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Abstract
Node localization or positioning is essential for many position aware protocols in a wireless sensor network. The classical 
global poisoning system used for node localization is limited because of its high cost and its unavailability in the indoor 
environments. So, several localization algorithms have been proposed in the recent past to improve localization accuracy 
and to reduce implementation cost. One of the popular approaches of localization is to define localization as a least square 
localization (LSL) problem. During optimization of LSL problem, the performance of the classical Gauss–Newton method 
is limited because it can be trapped by local minima. By contrast, differential evolution (DE) algorithm has high localiza-
tion accuracy because it has an ability to determine global optimal solution to the LSL problem. However, the convergence 
speed of the conventional DE algorithm is low as it uses fixed values of mutation factor and cross-over probability. Thus, 
in this paper, a self-adaptive mutation factor cross-over probability based differential evolution (SA-MCDE) algorithm is 
proposed for LSL problem to improve convergence speed. The SA-MCDE algorithm adaptively adjusts the mutation fac-
tor and cross-over probability in each generation to better explore and exploit the global optimal solution. Thus, improved 
localization accuracy with high convergence speed is expected from the SA-MCDE algorithm. The rigorous simulation results 
conducted for several localization algorithms declare that the propose SA-MCDE based localization has about (40–90) % 
more localization accuracy over the classical techniques.
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1 Introduction

The use of wireless sensor network (WSN) has become 
quite predominant in recent years because of availability 
of low cost and energy efficient wireless sensor nodes [1]. 
Large number of such sensor nodes can be connected to 
form a WSN that can be used for disaster relief operation, 
military surveillance, environmental monitoring, medical 
observations, home applications and so on [2]. The sensor 
nodes in WSN can be deployed either randomly or in a sys-
tematic way. During sensing certain phenomena (such as 

temperature, humidity, pressure, position, vibration, sound, 
chemical concentration etc.), each node in a WSN is sup-
posed to know its location in physical world. If the location 
of the event is unknown, detection of that event is not par-
ticularly useful [3].

The global poisoning system (GPS) is a popular scheme 
that is used for outdoor positioning and this scheme requires 
a clear line of sight (LOS) between the satellite and the 
unknown node without any obstacles [4]. However, the GPS 
has limitations, such as high energy consumption and expen-
sive when it is deployed in a large quantity. Hence, it is not 
recommended to deploy GPS module in each node. Alter-
natively, few nodes can be selected as beacons (or anchors) 
and GPS modules can be deployed only in these beacons. 
Through localization process and with the aid of these bea-
cons, remaining nodes can determine their locations. This 
strategy can effectively minimize energy consumption as 
well as the cost of implementation.

 * A. Rajesh 
 rajeshtechece@gmail.com

 Visalakshi Annepu 
 annepuvisala@gmail.com

1 School of Electronics Engineering (SENSE), Vellore 
Institute of Technology, Vellore, India

http://orcid.org/0000-0003-3546-764X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-019-00239-0&domain=pdf


470 Evolutionary Intelligence (2019) 12:469–478

1 3

During last two decades, numerus localization techniques 
were introduced to minimize localization error. All these 
localization techniques are mainly classified as classical 
techniques and soft computing based techniques. The clas-
sical localization schemes are again classified as range based 
and range free schemes. Range-based localization techniques 
require distance or angle between sensor nodes to estimate 
node position. Using simple geometry, this information can 
be used to derive information about node positions. When 
distances between entities are used, the approach is called 
multilateration; when angles between nodes are used, one 
talks about angulation. Range-free localization algorithms 
do not require distance or angle information between tar-
get node and anchor node, but depends on the topological 
information.

Range-based algorithms provide better accuracy com-
pared to range-free localization algorithms, but they are 
not so economic [5]. Examples of this range based schemes 
angle-of-arrival (AoA) [6], time of arrival (ToA) [7], time 
difference of arrival (TDoA) [8], acoustic energy [9], and 
received signal strength indicator (RSSI) [10, 11]. The AoA 
technique requires deploying an extra antenna in an appro-
priate direction, which may impose additional cost. Both 
the ToA and TDoA techniques require that all the receiving 
nodes to be perfectly synchronized. These techniques have 
high positioning accuracy but need additional hardware. 
Thus, among all range based techniques, the RSSI is cost 
effective as it does not required much equipment, but its 
accuracy still needs to be improved.

