#### **RESEARCH PAPER**



# Oppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholding

Falguni Chakraborty<sup>1</sup> · Provas Kumar Roy<sup>2</sup> · Debashis Nandi<sup>1</sup>

Received: 27 September 2018 / Revised: 22 March 2019 / Accepted: 2 May 2019 / Published online: 21 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

#### Abstract

This paper presents an improved elephant herding optimization (IEHO) to solve the multilevel image thresholding problem for image segmentation by introducing oppositional-based learning (OBL) and dynamic cauchy mutation (DCM). OBL accelerates the convergence rate and enhances the performance of standard EHO whereas DCM mitigates the premature convergence. The suggested optimization approach maximizes two popular objective functions: 'Kapur's entropy' and 'between-class variance' to estimate optimized threshold values for segmentation of the image. The performance of the proposed technique is verified on a set of test images taken from the benchmark Berkeley segmentation dataset. The results are analyzed and compared with conventional EHO and other four popular recent metaheuristic algorithms namely cuckoo search, artificial bee colony, bat algorithm, particle swarm optimization and one classical method named dynamic programming found from the literature. Experimental results show that the proposed IEHO provides promising performance compared to other methods in view of optimized fitness value, peak signal-to-noise ratio, structure similarity index and feature similarity index. The suggested algorithm also has better convergence than the other methods taken into consideration.

**Keywords** Multi-level thresholding  $\cdot$  Nature inspired optimization  $\cdot$  Elephant herding optimization  $\cdot$  Image segmentation  $\cdot$  Opposition based learning  $\cdot$  Cauchy mutation

# 1 Introduction

Image segmentation is an important step in pattern recognition, computer vision and image processing. It is a process of partitioning different non-overlapping regions of an image. Many segmentation techniques like threshold based, edge based, region based, graph cut based, connectivity-preserving relaxation techniques, etc. have been proposed to segment different objects of an image. Threshold-based segmentation among them has become popular to the research community because of its simplicity, accuracy, and robustness. However, the primary challenge for this category of segmentation is to find out the best optimized threshold values to partition the different regions with sufficient accuracy. In most of the cases, the traditional optimization algorithms

Falguni Chakraborty falguni.durgapur@gmail.com

<sup>2</sup> Kalyani Government Engineering College, Kalyani, West Bengal, India are inefficient to solve major real-world problems because of their failure to search the best set of optimized threshold values. Nature inspired metaheuristic optimization algorithms are thought recently to be a promising solution in this regard.

The real-world problems are somehow associated with some optimization problems. Hence, optimization has got tremendous importance as an area of research in the course of time. However, it has now become a large area of mathematics and encompasses a lot of techniques to solve different types of problems. These techniques are broadly categorized into classical algorithms [1, 2] and evolutionary algorithms [3, 4]. The classical algorithms are particularly gradientbased, and the optimized values are estimated by evaluating the derivatives of the objective functions. The evolutionary algorithms are metaheuristic and inspired by the nature or biological behavior of the living entities. Since the objective functions of many real-world problems are multimodal, the gradient-based classical methods fail to assure global or near global solutions. There is a high chance that the solutions will stick at the local optima depending on the assumption of the initial solutions. Moreover, the derivative based algorithms unsuitable for those problems whose objective

<sup>&</sup>lt;sup>1</sup> National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, India

functions are not differentiable. These factors lead us to search for new algorithms for finding global or near global solutions for a given problem. Evolutionary algorithms have become potential solutions for these cases.

Recently, a wide range of nature inspired metaheuristic evolutionary algorithms have been proposed and applied to solve different types of large-scale optimization problems. Some examples of such algorithms are: genetic algorithm (GA) [5–7], biogeography based optimization (BBO) [8], particle swarm optimization (PSO) [9, 10], artificial bee colony (ABC) [11], modified ABC [12], differential evolution (DE) [13], bacterial foraging optimization (BFO) [14], ant colony optimization (ACO) [15], cuckoo search (CS) [16], honey bee mating optimization (HBMO) [17], social spider optimization (SSO) [18], flower pollination [18], BAT algorithm [19] etc. These algorithms are successfully applied to solve the complicated and challenging engineering problems in different fields. Some good references in this regard are Bhandari et al. [12], a multilevel thresholding algorithm for segmentation of gray-level satellite image using a modified artificial bee colony algorithm (MABC), Ouadfel et al. [18], social spiders optimization (SSO) and flower pollination algorithm for multilevel image thresholding, Agrawal et al. [16], Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm, Bakhshali et al. [20], segmentation of color lip images using BFO, Khairuzzaman et al. [21], multilevel image thresholding using grey wolf optimizer, Aziz et al. [22], Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, etc. Moreover, in line with the no freelunch theorem [23], a particular metaheuristic algorithm may not be able to produce the best result in the solution of all types of problems. This leads us to develop and/or search a metaheuristic algorithm or enhance the performance of the existing algorithm by various hybrid or improved version. Some such hybrid algorithms are: enhancing particle swarm optimization using generalized opposition-based learning [24]; opposition-based artificial bee colony with dynamic Cauchy mutation [25]; opposition-based kill herd algorithm with Cauchy mutation and position clamping [26]; opposition-based differential evolution [27] etc.

EHO is newly developed metaheuristic algorithm, proposed by Wang et al. [28] This algorithm has been inspired by the herding behaviour of the elephant in nature and is applied to improve the solutions of many real-life problems. Meena et al. [29] have used improved elephant herding optimization for multi-objective DER accommodation in distribution systems. Tuba et al. [30] have applied EHO to obtain optimal parameters for the support vector machine to determine the exact erythemato-squamous diseases. However, though EHO has shown its potential performance with better results in many cases; sometimes premature stagnation at local optima makes it inferior with respect to other contemporary evolutionary algorithms. To combat it, we propose a variant of EHO by incorporating oppositionbased learning (OBL) [31] and Dynamic Cauchy Mutation (DCM) [32–34] to EHO and use it to obtain the improved optimal threshold in multilevel image thresholding with higher speed.

The opposition based learning (OBL) was first proposed by Tizhoosh [31]. The key concept of OBL is to search for better candidate solutions by the simultaneous evolution of an estimate and its corresponding opposite estimate which is closer to the global optimum. According to central opposition theorem [35], the probability that the opposite candidate solution is closer to the global optimum is greater than the probability of a second random presumption. Many researchers have utilized the concept of OBL in combination with different soft computing algorithms. These include particle swarm optimization (PSO), artificial bee colony (ABC), Krill Herd algorithm (KH) and Differential Evolution (DE) to solve the real-life complex optimization problems. In this paper, OBL and DCM have been incorporated in the conventional EHO to accelerate the convergence rate as well as to enrich the performance of standard EHO in terms of the optimized threshold values.

We organize the article as follows: Sect. 2 presents the basic EHO and OBL theory, Sect. 3 proposes the improved EHO. Section 4 represents the mathematical model for image segmentation. Section 5 demonstrates the application of the proposed algorithm to solve the image thresholding problem. Section 6 describes the simulation results of the proposed improved EHO on multilevel thresholding in image segmentation. Finally, the conclusions are drawn in Sect. 7.

# 2 Elephant herding and opposition based learning algorithms

This section presents a brief overview of elephant herding and opposition based learning algorithm.

## 2.1 Elephant herding optimization (EHO) algorithm

In Wang et al. [28] developed a new metaheuristic algorithm called elephant herding optimization (EHO) algorithm. The EHO algorithm is developed from the natural behaviour of elephant herding. An elephant group is composed of a number of clans headed by a matriarch. A clan consists of females with their calves. Female members prefer to live with family members whereas the male members prefer to live a nomadic and solitary life. Therefore, they will gradually become independent of their families until they break away the relationship with their families completely to either roam alone or find a small group of male elephants. Wang et al. have modelled this herding behaviour of elephant into clan updating and separation operator to solve an optimization problem. For solving an optimization problem using this herding behaviour of the elephant, the following assumptions are considered.

- Each elephant group is composed of some number of clans and each clan consists of a fixed number of elephants under the headship of a matriarch
- In each generation, a fixed number of male elephants live away from the clan and they are considered as minimum fitness value (for the maximization problem).
- The matriarchs are represented by the maximum fitness value.

## 2.1.1 Clan updating operator

As matriarchs are the leaders of the elephant group, all the members of a particular clan  $c_i$  are influenced by the matriarch of the clan  $c_i$ , so in each generation the next position of the member's *i*th elephant of the clan  $c_i$  is calculated as

$$x_{new,c_i,j} = x_{c_i,j} + \alpha \times (x_{best,c_i} - x_{c_i,j}) \times r$$
(1)

where  $x_{best,ci}$  is the fittest elephant of the clan is  $c_i$ ,  $x_{new,ci,j}$  represents the new updated position of *j*th elephant in clan  $c_i$  respectively. Matriarch influence to the *j*th elephant of the clan  $c_i$  is determined by the control parameter  $\alpha \in [0, 1]$  and  $r \in [0, 1]$ , is a random number taken from a set of uniformly distributed numbers. The next updated position of fittest elephant for  $x_{ci,j} = x_{best,ci}$  is calculated as follows

$$x_{new,c_i,j} = \beta \times x_{center,c_i} \tag{2}$$

where  $\beta \in [0, 1]$  is a control parameter which determines the influence factor of  $x_{center,ci}$  on  $x_{new,ci,j}$ . The  $x_{center,ci}$  of the clan  $c_i$  can be determined by the following equation.

$$x_{center,c_{i},d} = \frac{1}{n_{c_{i}}} \times \sum_{n_{c_{i}}}^{j=1} x_{c_{i}} d$$
(3)

where  $n_{c_i}$  is the number of elephants of each clan;  $1 \le d \le D$  represents the *d*th dimension and D is the total dimension.

#### 2.1.2 Separating operator

In the elephant group, young male elephants prefer to leave alone so, they leave their family members. This characteristic is implemented in this optimization technique as separating operator. In each generation worst elephant of each clan updates its position by the following.

$$x_{wrost,c_i} = x_{min} + (x_{max} - x_{min}) \times rand$$
(4)

where  $x_{worst,c_i}$  is the worst elephant of the clan  $c_i$  of elephant group  $x_{max}$ ,  $x_{min}$  are the maximum and minimum value of the search space and  $rand \in [0, 1]$  follows the uniform distribution.

## 2.2 Opposition-based learning (OBL)

Generally, the initial population for all the evolutionary algorithms is generated randomly and gradually they reach to the optimal solution in subsequent iterations and stop at the predefined condition. The convergence time of the algorithms are linked to the distances of these initial guesses from the optimal solution. If the selection of the initial solution is closer to the optimal solution then it converges quickly, otherwise, it takes a longer time to converge. Opposition based learning (OBL) [29] is one of the efficient concepts to improve the initial solution by simultaneously evaluating the current candidate solution and its opposite solution and choose the more fitted one as the initial solution. The underlying concept is that as per probability theory any predicted solution is 0.5 times far away from the actual solution than its contrary solution. The method is useful not only for starting population but also for each iteration to improve the final solution.

The concept of OBL in optimization problem is based on simultaneously evaluation of current candidate solution and its opposite solution. Some definitions related to OBL are given below:

#### 2.2.1 Opposite number

Opposite number  $(\bar{x})$  of a real number (x) is express as  $\bar{x} = a + b - x$ , where  $x \in [a, b]$ . The same concept may be applied for generating opposite number in multidimensional problem.

#### 2.2.2 Opposite point

Let  $P = (x_1, x_2, ..., x_D)$  be a point in D-dimensional space, where  $x_i \in R$  and  $x_i \in [a_i, b_i]$  and  $\{i = 1, 2, ..., D\}$ . The opposition point  $P_o(x_1, x_2, ..., x_D)$  can be defined as

$$\bar{x} = a_i + b_i - x_i \tag{5}$$

The concept of this opposition based optimization by using the idea of opposite point is defined as follows:

Let  $P = (x_1, x_2, ..., x_D)$  be the candidate solutions in *D*-dimensional problem space and f(P) be the fitness function for measuring the candidate fitness. The point  $P_o$  is the opposite point of the point *P*. In maximization problem, the point *P* is replaced by the point  $P_o$  if  $f(P_o) \ge f(P)$ . Hence, a point and its opposite point are evaluated at the same time and choose the fittest one.

