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Abstract
Particle swarm optimization (PSO) is a population oriented heuristic numerical optimization algorithm, influenced by the 
combined behavior of some birds. Since its introduction in 1995, a large number of variants of PSO algorithm have been 
introduced that improves its performance. The performance of the algorithm mostly rely upon inertia weight and optimal 
parameter setting. Inertia weight brings equivalence among exploitation and exploration while searching optimal solution 
within the search region. This paper presents a new improved version of PSO that uses adaptive inertia weight technique 
which is based on cumulative binomial probability (CBPPSO). The proposed approach along with four other PSO variants 
are tested over a set of ten well-known optimization test problems. The result confirms that the performance of proposed 
algorithm (CBPPSO) is better than other PSO variants in most of the cases. Also, the proposed algorithm has been evaluated 
on three real-world engineering problems and the results obtained are promising.

Keywords Inertia weight · Particle swarm optimization (PSO) · Exploration and exploitation · Convergence

1 Introduction

The particle swarm optimization is a population oriented 
meta-heuristic optimization technique which was first pro-
posed by Russell Eberhart and James Kennedy [1]. This 
algorithm is motivated from the social behavior of some ani-
mal groups like fish schools or bird flocks. Similar to other 
meta-heuristic optimization algorithms, in PSO, a swarm of 
possible solutions is derived in succeeding iterations. PSO 
is relatively easy to understand and implement since there 
are very few parameter settings that are required to tune in 
comparison to other optimization strategies.

In PSO, each particle represents a prospective solution to 
an optimization problem. The group of particles (or swarm) 
fly within search space by trailing the current optimum solu-
tions. Every particle remembers its best coordinate position 
in the search region which is related to the best position it 
has attained so far. This position is called pbest. Similarly, 
the best current position of the particle within whole swarm, 

called as gbest is also remembered. In PSO, each particle 
changes its velocity towards its gbest and pbest location after 
each time step. The basic PSO [1] is slow in most cases and 
prematurely converges to local optima. The solution to their 
problem is use of inertia weight. The inertia weight [2] is 
the primary parameter of the PSO, and has an important 
part in balancing the exploration and exploitation. After the 
introduction of inertia weight, many versions of the PSO 
algorithm have been presented aiming balanced explora-
tion–exploitation trade-off.

Shi and Eberhart [2] examined different constant values 
of inertia weight and reached to the conclusion that within 
specific range, PSO search the optimum global solution 
within a acceptable number of iterations. Mostly with lower 
value of inertia weight, PSO converges in local optima 
region and with higher value of inertia weight; it diverges 
and hence performs little exploration in the search region. 
For finding an optimum solution in a dynamic environment, 
a random inertia weight strategy is used by Russell Eberhart 
and Shi [3] and varies in the range [0.5, 1]. This approach is 
used to alter exploitation and exploration randomly.

A large number of inertia weight variants use time-vary-
ing inertia weight method which utilizes iteration number to 
determine the value of inertia weight. Most famous among 
them is linear decreasing inertia weight technique [4], in 
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which the inertia weight linearly drops from �max to �min . It 
is found empirically that in most of the cases inertia weight 
in range [0.4, 0.9] provides the optimum result. Some other 
time-varying techniques are simulated annealing [5], sigmoid 
[6], exponential decreasing [7], and logarithmic decreasing 
technique [8]. Nickabadi and Ebadzadeh [9] suggests adaptive 
inertia weight law which controls population diversity and 
enhances its searching ability. Lei et al. [10] suggests Sugeno 
function as inertia weight method to auto-tune the global and 
local search ability to avoid premature convergence problem.

Zhan et al. [11] proposed an evolutionary state estimation 
technique which uses fuzzy classification method to deter-
mine the inertia weight. A Gaussian perturbation-based elitist 
learning strategy has also been adopted which facilitates the 
particles to move out of local optima region. As a feedback 
parameter, Nickabadi et al. [12] utilized a percentage of the 
particles that have shown improvement when compared to the 
last iteration. They applied this strategy to solve a real-world 
engineering problem efficiently. Kessentini and Barchiesi [13] 
presented an adaptive inertia method which uses the standard 
deviation of dimensions of particles. This technique improves 
the exploration and exploitation balance in comparison to 
other algorithms, which helps in converging to optima.