By contrast, the range-free techniques are based on pat-
tern matching and Hop count but not on distance or angle. 
Thus their implementation cost is low at the price of low 
accuracy. Examples of this approach include centroid algo-
rithm [12], DV-Hop technique [13], and amorphous algo-
rithm [14]. In centroid algorithm, nodes infer proximity to 
reference points and then localize themselves to the cen-
troid of the reference points. The DV-Hop used Hop count 
between nodes instead of distance estimation. Hence, when 
the DV-Hop is used for implementing in high dense sen-
sor network, its poisoning error also increases consistently. 
Unlike DV-Hop, the amorphous algorithm computed Hop 
distance instead of linear distance among the nodes. Hence, 
it’s positioning accuracy higher than DV-Hop algorithm. 
There is a clear trade-off between range based and range free 
techniques with respect to poisoning accuracy and imple-
mentation cost. Hence localization is defined as least square 
localization (LSL) problem and it is solved by several soft 
computing techniques.

Recently, the applications of soft computing techniques 
had gained a great interest. Since, the mobile node locali-
zation also can be formulated as an optimization problem, 
the gradient technique such as Gauss–Newton algorithm 
is used for location in [15]. However, the gradient based 

techniques have a possibility of trapped by local minima and 
also these techniques require appropriate initial conditions 
of desired parameters. Thus, the gradient based techniques 
can be replaced by metaheuristic optimization techniques 
(MOTs) to obtain better localization accuracy. Various 
MOTs such as flower pollination algorithm (FPA), firefly 
algorithm (FA), grey wolf optimization (GWO), particle 
swarm optimization (PSO), bacterial foraging algorithm 
(BFA), butterfly optimization algorithm (BOA), particle 
filtering NLS (PF-NLS) initial optimization algorithms 
have used for node localization of sensor networks in the 
literature [16–22]. Similarly, the popular differential evolu-
tion (DE) algorithm is also applied for node localization 
in the literature [23–25]. Though each MOT has its own 
merits, the DE algorithm proposed by Storn and Price [26] 
has become popular because of its ability to reach global 
optima irrespective of initial parameters and consists of 
limited control parameters. Despite DE algorithm has an 
excellent performance, its convergence speed still seems 
slow because the DE algorithm is sensitive to the choice of 
mutation factor and cross over probability. In general, selec-
tion of such control parameters is a tedious task. The fixed 
control parameter does not guarantee the better individuals. 
As a result, a self-adaptive mutation factor and cross-over 
probability differential evolution (SA-MCDE) algorithm was 
proposed, which has self-adaptive mechanism to vary muta-
tion factor and cross over probability in each generation [27]. 
The SA-MCDE algorithm thoroughly explores solution in 
the initial generations and exploits more the solution in the 
final few generations. Thus, this adaptive selection of con-
trol parameters guarantees better solutions and also provides 
high convergence speed. So, this paper aims at designing 
SA-MCDE based localization technique, that has fast con-
vergence, accurate positioning and low implementation cost.

The paper is organized as follows. Optimization of 
localization problem along with Gauss–Newton method 
is described in Sect. 2. The proposed SA-MCDE localiza-
tion technique in detail is given in Sect. 3. The simulation 
analyses and conclusions are presented in Sects. 4 and 5 
respectively.