# 3 Proposed opposition based EHO with DCM

The basic operations of all evolutionary algorithms are divided into two parts, initialization and produced a new population in the subsequent generations. In the proposed algorithm we will enhance these two sections by embedding the concept of opposition based learning and dynamic Cauchy mutation into the standard EHO to improve the performance of the EHO as well as convergence speed. Details of the proposed algorithm ae shown in Fig. 1.

## 3.1 Opposition based initial population

The literature review of evolutionary algorithms reveals that almost all evolutionary algorithms are started with the randomly generated initial population without prior information of the problem area. Here, the concept of OBL can be useful to create fitter starting population without prior knowledge of the problem field. In the proposed algorithm a population is produced by the conventional random number generator, and then the opposite population is produced and combined with the original population. Finally, the initial population is taken by selecting the best subpopulation depending on the fitness value.

# 3.2 Opposition based generation by jumping probability

The similar concept may be used in each iteration to improve the solution by forcefully changing the current population to its opposite population by using generation jumping  $(J_r)$ concept, which may be fitter than the old population. After generating a new population by the IEHO in each iteration, the opposite population is formed and combined with the old population. Then we select the fittest population from the merged population as a new population for the next iteration.

According to the literature, generation jumping  $(J_r)$  during exploration is more desirable than during exploitation [36]. In our segmentation problem if we set the value of jumping rate  $(J_r)$  to 0.4 or 0.2 we see premature convergence for some images. We observed that if we set the value between 0.2 and 0.4, we get desired results for a large number of image data.

## 3.3 Dynamic Cauchy Mutation (DCM)

Various mutation operators are proposed in the literature of evolutionary optimization to improve the performance by avoiding premature convergence. Among them, Gaussian and Cauchy distribution have become popular. Compare to the Gaussian probability distribution, Cauchy probability distribution has more possibility to escape from local optima because of its longer tail probability distribution function. This motivates us to used Cauchy probability distribution as a mutation operator to enrich the performance of the conventional EHO.

In the conventional EHO, an elephant group is composed of a number of clans headed by a matriarch (global best). The other members of the clan update them by the influence of matriarch to reach better position. Hence matriarch can guide when the other member of the clan tends to be trapped.

In this algorithm, the DCM is applied on matriarch to enhance the performance of EHO.We apply the DCM operator on the matriarch as follows:

$$x_{c_i,M} = x_{c_i,M} + \delta \times CM() \tag{6}$$

where  $x_{c_i,M}$  is the matriarch of clan  $c_i$ ;  $\delta$  is the dynamic weight and *CM*() is the random number generator by the Cauchy probability distribution.

Dynamic weight  $\delta$  is calculated as follows

$$\delta = \delta_0 + \frac{MI - I}{I} \times \delta_1 \tag{7}$$

where  $\delta_0 = 0.01$ ; *MI* is the maximum number of iteration; *I* is the current iteration;  $\delta_1$  is calculate as follows

$$\delta_1 = \frac{N_{max} - N_{min}}{1000} \times \delta_1 \tag{8}$$

where  $N_{max}$ ,  $N_{min}$  are the maximum and minimum value of problem domain.

# 4 Mathematical model of thresholding problem

Thresholding is a method of dividing an image into dissimilar regions based on the intensity level (L). In bi-level thresholding, the background and foreground of an image may be separated by a threshold value by the following rules.

$$R_1 \leftarrow P \quad if \quad 0 \le P < T$$

$$R_2 \leftarrow P \quad if \quad T \le P < L - 1$$
(9)

where threshold value T divides the image into two regions and is the one of the value of the pixel in L-level gray scale image. Multiple threshold value require more than one threshold values, which divided the whole image into multiple regions. The idea of bi-level thresholding can be express to multilevel thresholding techniques also by the following rules:

$$R_{1} \leftarrow P \quad if \ 0 \le P < T_{1}$$

$$R_{2} \leftarrow P \quad if \ T_{1} \le P < T_{2}$$

$$R_{n-1} \leftarrow P \quad if \ T_{n-1} \le P < T_{n}$$

$$R_{n} \leftarrow P \quad if \ T_{n} \le P < L - 1$$
(10)



Fig. 1 Details of improved EHO(IEHO) algorithm

where  $T_1 < T_2 < \cdots < T_{n-1} < T_n$  are the threshold value.

Let assume an *L* number of grey image in the range  $\{0, 1, 2, \dots, (L-1)\}$  with n + 1 number of objects or regions.  $\{h(1), h(2), \dots, h(L-1)\}$  be the grey level frequency of gray level  $\{0, 1, 2, \dots, (L-1)\}$ , *N* be the total number of pixel in that image. Where it is required to find n number of threshold values by optimizing one (or more) objective function(s). If an objective function is f(.), the optimal threshold values  $T_1^*, T_2^*, \dots, T_n^*$  can be computed as follows:

$$(T_1^*, T_2^*, \dots, T_n^*) = argmax(f(T_1, T_2, \dots, T_n))$$
(11)

The choice of objective functions is one of the important issues in finding out the optimal threshold values. Otsu [37], Kapur's entropy [38] method are some examples of popular objective functions which are widely used in image segmentation problems discussed in the next subsection.

## 4.1 Otsu's method

This is one of the most popular methods, proposed by Otsu's [37], for both bi-level and multiple thresholding, it is based on finding the optimal thresholding by maximizing the between-class variance of the segmented region which can be defined as the sum of sigma functions of each region by the equation given below:

$$f(t) = \sigma_1 + \sigma_2 \tag{12}$$

where

$$\sigma_1 = \omega_0 (\mu_0 - \mu_T)^2 \text{ and } \sigma_2 = \omega_1 (\mu_1 - \mu_T)^2$$
(13)

where  $\mu_T$  in Eq. 13 represents the mean intensity of the whole image, and for bi-level thresholding. Mean of each class can be defined as

$$\mu_0 = \sum_{i=0}^{t-1} \frac{ip_i}{\omega_0} \text{ and } \mu_1 = \sum_{i=t}^{L-1} \frac{ip_i}{\omega_1}$$
(14)

The optimal threshold can be obtained by maximizing between-class variance.

$$(t^*) = \operatorname{argmax}(f(t)) \tag{15}$$

This method can be express for multilevel thresholding problem by the following function

$$f(t) = \sum_{i=0}^{m} \sigma_i \tag{16}$$

The sigma function can be express through Eq. 17

$$\sigma_{1} = \omega_{1}(\mu_{0} - \mu_{T})^{2}, \ \sigma_{2} = \omega_{2}(\mu_{1} - \mu_{T})^{2}, \sigma_{j} = \omega_{j}(\mu_{j} - \mu_{T})^{2}, \ \sigma_{m} = \omega_{m}(\mu_{m} - \mu_{T})^{2}$$
(17)

And mean level van be defined as

🙆 Springer

$$\mu_{0} = \sum_{i=0}^{t_{1}-1} \frac{ip_{i}}{\omega_{i}}, \ \mu_{1} = \sum_{i=t_{1}}^{t_{2}-1} \frac{ip_{i}}{\omega_{i}}, \ \mu_{j} = \sum_{i=t_{j}+1}^{L-1} \frac{ip_{i}}{\omega_{i}},$$

$$\mu_{m} = \sum_{i=t_{m}}^{t_{j}+1-1} \frac{ip_{i}}{\omega_{i}}$$
(18)

Optimal threshold value can be obtained by maxizing the objective function of the Eq. 19

$$(t^*) = \arg\max\left(\sum_{i=0}^m \sigma_i\right) \tag{19}$$

#### 4.2 Kapur's entropy method

The most popular and widely used entropy-based method is Kapur's entropy-based [38] thresholding. It describes the method to maximize the entropy of the segmented histogram in order that each segmented section has a more centralized distribution [38].

Optimal threshold for bi-level thresholding by Kapur's entropy can be defined as maximizing the following function

$$f(t) = H_0 + H_1$$
(20)

where

$$H_0 = -\sum_{i=0}^{t-1} \frac{p_i}{\omega_0} ln \frac{p_i}{\omega_0} \text{ and } \omega_0 = \sum_{i=0}^{t-1} p_i$$
  
and  $H_1 = -\sum_{i=t}^{L-1} \frac{p_i}{\omega_1} ln \frac{p_i}{\omega_1} \text{ and } \omega_1 = \sum_{i=0}^{t-1} p_i$ 

This entropy method can also be express for multilevel thresholding by maximizing the following equation

$$f([t_1.t_2, t_3...t_m]) = H_0 + H_1 + H_2 + \dots + H_n$$
(21)  
where  $t_1 < t_2 < t_3 \cdots < t_m$  and

$$H_0 = -\sum_{i=0}^{t_1-1} \frac{p_i}{\omega_0} ln \frac{p_i}{\omega_0} \text{ and } \omega_0 = \sum_{i=0}^{t_1-1} p_i$$
$$H_1 = -\sum_{i=t_1}^{t_2-1} \frac{p_i}{\omega_1} ln \frac{p_i}{\omega_1} \text{ and } \omega_1 = \sum_{i=t_1}^{t_2-1} p_i$$
$$H_2 = -\sum_{i=t_j}^{t_{j+1}-1} \frac{p_i}{\omega_2} ln \frac{p_i}{\omega_2} \text{ and } \omega_2 = \sum_{i=t_j}^{t_{j+1}-1} p_i$$
$$H_n = -\sum_{i=t_n}^{L-1} \frac{p_i}{\omega_n} ln \frac{p_i}{\omega_n} \text{ and } \omega_m = \sum_{i=t_n}^{L-1} p_i$$



Fig. 2 (a-j) original images and (a'-j') are the histogram of the images respectively

| Algorithms | Parameter                                  | Value | Algorithms | Parameters                         | Value     |
|------------|--------------------------------------------|-------|------------|------------------------------------|-----------|
| EHO        | Population size                            | 30    | ABC        | Swam size                          | 30        |
|            | No. of iterations                          | 100   |            | No. of iterations                  | 100       |
|            | Matriarch influence parameter ( $\alpha$ ) | 0.9   |            | Lower bound and upper bound        | 1256      |
|            | Influence factor of clan canter( $\beta$ ) | 0.4   |            | Value of Fi ( $\phi$ )             | [0, 1]    |
| CS         | Number of nests                            | 30    | PSO        | Population size                    | 30        |
|            | No. of iterations                          | 100   |            | No. of iterations                  | 100       |
|            | Step size                                  | 1     |            | Maximum Inertia weight             | 0.4       |
|            | Mutation probability value                 | 0.25  |            | Minimum Inertia weight             | 0.2       |
|            | Scale factor                               | 1.5   |            | Maximum velocity                   | + 1.0     |
|            |                                            |       |            | Minimum velocity                   | - 1.0     |
|            |                                            |       |            | Cognitive coefficient(c1)          | 1.429     |
|            |                                            |       |            | Cognitive coefficient(c2)          | 1.429     |
| BAT        | Number of Bat                              | 30    | BAT        | Minimum and maximum Pulse emission | 0, 1      |
|            | No. of iterations                          | 100   |            | Minimum and maximum Loudness       | 1, 2      |
|            | Maximum frequency                          | 1.5   |            | Minimum and Maximum wavelength     | 0.9, 0.99 |
|            | Minimum frequency                          | 0     |            |                                    |           |

 Table 1
 Parameters used for EHO, ABC, CS, BAT and, PSO

# 5 Improved EHO and multilevel image thresholding

The IEHO has been used to find the optimal threshold values for multilevel image thresholding of the images taken from well-known benchmark dataset. The steps for implementing IEHO for multilevel image thresholding are as follows:

**Step 1** Select the initial population based on the concept of OBL of size n, each of the member of the population is of dimension D

**Step 2** Divide the total population into a fixed number of clans. A matriarch controls every clan. Since it is a maximization problem, the matriarch gives the highest fitness value. For each clan  $c_i$ , calculate the fitness function of the *j*th elephant by the Kapur's or Otsu' s method

**Step 3** In each generation, the next position of the *j*th member of each clan  $c_i$  is updated by the Eqs. 1 and 2. **Step 4** The worst member of each clan is updated its position by the Eq. 4.

