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Abstract
In a reduced dimensional space, linear discriminant analysis looks for a projective transformation that can maximizes separa-
bility among classes. Since linear discriminant analysis demands the within-class scatter matrix appear to non-singular, which 
cannot directly used in condition of small sample size (SSS) issues in which the dimension of image is much higher, while 
the number of samples isn’t unlimited. Both the between-class and within-class scatter matrices are always exceedingly ill-
posed in SSS problems. And many algorithms are suffered from small sample size issues still. To solve SSS problems, many 
methods including regularized linear discriminant analysis were proposed. In this article, a way was presented by optimized 
regularized linear discriminant analysis for feature extraction in FR which can not only fix the singularity problem existing in 
scatter matrix but also the problem of parameter estimation. The experiment is conducted on several databases and promising 
results are obtained compared to some state-of-the-art methods to demonstrate the effectiveness of the proposed approach.

Keywords  Face recognition · Linear discriminant analysis · Regularized linear discriminant analysis · Recognition 
accuracy · Small sample size problems

1  Introduction

With the gradual growth of artificial intelligence application 
and technology, many industry perspective and research 
interest in face recognition (FR). Face recognition has some 
advantages, such as low cost, least intrusive and more data 
sources. However the processing and analysis of high-
dimensional data in FR is still a challenge [1–3], robust FR 
remains a challenging task in small sample environments. 
There are mainly two stages for a common face recognition 
system: (1) robust and discriminant feature extraction, such 
as, principal component analysis (PCA) [4], linear discrimi-
native analysis (LDA) [5], regularized linear discriminant 
analysis (RLDA) [6]. Null LDA (NLDA) [7], the orientation 
matrix is calculated in two steps. In the first stage, the data 
is projected on the null space of SW and in the second stage 
it finds W that maximizes |||W

TSBW
||| , and spectral regression 

discriminative analysis (SRDA) [8]. Sparse graph-based 

discriminate analysis (SGDA) [9] was developed by preserv-
ing the sparse connection in a block-structured affinity 
matrix with class-specific samples. Using low-rank con-
straints, low-rank graph-based discriminate analysis (LGDA) 
[10] preserves the global structure in data. Sparse and low-
rank graph-based discriminate analysis (SLGDA) method 
was developed in [10] to purse block-diagonal structured 
affinity matrix with sparsity and low-rank constraints. (2) 
Classifier construction, e.g. Nearest Neighbor (NN) [11]. 
But, many methods that include LDA-based statistical learn-
ing methods always affected by “small-sample-size” (SSS) 
problems [12].

Feature extraction has proved to be great in transforming 
high-dimensional space to lower one, and retain most of the 
intrinsic information in original data [13, 14]. PCA was origi-
nally used to remove zero value for Sw, and LDA was then 
executed in the reduced dimensional subspace. It has lighted 
that removed zero spaces include discriminatory information 
that cannot ignore. However, for supervised dimensionality 
reduction methods which are only suitable for single model 
data, classification performance is closely related to between-
class separation, within-class compactness and equal empha-
sis on separation between classes [15]. In the technique of 
RLDA, the Sw matrix is regularized to deal with the Sw 
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singularity. The matrix Sw is approximated by Sw + ηI. But it 
does not consider whether the definition of the scatter matrix 
is more reasonable. Li and Tang [16] presents the idea that 
traditional LDA algorithm is not optimal for the definition of 
between-class scatter matrices. It cannot help separate classes 
other than edge classes, and it may cause them to overlap with 
each other, resulting in discriminant performance degradation. 
Second, a fixed regularization parameter value was introduced 
in the RLDA, but it may not give the best classification. In 
[17], an approach, estimating η term by putting the modified 
Fisher’s criterion maximize, presents better performance than 
other methods. In addition, close class pairs prone to overlap 
in the subspace, which is referred to as the class separation 
problem. A number of weighting methods was put forward to 
deal with this problem [18, 19], and the fundamental thought 
is to assign large weights to close class pairs. However, the 
problem cannot be solved thoroughly by those methods [20]. 
The proximity function proposed by [21] solves the shortcom-
ings of the traditional distance function in high dimensional 
data. In view of that, this paper proposes an improved RLDA 
algorithm. It redefines the between-class and introduces a pre-
cise regularized parameter to control the deviation and vari-
ance of the eigenvalue. Finally, a better method of parameter 
estimation and the improved scatter matrices are combined.