Bansal et al. [14] reviewed 15 famous variants of PSO and 
compares their performance. Jordehi et al. [15] and Wang 
et al. [16] examined all popular PSO variants after applying 
them to deal with discrete optimization problem. Ghamisi 
et al. [17] applied hybrid PSO and Genetic Algorithm to 
deal with pipe and road problem. Similar hybrid approach is 
utilized to find the compressive strength of rock using PSO 
based Artificial Neural Network by Momeni et al. [18]. Gao 
et al. [19] suggested novel strategy so that some particles 
that are better informed could lead to remaining particles. 
An improved version of PSO is applied for data classifica-
tion [20]. Various modified particle swam optimization along 
with their applications is discussed by Tian et al. [21].

The remaining paper is structured as follows: the back-
ground of PSO is overviewed in next section. The proposed 
inertia weight law is presented in further section. Further 
paper contains the set of optimization test problems for eval-
uation of the proposed technique, similar other techniques 
which are compared with proposed technique, simulation 
setting and results. It also contains the real-world engineer-
ing optimization problems used to evaluate and compare the 
proposed method with other methods. Finally last section 
contains conclusion of the paper.

2  Background

The PSO is basically a cooperative approach, in which N 
number of particles flies through the n-dimensional prob-
lem search space. The particle’s position depends on its 

own and its neighbor’s past best positions. The ith parti-
cle’s position is written as: ��⃗xi =

(

xi1, xi2, xi3,… , xin
)

 which 
is a n dimensional vector. Similarly, velocity of each par-
ticle is also a n dimensional vector represented by a vector 
is given by: ��⃗vi =

(

vi1, vi2, vi3,… , vin
)

 . At each iteration t  , 
the particles of swarm adjust their position and velocity 
according to following equations [12, 14]:

where ω is the inertia weight, R1id and R2id are uniform ran-
dom positive numbers in range (0,1), d = 1, 2,… , n repre-
sents dimensions, c1 is cognitive and c2 is social learning 
parameter respectively, pbestid is ith particle’s best previous 
position, gbestd is globally best position among all particles 
of the swarm. It becomes social-only model when c1 = 0 
(and c2 ≠ 0 ), and cognition-only model when c2 = 0 (and 
c1 ≠ 0 ). For success of an optimization algorithm, the tun-
ing between the local and global search is important during 
a run. In most of the cases, the higher value of inertia weight 
enhances the ability to explore the region of search space, 
and the lower value of inertia weight improves the capacity 
to concentrate the search in the vicinity of the promising 
region to improve the prospective solution. Therefore, for 
maintaining equilibrium between exploration–exploitation 
tradeoff effectively, we introduce a new inertia weight law in 
this paper which is adaptive in nature. During the algorithm 
process, the inertia weight is adjusted dynamically using 
feedback on particle’s best positions to alternate exploration 
and exploitation.

3  Proposed inertia weight strategy

The performance and the capability of the swarm based 
optimization algorithm depend mainly on the explora-
tion–exploitation tradeoff. The proposed inertia weight strat-
egy i.e. CBPPSO applies the idea that in order to balance 
the local and global search, particles whose position is not 
improved, must move towards the particles whose position 
is improved with respect global optimum. Thus movement of 
each particle will depend on the adaptive inertia weight that 
uses cumulative binomial probability of finding the global 
optimum by particles with improved position.