**Step 5** Implement the OBL based on jumping rate  $(J_r)$ . **Step 6** Implement the DCM to update matriarch

**Step 7** Select the best elephant as the best threshold value from the group in each iteration.

**Step 8** Repeat Step-2 to Step-7 until the maximum iteration is reached.

# 6 Experiment

## 6.1 Experiment and setup

This section describes the computational environment used for simulation and experiment of the proposed algorithm; the results are analysis by defining some wellknown quality metrics; the stability and the performance of the proposed algorithm in comparison to the other popular algorithms.

Simulation and experiments are carried out in a PC with 2.30 GHz CPU and 4.00 GB RAM in Windows 8 environment. Tests are performed on more than fifty different images collected from the database of Berkeley Segmentation Dataset, out of which the results of ten images are shown in Fig. 2. The same number of iterations and stopping criteria are used for all algorithms to assess the performance without any bias. The parameters used in simulations are given in Table 1. The performance of the proposed algorithm is compared with five recently developed evolutionary algorithms namely, CS, ABC, BAT and, PSO and one classical method DP. Kapur's entropy and Otsu's between-class variance are used as the objective fnction for calculating the threshols value of images for all metaheuristic algorithm, In case of DP Modified Otsu Criterion [2] proposed by the Mohamed H. Merzban, Mahmoud Elbayoumi is considered for calculating the threshold values.

| Threshold | l Va   | lues                                   |                                        |                                        |                                        |                                        |                                        |
|-----------|--------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Image     | K      | IEHO                                   | ЕНО                                    | ABC                                    | CS                                     | PSO                                    | BAT                                    |
| Airplane  | 5<br>6 | 65 95 127 157 187<br>49 74 102 131 160 | 65 95 127 157 187<br>49 74 102 131 160 | 65 95 127 157 187<br>50 74 100 131 160 | 65 95 127 157 187<br>48 74 102 131 159 | 50 77 110 149 185<br>47 74 101 131 156 | 65 95 127 157 187<br>49 74 101 131 161 |
|           |        | 189                                    | 189                                    | 188                                    | 188                                    | 187                                    | 189                                    |
|           | 7      | 48 71 96 123 148<br>173 195            | 47 71 96 122 147<br>174 198            | 47 70 95 120 142<br>167 191            | 47 70 96 121 148<br>172 192            | 47 71 96 124 151<br>177 197            | 47 71 96 120 145<br>170 193            |
| Baboon    | 5      | 23 58 95 132 168                       | 23 58 95 132 168                       | 23 57 96 134 170                       | 23 55 93 132 168                       | 23 58 95 132 168                       | 23 54 93 131 167                       |
|           | 6      | 23 48 79 110 142<br>174                | 23 48 79 110 142<br>174                | 23 53 84 114 144<br>178                | 23 49 80 111 143<br>175                | 23 50 82 113 147<br>184                | 23 49 80 111 141<br>173                |
|           | 7      | 23 48 76 105 133<br>161 189            | 23 48 77 106 135<br>162 190            | 23 48 79 108 134<br>162 191            | 23 48 78 104 132<br>161 189            | 23 49 78 107 135<br>163 191            | 23 48 78 107 134<br>162 190            |
| Bird      | 5      | 60 103 146 184 212                     | 60 103 146 184 212                     | 60 103 146 184 212                     | 58 100 144 184 212                     | 59 102 145 182 212                     | 61 103 146 184 212                     |
|           | 6      | 51 85 118 152 184<br>212               | 51 85 118 152 184<br>212               | 51 85 118 152 184<br>212               | 54 87 123 153 184<br>212               | 51 82 115 151 184<br>212               | 51 83 115 147 184<br>212               |
|           | 7      | 42 71 101 130 159<br>187 212           | 42 71 101 129 159<br>186 212           | 44 75 102 128 158<br>184 212           | 48 82 113 152 184<br>211 233           | 51 85 118 152 184<br>211 228           | 39 67 98 128 158<br>185 212            |
| Fishing   | 5      | 48 100 150 197 242                     | 48 100 150 197 242                     | 48 100 150 197 242                     | 48 101 150 197 242                     | 48 100 150 197 242                     | 46 99 150 197 242                      |
|           | 6      | 38 73 113 154 198<br>242               | 38 73 113 154 199<br>241               | 38 73 113 154 198<br>242               | 34 71 112 154 198<br>242               | 38 73 113 154 199<br>241               | 35 71 110 155 198<br>242               |
|           | 7      | 34 68 102 136 169<br>204 241           | 34 67 102 135 169<br>204 241           | 34 68 103 137 169<br>204 241           | 38 71 107 143 176<br>204 241           | 34 68 102 137 169<br>204 241           | 38 71 107 143 176<br>204 241           |
| Lake      | 5      | 66 100 134 167 198                     | 66 97 131 165 198                      | 67 96 128 163 196                      | 65 103 136 167 198                     | 68 109 141 168 196                     | 66 99 134 167 198                      |
|           | 6      | 39 72 105 137 168<br>198               | 39 72 105 137 168<br>198               | 41 72 104 136 168<br>198               | 42 76 108 139 168<br>198               | 39 72 104 136 168<br>198               | 42 72 105 137 168<br>198               |
|           | 7      | 15 42 73 105 137<br>168 198            | 15 42 74 106 138<br>168 198            | 15 44 71 101 130<br>164 196            | 15 44 69 104 136<br>166 198            | 15 45 76 107 138<br>168 198            | 15 42 72 102 135<br>167 199            |
| Lena      | 5      | 63 94 127 163 194                      | 63 94 127 163 194                      | 63 94 127 163 194                      | 64 94 127 163 195                      | 63 94 127 161 192                      | 98 166 237 28 121                      |
|           | 6      | 61 89 116 142 168<br>196               | 61 89 116 142 168<br>196               | 61 89 116 141 168<br>197               | 62 88 114 139 166<br>197               | 61 89 116 142 169<br>198               | 61 89 115 142 168<br>196               |
|           | 7      | 60 86 112 136 160<br>181 203           | 60 86 112 136 159<br>180 202           | 64 88 113 137 160<br>179 201           | 63 87 111 135 156<br>179 204           | 61 88 114 139 164<br>189 216           | 62 88 113 136 160<br>181 203           |
| Peppers   | 5      | 42 75 110 144 181                      | 42 75 110 144 181                      | 41 75 110 144 181                      | 41 75 112 146 181                      | 41 75 110 144 181                      | 42 75 109 144 181                      |
|           | 6      | 42 75 108 140 174<br>199               | 42 75 107 139 174<br>199               | 42 73 106 138 174<br>199               | 43 74 108 137 174<br>201               | 36 74 107 141 174<br>199               | 42 74 106 138 174<br>198               |
|           | 7      | 12 50 77 109 141<br>174 199            | 26 50 78 111 142<br>174 199            | 25 50 77 107 142<br>175 200            | 22 49 76 107 141<br>174 199            | 25 50 77 109 141<br>174 198            | 27 51 79 109 143<br>175 199            |
| Snake     | 5      | 65 104 143 180 219                     | 65 104 143 180 219                     | 65 103 143 180 219                     | 65 105 144 181 219                     | 65 104 143 180 219                     | 65 103 143 180 219                     |
|           | 6      | 55 87 122 162 187<br>221               | 55 87 122 155 187<br>221               | 55 88 125 157 187<br>221               | 58 91 126 160 195<br>224               | 58 92 126 159 191<br>221               | 53 86 122 155 187<br>221               |
|           | 7      | 51 80 110 140 168<br>195 224           | 51 80 110 134 167<br>195 224           | 50 78 110 139 167<br>195 225           | 53 79 109 138 165<br>192 221           | 52 81 112 142 170<br>198 224           | 52 82 110 139 166<br>195 224           |
| Starfish  | 5      | 56 94 133 172 211                      | 56 94 133 172 211                      | 51 87 131 169 210                      | 57 94 133 172 210                      | 56 95 135 176 213                      | 56 94 133 172 211                      |
|           | 6      | 49 81 115 149 181<br>215               | 49 81 115 149 181<br>215               | 49 81 115 149 181<br>216               | 50 82 116 149 182<br>216               | 49 82 116 151 182<br>215               | 49 82 116 149 182<br>216               |
|           | 7      | 47 77 107 136 165<br>193 222           | 46 76 105 134 163<br>191 221           | 46 76 107 136 166<br>194 223           | 45 74 105 136 165<br>193 222           | 45 75 106 135 165<br>195 223           | 46 76 106 136 166<br>194 222           |
| Women     | 5      | 42 73 105 136 170                      | 42 73 105 136 170                      | 42 74 105 136 170                      | 42 73 106 137 171                      | 42 73 105 136 170                      | 43 74 106 138 172                      |
|           | 6      | 39 67 95 122 150<br>178                | 39 67 95 122 150<br>178                | 39 67 96 122 151<br>178                | 39 66 95 122 151<br>179                | 39 67 96 123 152<br>180                | 40 68 96 123 151<br>179                |
|           | 7      | 36 55 61 108 132<br>155 180            | 33 56 81 107 132<br>156 181            | 35 60 85 108 133<br>157 178            | 33 59 83 105 133<br>157 181            | 33 55 82 106 130<br>157 180            | 36 60 84 108 132<br>157 181            |

**Table 3** The highest objectivefunction values of Kapur'smethod for the ten test images

| Kapur's M | Ietho | t       |         |         |         |         |         |         |         |
|-----------|-------|---------|---------|---------|---------|---------|---------|---------|---------|
| Image     | K     | IEHO    | OEHO    | DCEHO   | EHO     | ABC     | CS      | BAT     | PSO     |
| Airplane  | 5     | 20.7868 | 20.7868 | 20.7868 | 20.7868 | 20.7868 | 20.7868 | 20.7868 | 20.6992 |
|           | 6     | 23.2116 | 23.2116 | 23.2116 | 23.2116 | 23.2032 | 23.2073 | 23.2111 | 23.1913 |
|           | 7     | 25.4889 | 25.4836 | 25.4828 | 25.4828 | 25.4773 | 25.4680 | 25.4855 | 25.4810 |
| Baboon    | 5     | 20.6171 | 20.6171 | 20.6171 | 20.6171 | 20.6123 | 20.6150 | 20.6136 | 20.6171 |
|           | 6     | 23.1574 | 23.1574 | 23.1574 | 23.1574 | 23.1414 | 23.1553 | 23.1544 | 23.1315 |
|           | 7     | 25.5816 | 25.5811 | 25.5808 | 25.5808 | 25.5737 | 25.5736 | 25.5802 | 25.5782 |
| Bird      | 5     | 20.8648 | 20.8648 | 20.8648 | 20.8648 | 20.8648 | 20.8606 | 20.8629 | 20.8621 |
|           | 6     | 23.4979 | 23.4979 | 23.4979 | 23.4979 | 23.4979 | 23.4813 | 23.4825 | 23.4939 |
|           | 7     | 25.9218 | 25.9209 | 25.9206 | 25.9206 | 25.9031 | 25.8838 | 25.9116 | 25.9039 |
| Fishing   | 5     | 19.8621 | 19.8621 | 19.8621 | 19.8621 | 19.8621 | 19.8619 | 19.8605 | 19.8621 |
|           | 6     | 22.6694 | 22.6689 | 22.6676 | 22.6676 | 22.6694 | 22.6675 | 22.6615 | 22.6676 |
|           | 7     | 25.2951 | 25.2937 | 25.2937 | 25.2937 | 25.2936 | 25.2938 | 25.2938 | 25.2931 |
| Lake      | 5     | 20.9166 | 20.9092 | 20.9092 | 20.9092 | 20.8915 | 20.9031 | 20.9159 | 20.8661 |
|           | 6     | 23.4122 | 23.4122 | 23.4122 | 23.4122 | 23.4109 | 23.4046 | 23.4106 | 23.4119 |
|           | 7     | 25.8589 | 25.8582 | 25.8579 | 25.8579 | 25.8230 | 25.8235 | 25.8510 | 25.8545 |
| Lena      | 5     | 20.6154 | 20.6154 | 20.6154 | 20.6154 | 20.6154 | 20.6128 | 20.6154 | 20.6142 |
|           | 6     | 22.9940 | 22.9940 | 22.9940 | 22.9940 | 22.9927 | 22.9831 | 22.9919 | 22.9918 |
|           | 7     | 25.2015 | 25.2013 | 25.2013 | 25.2013 | 25.1773 | 25.1603 | 25.1984 | 25.1712 |
| Peppers   | 5     | 21.4475 | 21.4475 | 21.4475 | 21.4475 | 21.4473 | 21.4435 | 21.4468 | 21.4473 |
|           | 6     | 23.9143 | 23.9138 | 23.9138 | 23.9138 | 23.9076 | 23.8965 | 23.9111 | 23.8920 |
|           | 7     | 26.3119 | 26.3113 | 26.3108 | 26.3108 | 26.3010 | 26.2920 | 26.2995 | 26.3105 |
| Snake     | 5     | 21.5046 | 21.5046 | 21.5046 | 21.5046 | 21.5046 | 21.5034 | 21.5046 | 21.5046 |
|           | 6     | 24.1183 | 24.1182 | 24.1182 | 24.1182 | 24.1113 | 24.1064 | 24.1149 | 24.1110 |
|           | 7     | 26.5874 | 26.5865 | 26.5842 | 26.5842 | 26.5736 | 26.5598 | 26.5831 | 26.5754 |
| Starfish  | 5     | 21.8775 | 21.8775 | 21.8775 | 21.8775 | 21.8631 | 21.8760 | 21.8775 | 21.8679 |
|           | 6     | 24.4659 | 24.4659 | 24.4659 | 24.4659 | 24.4659 | 24.4646 | 24.4651 | 24.4626 |
|           | 7     | 26.9090 | 26.9090 | 26.9080 | 26.9080 | 26.9052 | 26.9038 | 26.9064 | 26.9033 |
| Women     | 5     | 20.7722 | 20.7722 | 20.7722 | 20.7722 | 20.7719 | 20.7702 | 20.7715 | 20.7722 |
|           | 6     | 23.1691 | 23.1691 | 23.1691 | 23.1691 | 23.1665 | 23.1649 | 23.1676 | 23.1660 |
|           | 7     | 25.4313 | 25.4308 | 25.4215 | 25.4215 | 25.4109 | 25.4072 | 25.4206 | 25.4021 |