This study is motivated by the fact that previous stud-
ies [6, 17, 21]. The frame of this article is as below. Part 2 
gives a detailed introduction of mathematical derivation of 
regularized linear discriminant analysis algorithm. Section 3 
introduces the method with the structure of improved scatter 
matrices and a precise regularized parameters. Section 4 is 
the simulation results and analysis. Lastly, the last part is 
the conclusions.

2 � Regularized linear discriminant analysis

Among supervised dimensionality reduction methods, 
RLDA is the most popular discriminant analysis method 
to SSS problem, which is widely used in pattern recogni-
tion fields. Both the degree of deviation and variance are all 
decided by the extent of SSS problem. A related algorithm 
improved by Friedman under similar conditions, where esti-
mating Si for every sample type covariance matrix may not 
be very appropriate. The solving method, put forward by 
Friedman, is to add a regularization parameter, η·I, so have 
Si = Si + ηI. I is identity matrix and η is a regularization term. 
This regularization has influence on increasing the smaller 
ones and decreasing the larger eigenvalues, thus offsetting 
the biasing. To stabilize the smallest eigenvalues is another 
effect of the regularization.

A training set, z = {zi}
C
i=1

 including C classes with every 
class zi = {zij}

Ci

j=1
 consisting of multiple partial images zij, a 

total of N =
∑C

i=1
Ci

 images can be obtained in the set. For 
easing computation, each face image is standed by a lexico-
graphic order of pixel elements (i.e. zij ∈ RJ ). The length of 
it is J (= Iw × Ih). RJ represents the J-dimensional data space. 
The method, obtains a discriminant vector by lagging the 
proportion of the between-class scatter measure to the 
within-class scatter measure, can be formulated as:

Among them, Sb is between-class scatter matrices, Sw is 
within-class scatter matrices, W ∈ Rm , 0 ≤ η ≤ 1 is regulari-
zation parameter. And

where zi is the average value (or center) of class i, z̄ is the 
total mean (or center) of all the classes. In general, by using 
the training samples, zi, z̄ can be estimated, i.e., 
zi =

1

Ni

∑Ni

j=1
xij and z̄ = 1∕N

∑C=1

i=1

∑C

j=i+1
xij.

A series of discriminant vectors would be available by 
eigenvalue decomposition of S−1

w
Sb according to (1) when 

Sw is full rank. The matrix of projection can be constructed 
by the eigenvectors that associated to the d eigenvalues those 
are largest, which is the suboptimal solution to (2). However, 
as mentioned in Sect. 1, there are some disadvantages on 
RLDA for FR and it can be improved. To sum up, algorithm 
proceeds in the following way.

3 � Improved regularized linear discriminant 
analysis

Equation (2) is defined so that all the mean values of the 
sample and the average values of the classes are separated 
as much as possible, but the mean values of various class 
may be close to each other, resulting in overlapping of many 
samples of adjacent classes, resulting in a decrease in recog-
nition performance. The reason for this problem is that the 
variance is the largest in the most discriminating projection 
direction obtained by the previous algorithm. So the edge 
class and other class can be separated as much as possible. 
It should be noted, however, that this direction does not help 
separate other class except the edge class, and it may cause 

(1)W = argmax
W

||WTSbW
||

||�(WTSbW) +WTSwW
||
.

(2)Sb = 1∕N

C∑

i=1

Ci(z̄i − z̄)(z̄i − z̄)T

(3)Sw = 1∕N

C∑

i=1

Ci∑

j=1

Ci(zij − z̄i)(zij − z̄i)
T ,



75Evolutionary Intelligence (2019) 12:73–82	

1 3

them to overlap with each other, resulting in a decline in 
discriminant performance.