For calculating inertia weight using this method, at each 
iteration status of the population is determined. The indi-
cator function that denotes the improvement in position of 
particle i at time t is given as [12, 22]:

(1)
vid(t + 1) = vid(t) + c

1
∗ R

1id ∗ (pbestid − xid(t))

+ c
2
∗ R

2id ∗ (gbestd − xid(t))

(2)xid(t + 1) = �*xid(t) + vid(t + 1)

(3)I(i, t) =

{

0 if fit(pbestt
i
) ≥ fit(pbestt−1

i
)

1 if fit(pbestt
i
) < fit(pbestt−1

i
)
.
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Further calculate the total particles with improved posi-
tion at iteration t as:

Considering each iteration as an experiment, in which 
each individual particle represents a trial which can have 
one of either state i.e. in a failure or success state. So the 
probability of success p and failure q is 0.5 for each par-
ticle and particles are independent as the trials are inde-
pendent of each other. Population size is constant (N) in all 
the iterations. Here X(i, t) which denotes the total particles 
with improved position is binomial random variable [22]. 
The cumulative binomial probability is the probability of 
getting X(i, t) or fewer particles that have improved their 
position and is given by the following equation:

where X = X(i, t) . The inertia weight at time t is the function 
of P(X) and represented as:

In our algorithm, the linear function used to map the 
inertia weight and P(X) is given as:

The velocity of particle plays an important role as it 
must not be too low so that the particles cannot jump out 
of local optima regions and neither is too high so that they 
could avoid the region having the global optimum. Initially 
when more number of particles improves their respective 
position while exploring the global optimum, the cumula-
tive binomial probability of finding the global optimum by 
the particles that improve their position should be high and 
later on it decreases while converging towards the global 
optimum. The Fig. 1 shows above property of the proposed 
adaptive inertia weight when tested on sphere function. The 
inertia weight varies in range [0.4, 0.9] and is dynamic in 
nature. For avoiding the premature convergence the lower 
bound is set to 0.4. This strategy enhances the capability 
of balancing the local and global search of the algorithm.

4  Experimental setup

4.1  Optimization test problems

To measure the performance of the introduced PSO variant, 
we have used ten well-known benchmark functions [23–29]. 

(4)X(i, t) =

N
∑

i=1

I(i, t).

(6)P(k ≤ X,N, p) =

X
∑

k=0

(

N

k

)

pkqN−k

(7)�(t) = f (P(k ≤ X,N, p)).

(8)� = �min + (�max − �min) ∗ P(k ≤ X,N, p).

The CBPPSO has been compared with four other signifi-
cant PSO algorithm which are based on different inertia 
weight methods over these benchmark functions. In Table 1 
the benchmark function are listed in which D is number of 
dimensions, taken as 30.

Functions f1 , f3 , f4 , f6 are bowl shaped functions. These 
functions have only global minimum. These functions are 
convex, continuous and unimodal in nature. Functions f2 , f5 
are Valley shaped functions and mostly used to test gradient 
optimization algorithms. These functions are also unimodal 
in nature. Functions f7, f8, f9 are functions with multiple local 
minima. The outer region of function f7 is nearly flat and it 
have a large pit at centre. Functions f8 and f9 have multiple 
regularly distributed local minima. These functions are highly 
multimodal and the optimization algorithms are most likely 
to be stuck in one of multiple local minima. All the problems 
are minimization problems. Best solution and Best fitness for 
the problem is expressed by x∗ and f (x∗) respectively.

4.2  Inertia weight methods used for comparison

In this paper for comparison with proposed approach, we 
have carefully selected the PSO algorithms that studied 
the impact of inertia weight strategy. Based on previous 
comparative performance study [12, 14], the introduced 
algorithm is simulated and compared with following time 
varying and adaptive algorithms:

A. GPSO [4]:

� = 0.9 − 0.5

(

t

T

)

∈ [0.4, 0.5]

Fig. 1  Inertia weight adaptation in CBPPSO when applied to sphere 
test function
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where t is current step number and T is maximum step 
number.

B.  Sugeno [10]:

where s is constant and is taken as 10.
C.  AIPWSO [12]:

where S(t) is total particles with improved best positions 
and N is the swarm size.

D.  w-PSO [13]:

where K is a constant (taken as 1000) and d(k) is adap-
tive vector of K elements.