# 6.2 Metrics for quality evaluation

Three widely used quality metrics, e.g., peak signal to noise ratio (PSNR), structural similarity index metric (SSIM) [39] and feature similarity index metric (FSIM) [40] are used to quantify the performance of different algorithms. PSNR measures the pixel-to-pixel intensity similarity between the reference and the processed image is obtained by computing the mean square error (MSE) between the original image and segmented image whereas SSIM and FSIM are used to verify the structure and feature similarity of the segmented images in comparison of original images. The definition of the metrics are given in the subsequent parts of this section.

## 6.2.1 Peak signal to noise ratio (PSNR)

Peak signal to noise ratio in dB is defined as, PSNR measures in decibel (dB) as

$$PSNR = 10Log_{10} \left(\frac{255^2}{MAE}\right)$$
(22)

where MSE is mean absolute error, formulated as:

$$MSE = \frac{\sum_{i}^{M} \sum_{j=1}^{N} |I(i,j) - S(i,j)|}{M * N}$$
(23)

where I(i, j) and S(i, j) in Eq. (23) denote the original image and segmented images of size(M \* N) respectively. Higher value of PSNR implies better performance

## 6.2.2 Structural similarity index metric (SSIM)

SSIM is largely used to measure the structural similarity between original and segmented image. Highest value of

**Table 4**The highest objectivefunction values of Otsu'smethod for the ten test images

| Otsu's Me | thod |           |           |           |           |           |           |           |
|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Image     | K    | IEHO      | EHO       | ABC       | CS        | BAT       | PSO       | DP        |
| Airplane  | 5    | 1980.1921 | 1980.1921 | 1980.1921 | 1980.1921 | 1980.1921 | 1980.1921 | 1980.1277 |
|           | 6    | 1994.5697 | 1994.5697 | 1994.5579 | 1994.5579 | 1994.5660 | 1994.5493 | 1994.4211 |
|           | 7    | 2004.6735 | 2004.6923 | 2004.6481 | 2004.6478 | 2004.6509 | 2004.6478 | 2004.4846 |
| Baboon    | 5    | 1616.2309 | 1616.2309 | 1616.2309 | 1616.2309 | 1616.2309 | 1616.2309 | 1616.1575 |
|           | 6    | 1632.2973 | 1632.2959 | 1632.2480 | 1632.2641 | 1632.2025 | 1632.2725 | 1632.2025 |
|           | 7    | 1643.2574 | 1643.2854 | 1643.0157 | 1643.2199 | 1643.1284 | 1643.2222 | 1643.1223 |
| Bird      | 5    | 2764.1810 | 2764.1810 | 2764.1810 | 2764.1810 | 2764.1810 | 2764.1810 | 2764.1404 |
|           | 6    | 2776.0910 | 2776.0883 | 2776.0591 | 2776.0363 | 2776.0259 | 2776.0625 | 2776.0161 |
|           | 7    | 2784.7716 | 2784.7671 | 2784.6361 | 2784.7158 | 2784.6513 | 2784.7671 | 2784.5354 |
| Fishing   | 5    | 5355.8555 | 5355.8555 | 5355.8555 | 5355.8555 | 5355.8555 | 5355.8555 | 5355.8233 |
|           | 6    | 5376.4220 | 5376.4197 | 5376.3996 | 5376.4115 | 5376.4116 | 5376.4115 | 5376.3448 |
|           | 7    | 5390.2085 | 5390.2012 | 5390.1333 | 5390.1641 | 5390.1365 | 5390.1692 | 5390.1196 |
| Lake      | 5    | 3987.9685 | 3987.9685 | 3984.2283 | 3987.8894 | 3987.8939 | 3983.9939 | 3987.7022 |
|           | 6    | 4007.5480 | 4007.5480 | 4007.5364 | 4007.4406 | 4007.4667 | 4007.5088 | 4007.3063 |
|           | 7    | 4020.1786 | 4020.1731 | 4020.1440 | 4020.1620 | 4020.1620 | 4020.1413 | 4019.5827 |
| Lena      | 5    | 2218.8381 | 2218.8381 | 2218.8381 | 2218.8381 | 2218.8381 | 2218.8381 | 2218.7615 |
|           | 6    | 2239.4996 | 2239.4996 | 2239.4517 | 2239.4928 | 2239.4313 | 2239.4928 | 2239.3588 |
|           | 7    | 2250.3379 | 2250.3379 | 2250.0341 | 2250.2688 | 2250.142  | 2250.3019 | 2250.1420 |
| Peppers   | 5    | 3197.0538 | 3197.0538 | 3197.0355 | 3197.0538 | 3197.0538 | 3197.0538 | 3197.0355 |
|           | 6    | 3223.6905 | 3223.6850 | 3223.6570 | 3223.6085 | 3223.5282 | 3223.6850 | 3223.5282 |
|           | 7    | 3241.3072 | 3241.2994 | 3241.0721 | 3241.1450 | 3241.0759 | 3240.8894 | 3240.1492 |
| Snake     | 5    | 1317.0273 | 1317.0273 | 1317.0273 | 1317.0273 | 1317.0273 | 1317.0273 | 1317.0066 |
|           | 6    | 1336.1718 | 1336.1718 | 1336.0328 | 1336.0917 | 1336.1275 | 1336.1608 | 1336.0682 |
|           | 7    | 1348.9271 | 1348.9246 | 1348.8866 | 1348.9027 | 1348.8533 | 1348.9194 | 1348.4956 |
| Starfish  | 5    | 2912.8589 | 2912.8452 | 2909.5771 | 2912.7638 | 2912.8589 | 2912.4055 | 2912.4118 |
|           | 6    | 2941.7280 | 2941.7280 | 2941.5888 | 2941.7167 | 2941.6628 | 2941.6506 | 2941.6417 |
|           | 7    | 2960.1581 | 2960.1422 | 2960.1015 | 2960.0516 | 2960.1015 | 2960.1188 | 2959.9376 |
| Women     | 5    | 1964.8183 | 1964.8183 | 1964.6736 | 1964.8183 | 1964.8183 | 1964.7721 | 1964.7253 |
|           | 6    | 1987.7105 | 1987.7105 | 1987.3671 | 1987.5968 | 1987.6400 | 1987.7092 | 1987.0521 |
|           | 7    | 2002.5204 | 2002.5142 | 2002.4219 | 2002.4146 | 2002.3428 | 2002.3595 | 2002.1116 |

SSIM represents the better performance. SSIM is defined as follows:

$$SSIM(x, y) = \frac{(2\mu_x\mu_y + c_1)(\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
(24)

where  $\mu_x$  and  $\mu_y$  mean intensity of original image and segmented image  $\sigma_x$ ,  $\sigma_y$  are the standard deviation of original and segmented image;  $\sigma_{xy}$  is the covariance of original and segmented image.  $c_1$  and  $c_2$  are two constant, such that  $C_1$ =0.01 and  $C_2$ =0.03.

#### 6.2.3 Feature similarity index metric (FSIM)

FSIM is, largely used to find the feature similarity between original and segmented image for two images  $f_1(X)$  and  $f_2(X)$ , the FSIM is given by,

$$FSIM = \frac{\sum_{X_{\epsilon}\Omega} S_L(X) P C_m(X)}{\sum_{X_{\epsilon}\Omega P C_m(X)}}$$
(25)

where  $\Omega$  means spatial domain of whole image and  $S_L(X) = S_{pc}(X)S_G(X)S_{pc}(X)S_G(X)$  are given by,

$$S_{p}c(X) = \frac{2PC_{1}(X)PC_{2}(X) + T_{1}}{PC_{1}^{2}(x) + PC_{2}^{2} + T_{1}} and$$

$$S_{G}(X) = \frac{2G_{1}(X)G_{2}(X) + T_{2}}{G_{1}^{2}(X) + G_{2}^{2}X) + T_{2}}$$
(26)

where  $PC_1$  and  $PC_2$  are the phase congruency maps take out from two images  $f_1(X)$  and  $f_2(X)$  respectively;  $T_1$  and  $T_2$  are constants and taken as  $T_1 = 0.85$ ,  $T_2 = 160$ . Higher value of FSIM indicates better performance. Table 5 Comparison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, SSIM and FSIM taking Kapur's entropy as objective function for ten test images