Therefore, the existing algorithm for the definition of the 
scatter of the between-class is not optimal, because the edge 
class dominates the feature decomposing, resulting in the 
dimension reduction of the conversion matrix is too much 
emphasis on those who already have been better separated 
from the class. Then the overlapping of adjacent class be 
caused.

3.1 � The model of improved between‑class scatter 
matrices

Improved scatter matrices model was expressed as:

where the Close function:

The value of a sample is in m-dimensional space. The 
range of the Close function is (0, 1), which indicates the 
proximity of the sample z̄i to the sample z̄j . The closer, 
the greater the value of the function. On the contrary, the 
smaller, the value. Where Pi and Pj are the prior probability 
of class i and j, respectively, and z̄i and z̄j are the average 
values of i-th and j-th.

From Eq. (3), the larger the ‖‖‖z̄i − z̄j
‖‖‖ value, the smaller the 

weight assigned to them; on the other hand, the greater the 
weight assigned to them.

3.2 � The model of improved within‑class scatter 
matrices

Many algorithms need to train scatter matrices on larger data-
bases. But in practice, the number of training set isn’t unlim-
ited. Under the condition of small sample, the model cannot be 
correctly and effectively represent the logic and characteristics 
of the model, and it is easy to obtain the problem of over-
fitting of the scatter matrices, which makes the performance 
of face recognition significantly lower. Because the difference 
of characteristics of the same person is more susceptible to 
other factors, even greater than the difference between different 
characteristics, that is, the degree of scatter within the class is 
greater than the between-class scatter changes, making the esti-
mation error greater. Therefore, under the condition of small 
sample, the within-class scatter is obviously more sensitive, 
and this paper also pays attention to solve the sensitivity of 
within-class scatter matrices to small samples.

(4)Sb =

C−1∑

i=1

C∑

j=i+1

PiPjClose(z̄i, z̄j)(z̄i − z̄j)(z̄i − z̄j)
T ,

(5)Close (z̄i, z̄j) =
1

m

m∑

k=1

e−|zik−zjk|.

When the data is less effective in data set, the effective infor-
mation of samples can be robustly estimated by making full use 
of local data structure of the sample. When there is an outlier 
in the data set, the local data structure adjacent to the sample 
can also be used to represent the characteristics of the outlier. 
For the small sample caused by the over-fitting problem, you 
can solve the problem by smoothing. In this paper, the KNN 
algorithm was used to select the within-class scatter matrices of 
adjacent classes and by taking advantage of local data structure. 
The within-class scatter matrices are smoothed, the over-fitting 
problems caused by small samples can be solved.

Let the training sample data set be: zij ∈ R , i = 1,..., C and 
j = 1,..., Ci. Ci is the number of classes i in the training sample, 
C is class number, N is the total sample number, and zij repre-
sents the j-th face image of the i-th class of the training sam-
ple. Within-class scatter matrices model can be express as:

The general within-class scatter matrices was formulated 
as:

Using the adjacent class to smooth the class divergence 
matrix

k ∈ KNN(i) represents the K nearest neighbors of class i. 
� ∈ [0, 1] is the trade-off parameter, k is the weight param-
eter determined by the nearest neighbor system, the smaller 
the distance, the greater the weight.

Improved within-class scatter matrices model can be 
express as:

By the definition, S̃1 is the result of the smoothing of Si and 
Sk of Si K nearest neighbor classes of Si, and the problem of 
fitting can be solved by making full use of class i samples and 
adjacent class sample information. When a class has only one 
sample, the scatter matrix cannot be estimated effectively, but 
the scatter matrix can be approximated by using the neighbor-
ing class samples. The smoothing method takes full advantage 
of local data structure and reduces adverse effects of outliers 
in each class. The improved algorithm makes full use of the 
within-class scatter matrices of the class, and solves the prob-
lem of over-fitting of the general within-class scatter matrices, 
and obtains exact within-class scatter matrices.

