows the average improve-
ment percentage (APR) where n is the number of algorithms 
compared with CRO and fij is the objective function value 
of ith algorithm for jth instance and fCROj is the objective 
function value of CRO algorithm for jth instance.

Besides, for the computational time, we apply the method 
average speed rate (ASR). Speed rate method computes the 
relative computational time between CRO and another algo-
rithm. Mean value of all speed rates is the average speed 
rate. Equation (26) derives the average speed rate in math-
ematical notation.

(25)APR(%) =

∑n

i=1

∑m

j=1

(fij−fCROj)

fij

n
× 100

(26)ASR =

∑n

i=1

∑m

j=1

tij

tCROj

n

Here n is the number of algorithms, m is the number of 
instances, tCROj is the computational time of CRO algorithm 
in jth instance and tij is the time consumed by the ith algo-
rithm for jth instance.

In addition to average improvement rate (APR) and aver-
age speed rate (ASR), we calculate the standard deviation 
(�) to show the statistical significance of the average results. 
Best and worst results are also included in the tables along 
with the average results and standard deviations.

In the case of 0–1 Knapsack problem [17], three prob-
lem instances of 100, 250 and 1000 numbers of items 
were used and outcomes of CRO were compared with 
Genetic Algorithm, Ant Colony Optimization, and quan-
tum-inspired evolutionary algorithm. The datasets used 
for multiple-choice knapsack problem [18] had three 
instances: a number of classes 10 and number of items 
10, the number of classes 100 and number of items 100, 
and the number of classes 1000 and number of items 100. 
Genetic Algorithm was used for comparison with ACRO. 
Three problem instances named Will100, Tho150, and 
Tai256c were used for Quadratic assignment problem [14]. 
Simulation results of singular CRO were compared with 
Parallel CRO. For continuous optimization problem, 23 
benchmark functions were used which were classified into 
three categories [42]. The simulation results of HP-CRO 
were compared and ranked with real coded CRO. Twenty 
six benchmark objective functions were used as problem 
instances for global numerical optimization problem [20]. 
Then the objective function value of ACRO and canonical 
CRO were compared with HP-CRO, RCRO, and OCRO. 
For building model for effective prediction of the stock 
market daily closing prices of the different stock markets 

Table 3   Parametric values for different applications

X, total PE of initial pop

Problem Popsize KELossRate MoleColl � � Buffer InitialKE

0–1 Knapsack problem 20 0.8 0.2 [10–500] [10–500] 0 100
Quadratic assignment problem 24 0.8 0.2 1300 10

4 0 10
6

Continuous optimization problem [10–100] 0.1 0.2 – – 0, 105 1000,107

Global numerical optimization [10–100] 0.1 0.2 150,000 10 0,105 1000,107

Printing circuit board drilling problem 150 0.2 0.2 1300 10 0 1000
Longest common subsequence 10 0.1 0.2 10 1000 0 1000
Shortest common supersequence 20 0.6 0.2 [10–100] [10–100] 0 100
DAG scheduling problem 10 0.2 0.2 500 10 200 1000
Environmentally sustainable NDP 100 0.6 0.6 – 2 0 4
Artificial neural network 20 0.1 0.1 300 500 0 100
Multi-objective problem (MOCRO) 100,300 0.1 0.2 800 15 100 10,000
Multi-objective problem (NCRO) 100 0.6 0.7 15 10 0 10,000
Set covering problem 10 0.1 0.1 10,000 1000 10,000 1000
Static bike repositioning problem [10–120] [0.1–0.9] [0.1–0.9] [100–3700] [0–1611] – [0–1790]
Vehicle routing problem 20 0.8 0.2 [10,100] [10, X

20
] 0 1000
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like BSE, DJIA, NASDAQ, TAIEX, FTSE, S&P 500 and 
LSE were used [44]. Two third data were used for training 
and one third for testing. Sliding window technique was 
used for 1 day, 1 week and 1-month predictions. Error 
generation for prediction of ACRNN was compared with 
MLP, RBFNN and MLR algorithms. For LCS problem 
[21] two strings were used as input having lengths 128, 
270 and 360. The lengths of LCS obtained by CRO were 
compared with DP and FLCS algorithms. In the case 
of SCS problem [45], two classes of datasets were used 
one of them was DNA and another was Protein. In both 
classes, a random and real datasets were used. For DNA, 
random dataset instances having the number of strings 5 
to 5000 and lengths 10 to 1000 were used. In real data-
set 6 DNA benchmark and 5 protein benchmark instances 
were used. The outcome of CRO was compared with ACO, 
beam search, some heuristic algorithm like deposition and 
reduction, enhanced beam search. Two road networks of 
USA were used for Environmental Sustainable Network 
Design Problem [46]. One is Sioux Fall network which is 
small and other is Anaheim Network which is relatively 
long. Besides for the simulation results with Genetic Algo-
rithm three networks named SC, SD and AC were used. 
Three datasets named as Iris, Wisconsin Breast Cancer, 
and Pima Indian Diabetes datasets were used for neural 
network [47]. For Iris data set 75 training sample, 37 vali-
dation sample and 38 testing sample were used. In the case 
of Wisconsin Breast Cancer dataset 349 training sample, 
175 validation sample and 175 testing sample were used. 
Lastly, in the case of Pima Indian Diabetes dataset 384 
training samples, 192 validation samples, and 192 test-
ing samples were used. The outcomes of CROANN for 
three datasets were compared with SGAANN, EPANN, 
ESANN, PSOANN, GSOANN. In the case of multiple 
objective optimization problem [32, 43], a dataset named 
CEC09 having four multiple objective functions were used 
as problem instance.