| Image   |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| К       | PSNR(dE | 3)      |         |         |         |         | SSIM   |        |        |        |        |        | FSIM   |        |        |        |        |        |
|         | IEHO    | EHO     | ABC     | CS      | BAT     | PSO     | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    |
| Airplaı | le      |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 22.7735 | 22.7735 | 22.7735 | 22.7735 | 22.7735 | 22.7735 | 0.9648 | 0.9648 | 0.9648 | 0.9648 | 0.9648 | 0.9648 | 0.9128 | 0.9128 | 0.9128 | 0.9128 | 0.9128 | 0.9128 |
| 9       | 24.2293 | 24.2293 | 24.2278 | 24.2278 | 24.2293 | 24.2293 | 0.9698 | 0.9698 | 0.9692 | 0.9692 | 0.9696 | 0.9697 | 0.9378 | 0.9378 | 0.9368 | 0.9368 | 0.9372 | 0.9371 |
| 7       | 25.4619 | 25.3533 | 25.3052 | 25.3006 | 25.3632 | 25.3006 | 0.9754 | 0.9739 | 0.9733 | 0.9739 | 0.9742 | 0.9739 | 0.9552 | 0.9511 | 0.9503 | 0.9501 | 0.9532 | 0.9501 |
| Babooi  | L       |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 24.8027 | 24.8027 | 24.8027 | 24.8027 | 24.8027 | 24.8027 | 0.9917 | 0.9917 | 0.9917 | 0.9917 | 0.9917 | 0.9917 | 0.9653 | 0.9653 | 0.9653 | 0.9653 | 0.9653 | 0.9653 |
| 9       | 25.8476 | 25.764  | 25.823  | 25.6815 | 25.8364 | 25.7898 | 0.9932 | 0.9930 | 0.9932 | 0.9928 | 0.9931 | 0.9931 | 0.9745 | 0.9732 | 0.9741 | 0.9733 | 0.9735 | 0.9726 |
| 7       | 26.7114 | 26.7114 | 26.5594 | 26.7093 | 26.6432 | 26.5517 | 0.9945 | 0.9945 | 0.9939 | 0.9942 | 0.9942 | 0.9935 | 0.9824 | 0.9824 | 0.9811 | 0.9805 | 0.9815 | 79797  |
| Bird    |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 22.4897 | 22.4897 | 22.4897 | 22.4897 | 22.4897 | 22.4897 | 0.8938 | 0.8938 | 0.8938 | 0.8938 | 0.8938 | 0.8938 | 0.8638 | 0.8638 | 0.8638 | 0.8638 | 0.8638 | 0.8638 |
| 9       | 26.3513 | 26.2841 | 26.332  | 26.1287 | 26.3132 | 26.2682 | 0.9951 | 0.9949 | 0.9951 | 0.9949 | 0.9950 | 0.9949 | 0.9002 | 0.8987 | 0.8992 | 0.8988 | 0.8992 | 0.8989 |
| L       | 26.1491 | 25.1503 | 24.9766 | 25.0635 | 25.1432 | 25.0755 | 0.9354 | 0.9285 | 0.9230 | 0.9257 | 0.9334 | 0.9284 | 0.8955 | 0.8866 | 0.8857 | 0.8863 | 0.8925 | 0.8853 |
| Fising  |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 18.6896 | 18.6896 | 18.6896 | 18.6896 | 18.6896 | 18.6896 | 0.9064 | 0.9064 | 0.9064 | 0.9064 | 0.9064 | 0.9064 | 0.8328 | 0.8328 | 0.8328 | 0.8328 | 0.8328 | 0.8328 |
| 9       | 20.0968 | 19.7122 | 19.6873 | 19.6896 | 19.8922 | 19.6896 | 0.9854 | 0.9421 | 0.9399 | 0.9400 | 0.9814 | 0.9400 | 0.8834 | 0.868  | 0.8656 | 0.8656 | 0.8754 | 0.8656 |
| L       | 20.5931 | 20.5931 | 20.4579 | 20.5684 | 20.4951 | 20.5789 | 0.9540 | 0.954  | 0.9555 | 0.9523 | 0.9520 | 0.9524 | 0.8935 | 0.8905 | 0.8917 | 0.8923 | 0.8915 | 0.8898 |
| Lake    |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 18.9654 | 18.9654 | 18.9654 | 18.9654 | 18.9654 | 18.9654 | 0.7492 | 0.7492 | 0.7492 | 0.7492 | 0.7492 | 0.7492 | 0.9014 | 0.9014 | 0.9014 | 0.9014 | 0.9014 | 0.9014 |
| 9       | 24.6196 | 24.6196 | 24.5968 | 24.5736 | 24.5976 | 24.5578 | 0.9918 | 0.9915 | 0.9916 | 0.9916 | 0.9916 | 0.9916 | 0.9538 | 0.9538 | 0.9537 | 0.9538 | 0.9535 | 0.9537 |
| L       | 25.7125 | 25.7125 | 25.5973 | 25.5421 | 25.6754 | 25.5893 | 0.9925 | 0.9924 | 0.9920 | 0.9920 | 0.9921 | 0.9921 | 0.9638 | 0.9637 | 0.9628 | 0.9627 | 0.9629 | 0.9628 |
| Lena    |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 19.0539 | 19.0539 | 19.0539 | 19.0539 | 19.0539 | 19.0539 | 0.7956 | 0.7956 | 0.7956 | 0.7956 | 0.7956 | 0.7956 | 0.8829 | 0.8829 | 0.8829 | 0.8829 | 0.8829 | 0.8829 |
| 9       | 20.433  | 20.4330 | 20.4308 | 20.4269 | 20.4319 | 20.4269 | 0.8310 | 0.8310 | 0.8309 | 0.8310 | 0.8308 | 0.8310 | 0.9045 | 0.9045 | 0.9044 | 0.9039 | 0.9043 | 0.9039 |
| L       | 20.8721 | 20.8721 | 20.8561 | 20.7741 | 20.8654 | 20.7828 | 0.8355 | 0.8355 | 0.8354 | 0.8323 | 0.8333 | 0.8323 | 0.9157 | 0.9157 | 0.9167 | 0.9157 | 0.9154 | 0.9150 |
| Pepper  | s       |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 21.6096 | 21.6096 | 21.5879 | 21.6096 | 21.6079 | 21.6096 | 0.8207 | 0.8207 | 0.8201 | 0.8207 | 0.8205 | 0.8207 | 0.8850 | 0.8849 | 0.8850 | 0.8849 | 0.8849 | 0.8849 |
| 9       | 23.5938 | 23.2743 | 23.2677 | 23.2693 | 23.2703 | 23.2558 | 0.8759 | 0.8670 | 0.864  | 0.8696 | 0.8689 | 0.8670 | 0.9100 | 0.9065 | 0.9065 | 0.9065 | 0.9061 | 0.9064 |
| L       | 24.7635 | 24.4348 | 24.3602 | 24.4349 | 24.4612 | 24.3875 | 0.8785 | 0.8759 | 0.8791 | 0.8769 | 0.8772 | 0.8761 | 0.9282 | 0.9258 | 0.9258 | 0.9257 | 0.9267 | 0.9267 |
| Snake   |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 20.8403 | 20.8403 | 20.8403 | 20.8403 | 20.8403 | 20.8403 | 0.8625 | 0.8625 | 0.8625 | 0.8625 | 0.8625 | 0.8625 | 0.8595 | 0.8595 | 0.8595 | 0.8595 | 0.8595 | 0.8595 |
| 9       | 21.9981 | 21.9981 | 21.8609 | 21.9946 | 21.9009 | 21.9933 | 0.8833 | 0.8833 | 0.8791 | 0.8833 | 0.8830 | 0.8833 | 0.8824 | 0.8824 | 0.8791 | 0.8820 | 0.8821 | 0.8823 |
| L       | 26.4755 | 26.3845 | 26.4594 | 26.4323 | 26.3735 | 26.3656 | 0.9925 | 0.9922 | 0.9925 | 0.9923 | 0.9921 | 0.9922 | 0.9505 | 0.9492 | 0.9496 | 0.9504 | 0.9495 | 0.9498 |

| Image    |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
|----------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Х        | PSNR(dI | 3)      |         |         |         |         | SSIM   |        |        |        |        |        | FSIM   |        |        |        |        |        |
|          | IEHO    | EHO     | ABC     | CS      | BAT     | PSO     | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    |
| Starfisi | ч       |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5        | 22.5054 | 22.4423 | 22.1770 | 22.4251 | 22.4251 | 22.3513 | 0.9827 | 0.9823 | 0.9778 | 0.9822 | 0.9823 | 0.982  | 0.8386 | 0.8359 | 0.8234 | 0.8358 | 0.8353 | 0.8336 |
| 9        | 23.7429 | 23.7429 | 23.6976 | 23.6811 | 23.6543 | 23.7415 | 0.9861 | 0.9861 | 0.9859 | 0.9857 | 0.9858 | 0.986  | 0.8672 | 0.8672 | 0.8663 | 0.8657 | 0.8657 | 0.8652 |
| ٢        | 22.6251 | 22.6251 | 22.6222 | 22.6217 | 22.6223 | 22.6182 | 0.8452 | 0.8452 | 0.8451 | 0.8455 | 0.8457 | 0.8455 | 0.8679 | 0.8679 | 0.8674 | 0.8672 | 0.8671 | 0.8681 |
| Wome     | u       |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| S        | 22.6484 | 22.6484 | 22.6236 | 22.6484 | 22.6342 | 22.6164 | 0.8597 | 0.8597 | 0.8556 | 0.8597 | 0.8577 | 0.8587 | 0.7893 | 0.7893 | 0.7879 | 0.7893 | 0.7893 | 0.7877 |
| 9        | 24.0085 | 24.0085 | 23.9170 | 23.9685 | 23.9431 | 23.9685 | 0.8864 | 0.8864 | 0.8850 | 0.8827 | 0.8843 | 0.8827 | 0.8123 | 0.8123 | 0.8089 | 0.8110 | 0.8116 | 0.8110 |
| ٢        | 25.8438 | 25.8338 | 25.7429 | 25.7690 | 25.7154 | 25.7967 | 0.9818 | 0.9817 | 0.9810 | 0.9811 | 0.9815 | 0.9816 | 0.8541 | 0.8531 | 0.8521 | 0.8517 | 0.8519 | 0.8528 |
|          |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |

Table 5 (continued)

#### 6.3 Simulation results

We have simulated five other popular meta-heuristic algorithms along with the proposed one to compare them with the proposed algorithm. The performance is compared in view of solution quality, the stability of the algorithms, convergence speed, and execution time.

## 6.3.1 Solution quality

The optimized thresholds value of Kapur's entropy for 5-level, 6-level and 7-levels of all the images are listed in Table 2 and the objective function values of Kapur's entropy and Otsu's between class variance are presented in Tables 3 and 4. In Table 3 we have also compute the individual performace of the OBL and DC with EHO, and shown as OEHO and DCEHO column in the Table 3. These results confirm that the proposed IEHO algorithm gives better objective functions values with respect the other methods. As the individual performance of the OBL and DC with EHO is not better, we did not consider this two technique in others tables. It is also observed that the performance the proposed algorithm is gradually improving with the increase of the number of threshold levels. This means that the IEHO can cover larger domain of the problems with respect to the other algorithms.

Segmented images obtained after 5-level, 6-level and 7-levels segmentation of lake, peppers and women are shown in Figs. 3, 4 and 5. The quality of the segmented images is then evaluated by calculating PSNR, SSIM, and FSIM. The measured values of PSNR, SSIM, and FSIM by the Kapur's entropy and Otsu's between class variance objective function are shown in Tables 5 and 6 respectively. We see from the table that, IEHO shows better performance in terms of PSNR, SSIM, and FSIM value than the conventional EHO and the other algorithms.

#### 6.3.2 Steadiness of the algorithm

Since the optimization problems are random in nature and the initial population is produced through a random search, the value of the optimized objective function may slightly vary in each execution. Hence, the performance of the algorithms must be verified by computing mean and standard deviation of the values of optimized objective functions through several executions of the algorithm. A higher mean value indicates the better accuracy and a lesser value of the standard deviation suggests higher stability of the algorithm. Incorporation of DCM into the standard EHO has elevated the possibility of producing the same result in each run. It increases the mean value, whereas it decreases the value of standard deviation of the results compared the conventional

| 65                                                                            |
|-------------------------------------------------------------------------------|
| age                                                                           |
| Ξ.                                                                            |
| est                                                                           |
| 'nt                                                                           |
| r te                                                                          |
| fo                                                                            |
| ion                                                                           |
| lcti                                                                          |
| fui                                                                           |
| ve                                                                            |
| scti.                                                                         |
| þj                                                                            |
| e                                                                             |
| anc                                                                           |
| ari                                                                           |
| Š                                                                             |
| las                                                                           |
| - <u>C</u>                                                                    |
| eer                                                                           |
| ţW.                                                                           |
| be                                                                            |
| u`s                                                                           |
| Ots                                                                           |
| ച                                                                             |
| kin                                                                           |
| ta                                                                            |
| Σ                                                                             |
| FS                                                                            |
| ŀd,                                                                           |
| l ar                                                                          |
| Ξ                                                                             |
| SS                                                                            |
|                                                                               |
| R,                                                                            |
| SNR,                                                                          |
| f PSNR,                                                                       |
| s of PSNR,                                                                    |
| rms of PSNR,                                                                  |
| terms of PSNR,                                                                |
| ) in terms of PSNR, 3                                                         |
| SO in terms of PSNR, 3                                                        |
| l, PSO in terms of PSNR, 3                                                    |
| and, PSO in terms of PSNR, 3                                                  |
| T and, PSO in terms of PSNR, 3                                                |
| BAT and, PSO in terms of PSNR, 3                                              |
| S, BAT and, PSO in terms of PSNR, 3                                           |
| , CS, BAT and, PSO in terms of PSNR,                                          |
| BC, CS, BAT and, PSO in terms of PSNR,                                        |
| ABC, CS, BAT and, PSO in terms of PSNR, (                                     |
| O, ABC, CS, BAT and, PSO in terms of PSNR, (                                  |
| EHO, ABC, CS, BAT and, PSO in terms of PSNR, (                                |
| O, EHO, ABC, CS, BAT and, PSO in terms of PSNR, 3                             |
| HO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, 3                            |
| IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, 3                          |
| sen IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR,                        |
| ween IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR,                       |
| between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, (                  |
| on between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, (               |
| rison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, '            |
| parison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, '          |
| omparison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, '        |
| Comparison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, '       |
| e Comparison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, '     |
| ble 6 Comparison between IEHO, EHO, ABC, CS, BAT and, PSO in terms of PSNR, ' |