(6)Si =

i∑

j=1

(zij − z̄i)(zij − z̄i)
T .

(7)Sw = 1∕N

C∑

i=1

Si.

(8)S̃i = 𝛽Si + (1 − 𝛽)
∑

k∈KNN(i)
𝜔kSk.

(9)Sw = 1∕N

C∑

i=1

S̃i.
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3.3 � A deterministic approach to RLDA

Let ST, SW, SB denotes the total, within-class and between-
class scatter matrix, respectively. The scatter matrices would 
be singular in condition of SSS. It is well known that the 
discriminant information does not exist in the zero space 
of ST. Thus, the feature dimensionality from d-dimension 
can drop to rt-dimension (where rt is the rank of ST) by 
advance processing of PCA. The range space of ST matrix, 
P1 ∈ Rd×rt , will be applied as a transformation matrix. In 
reduced dimension, the scatter matrices are: Sw = PT

1
SWP1 

and Sb = PT
1
SBP1 . After this procedure Sw ∈ Rrt×rt and 

Sb ∈ Rrt×rt are decreased dimensional scatter matrix.
In RLDA, the regularization of within-class scatter matrix 

SW was performed by adding η to diagonal elements of SW; 
i.e., Sw = Sw + ηI. The η make SW presents non-singular and 
reversible which would benefit the revised Fisher’s criterion 
maximized:

where w ∈ Rrt×1 is orientation vector. Avoid using any 
heuristic method in determining η, solving Eq. (10) in the 
belowing way. Denote

Constraint condition:

b > 0 is constant. Under constrained curve g, the restricted 
relative maximum of f can be obtained. By putting its deriva-
tive to zero value, then

Or

(10)W = argmax
W

|||W
TSbW

|||
|||W

T(Sw + �I)W
|||
,

(11)f = WTSbW.

(12)g = WT(Sw + �I)W − b = 0.

�(f − �g)

�W
= 2SbW − �(2Sw + 2�W) = 0.

(13)
(
1

�
Sb − Sw

)
W� −W = 0

λ is Lagrange’s multiplier (λ ≠ 0). Shifting �W from 
Eq. (13) into Eq. (12), we conclude

And from Eq. (12) and Eq. (14), we can get

We can observe that the left term of Eq. (15) is the Lagrange’s 
multiplier, and to the right of Eq. (15) same as the Fisher’s 
revised criterion. To large the modified Fisher’s criterion, we 
need to maximize λ. So approximate value of λ can be got by 
maximizing WTSbW/WTSwW, W corresponding to the large eigen-
value of S−1

w
Sb . But, S−1

w
 can be replaced by its pseudoinverse for 

which it is singular and irreversible. We can get λmax by decom-
posing the eigenvalue of matrix S+

w
Sb . S

+
w
 is the pseudoinverse of 

Sw. The value of λmax can be substituted as follows:

Equation  (16) will help us to seek the value of η by 
decomposing the eigenvalue of 1/λSb − Sw which will give 
rb = rank(Sb) finite eigenvalues. Since the dominant eigen-
value correspond to the largest discriminant eigenvector, η is 
considered to be the maximum eigenvalue. Then,

where 1∕�Sb − Sw = EΛET  , E ∈ Rrt×rt is a matrix of 
eigenvectors, Λ is a diagonal matrix of corresponding eigen-
values. If η is determined, the projection vector W would be 
obtained by decomposing the eigenvalue of (Sw + �I)−1Sb 
which can be formulated as:

The m eigenvectors be obtained by Eq. (18) corresponding 
to the m highest eigenvalues to form W.

(14)WTSbW = �b.

(15)� =
WTSbW

WT(Sw + �I)W
.

(16)
�max = max

(
WTSbW

WT(Sw + �I)W

)
≈ max

(
WTSbW

WTSwW

)

≈ the maximum eigenvalue of S+
w
Sb.

(17)� = Λmax,

(18)((Sw + �I)−1Sb)W = �W.