4.3  Evaluation and comparison criteria

To the ten well-known benchmark functions listed in Table 1, 
four inertia weight methods along with CBPPSO is tested and 

� = 0.4 + 0.5
1 −

t

T

1 + s
(

t

T

) ∈ [0.4, 0.5]

� =

(

S(t)

N

)

∈ [0, 1]

� = 0.9 − 0.4

(

d(k)

max1≤k≤K{d(k)}

)

∈ [0.4, 0.9]

their results is compared. All the parameters are kept constant 
for fair comparison of different inertia weight strategies dur-
ing the whole experiment so that we can analyze and study 
the impact of inertia weight in the algorithm. The swarm size 
is 20 and the dimension is 30 [12]. According to the law pre-
sented by Martinez and Gonzalo [30] i.e., c1 + c2 < 4(1 + 𝜔), 
we took c1 = c2 = 2 . The inertia weight varies in range [ �min, 
�max ] where �min = 0.4 and �max = 0.9 [4]. The maximum 
number of functional evaluations (FEs) that each algorithm 
is allowed to run is fixed to 200,000 for proper comparison 
among all algorithms. The average results are recorded after 
running each experiment 30 times.

5  Results and discussion

The best fitness average and standard deviation is recorded 
in 30 independent runs are listed in Table 2 for each algo-
rithm. The outcomes are compared on the basis of the con-
vergence speed and the final accuracy [13].

• For function f1 and f6 , CBPPSO yields best solution 
and it is followed by AIWPSO. The convergence curve 
is almost straight line indicating that it is approaching 
towards the optimal solution with constant convergence 
rate.

Table 1  Optimization test problems used in experiments

Function Name Test function Search space x∗ f (x∗)

Sphere function
f1 =

D
∑

i=1

x2
i

[−100, 100] (0,…,0) 0

Rosenbrock function
f2 =

D−1
∑

i=1

[100(x2
i+1

− x2
i
) + (xi − 1)2]

[−5, 10] (1,…,1) 0

Rotated hyper-ellipsoid 
function f3 =

D
∑

i=1

i
∑

j=1

x2
j

[−100, 100] (0,…,0) 0

Sum squares function
f4 =

D
∑

i=1

ix2
i

[−10, 10] (0,…,0) 0

Dixon price function
f5 = (x1 − 1)2 +

D
∑

i=2

i(2x2
i
− xi−1)

2 [−10, 10] at xi = 2
−

2i−2

2i , 
for i = 1, ...,D

0

Sum of different powers 
function f6 =

D
∑

i=1

�

�

�

xi+1
i

�

�

�

[−1, 1] (0,…,0) 0

Ackley function
f7 = −20 exp

⎛

⎜

⎜

⎝

−0.2

�

1

D

D
∑

i=1

cos(x2
i
)

⎞

⎟

⎟

⎠

− exp

�

−
1

D

D
∑

i=1

cos(2�xi)

�

+ 20 + exp(1)

[−32, 32] (0,…,0) 0

Rastrigin function
f8 = 10D +

D
∑

i=1

[x2
i
− 10 cos(2�xi)]

[−5.12, 5.12] (0,…,0) 0

Griewank function
f9 =

D
∑

i=1

x2
i

4000
−

D
∏

i=1

cos
�

xi
√

i

�

+ 1
[−600, 600] (0,…,0) 0

Powell function
f
10

=
D∕4
∑

i=1

[(x
4i−3 + 10x

4i−2)
2 + 5(x

4i−1 − x
4i)

2 + (x
4i−2 − 2x

4i−1)
4 + 10(x

4i−3 − x
4i)

4]
[−4, 5] (0,…,0) 0
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• For function f2 and f9 , CBPPSO outperformed the other 
algorithms. The convergence rate of CBPPSO is more 
in comparison to other algorithms. The horizontal line 
shows the inability of the algorithm to further converge 
towards the optimal solution.

• For function f3 and f5 , w-PSO and CBPPSO both pro-
vided the best solutions. The CBPPSO converges slightly 
faster than w-PSO towards the optimal solution. Both the 
algorithm followed by AIWPSO converge must faster 
towards the optimal solution than the other algorithms.