2  Localization problem formulation

Let us consider, in a given two dimensional sensor field, N 
position aware anchor nodes an, n = 1, 2,…, N and M unknown 
sensor nodes bm, m = 1, 2,…, M are deployed. Deployment 
of these nodes can be either systematic way or in a random 
fashion. The positions of nth anchor node and mth unknown 
node are given as (xn, yn) and (xm, ym) respectively. All these 
nodes are assumed to be with in the radio rang R, therefore 
an, bm ϵ R2. It is also assumed that, each unknown node have 
distance measurement from all anchor nodes. That means, the 
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mth node contains Euclidean distance dnm between an and bm. 
This distances dnm is also assumed to be within the radio range 
R, because a communication link exists between an and bm 
only if the distances dnm is less than R. The aim of unknown 
node localization is to estimate the coordinates of M unknown 
nodes using N anchor nodes. Thus, localization problem can be 
formulated to determine coordinates of bm with the obtained 
distance measurements dnm as:

where ��an − bm
�
� =

∑N

n=1

��
xn − xm

�2
+
�
yn − ym

�2  and 
d̂nm is the noisy measurement of the distance dnm, which 
is obtained from RSSI. The noisy distance measurement is 
given by:

Hence, the solution from localization problem can be 
obtained from:

A centralized Gauss–Newton method is commonly used 
for solving this least squares localization problem. The 
Gauss–Newton technique is a gradient descent technique that 
updates the unknown node position in the reverse direction of 
their gradient. The unknown node location is updated in the 
(i + 1)th iteration as:

Let, A = ∇bm

[
snm(bm)

]T
=

�

�bm
F(bm) and B =

[
d̂nm

]T then

Here, α is rate learning parameter.
The gradient based methods such as Gauss–Newton has 

high converge speed, but they can be trapped by local minima. 
Also, gradient techniques need appropriate choice of initial 
states along with differentiable and continuous cost func-
tions. These difficulties may be overcome by replacing gra-
dient descent techniques with MOTs [12]. The MOTs work 
without derivative information of the cost function and hence 
can accept discontinuous cost functions. The MOTs update the 
desired parameters from random initial positions and converge 
the cost function precisely to global minima.

(1)F(um) =
∑

n

|
|snm(bm)

|
|
2

snm(u) =
‖
‖an − bm

‖
‖
2
− d̂2

nm
, if ‖‖an − bm

‖
‖ ≤ R

(2)d̂nm = dnm × noise factor × (rand∕2)

(3)bm = argmin
bm

F(bm)

(4)bm(i + 1) = bm(i) + �pm(i)

(5)pm(i) = −
(
ATA

)−1
ATB

3  Proposed SA‑MCDE algorithm based 
localization

Among the various optimization techniques, the DE 
algorithm is found to be more appropriate due to its fast 
convergence and optimal solutions [26]. However, the 
DE algorithm is much sensitive to selection of mutation 
factor and cross-over probability. So, and SA-MCDE was 
proposed, which adapts mutation factor and cross-over 
probability in each generation [27]. The adaptive mutation 
factor may retain population diversity and adaptive cross-
over probability may firmly explore the search space for 
global optima. So, an improved solution is expected from 
SA-MCDE, a thus it has been applied in several engineer-
ing applications [28–30]. SA-MCDE is a simple, efficient 
and robust optimization technique. The SA-MCDE algo-
rithm uses four stages, namely, initialization, mutation, 
crossover and selection to obtain global optimum. Fig-
ure 1 shows the flow chart of the SA-MCDE employed for 
the node localization. The process implemented for node 
localization is summarized as follows.

Initialization SA-MCDE begins its search from a ran-
domly initialized population containing P individuals, where 
each individual contains two variables corresponding to 
x and y axes of unknown node. The pth individual of the 
(P × 2)—dimensional population set wm in the gth generation 
is expressed as:

where m refers to index of unknown node.
Adaptive Mutation and crossover Mutation operation 

explores the search space with an adaptive mutation factor 
F. In each generation, DE algorithm randomly samples three 
other individuals wg,r1

m  , wg,r2
m  and wg,r2

m  from the same genera-
tion and produces a mutant vector vg,pm  by adding an appropri-
ately scaled difference vector of two individual to the third 
vector. The indexes of these randomly chosen vectors are 
integers, mutually different and r1, r2, r3 ∈ {1, 2,…, P}. The 
randomly chosen integers r1, r2 and r3 are also taken to be 
different from the running index p. This can be expressed 
mathematically as follows:

The mutation factor F ∈ (0, 1] is a positive real-valued 
number and its controls the amplification of the differential 
variation 

(
w
g,r2
m − w

g,r3
m

)
.