Table 4 shows the average improvement rate (APR) of 
CRO with the compared algorithms used to solve different 
problems. Here 1st column represents the problem name, 
2nd column is for the algorithms those are compared with 
CRO, 3rd and 4th columns show the best and the worst 
improvement rates of CRO with all other comparing 
algorithms respectively, 5th column represents the aver-
age improvement rate (APR), and 6th column describes 
standard deviation. From the table we can see that Chem-
ical Reaction Optimization has outperformed different 
evolutionary algorithms by over 0.1%. That means CRO 
algorithm has proven better than all other compared algo-
rithms. Values of standard deviation demonstrate that 
improvement rate of CRO over all other algorithms is very 
much close to each other.

Table 5 represents the average speed rate (ASR) of CRO 
with all other compared algorithms. Similar to the Table 4, 
column 1 shows the problems, column 2 represents the 
compared algorithms, columns 3 and 4 show best and 
the worst values in case of computational time, column 
5 shows the average speed rate (ASR) and column 6 is 
for the standard deviation values. Herein some problems 
like Multi-objective problem solved by MOCRO [43] and 
efficient stock prediction using artificial neural network 
[44], the authors did not consider computational time for 
comparison. So apart from these problems, average speed 
rates of other problems are shown in Table 5.

The results in Table 5 show that CRO has good effi-
ciency in execution of the algorithms to solve the differ-
ent kinds of problems. The CRO has average speed rate 
over five it means, CRO is five times faster (on average) 
than other algorithms. Besides from standard deviation 
we can see that speed rate of CRO over each algorithm is 
very much close to its average value. Having both local 
and global search capabilities, CRO algorithm can con-
verge very fast and thus reduce the computational time. 
Such time efficiency makes CRO popular to the research-
ers those who want to solve different NP-hard and NP-
completer problems.

10 � Conclusions

This paper reviews one of the recent and well-known 
metaheuristics approaches named Chemical Reaction 
Optimization (CRO) algorithm along with its variants. 
The algorithm mimics one of the very popular nature 
inspired optimization incidents. The diversity and flex-
ibility of design process of the algorithm make CRO very 
much interesting to the researchers. The energy conserva-
tion conducts the acceptance of new solution(s) as well 
as facilitates the scope of search. Its variable population 
size enables the algorithm to adapt to the problem with 
a fair combination of intensification and diversification. 
Variants of the algorithm prove the diversity in designing 
the algorithm for the problems. The current study shows 
the power of CRO to search solutions locally and globally 
in the search or solution space. Thus, CRO is much robust 
and efficient algorithm for solving the hard combinato-
rial problems. The dimensions of the problems solved by 
CRO algorithm are raising and hence the popularity of 
application of this algorithm is rising rapidly. CRO is now 
using in the filed of bioinformatics, data mining, computer 
visions, civil engineering etc. CRO has been developed 
for solving the multiobjective problems also. For learning 
artificial neural network to predict complex data like a 
stock portfolio or DNA sequencing, RNA structure pre-
diction, CRO algorithm proves its robustness. A parallel 
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version of CRO shows much effectiveness to solve prob-
lems having low computation time consumption as well 
as without prior synchronization. The study on parameters 
shows that for various types of problems the parameters 
settings were very much different from each other although 
we tried to find a pattern that might help the research-
ers to find a better set of parameters. The experimental 
analyses depict that CRO algorithm has very good abil-
ity to converge results having better average improvement 
rate in percentage in almost all the problems we reviewed. 
Besides, average speed rate of applicable cases shows 
that the CRO algorithm is much faster than other evo-
lutionary algorithms including Genetic Algorithm, Ant 
Colony Optimization, Particle Swarm Optimization, Bee 
Colony Optimization etc. More study on CRO might help 

researchers to fit the algorithm in other sides of computer 
science as well as different engineering sectors.
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