| Image   |            |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
|---------|------------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| K       | PSNR(dE    | 3)      |         |         |         |         | SSIM   |        |        |        |        |        | FSIM   |        |        |        |        |        |
|         | IEHO       | ЕНО     | ABC     | CS      | BAT     | PSO     | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    |
| Airplaı | Je         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 21.4818    | 21.4818 | 21.4818 | 21.4818 | 21.4818 | 20.9451 | 0.9792 | 0.9792 | 0.9792 | 0.9792 | 0.9792 | 0.9748 | 0.9168 | 0.9168 | 0.9168 | 0.9168 | 0.9168 | 0.9085 |
| 9       | 22.3024    | 22.3024 | 22.1060 | 22.1072 | 22.1056 | 21.8522 | 0.9785 | 0.9785 | 0.9777 | 0.9784 | 0.9782 | 0.9785 | 0.9257 | 0.9257 | 0.9255 | 0.9246 | 0.9247 | 0.9216 |
| Γ       | 24.8753    | 24.7551 | 23.4647 | 23.8101 | 24.5876 | 24.4321 | 0.9949 | 0.9948 | 0.9942 | 0.9943 | 0.9941 | 0.9948 | 0.9482 | 0.9456 | 0.9394 | 0.9428 | 0.9462 | 0.9446 |
| Babooi  | r          |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 21.4198    | 21.4198 | 21.3098 | 21.2329 | 21.2329 | 21.4198 | 0.9695 | 0.9695 | 0.9691 | 0.9701 | 0.9695 | 0.9695 | 0.9479 | 0.9479 | 0.9485 | 0.9467 | 0.9479 | 0.9479 |
| 9       | 22.9111    | 22.9111 | 22.8565 | 22.9081 | 22.2095 | 22.2105 | 0.9808 | 0.9808 | 0.9790 | 0.9805 | 0.9706 | 0.9785 | 0.9614 | 0.9612 | 0.9597 | 0.9612 | 0.9612 | 0.9543 |
| Ζ       | 24.5654    | 24.5654 | 24.4304 | 24.5622 | 24.4002 | 24.4193 | 0.9909 | 0.9909 | 0.9905 | 6066.0 | 7066.0 | 0.9906 | 0.9523 | 0.9493 | 0.9513 | 0.9487 | 0.9493 | 0.9473 |
| Bird    |            |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 21.6393    | 21.6393 | 21.6393 | 21.6276 | 21.6393 | 21.4910 | 0.8892 | 0.8892 | 0.8892 | 0.8923 | 0.8892 | 0.8905 | 0.8711 | 0.8711 | 0.8712 | 0.8720 | 0.8711 | 0.8711 |
| 9       | 22.7619    | 22.7619 | 22.7619 | 22.614  | 22.6547 | 22.7271 | 0.9085 | 0.9085 | 0.9082 | 0.9017 | 0.9076 | 0.9084 | 0.8867 | 0.8867 | 0.8857 | 0.8840 | 0.8862 | 0.8860 |
| Γ       | 25.5801    | 25.5332 | 25.1476 | 24.3976 | 24.4365 | 24.5397 | 0.9940 | 0.9940 | 0.9939 | 0.9932 | 0.9939 | 0.9937 | 0.9074 | 0.9045 | 0.9015 | 0.9049 | 0.9059 | 0.9068 |
| Fishing | <b>۲</b> ۴ |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 19.9332    | 19.9332 | 19.9332 | 19.9231 | 19.9332 | 19.9332 | 0.9231 | 0.9231 | 0.9231 | 0.9225 | 0.9231 | 0.9231 | 0.8135 | 0.8135 | 0.8135 | 0.8122 | 0.8135 | 0.8135 |
| 9       | 22.1056    | 21.9287 | 21.9287 | 21.7692 | 21.7939 | 21.864  | 0.9570 | 0.9551 | 0.9541 | 0.9535 | 0.9549 | 0.9540 | 0.8459 | 0.8450 | 0.8450 | 0.8444 | 0.8453 | 0.8445 |
| Γ       | 22.9925    | 22.9925 | 22.7593 | 22.7059 | 22.9543 | 22.9458 | 0.9618 | 0.9618 | 0.9616 | 0.9581 | 0.9617 | 0.9617 | 0.8728 | 0.8728 | 0.8713 | 0.8648 | 0.8724 | 0.8719 |
| Lake    |            |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| S       | 24.4136    | 24.2129 | 24.0707 | 24.242  | 24.2976 | 24.3666 | 0.9931 | 0.9925 | 0.9927 | 0.9916 | 0.9929 | 0.992  | 0.9488 | 0.9474 | 0.9482 | 0.9437 | 0.9480 | 0.9417 |
| 9       | 22.5459    | 22.5459 | 22.4904 | 22.3339 | 22.5342 | 22.5411 | 0.9269 | 0.9269 | 0.9178 | 9606.0 | 0.9267 | 0.9266 | 0.9413 | 0.9413 | 0.9394 | 0.9362 | 0.9411 | 0.9412 |
| ٢       | 23.1578    | 23.1578 | 22.9132 | 23.0877 | 23.1274 | 23.104  | 0.9618 | 0.9618 | 0.9594 | 0.9597 | 0.9602 | 0.9552 | 0.9512 | 0.9512 | 0.9474 | 0.9501 | 0.9508 | 0.9487 |
| Lena    |            |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| S       | 19.5607    | 19.5607 | 19.5607 | 19.4874 | 19.5607 | 19.5500 | 0.8262 | 0.8262 | 0.8262 | 0.823  | 0.8262 | 0.8261 | 0.8735 | 0.8735 | 0.8735 | 0.8731 | 0.8735 | 0.8733 |
| 9       | 20.5425    | 20.5425 | 20.5381 | 20.4358 | 20.5324 | 20.5203 | 0.8371 | 0.8371 | 0.8371 | 0.834  | 0.8367 | 0.8370 | 0.9031 | 0.9031 | 0.9016 | 0.9006 | 0.9019 | 0.9008 |
| ٢       | 20.9234    | 20.8771 | 20.5306 | 20.6354 | 20.7658 | 20.6260 | 0.8418 | 0.8418 | 0.8283 | 0.8318 | 0.8396 | 0.8376 | 0.9150 | 0.9143 | 0.9112 | 0.9103 | 0.9133 | 0.9068 |
| Pepper  | s          |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| S       | 21.7189    | 21.7189 | 21.6929 | 21.7131 | 21.6929 | 21.6929 | 0.8210 | 0.821  | 0.8207 | 0.8204 | 0.8207 | 0.8207 | 0.8860 | 0.886  | 0.8851 | 0.8847 | 0.8851 | 0.8851 |
| 9       | 22.1698    | 22.1000 | 22.0781 | 22.0486 | 22.0653 | 21.8492 | 0.8190 | 0.820  | 0.8207 | 0.8183 | 0.8185 | 0.8174 | 0.9183 | 0.8982 | 0.898  | 0.8971 | 0.9142 | 0.9022 |
| L       | 23.4798    | 23.4798 | 23.3313 | 23.312  | 23.4751 | 23.4742 | 0.8864 | 0.8864 | 0.8780 | 0.8818 | 0.8846 | 0.8782 | 0.9220 | 0.922  | 0.9196 | 0.9209 | 0.9220 | 0.9218 |
| Snake   |            |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 19.2832    | 19.2832 | 19.2832 | 19.2016 | 19.2832 | 19.2832 | 0.8420 | 0.8420 | 0.8420 | 0.8406 | 0.8420 | 0.8420 | 0.8420 | 0.8420 | 0.8420 | 0.8418 | 0.8420 | 0.8420 |
| 9       | 21.0233    | 21.0233 | 20.8378 | 20.6482 | 20.8769 | 20.6994 | 0.8904 | 0.8904 | 0.8889 | 0.8776 | 0.8871 | 0.8774 | 0.8824 | 0.8824 | 0.8811 | 0.8742 | 0.8820 | 0.877  |
| 2       | 23.7446    | 22.1364 | 22.1364 | 22.086  | 22.3586 | 21.9332 | 0.9199 | 0.9160 | 0.9131 | 0.9034 | 0.9139 | 0.9055 | 0.9241 | 0.9045 | 0.9029 | 0.9034 | 0.9038 | 0.8985 |

EHO. Tables 7 and 8 display the values of mean and standard deviation for two optimized objective functions by executing each algorithm 30 times (i.e.30 runs).For example, in case of airplane image with 7-level,the mean of objective function values are 25.4804, 25.4739, 25.433, 25.3866, and 25.4413 and standard deviations are 0.0007474, 0.0087591, 0.0460967, 0.0587565, and 0.010462 respectively. Hence, the proposed IEHO algorithm performs better with respect to the others in segmentation with higher number of threshold levels.

#### 6.3.3 Convergence and computational Time

The convergence graph for different algorithms using two objective functions are shown in Fig. 6 for lena and fishing images. From this figure we find that the convergence rate of conventional EHO has dramatically increased after incorporating the OBL and DC into the conventional EHO. The improved EHO has been converged within 20 to 30 iterations whereas average convergence rate of standard EHO together with other algorithms is above 50 iterations.

The average execution time is measured to compare the computational complexity of the different algorithms used for multilevel thresholding. The average execution time of IEHO, EHO, ABC, CS, BAT and, PSO are shown in Table 9. Each of the algorithms is executed 30 times to calculate the average execution time. It is evident from the table that IEHO base segmentation is faster than other.

# 7 Conclusions

This paper proposes an OBL based improved elephant herding algorithm incorporating dynamic Cauchy mutation to enrich the performance of the standard EHO. OBL is employed to accelerate the conventional EHO, and DCM is incorporated to reduce the possibility of being confined in local optima. The proposed IEHO is applied to multilevel thresholding for image segmentation. The images under test are taken from standard Berkeley Segmentation Dataset. The performance of IEHO is compared with some recently proposed evolutionary and classical optimization algorithms. From the experimental results, we notice that the proposed IEHO outperforms the conventional EHO, ABC, CS, PSO and DP both in terms of quality at higher level thresholding and convergence rate. This suggests that we can use the proposed algorithm effectively for multilevel thresholding in image segmentation for different applications.

Table 6 (continued)

Image

| ×       | PSNR(dE | 3)      |         |         |         |         | SSIM   |        |        |        |        |        | FSIM   |        |        |        |        |        |
|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | IEHO    | EHO     | ABC     | CS      | BAT     | PSO     | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    | IEHO   | EHO    | ABC    | CS     | BAT    | PSO    |
| Starfis | h       |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 19.8976 | 19.8976 | 19.8976 | 19.8425 | 19.8976 | 19.8976 | 0.7850 | 0.7850 | 0.7850 | 0.7837 | 0.7850 | 0.7850 | 0.7879 | 0.7879 | 0.7879 | 0.7867 | 0.7879 | 0.7879 |
| 9       | 21.1973 | 21.1973 | 21.1901 | 21.1414 | 21.1424 | 21.1354 | 0.8187 | 0.8187 | 0.8187 | 0.8147 | 0.8182 | 0.8180 | 0.8254 | 0.8254 | 0.8249 | 0.8254 | 0.8247 | 0.8244 |
| ٢       | 22.0896 | 22.0896 | 21.9830 | 22.0230 | 22.0654 | 22.0591 | 0.8386 | 0.8386 | 0.833  | 0.8371 | 0.8375 | 0.8370 | 0.8526 | 0.8526 | 0.8496 | 0.8504 | 0.8517 | 0.8505 |
| Wome    | u       |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 5       | 22.1814 | 22.1814 | 22.1771 | 22.1369 | 22.1814 | 22.1814 | 0.8375 | 0.8375 | 0.8369 | 0.8372 | 0.8375 | 0.8375 | 0.7711 | 0.7711 | 0.7710 | 0.7694 | 0.7711 | 0.7711 |
| 9       | 23.2129 | 23.2129 | 23.1693 | 23.1759 | 23.1974 | 23.1317 | 0.8566 | 0.8566 | 0.8562 | 0.8569 | 0.8563 | 0.8561 | 0.7952 | 0.7952 | 0.7948 | 0.7941 | 0.7938 | 0.7931 |
| ٢       | 24.8235 | 24.5390 | 24.4078 | 24.5132 | 24.6754 | 24.4887 | 0.8883 | 0.8883 | 0.8791 | 0.8865 | 0.8882 | 0.8881 | 0.8195 | 0.8193 | 0.8191 | 0.8183 | 0.8172 | 0.8160 |