In order to improve diversity of the perturbed vectors, 
crossover operation is used. The crossover operation gen-
erates a trail vector um by restoring certain parameters of 
the target vector wm with randomly selected parameters 
of mutant vector vm. The crossover operator effectively 
shuffles parameters with a crossover probability Cp ∈(0, 

(6)w
g,p
m

=
[
xg,p
m
, yg,p

m

]T
, p = 1, 2,… ,P, g = 1, 2,… ,G

(7)v
g,p
m

= w
g,r1
m

+ F
(
w
g,r2
m

− w
g,r3
m

)
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1] about to increase the search space for a better solution. 
The obtained dth variable in the trail vector is given by:

where d = 1 or 2, that means 1 corresponding to x-axis 
position and 2 corresponding to y-axis position. Further, 
 randd ∈ [0, 1] is the random value generated for dth variable 
and drand is a randomly chosen index, that is 1 or 2, which 

(8)u
g,p,d
m

=

{
v
g,p,d
m randd(0, 1) ≤ Cp or d = drand,

w
g,p,d
m otherwise.

ensures that the trail vector gets at least one parameter from 
mutant vector.

The SADA algorithm uses self-adaptive control strategy 
for varying the mutation factor F and crossover probability 
Cp during each generation in order to find best solution with 
high rate of convergence. The self-adaptive control param-
eters Fg+1 and Cg+1

p  are obtained in generation g + 1 as:

(9)Fg+1 =

{
F1 + rand1F2, if rand2 < 𝜏1,

Fg, otherwise

Fig. 1  Flowchart of SA-MCDE 
based localization algorithm
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where  randj ∈ {1, 2, 3, 4}, are uniform pseudo-random val-
ues lies between 0 and 1, τ1 and τ2 are constants that are used 
to define F and Cp respectively. The values of τ1, τ2, F1 and 
F2 are taken to be 0.1, 0.1, 0.1 and 0.9, respectively accord-
ing to [27]. The new F takes value from [0.1, 1.0] and the 
new Cp from [0, 1] randomly. The control parameter values 
Fg+1 and Cg+1

p  are updated prior to mutation as they involved 
in mutation, crossover, and selection operations.

Fitness evaluation In the fitness evaluation stage the trail 
vector ug,pm  and the target vector wg,p

m  are fed to a fitness (cost) 
function to know their fitness value. The fitness values of the 
pth individual in the gth generation has been computed for 
both trail and target vectors from:

Selection The DE algorithm uses a greedy selection. The 
selection operation compares fitness value of each individual 
in both trail vectors and target vectors. The individual with 
minimum fitness value can be survived and carried to the 
next generation. So, the cost minimization problem ca be 
defined as:

The whole procedure will be repeated from mutation 
stage till termination criterion is met. Termination can be 
defined either based on number of generations or meeting 
minimum acceptable fitness value.

Optimal solution The best individual with minimum fit-
ness value is considered as the optimal position for unknown 
node m at the end of termination. From this optimal solution, 
the position of unknown node is estimated as:

Similarly, the entire procedure is repeated for finding the 
optimal positions of remaining M − 1 nodes.

4  Simulation analyses and results

In this section, the computer simulations have been con-
ducted to show effective ness of the proposed SA-MCDE 
Localization technique. The proposed and classical 

(10)Cg+1
p

=

{
rand3, if rand4 < 𝜏2,

C
g
p, otherwise

(11)fug,p
m

=
∑

n

|
|snm(u

g,p
m
)||
2

(12)fwg,p
m

=
∑

n

||snm(w
g,p
m
)||
2

(13)w
g+1,p
m

=

{
u
g,p
m fu

g,p
m ≤ fw

g,p
m ,

w
g,p
m otherwise

(14)b̂m = argmin
p

[
∑

n

|||
snm

(
w
G,p
m

)|||

2

]