• For function f4 and f10 , best solution is provided by 
AIWPSO followed by CBPPSO algorithm. The AIWPSO 
and CBPPSO converge faster in direction of the best 
solution than the other algorithms.

• For function f7 , GPSO, Sugeno and w-PSO yield the best 
solution in comparison to the CBPPSO and AIWPSO. 
However, CBPPSO converge faster towards the best solu-
tion followed by AIWPSO.

• For function f8 , w-PSO outperformed the other algo-
rithms in terms of best solution. The AIWPSO and 
CBPSO converge in vicinity of the best solution at faster 
rate than other algorithms.

The outcome shows that CBPPSO yields the best accu-
racy for 6 out of 10 benchmark problems i.e., for functions 
f1, f2, f3, f5, f6 and f9 . The convergence curve in the logarithmic 
scale for all the algorithms is shown in Fig. 2 which illustrates 
the above results. The performance of CBPPSO is comparable 
in case of functions f4, f8 and f10 . The algorithms are scored 
according to number of times the algorithm provides the com-
parable and best results. The scores of the w-PSO, AIWPSO, 
Sugeno, GPSO, CBPPSO are 7, 7, 5, 4, and 9 respectively. 
Most of the time, the best position are discovered by the 
algorithms with adaptive inertia weight approach. Also these 
algorithms converges faster towards the optimal solution in 
comparison to the other time-varying inertia weight based 
algorithms. In particular, it can be observed that the CBPPSO 

converges at faster rate towards the best solution in compari-
son to the other algorithms most of the time.

The proposed approach has also been tested over a real 
world engineering benchmark problem and the performance 
is evaluated and compared with other existing algorithms on 
standard parameters reported in literature. This is discussed 
in the next section.

6  Real world engineering optimization 
problem

Apart from the well known benchmark functions, the poten-
tial of CBPPSO is also investigated on three real world engi-
neering problems. The swarm size is 20, and the minimum 
result of CBPPSO is recorded after 10 independent runs, 
continued for 2500 iterations [15, 31]. For comparison, we 
have taken results from [12, 31, 32] for problem 1, 2 and 
3 respectively as reported in the literature. Best minimum 
optimization result for the respective problems are indicated 
in bold in Tables 3, 4 and 5.

6.1  Problem 1: Design of a pressure vessel [33]

The pressure vessel design is a constrained engineering 
design problem in which the aim is to minimize the cost 
of manufacturing pressure vessel. The problem is given as 
follows [12]:

Minimize:

Subject to:

f (x) = 0.6224x
1
x
3
x
4
+ 1.7781x

2
x2
3
+ 3.1611x2

1
x
4

+ 19.84x2
1
x
4
+ 19.84x2

1
x
3

g1(x) = 0.0163x3 − x1 ≤ 0,

g2(x) = 0.00954x3 − x2 ≤ 0,

Table 2  The mean and the standard deviation of best fitness of five different inertia weight approach on ten benchmark problems in 200,000 
function evaluations in 30 runs

Fun Best fitness mean (best fitness standard deviation)

CBPPSO GPSO Sugeno AIWPSO w-PSO

f1 7.1632e−137(3.8683e−136) 1.6615e−49(9.0212e−49) 4.9229e−82(2.6511e−81) 6.5670e−114(2.6700e−113) 1.3333e + 03(3.4574e + 03)

f2 7.7675e + 03(1.9599e + 04) 8.6408e + 04(7.0973e + 04) 6.9299e + 04(4.9348e + 04) 2.5990e + 04(2.8164e + 04) 3.2866e + 04(5.0152e + 04)

f3 5.1539e + 03(9.3962e + 03) 1.9184e + 04(2.1422e + 04) 1.6607e + 04(1.8661e + 04) 6.5856e + 03(1.1922e + 04) 5.0108e + 03(1.0280e + 04)