Algorithm 
1:PCA is used to get the range space P1 Rd×rt of matrix ST and transform d-dimension to 

rt–dimension, and rt=rank(ST). Find matrix S = P S P and S = P S P (Sb Rrt×rt and 
Sw Rrt×rt)

2: Find the largest eigenvalue λmax by carry outting EVD of S S
3: Calculate EVD of ( 1/λmaxSb−Sw) to find its largest eigenvalue η
4: Calculate EVD of (Sw +ηI)-1Sb to find h eigenvectors wj Rrt×1 corresponding to the main

eigenvalues, where 0≤ m≤rb and rb=rank(Sb). The eigenvectors wj are column vectors of W'
Rrt×m

5: Find projection matrix W Rd×m in a d-dimension; i.e., W=P1W'
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4 � Simulation results and analysis

In this part, our approach is compared with a number of 
related state-of-the-art methods, including LGDA [10], 
NLDA [7], SRDA [8], SGDA [9] and SLGDA [10], etc. 
The range of normalized parameters in RLDA [6] is [0, 
1]. RLDA in the following experiments has better results 
when the value obtained is 0.001. Our algorithm solves the 
difficulty of determining the normalized parameter values 
in RLDA. And the parameters introduced in our algorithm 
are β and k which can be seen in formula (8). When the 
values in the following experiments are 0.5 and 10 respec-
tively, this algorithm achieves comparatively better results. 
Under different dimensions or training samples or classes, 
the parameters can be changed to other values so that the 
performance can be much better. NLDA verifies that the 
zero space of the between-class scatter matrices contains 
important discriminative information, but in some cases, the 
between-class scatter matrices may not contain null space. 
So the results were not so great sometimes. The Tikhonov 
regularizer was used in SRDA to control the model com-
plexity, but the projection matrix obtained by it does not 
have orthogonality and it is not conducive to eliminating 

information redundancy between samples. All those algo-
rithms of feature extraction are combined with NN clas-
sification algorithm for face recognition. The experiment 
is conducted on three face datasets, including the Extended 
Yale B [22], CMU PIE [23] and AR to evaluate perfor-
mance. Details of datasets can be seen in Table 1 and Fig. 1.

The parameters in competing methods are adjusted to 
their best performance according to the suggestions in origi-
nal papers.

4.1 � 2‑D visualization experiment on CMU PIE 
dataset

In this part, the discriminate ability is showed by different 
methods using a partial CMU PIE [22] face database. In the 
experiment, each individual are randomly selected 7 images 
for training, and the remaining about 17 images were tested. 
Figure 2a–j visualize the testing data distribution along the 
first two dimensions obtained by different methods. From 
Fig. 2, we may draw several conclusions. First, considered 
small sample problem, NLDA [7], RLDA [6], SRDA [8] 
are superior to PCA [4] and LDA [5]. But overlaps are still 
serious. Second, SGDA [9] only uses the local neighbor-
hood structure through sparse representation, which doesn’t 
perform very well. Some parts of 5 classes mixed together 
can be seen in Fig. 2g. LGDA [10] shows better separation 
ability by introducing global low-rank regularization, But, 
still have significant overlaps among class 2, class 3 and 
class 5, and the distance between class 1 and class 3 is not 
far. With both sparse and low-rank constraints, SLGDA [10] 
performs better than the first two. However, class 2, class 
3 and class 5 are still not separated as shown in Fig. 2i. 

Table 1   The three data sets used in our experiments

Datasets #Sample #Dimension #Classes

Extended Yale B 2414 1024 38
AR 1400 1260 100
CMU PIE 1680 1024 68

Fig. 1   Some facial images used 
in the experiments: a AR; b 
CMU PIE; c extended Yale B
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Contrastively, the proposed method show more clear bound-
aries among classes and shows stronger robustness in the 
following experiment.