, p = 1, 2,… ,P

algorithms are simulated in Matlab. In these simulations, we 
have deployed 100 unknown sensor nodes and 10 position 
aware anchor nodes in a region of 100 × 100 square meters. 
Among 10 anchor nodes, 4 anchor nodes are placed at 
(25 m, 25 m), (25 m, 75 m), (75 m, 25 m), (75 m, 75 m), and 
remaining 6 anchor nodes are deployed randomly to increase 
connectivity in the network. All unknown nodes are placed 
at random positions. To eliminate randomness of position 
estimates, we have averaged the position estimates by apply-
ing each localization techniques 100 times repeatedly at 
each unknown node. The parameters of various localization 
techniques have been chosen based on extensive simulations 
conducted with different values. The selected parameters 
are listed in Table 1. The simulation results presented in 
this section mainly focusses on localization accuracy and 
convergence speed of various localization techniques. The 
localization accuracy can be computed mainly based on the 
measures namely, Localization Error (LE), Average Locali-
zation Error (ALE) and Root Mean Square Error (RMSE), 
which are defined in Eqs. (15), (16) and (17) respectively.

where M is number of unknown nodes, (xm, ym) is the true 
location of unknown node m, and (x̂m, ŷm) is the estimated 
location of unknown node m.

(15)LEm =

√
(x̂m − xm)

2 + (ŷm − ym)
2

(16)ALE =
1

M

M∑

m=1

√
(x̂m − xm)

2 + (ŷm − ym)
2

(17)RMSE =

√√√
√ 1

M

M∑

m=1

(x̂m − xm)
2 + (ŷm − ym)

2

Table 1  Simulation parameters

Parameter Value

Gauss–Newton method
 Learning rate parameter ‘α’ 0.2
 Number of iterations 100
 Differential evolution
   Number of generation 50
   Population size 100
   Mutation factor 0.5

 Cross-over probability 0.6
SA-MCDE
 Number of generation 50
 Population size 100
 Mutation factor Variable
 Cross-over probability Variable
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Figure 2 shows distribution of anchor nodes, unknown 
nodes and estimated positions of unknown node using vari-
ous localization techniques. From this figure, it is found that 
the localization accuracy of the proposed SA-MCDE locali-
zation is high compared to the classical technique. Among 

various localization schemes, the range free technique such 
as DV-Hop results high localization error. So, there is a huge 
deviation between true positions and estimated positions. By 
contrast, the range based techniques are fairly performing 
better compared to range DV-Hop technique. Among various 
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Fig. 2  Deployment anchor and unknown nodes along with estimated location of unknown nodes using: a DV-Hop, b RSSI, c Gauss–Newton, d 
DE algorithm, e SA-MCDE algorithm
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range-based techniques, the proposed SA-MCDE localiza-
tion has high degree of accuracy, as the true node position 
and estimated node position almost coincides, which is show 
in Fig. 2e. This is due to the fact that the SA-MCDE has 

true global optimization ability. Further, the localization 
error computed for each node in the network using differ-
ent localization techniques is plotted in Fig. 3. As seen in 
this figure, there is a large variation of localization error 
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Fig. 3  Localization error of each individual unknown node using various localization techniques: a DV-Hop, b RSSI, c Gauss–Newton, d DE 
algorithm, e SA-MCDE algorithm
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for different nodes while using DV-Hop and RSSI localiza-
tion techniques. Because these techniques fail to estimate 
position of the unknown node which is located far away to 
all anchor nodes. By contrast, the optimization techniques 
can optimize the localization problem equally to all nodes 
irrespective to their locations. Therefore, an uninform error 
distribution can be observed for optimization techniques 
based localization as depicted in Fig. 3c–e.