f4 1.8333e + 02(2.6403e + 02) 4.3000e + 02(4.8148e + 02) 5.2333e + 02(4.7827e + 02) 1.5333e + 02(2.5014e + 02) 2.8000e + 02(3.8452e + 02)

f5 3.9396e + 03(2.1222e + 04) 2.5073e + 04(5.7882e + 04) 1.2283e + 04(4.1687e + 04) 8.7618e + 03(2.7366e + 04) 4.0217e + 03(2.1622e + 04)

f6 2.3152e−257(0.0000e + 00) 8.4450e−93(3.8650e−92) 1.8767e−200(0.0000e + 00) 3.1842e−212(0.0000e + 00) 5.9589e−38(2.9703e−37)

f7 1.4091e + 00(1.2427e + 00) 4.7725e−01(2.6140e + 00) 4.7454e−01(2.5991e + 00) 1.6503e + 00(3.5923e + 00) 4.9727e−01(2.6229e + 00)

f8 8.3739e + 01(2.8673e + 01) 7.2624e + 01(2.5950e + 01) 9.2580e + 01(2.6948e + 01) 7.7748e + 01(2.3260e + 01) 5.7167e + 01(2.5854e + 01)

f9 1.6138e−02(1.8200e−02) 3.0277e + 00(1.6496e + 01) 6.0322e + 00(2.2881e + 01) 3.0270e + 00(1.6498e + 01) 9.0786e + 00(2.7591e + 01)

f10 2.5317e + 02(4.8562e + 02) 5.8473e + 02(6.2392e + 02) 7.5600e + 02(1.0069e + 03) 2.0692e + 02(4.1388e + 02) 4.1767e + 02(7.4568e + 02)
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Fig. 2  The best fitness mean for 30 independent realizations as a function of iteration number for functions f
1
, f
2
, f
3
, f
5
, f
6
 and f

9
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The shell thickness Ts(x1 ), spherical head thickness Th(x2 ), 
radius of cylindrical shell R(x3 ) and shell length L(x4 ) are 
four design parameters of pressure vessel design problem 
as shown in Fig. 3. Here x1 and x2 are integer multipliers of 
0.0625. x3 ∈ [40, 80] and x4 ∈ [20, 60].

Table 3 summate the optimization results on pressure 
vessel design problem by CBPPSO, AIWPSO [12], Sand-
gren [33], CODEQ [35], Harmony search [36], and genetic 
algorithm [37]. Among the six experimented algorithms, 
CBPPSO gives the best results.

6.2  Problem 2: Design of a tension/compression 
spring [39]

The goal in this problem is to minimize the weight of the 
tension/compression spring, subject to constraint over surge 
frequency, minimum deflection, shear stress, diameter and 
design variables. The problem is presented as:

Minimize:

Subject to:

g3(x) = 1296000 − �x2
3
x4 −

4

3
�x2

3
≤ 0,

g4(x) = x4 − 240 ≤ 0,

g5(x) = 1.1 − x1 ≤ 0,

g6(x) = 0.6 − x4 ≤ 0.

f (x) = (x3 + 2)x2x
2

1

g1(x) = 1 −
x3
2
x3

71785x4
1

≤ 0,

The design variables are the mean coil diameter, D(x2) , 
the number of active coils, P (x3) , and the wire diameter, 
d (x1) as shown in Fig. 4. The design variables have fol-
lowing desired ranges: 0.05 ≤ x1 ≤ 2,0.25 ≤ x2 ≤ 1.3,and 
2 ≤ x3 ≤ 15. Table 4 summates the best results of Belegundu 
[38], Arora [39], He and Wang [32], Lobato et al. [31], and 
CBPSO. The CBPPSO provide the better result in compari-
son to the other approaches.