4.2 � Experiments on face recognition

4.2.1 � CMU PIE database

The CMU PIE have surpassed four thousands images of 
sixty-eight individuals. Each person’s image was obtained 
through 13 different postures. Here, we use a subset of 
poses close to the front, C07, for the experiment, which 
contains 1629 images of 68 people. Everyone has about 24 
pictures. And all the facial images were pruned to 32 × 32 
pixels. Each individual is selected to have a subset of p (= 2, 
3 ...) samples for training, the rest for testing. For each p, 
we ran all of methods 10 times independently, and reported 
the average results in Table 2. The FR rates under differ-
ent dimensions are shown in Table 3. Table 2 shows that 
our method almost exceeds the other methods in different 
experimental settings. The results in LGDA and SLGDA 
are similar with ours, while obviously lower than ours 
when training samples per subject are not much available. 
Also, LGDA and SLGDA can get better performance as 
ours under different dimensions when training samples per 
subject are fixed. The results in RLDA are better than in 
SRDA under different training samples per subject except 
p = 2. And the results in NLDA are better than both RLDA 
and SRDA. Our method has higher recognition rate under 
different dimensions. Figure 2 shows the recognition rate 
versus the number of training samples and feature dimen-
sions on CMU PIE by using some methods. From Fig. 2b, 

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Class 1
Class 2
Class 3
Class 4
Class 5

Fig. 2   Two-dimensional five-class CMU PIE data projected by different methods. a PCA; b LDA; c NLDA; d RLDA; e PCA + LDA; f SRDA; g 
SGDA; h LGDA; i SLGDA; j OURS

Table 2   Recognition rates under different number of training set 
(CMU PIE database)

Method #Training samples per subject on CMU PIE dataset (50 
feature dimension)

2 3 4 5 6

PCA 0.3182 0.4679 0.4958 0.5514 0.6782
LDA 0.7214 0.8344 0.8736 0.8945 0.9104
PCA + LDA 0.7087 0.8493 0.8849 0.9077 0.9201
SRDA 0.7488 0.8207 0.8617 0.8871 0.9081
NLDA 0.7733 0.8539 0.8924 0.9112 0.9224
RLDA 0.7547 0.8482 0.8861 0.9125 0.9165
SGDA 0.7401 0.8021 0.8747 0.9131 0.8943
LGDA 0.7388 0.8442 0.8954 0.9301 0.9320
SLGDA 0.7429 0.8428 0.8946 0.9302 0.9351
OURS 0.7937 0.8725 0.9098 0.9320 0.9341

Table 3   Recognition rates under the condition of different feature 
dimensions

Method #Feature dimension (4 samples per subject) on CMU PIE

50 100 150 200 250

PCA 0.4958 0.5343 0.5534 0.5549 0.5565
LDA 0.8736 0.8626 0.8478 0.8400 0.8389
PCA + LDA 0.8853 0.8855 0.8871 0.8846 0.8864
NLDA 0.8849 0.8910 0.8911 0.8949 0.8870
RLDA 0.8861 0.8873 0.8889 0.8850 0.8874
SGDA 0.8747 0.8968 0.8983 0.9064 0.9019
LGDA 0.8954 0.8953 0.9000 0.9037 0.9093
SLGDA 0.8946 0.9005 0.9065 0.9104 0.9097
OURS 0.9013 0.9050 0.9055 0.9097 0.9076
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it is obvious that the whole training information does not 
provide significant advantage for classification, by which 
lead to computational costs instead. Thereby it’s necessary 
to extra features.