Table 2 describes the accuracy comparisons in terms 
of both ALE and RMSE among various localization tech-
niques for different load densities. In our simulations, low, 
medium and high densities are corresponding to deploy-
ment of 20, 50, and 100 unknown nodes respectively. 
As the load density increases, the network connectivity 
between sensor nodes become high and the number of 
anchor nodes available within the communication range 
increases. This leads to decrease localization error as pre-
sented in Table 2. This is further observed in Fig. 4, where 
the ALE of different techniques is presented while increas-
ing number of nodes from 10 to 100. As seen in this figure, 
the SA-MCDE localization has the minimum localization 
error compared to all other techniques as the number of 
nodes increases. Similarly, localization error of various 

techniques while varying anchor nodes from 4 to 20, keep-
ing number of unknown nodes fixed at 100 is illustrated 
in Fig. 5. The accuracy of the estimated position is also 
depends on number of deployed anchors as the connectiv-
ity between unknown node and all anchors increases with 
increased number of anchors. As a result the localization 
error decreases along with number of anchors as shown 
in this figure.

At last, the convergence speed in terms of number of iter-
ation or generation to reach minimum least square distance 
error is measured by using different optimization technique 
and plotted in Fig. 6. For Gauss–Newton method, the con-
vergence speed is measured with respective to number of 
iterations and for DE algorithm and SA-MCDE algorithm, 
the convergence speed is measured with respective to num-
ber of generations. The least square distance error is meas-
ured from Eq. (1). Though, the Gauss–newton method has 
high convergence speed, it is frequently trapped by local 
minima and results high least square error. By contrast, the 
DE algorithm and SA-MCDE algorithm have an ability to 
reach global optima and results minimum least square error. 
Comparing DE algorithm, the convergence speed of SA-
MCDE algorithm is further high as depicted in this figure, 

Table 2  Localization accuracy 
comparisons for different node 
densities

Localization technique Low density Medium density High density

ALE RMSE ALE RMSE ALE RMSE

DV-Hop 12.6727 16.209 11.2641 13.9582 10.355 12.3192
RSSI 4.6046 5.8046 4.2387 5.0683 4.0296 4.8764
Gauss–Newton 2.8498 3.8296 2.6013 2.9224 2.3444 2.7145
DE algorithm 1.6853 1.8536 1.3893 1.5079 1.1373 1.2955
SA-MCDE algorithm 1.0329 1.1313 0.9166 1.0261 0.8311 0.9611
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because it has a self-controlling mechanism to adjust muta-
tion factor and cross-over probability.

Finally, from the regions simulation study, it is under-
stood that, there is a clear trade-off between range based 
and range free localization techniques. Thus, localization is 
defined as LSL problem. During optimizing LSL problem, 
compared to the Gauss–Newton algorithm the DE algorithm 
has better localization accuracy in terms of low ALE. The 
performance and convergence speed of DE algorithm is fur-
ther improved by including self-adaptive control parameter 
selection mechanism. Thus, the SA-MCDE algorithm is con-
sistently performing well with high convergence speed under 
different conditions including at various node densities and 
for different anchor nodes.

5  Conclusions

Many networking protocol and application require appro-
priate localization of nodes. The Quality of Service (QoS) 
of WSN is depends on localization accuracy. In this paper, 
we investigate SA-MCDE algorithm based localization tech-
nique and compared with DE algorithm, Gauss–Newton and 
classical localization algorithms. Among various localiza-
tion techniques, the range based techniques have better local-
ization accuracy but they require extra hardware. On the 
other hand rang free technique are cost effective but they are 
limited by poor accuracy. So the propose SA-MCDE algo-
rithm localization is found to be better alternative. Through 
exhaustive simulation study, we found that the SA-MCDE 
algorithm localization is robust and has better localization 
accuracy with fast convergence speed.

Generally, MOTs tries to find an optimal solution con-
sidering all the controlling parameters. In several problems, 
these factors are enormous and expressing them in quantity 
and establishing relationships among these require volumi-
nous calculations. Therefore, developing new MOTs with 
reduced complexity is always constitutes a promising novel 
research area. Further, recently, unmanned aerial vehicle 
(UAV) assisted node localization has become popular as 
they provide better distance estimates because of clear line 
of sight between areal anchors and unknown nodes, which 
may lead to better positioning. Thus, in summary, we can 
say that localization of WSN continues to be an important 
research challenge.
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