6.3  Problem 3: Design of a welded beam [39]

The aim in this problem is to minimize the cost of welded 
beam subject to the constraint over the end deflection of 
the beam (δ), bending stress in the beam (σ), shear stress 
(τ), buckling load in the bar ( PC ), and side constraints. The 
problem is presented as:

Minimize:

Subject to:

g2(x) =
4x3

2
− x1x2

12566 (x2x
3

1
− x4

1
)
−

1

5108x2
1

− 1 ≤ 0,

g3(x) = 1 −
140.45x1

x3x
2

2

≤ 0,

g4(x) =
x1 + x2

1.5
− 1 ≤ 0.

f (x) = 1.10471x2
1
x2 + 0.04811x3x4(14 + x2)

g1(x) = �(x) − �max ≤ 0,

g2(x) = �(x) − �max ≤ 0,Fig. 3  The pressure vessel problem [34]

Table 3  Pressure design problem optimization results

Sandgren [33] Wu and Chow [37] Harmony search [36] CODEQ [35] AIWPSO [12] CBPPSO

x1 1.125 1.125 1.125 1.125 1.125 1.125
x2 0.625 0.625 0.625 0.625 0.625 0.625
x3 48.97 58.1978 58.2789 58.2901554401 58.2901554404 62.9866
x4 106.72 44.293 43.7549 43.6926562409 43.6926562409 20
f (x) 7980.894 7207.494 7198.433 7197.728 7197.728 6952.72

Fig. 4  The tension/compression spring problem [34]
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where,

The problem has four design variables as shown in Fig. 5, 
i.e., t(x3), l(x2), h(x1), and b(x4) . The variables have follow-
ing desired ranges : x1, x4 ∈ [0.1, 2], and x2, x3 ∈ [0.1, 10]. 
Table 5 summarizes the best results of Deb [40], Coello [41], 
He and Wang [32], Coello and Montes [42], and CBPSO. 
Here also, CBPPSO provide the better result in than the other 
algorithms.

g5(x) = 0.125 − x1 ≤ 0,

g6(x) = �(x) − �max ≤ 0,

g7(x) = P − PC(x) ≤ 0
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√
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√
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+

(
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,

PC =

4.013E

√

x2
3
x6
4

36

L2

(

1 −
x3

2L

√

E

4G

)

,

P = 6000 lb, L = 14 in,E = 3 × 106 psi,G = 12 × 106 psi,

�max = 13,600 psi, �max = 30,000 psi, �max = 0.25 in.

7  Conclusion

The paper introduces a new adaptive inertia weight approach 
(CBPPSO) which is based on the cumulative binomial prob-
ability of the total particles that have improved their posi-
tion. In this approach, to realize the particles’ current state 
in the search region, the feedback is provided by this cumu-
lative binomial probability and in turn adjusts the inertia 
weight value accordingly. Experimental results clearly show 
that the search behavior of the particles is improved due to 
introduced approach and is more effective in comparison to 
the other successful variants of PSO. The comparisons and 
analysis are done in terms of accuracy of the solution and 
the convergence speed.

Also, we applied CBPPSO to solve three real world 
engineering problems and compared result with the other 
approaches. The result provided by CBPPSO is better than 
outcome of other strategies. Since CBPPSO is simple and 
efficient, it can be applied to solve the other problems 
effectively.

Table 4  Optimization results 
for tension/compression spring 
design problem

Belegundu [38] Arora [39] He and Wang [32] Lobato et al. [31] CBPPSO

x1 0.050000 0.053396 0.051728 0.051744 0.0512637
x2 0.315900 0.399180 0.357644 0.357754 0.3465700
x3 14.25000 9.185400 11.244543 11.56132 11.909700
f (x) 0.012674 0.012730 0.012674 0.012789 0.0126686

Fig. 5  The welded beam problem [43]

Table 5  Welded beam design problem optimization results

Deb [40] Coello [41] Coello and 
Montes 
[42]

He and Wang 
[32]

CBPPSO

x1 0.248900 0.208800 0.205986 0.202369 0.20573
x2 6.173000 3.420500 3.471328 3.544214 3.47049
x3 8.178900 8.997500 9.020224 9.048210 9.03662
x4 0.253300 0.210000 0.206480 0.205723 0.20573
f (x) 2.433116 1.748309 1.728226 1.728024 1.72485
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