4.2.2 � Experiments on AR database

A subset of AR consisted of 50 men and 50 women in 
two sessions, with 6 lighting and 8 expression changes. 
From session 1, only seven images of light and expression 
changes, seven samples from another session. Each indi-
vidual is selected to have a random subset of p (= 2, 3 ...) 
samples for training. For each p, we ran 10 times indepen-
dently, and reported the average results in Tables. From 
Table 4, one can conclude that all the algorithms achieve 
better performance with the number of training samples 
per class increases, our method has higher recognition rate 
than other methods under numbers of every individual of 
training samples. The results in RLDA are better than in 
SRDA under different training samples per subject except 
p = 2. And the results in NLDA are better than both RLDA 
and SRDA. The FR rates under different dimensions were 
listed in Table 5. It can show that NLDA and our method 
exceed other methods in different experimental settings. 
The NLDA gain best outcomes on AR, which is slightly 
better than our method under 50 feature dimensions. But it 
doesn’t better than our algorithm under higher dimensions. 
Particularly, because of the number of training samples 
per subject are just 14 in AR Database, the performance 
of SGDA, LGDA and SLGDA are drop sharply when p 
does not reach half. Figure 3 shows the recognition rate 
versus different number of training samples per class and 
feature dimensions by using some methods. From Fig. 3b, 
it is obvious that the whole training information does not 
provide significant advantage for classification, by which 
lead to computational costs instead.

4.2.3 � Yale face database

About 2414 images of 38 people each and 64 frontal face of 
different lighting on Extended Yale B. In this experiment, 
the cropped and resized images were used which is 32 × 32 
pixels. Figure 1 shows some example images of individual. 

Table 4   Recognition rates under different number of training set

Method #Training samples per subject on AR dataset (50 
feature dimensions)

2 3 4 5 6

PCA 0.3303 0.4401 0.4664 0.5688 0.6025
SGDA 0.5775 0.6418 0.6530 0.7167 0.8325
LGDA 0.5350 0.5655 0.5720 0.6033 0.7438
SLGDA 0.5671 0.6173 0.6330 0.7189 0.8300
LDA 0.7495 0.8848 0.9292 0.9502 0.9559
PCA + LDA 0.7667 0.8820 0.9184 0.9426 0.9555
SRDA 0.8154 0.8833 0.9097 0.9224 0.9235
NLDA 0.8478 0.9247 0.9534 0.9652 0.9692
RLDA 0.7821 0.8855 0.9213 0.9479 0.9554
OURS 0.8282 0.9204 0.9505 0.9651 0.9706

Table 5   Recognition rates under the condition of different feature 
dimensions

Method #Feature dimension (4 samples per subject) on AR

50 100 150 200 250

PCA 0.4664 0.4950 0.5012 0.5050 0.5103
SGDA 0.6530 0.7170 0.6940 0.6900 0.6890
LGDA 0.5720 0.6220 0.6110 0.6150 0.6410
SLGDA 0.6330 0.7170 0.6970 0.7050 0.7010
LDA 0.9292 0.9381 0.9328 0.9227 0.9228
PCA + LDA 0.9184 0.9175 0.9226 0.9179 0.9197
NLDA 0.9534 0.9587 0.9529 0.9516 0.9505
RLDA 0.9174 0.9201 0.9203 0.9240 0.9261
OURS 0.9535 0.9579 0.9618 0.9596 0.9593

Fig. 3   Face recognition accu-
racy versus a number of training 
samples per subject, b feature 
dimension on CMU PIE
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A subset of individuals with p (= 3, 4, 5...) samples were 
taken with labels as for training, and the remaining is used for 
testing. The experiment was ran for 10 times. From Table 6, 
one can conclude that all the methods achieve better perfor-
mance along with the number of training images per subject 
grows. Then, we randomly select four images from every 
person for training, and use the remaining samples for test-
ing. The results in RLDA are better than in SRDA under 
different training samples per subject except p = 3, 4, 5. And 

the results in NLDA are better than both RLDA and SRDA. 
SGDA doesn’t present superior performance in this dataset as 
in CMU PIE. The results in LGDA and SLGDA are similar 
with ours in some cases, while obviously lower than ours 
when training samples per subject are not much available. 
Also, LGDA and SLGDA can get better performance as ours 
under different dimensions when training samples per subject 
are fixed. The rates, under the condition of different dimen-
sions, were listed in Table 7. Our method exceeds the other 
methods in different experimental settings, and shows more 
robust in dealing with illumination problem in FR. Figure 4 
vividly illustrate the recognition rate versus the number of 
training samples for each category and feature dimensions 
by using some methods. From Fig. 4b, it is obvious that 
the whole training information does not provide significant 
advantage for classification, by which lead to computational 
costs instead (Fig. 5).