| Image    | К   | MEAN    |         |         |         |         |         | SD                   |           |           |                         |           |                     |
|----------|-----|---------|---------|---------|---------|---------|---------|----------------------|-----------|-----------|-------------------------|-----------|---------------------|
|          |     | IEHO    | ЕНО     | ABC     | CS      | BAT     | PSO     | IEHO                 | EHO       | ABC       | CS                      | BAT       | PSO                 |
| Airplane | 5   | 20.7858 | 20.7841 | 20.7824 | 20.7751 | 20.7450 | 20.7751 | 0.0003604            | 0.0143759 | 0.0044567 | 0.0197168               | 0.0446489 | 0.0032176           |
|          | 9   | 23.2112 | 23.2110 | 23.1462 | 23.1449 | 23.1740 | 23.1442 | 0.0009520            | 0.0010744 | 0.063528  | 0.0299690               | 0.0464008 | 0.0456581           |
|          | L ' | 25.4804 | 25.4739 | 25.433  | 25.3866 | 25.4552 | 25.4413 | 0.0007474            | 0.0087591 | 0.0460967 | 0.0587565               | 0.0281845 | 0.0104620           |
| Baboon   | ŝ   | 20.6170 | 20.6169 | 20.5833 | 20.5865 | 20.5431 | 20.5848 | 0.0002544            | 0.0005432 | 0.0284150 | 0.0228524               | 0.0601027 | 0.0025011           |
|          | 0 1 | 2161.62 | 2751.02 | 0100.02 | 25.0929 | 25 4761 | 25.140U | 0.000322<br>1 08F-14 | 0.0035185 | 0.1113593 | 0.06121910<br>0.0614911 | 2621100.0 | 2106620.0<br>753237 |
| Bird     | · v | 20.8604 | 20.8599 | 20.8627 | 20.8466 | 20.7519 | 20.7813 | 0.0001143            | 0.0045723 | 0.0088729 | 0.0093853               | 0.2256009 | 0.0992359           |
|          | 9   | 23.4965 | 23.4962 | 23.4828 | 23.4080 | 23.3457 | 23.4014 | 0.0022307            | 0.0024628 | 0.0135114 | 0.0546750               | 0.2257058 | 0.1533125           |
|          | 7   | 25.8751 | 25.8755 | 25.7727 | 25.8114 | 25.7951 | 25.8182 | 0.01573570           | 0.0166281 | 0.2341654 | 0.0501525               | 0.0988382 | 0.1545074           |
| Fishing  | 5   | 19.8620 | 19.8618 | 19.7704 | 19.8519 | 19.7974 | 19.8290 | 0.0002614            | 0.0003567 | 0.0934285 | 0.0091038               | 0.1002568 | 0.1248983           |
|          | 9   | 22.6674 | 22.6671 | 22.6640 | 22.6322 | 22.5980 | 22.6510 | 0.0042328            | 0.0058095 | 0.008311  | 0.0264873               | 0.0510764 | 0.0376507           |
|          | 7   | 25.2894 | 25.2814 | 25.1410 | 25.2328 | 25.2155 | 25.2561 | 0.0060530            | 0.0074511 | 0.1994503 | 0.0240823               | 0.0570252 | 0.0864679           |
| Lake     | 5   | 20.9156 | 20.9155 | 20.8373 | 20.8872 | 20.8931 | 20.6138 | 0.0014884            | 0.0015444 | 0.0284286 | 0.0113810               | 0.0511355 | 0.1348177           |
|          | 9   | 23.4108 | 23.4106 | 23.4005 | 23.3704 | 23.3872 | 23.3545 | 0.0035467            | 0.0045096 | 0.0077408 | 0.0308819               | 0.0360644 | 0.1157483           |
|          | 7   | 25.8342 | 25.8162 | 25.7533 | 25.7436 | 25.7603 | 25.7490 | 0.0278717            | 0.0303790 | 0.0609403 | 0.0497363               | 0.0612546 | 0.1489812           |
| Lena     | 5   | 20.6144 | 20.6131 | 20.5057 | 20.6026 | 20.6039 | 20.6121 | 7.23E-10             | 0.0004010 | 0.1439334 | 0.0023791               | 0.0283830 | 0.0088027           |
|          | 9   | 22.9840 | 22.9760 | 22.9716 | 22.9433 | 22.9627 | 22.8875 | 7.23E-12             | 0.0033417 | 0.0181511 | 0.0306668               | 0.0385689 | 0.1520024           |
|          | 7   | 25.1867 | 25.1712 | 25.1547 | 25.106  | 25.1653 | 25.0547 | 0                    | 7.23E-15  | 0.1932272 | 0.0246326               | 0.0215277 | 0.0353236           |
| Peppers  | 5   | 21.4452 | 21.4448 | 21.4376 | 21.4312 | 21.4209 | 21.3848 | 0                    | 0.0004726 | 0.0093771 | 0.0124795               | 0.0897395 | 0.0855788           |
|          | 9   | 23.9085 | 23.9028 | 23.812  | 23.8662 | 23.8717 | 23.8729 | 0                    | 0.0045983 | 0.0084492 | 0.0244000               | 0.0347036 | 0.0908805           |
|          | 7   | 26.2876 | 26.2658 | 26.2353 | 26.2551 | 26.2555 | 26.1887 | 0.0101513            | 0.0139308 | 0.0303879 | 0.0312554               | 0.0362159 | 0.1850169           |
| Snake    | 5   | 21.5046 | 21.5046 | 21.5032 | 21.4976 | 21.4895 | 21.4229 | 4.51E-05             | 5.38E-05  | 0.0012139 | 0.0049375               | 0.0145249 | 0.0157192           |
|          | 9   | 24.1180 | 24.1178 | 24.1099 | 24.0869 | 24.0972 | 24.1177 | 0.0003225            | 0.0013004 | 0.0052714 | 0.0144312               | 0.0152422 | 0.0013339           |
|          | 7   | 26.5804 | 26.5774 | 26.5556 | 26.5202 | 26.5462 | 26.4406 | 0.0003963            | 0.0006914 | 0.21034   | 0.0148209               | 0.0259040 | 0.0253465           |
| Starfish | 5   | 21.8771 | 21.8769 | 21.8267 | 21.8619 | 21.8644 | 21.5987 | 0                    | 0.000112  | 0.0303219 | 0.0117868               | 0.0323512 | 0.2541156           |
|          | 9   | 24.4609 | 24.4575 | 24.4263 | 24.4384 | 24.4455 | 24.3079 | 0.0069068            | 0.0099965 | 0.0709396 | 0.0188376               | 0.0220129 | 0.0298974           |
|          | ٢   | 26.9070 | 26.9052 | 26.8913 | 26.8596 | 26.7943 | 26.8335 | 1.08E-14             | 0.0007058 | 0.0134228 | 0.0292385               | 0.2226104 | 0.1022946           |
| Women    | 5   | 20.7716 | 20.7716 | 20.7586 | 20.7583 | 20.7520 | 20.7245 | 0                    | 0.0001887 | 0.0126876 | 0.0099244               | 0.0555884 | 0.0913339           |
|          | 9   | 23.1456 | 23.1249 | 23.1407 | 23.1060 | 23.1535 | 23.0490 | 1.81E-14             | 0.0070681 | 0.0301770 | 0.0420412               | 0.0135006 | 0.1496251           |
|          | 7   | 25.3615 | 25.3415 | 25.3401 | 25.2297 | 25.3309 | 25.2408 | 0.0336280            | 0.0425729 | 0.2151559 | 0.0445864               | 0.1451749 | 0.0434630           |

Table 7 List of mean and standard deviation after 30 runs for each algorithm calculated on ten images taking Kapur's objective function

| Table 8  | ist of 1 | mean and stand | lard deviation a | after 30 runs foi | r each algorithr | n calculated on | ten images tal | cing Otsu's betw | een-class varia | nce objective fi | unction   |           |           |
|----------|----------|----------------|------------------|-------------------|------------------|-----------------|----------------|------------------|-----------------|------------------|-----------|-----------|-----------|
| Image    | X        | MEAN           |                  |                   |                  |                 |                | SD               |                 |                  |           |           |           |
|          |          | IEHO           | EHO              | ABC               | CS               | BAT             | PSO            | IEHO             | EHO             | ABC              | CS        | BAT       | PSO       |
| Women    | 5        | 1980.1921      | 1980.1921        | 1980.1537         | 1980.1618        | 1979.5913       | 1980.1885      | 0                | 9.25E-13        | 0.0360910        | 0.0442536 | 0.5941350 | 0.0131867 |
|          | 9        | 1994.4694      | 1994.4463        | 1994.3711         | 1994.3515        | 1993.1321       | 1994.3765      | 0.1193899        | 0.1234247       | 0.1809481        | 0.1651956 | 1.074033  | 0.3604835 |
|          | ٢        | 2004.6542      | 2004.6065        | 2004.0903         | 2004.5301        | 2004.1857       | 2004.1364      | 0.0530161        | 0.1777638       | 0.5080393        | 0.095984  | 0.5051400 | 0.8392803 |
| Baboon   | 5        | 1616.2004      | 1616.1936        | 1616.0477         | 1616.0103        | 1613.2932       | 1616.1077      | 0.0654833        | 0.0697458       | 0.208942         | 0.2622215 | 6.8536950 | 0.3020015 |
|          | 9        | 1632.1342      | 1631.9395        | 1631.5491         | 1631.9545        | 1630.2383       | 1631.7652      | 0.256977         | 0.2727174       | 0.7990245        | 0.3047277 | 1.826669  | 1.3927723 |
|          | ٢        | 1642.4321      | 1641.7671        | 1642.1670         | 1642.6156        | 1641.3840       | 1642.5242      | 0.4189119        | 0.4566921       | 1.0580275        | 0.7585746 | 1.000609  | 0.857561  |
| Bird     | 5        | 2764.1402      | 2764.1020        | 2764.0653         | 2763.9849        | 2762.4407       | 2763.0311      | 0.1251776        | 0.1538075       | 0.1653461        | 0.3733378 | 3.848186  | 1.424769  |
|          | 9        | 2776.0400      | 2775.9897        | 2775.8766         | 2775.8113        | 2775.3364       | 2775.6778      | 0.0432089        | 0.0725656       | 0.1427879        | 0.2482354 | 0.870081  | 1.0195175 |
|          | ٢        | 2784.7524      | 2784.7126        | 2783.8580         | 2784.1662        | 2783.4731       | 2784.1341      | 0.0481135        | 0.0639645       | 0.7244269        | 0.4610375 | 1.316247  | 1.1112881 |
| Fishing  | 5        | 5355.6552      | 5376.4053        | 5375.9128         | 5375.8681        | 5355.6457       | 5376.1889      | 0                | 0.0009021       | 0.1114314        | 0.1964761 | 0.185502  | 0.014822  |
|          | 9        | 5376.4140      | 5376.4053        | 5375.9128         | 5375.8681        | 5375.6565       | 5376.1889      | 0.0221742        | 0.0230708       | 0.511592         | 0.4190524 | 0.711029  | 0.6315807 |
|          | ٢        | 5390.2002      | 5390.1540        | 5389.188          | 5389.5782        | 5389.3485       | 5389.8407      | 0.0377775        | 0.0448895       | 0.5465411        | 0.3085973 | 0.859776  | 0.5248261 |
| Lake     | 5        | 3987.9672      | 3987.9667        | 3981.8143         | 3987.9452        | 3982.2818       | 3987.4166      | 0.0012774        | 0.0051572       | 1.6074128        | 0.0337085 | 1.228230  | 0.8322602 |
|          | 9        | 4007.5385      | 4007.5377        | 4006.9844         | 4007.1842        | 4006.5808       | 4007.0479      | 0.0185653        | 0.020259        | 0.6269778        | 0.4030366 | 0.802618  | 1.3910382 |
|          | ٢        | 4020.0106      | 4019.8361        | 4019.4153         | 4019.6027        | 4019.0306       | 4019.6882      | 0.2821623        | 0.3693839       | 0.4397651        | 0.3911579 | 0.584553  | 0.4300293 |
| Lena     | 5        | 2218.7432      | 2218.6950        | 2218.6693         | 2218.3586        | 2218.0355       | 2218.2423      | 0.0939229        | 0.1205759       | 0.6899188        | 0.1835804 | 0.657556  | 0.7119933 |
|          | 9        | 2239.4952      | 2239.4875        | 2238.7454         | 2239.1632        | 2239.0406       | 2239.1598      | 0.0109313        | 0.0412529       | 0.9696599        | 0.4055332 | 0.447194  | 1.5454972 |
|          | ٢        | 2250.137       | 2249.9992        | 2248.4170         | 2249.7991        | 2249.1702       | 2249.1358      | 0.2917243        | 0.3698655       | 1.0090157        | 0.5521751 | 0.8368200 | 1.21451   |
| Peppers  | 5        | 3197.0538      | 3197.0538        | 3196.8791         | 3196.9557        | 3196.7074       | 3197.0435      | 0                | 1.39E-12        | 0.2076603        | 0.1008337 | 0.392463  | 0.0167596 |
|          | 9        | 3223.6825      | 3223.6809        | 3221.9405         | 3223.1206        | 3222.8917       | 3222.9862      | 0.0144676        | 0.0150111       | 1.5115776        | 0.4842787 | 0.520670  | 1.7825516 |
|          | ٢        | 3241.3002      | 3241.2817        | 3238.6139         | 3240.4438        | 3240.2080       | 3240.6811      | 0.0333134        | 0.0343068       | 2.3839984        | 0.5935454 | 0.805521  | 1.3097525 |
| Snake    | 5        | 1317.0266      | 1317.0256        | 1316.5533         | 1316.9157        | 1315.0552       | 1316.9119      | 0                | 0.0092534       | 0.4421727        | 0.0947055 | 1.769889  | 0.2928141 |
|          | 9        | 1336.1541      | 1336.0726        | 1335.4361         | 1335.7888        | 1335.5354       | 1336.0026      | 0.1041717        | 0.1206239       | 0.5772474        | 0.3535092 | 0.733894  | 0.2877013 |
|          | ٢        | 1348.8486      | 1348.6251        | 1346.6203         | 1348.0324        | 1347.3452       | 1348.1494      | 0.1809899        | 0.2976174       | 1.4213068        | 1.4955487 | 1.267526  | 0.9501763 |
| Starfish | 5        | 2912.8576      | 2912.8552        | 2912.6929         | 2912.7516        | 2912.5138       | 2912.7516      | 0                | 0.0061305       | 2.2310133        | 1.0912454 | 0.302809  | 2.7784642 |
|          | 9        | 2941.7134      | 2941.7097        | 2941.4055         | 2941.5575        | 2940.8394       | 2941.5575      | 0.00016549       | 0.0246332       | 1.0609124        | 0.5468551 | 0.961748  | 0.2624354 |
|          | ٢        | 2960.1278      | 2960.1034        | 2959.4800         | 2959.3037        | 2957.6761       | 2959.3037      | 0.00076064       | 0.0306964       | 1.6792125        | 0.5402272 | 1.267369  | 1.9932697 |
| Women    | 5        | 2912.857       | 2912.8552        | 2912.4143         | 2912.6929        | 1964.5533       | 2912.7516      | 0.0055453        | 0.0061306       | 2.2310134        | 1.0912455 | 0.218057  | 2.7784642 |
|          | 9        | 2941.7124      | 2941.7091        | 2940.7571         | 2941.4055        | 1986.9760       | 2941.5575      | 0.0239257        | 0.0248215       | 1.0609125        | 0.5468551 | 0.765256  | 0.2624354 |
|          | ٢        | 2002.5004      | 2002.4891        | 1999.0212         | 2001.6962        | 2001.7380       | 2002.3247      | 0.0241811        | 0.0368406       | 2.6436939        | 0.5001488 | 0.523440  | 0.2757612 |

Table 9Average executingtime in seconds of IEHO, EHO,ABC, CS, BAT, and, PSO

| Image    | K | IEHO  | EHO   | ABC   | CS    | BAT   | PSO   |
|----------|---|-------|-------|-------|-------|-------|-------|
| Airplane | 5 | 95.4  | 98.5  | 99.2  | 96.4  | 100.1 | 102.5 |
|          | 6 | 118.2 | 122.3 | 129.7 | 121.3 | 120.4 | 123.3 |
|          | 7 | 124.3 | 127.8 | 132.3 | 126.4 | 126.9 | 128.6 |
| Baboon   | 5 | 75.6  | 78.3  | 80.6  | 77.4  | 82.4  | 79.8  |
|          | 6 | 100.1 | 102.6 | 104.7 | 101.5 | 106.3 | 104.8 |
|          | 7 | 111.5 | 115.7 | 117.5 | 113.6 | 119.4 | 117.6 |
| Bird     | 5 | 60.7  | 65.7  | 67.8  | 63.2  | 69.7  | 68.9  |
|          | 6 | 85.3  | 87.8  | 89.5  | 86.7  | 89.7  | 89.6  |
|          | 7 | 102.5 | 106.7 | 105.6 | 104.8 | 105.1 | 107.6 |
| Fishing  | 5 | 44.6  | 46.8  | 48.7  | 45.3  | 49.4  | 48.9  |
|          | 6 | 62.6  | 64.8  | 66.7  | 63.2  | 65.3  | 68.9  |
|          | 7 | 76.1  | 78.8  | 80.2  | 76.6  | 77.3  | 80.1  |
| Lake     | 5 | 131.1 | 137.2 | 138.9 | 132.1 | 135.3 | 139.8 |
|          | 6 | 152.3 | 154.8 | 156.8 | 153.8 | 155.4 | 155.8 |
|          | 7 | 164.2 | 166.9 | 167.8 | 165.3 | 171.3 | 170.8 |
| Lena     | 5 | 34.2  | 37.9  | 38.5  | 36.8  | 37.9  | 39.7  |
|          | 6 | 40.1  | 43.7  | 46.7  | 42.1  | 44.6  | 45.7  |
|          | 7 | 49.8  | 53.7  | 56.8  | 51.3  | 55.2  | 56.8  |
| Peppers  | 5 | 31.6  | 35.7  | 37.6  | 33.5  | 36.5  | 38.6  |
|          | 6 | 53.2  | 56.7  | 57.8  | 55.7  | 56.4  | 58.6  |
|          | 7 | 85.3  | 89.6  | 90.5  | 87.4  | 89.3  | 90.3  |
| snake    | 5 | 41.5  | 42.5  | 44.6  | 42.5  | 41.9  | 43.7  |
|          | 6 | 53.5  | 57.6  | 62.1  | 56.8  | 57.5  | 58.5  |
|          | 7 | 100.9 | 103.8 | 104.3 | 102.7 | 104.7 | 105.7 |
| Starfish | 5 | 125.5 | 131.6 | 132.2 | 128.8 | 136.7 | 137.2 |
|          | 6 | 143.5 | 145.5 | 147.6 | 144.9 | 145.8 | 147.7 |
|          | 7 | 163.7 | 165.7 | 166.3 | 164.7 | 167.9 | 168.5 |
| women    | 5 | 25.2  | 28.6  | 30.4  | 27.4  | 27.8  | 30.4  |
|          | 6 | 43.7  | 45.7  | 46.7  | 45.1  | 46.9  | 47.8  |
|          | 7 | 65.7  | 67.8  | 70.2  | 66.7  | 67.5  | 70.2  |

Fig. 3 Images of a–f are the 5-level thresholded lake images using IEHO, EHO, ABC, CS, BAT, and, PSO taking Kapur's entropy as objective function. (a'–f') represents the histogram with the threshold values of lake images respectively







Fig. 5 Images of **a**–**f** are the 7-level thresholded women images using IEHO, EHO, ABC, CS, BAT, and, PSO taking Otsu's between-class variance objective function.**a'**– **f'** represents the histogram with the threshold values of women images respectively



🖄 Springer

**Fig. 6** a 6-level convergence graph of lena image by kapur's objective function. **b** 6-level convergence graph of lena image by Otsu's objective function. **c** 7-level convergence graph of fishing image by kapur's objective function. **d** 7-level convergence graph of fishing image by Otsu's objective function



# References

- Wehrens R, Buydens LMC, Lin Z, Lei Z, Xuanqin M (2000) Classical and nonclassical optimization methods. Encycl Anal Chem 1:9678–9689
- Merzban MH, Elbayoumi M (2019) Efficient solution of otsu multilevel image thresholding: a comparative study. Expert Syst Appl 116:299–309
- Mousavirad Seyed Jalaleddin, Ebrahimpour-Komleh Hossein (2017) Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. J Evol Intell 10(1):45–75
- Mahesh KM, Renjit A (2018) Evolutionary intelligence for brain tumor recognition from MRI images: a critical study and review. J Evol Intell 11(1–2):19–30
- Yin PY (1999) A fast scheme for multilevel thresholding using genetic algorithms. Signal Processing 72:85–95
- Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109(2):163–175
- 7. Zhang J, Li H, Tang Z, Lu Q, Zheng X, Zhou J (2014) An improved quantum inspired genetic algorithm for image multilevel thresholding segmentation. Math Problems Eng 112:1–12
- Simon D (2008) Biogeography based optimization. IEEE Trans Evol Comput 12(6):702–713
- Yin PY (2007) Multilevel minimum cross entropy threshold selection based on particle swarm optimization algorithm. Appl Math Comput 184(2):503–513
- Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948
- Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13:3066–3091
- Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's Otsu and Tsallis functions. Expert Syst Appl 42:1573–1601
- Gandomi AH, Yang XS, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput Math Appl 63(1):191–200
- Sathya PD, Kayalvizhi R (2010) Optimum multilevel image thresholding based on Tsallis entropy method with bacterial foraging algorithm. Int J Comput Sci 7(5):336–343
- Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognit Lett 28(7):788–796
- Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30
- Horng MH (2010) Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Syst Appl 37:4580–4592
- Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst Appl 55:566–584
- Yang XS (2010) A new metaheuristic bat-inspired Algorithm. Stud Comput Intell 284:65–74
- Bakhshali MA, Shamsi M (2014) Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO). J Comput Sci 5(2):251–257
- Abdul Kayom M, Khairuzzaman SC (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl 86:64–76

- El Aziz MA, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256
- Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82
- Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181:4699–4714
- Yang X, Huang Z (2012) Opposition-based artificial bee colony with dynamic cauchy mutation for function optimization. Int J Adv Comput Technol 4(4):56–62
- Wang GG, Deb S, Gandomi AH, Alavi AH (2016) Oppositionbased kill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157
- Rahnamayan S, Tizhoosh Hamid R, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79
- Wang GG, Deb S, Geo X-Z, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput 8(6):394–409
- Meena NK, Parashar S, Swarnkar A, Gupta N, Niazi KR (2017) Improved elephant herding optimization for multiobjective DER accommodation in distribution systems. IEEE Trans Ind Inf 14(3):1029–1039
- Tuba E, Ribic I, Hrosik RC, Tuba M (2017) Support vector machine optimized by elephant herding algorithm for erythemato squamous diseases detection. Information Technology and Quantitative Management (ITQM). Proc Comput Sci 122:916–923
- Tizhoosh HR (2006) Opposition-based reinforcement learning. J Adv Comput Intell Intell Inf 10(4):578–585
- 32. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102
- Wang H, Liu Y, Zeng SY, Li H, Li C (2007) Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of IEEE congress on evolutionary computation, pp 4750–4756
- Wang H, Liu Y, Li C, Zeng S (2007) A hybrid particle swarm algorithm with Cauchy mutation. In: IEEE swarm intelligence symposium, Honolulu, Hawaii, pp 356–360
- Rahnamayan S, Tizhoosh HR, Salama M (2008) Opposition versus randomness in soft computing techniques. Appl Soft Comput 8(2):906–918
- Rahnamayan S, Tizhoosh Hamid R, Salama MMA (2007) Opposition-based differential evolution(ODE) with variable jumping rate. In: IEEE symposium on foundations of computational intelligence
- Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans SMC 9(1):62–66
- Kapur JN, Sahoo PK, Wong AKC (1985) A new method for graylevel picture thresholding using the entropy of the histogram. Comput Vis Gr Image Process 29:273–285
- Zhou W, Alan CB, Hamid SRSR, Eero SP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
- Lin Z, Lei Z, Xuanqin M, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.