5 � Conclusions

The issue of small sample size in FR is studied in this paper. 
The algorithm of regularized linear discriminant analy-
sis still has some disadvantages to fix the SSS problems. 

Table 6   Recognition rates under 
different number of training set

Method #Training samples per subject on Yale dataset (30 feature dimension)

3 4 5 6 8 12 16

PCA 0.1973 0.2282 0.2515 0.2781 0.3156 0.3643 0.4083
LDA 0.5301 0.6119 0.6539 0.7088 0.7547 0.8309 0.8615
PCA + LDA 0.5668 0.6439 0.6763 0.7155 0.7631 0.8164 0.8471
SRDA 0.5752 0.6346 0.7027 0.7031 0.7289 0.6855 0.6614
NLDA 0.6113 0.6915 0.7421 0.7638 0.8156 0.8438 0.8507
RLDA 0.5654 0.6310 0.6830 0.7189 0.7577 0.8137 0.8481
SGDA 0.5469 0.6414 0.6919 0.7095 0.7928 0.8488 0.8887
LGDA 0.5126 0.6595 0.7176 0.7607 0.8317 0.8903 0.9114
SLGDA 0.5917 0.6626 0.7212 0.7758 0.8360 0.8963 0.9191
OURS 0.5975 0.6852 0.7474 0.7868 0.8388 0.8932 0.9137

Table 7   Recognition rates under different feature dimensions

Method #Feature dimension (16 samples per subject) on Yale

15 20 25 30 35

PCA 0.2434 0.3182 0.3659 0.4083 0.4392
LDA 0.7580 0.8021 0.8424 0.8596 0.8730
PCA + LDA 0.7484 0.8069 0.8305 0.8477 0.8592
NLDA 0.8512 0.8568 0.8506 0.8446 0.8440
RLDA 0.7940 0.8059 0.8349 0.8481 0.8575
SGDA 0.8333 0.8654 0.8787 0.8887 0.8970
LGDA 0.8337 0.8609 0.9031 0.9014 0.9191
SLGDA 0.8386 0.8663 0.8980 0.9091 0.9258
OURS 0.8382 0.8652 0.8927 0.9088 0.9217

Fig. 4   Face recognition accu-
racy versus a number of training 
samples per class, b feature 
dimension on AR

(a) (b)

2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

re
co

gn
iti

on
 ra

te

samples per subject

PAC
LDA
PCA+LDA
SRDA
RLDA
NLDA
SGDA
LGDA
SLGDA
OURS

50 100 150 200 250
0.4

0.5

0.6

0.7

0.8

0.9

1

re
co

gn
iti

on
 ra

te

Feature dimension

PAC
LDA
PCA+LDA
RLDA
NLDA
SGDA
LGDA
SLGDA
OURS



81Evolutionary Intelligence (2019) 12:73–82	

1 3

Considering that the model of scatter matrices can be more 
reasonable and related parameter can be obtained by avoid-
ing the process of heuristic. An improved algorithm is 
introduced, which cannot only fix the singularity problem 
of scatter matrix but also the problem of parameter estima-
tion. PCA is simply to calculate, and performs well in some 
cases, but the performance is limited by its unsupervised 
nature. By introducing different discrimination standards to 
fix SSS problems, RLDA, NLDA, SRDA and etc perform 
well to some extent. SGDA, LGDA and SLGDA can adap-
tively select neighbors for graph construction, and use the 
labeled samples in the same class to find the representa-
tion of each sample for block-diagonal structure representa-
tions. However, due to the limited number of samples per 
class, this process may result in large representation error, 
which may not reveal the within-class adjacent relationship 
as well as ours do. So, SGDA, LGDA and SLGDA hardly 
perform better than the proposed method when training sam-
ple are not enough. The simulation results on the famous 
databases illustrate that the proposed method has much bet-
ter performance than other methods and improves the face 
recognition.
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