
Vol.:(0123456789)1 3

Evolutionary Intelligence (2021) 14:305–313
https://doi.org/10.1007/s12065-018-0188-7

SPECIAL ISSUE

Particle swarm optimization with adaptive inertia weight based
on cumulative binomial probability

Ankit Agrawal1 · Sarsij Tripathi1

Received: 22 May 2018 / Revised: 20 October 2018 / Accepted: 31 October 2018 / Published online: 13 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Particle swarm optimization (PSO) is a population oriented heuristic numerical optimization algorithm, influenced by the
combined behavior of some birds. Since its introduction in 1995, a large number of variants of PSO algorithm have been
introduced that improves its performance. The performance of the algorithm mostly rely upon inertia weight and optimal
parameter setting. Inertia weight brings equivalence among exploitation and exploration while searching optimal solution
within the search region. This paper presents a new improved version of PSO that uses adaptive inertia weight technique
which is based on cumulative binomial probability (CBPPSO). The proposed approach along with four other PSO variants
are tested over a set of ten well-known optimization test problems. The result confirms that the performance of proposed
algorithm (CBPPSO) is better than other PSO variants in most of the cases. Also, the proposed algorithm has been evaluated
on three real-world engineering problems and the results obtained are promising.

Keywords Inertia weight · Particle swarm optimization (PSO) · Exploration and exploitation · Convergence

1 Introduction

The particle swarm optimization is a population oriented
meta-heuristic optimization technique which was first pro-
posed by Russell Eberhart and James Kennedy [1]. This
algorithm is motivated from the social behavior of some ani-
mal groups like fish schools or bird flocks. Similar to other
meta-heuristic optimization algorithms, in PSO, a swarm of
possible solutions is derived in succeeding iterations. PSO
is relatively easy to understand and implement since there
are very few parameter settings that are required to tune in
comparison to other optimization strategies.

In PSO, each particle represents a prospective solution to
an optimization problem. The group of particles (or swarm)
fly within search space by trailing the current optimum solu-
tions. Every particle remembers its best coordinate position
in the search region which is related to the best position it
has attained so far. This position is called pbest. Similarly,
the best current position of the particle within whole swarm,

called as gbest is also remembered. In PSO, each particle
changes its velocity towards its gbest and pbest location after
each time step. The basic PSO [1] is slow in most cases and
prematurely converges to local optima. The solution to their
problem is use of inertia weight. The inertia weight [2] is
the primary parameter of the PSO, and has an important
part in balancing the exploration and exploitation. After the
introduction of inertia weight, many versions of the PSO
algorithm have been presented aiming balanced explora-
tion–exploitation trade-off.

Shi and Eberhart [2] examined different constant values
of inertia weight and reached to the conclusion that within
specific range, PSO search the optimum global solution
within a acceptable number of iterations. Mostly with lower
value of inertia weight, PSO converges in local optima
region and with higher value of inertia weight; it diverges
and hence performs little exploration in the search region.
For finding an optimum solution in a dynamic environment,
a random inertia weight strategy is used by Russell Eberhart
and Shi [3] and varies in the range [0.5, 1]. This approach is
used to alter exploitation and exploration randomly.

A large number of inertia weight variants use time-vary-
ing inertia weight method which utilizes iteration number to
determine the value of inertia weight. Most famous among
them is linear decreasing inertia weight technique [4], in

 * Ankit Agrawal
 aagrawal.phd2017.cse@nitrr.ac.in

1 Department of Computer Science and Engineering,
National Institute of Technology Raipur, G.E Road, Raipur,
Chhattisgarh 492001, India

http://orcid.org/0000-0002-5662-3237
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-018-0188-7&domain=pdf

306 Evolutionary Intelligence (2021) 14:305–313

1 3

which the inertia weight linearly drops from �max to �min . It
is found empirically that in most of the cases inertia weight
in range [0.4, 0.9] provides the optimum result. Some other
time-varying techniques are simulated annealing [5], sigmoid
[6], exponential decreasing [7], and logarithmic decreasing
technique [8]. Nickabadi and Ebadzadeh [9] suggests adaptive
inertia weight law which controls population diversity and
enhances its searching ability. Lei et al. [10] suggests Sugeno
function as inertia weight method to auto-tune the global and
local search ability to avoid premature convergence problem.

Zhan et al. [11] proposed an evolutionary state estimation
technique which uses fuzzy classification method to deter-
mine the inertia weight. A Gaussian perturbation-based elitist
learning strategy has also been adopted which facilitates the
particles to move out of local optima region. As a feedback
parameter, Nickabadi et al. [12] utilized a percentage of the
particles that have shown improvement when compared to the
last iteration. They applied this strategy to solve a real-world
engineering problem efficiently. Kessentini and Barchiesi [13]
presented an adaptive inertia method which uses the standard
deviation of dimensions of particles. This technique improves
the exploration and exploitation balance in comparison to
other algorithms, which helps in converging to optima.

Bansal et al. [14] reviewed 15 famous variants of PSO and
compares their performance. Jordehi et al. [15] and Wang
et al. [16] examined all popular PSO variants after applying
them to deal with discrete optimization problem. Ghamisi
et al. [17] applied hybrid PSO and Genetic Algorithm to
deal with pipe and road problem. Similar hybrid approach is
utilized to find the compressive strength of rock using PSO
based Artificial Neural Network by Momeni et al. [18]. Gao
et al. [19] suggested novel strategy so that some particles
that are better informed could lead to remaining particles.
An improved version of PSO is applied for data classifica-
tion [20]. Various modified particle swam optimization along
with their applications is discussed by Tian et al. [21].

The remaining paper is structured as follows: the back-
ground of PSO is overviewed in next section. The proposed
inertia weight law is presented in further section. Further
paper contains the set of optimization test problems for eval-
uation of the proposed technique, similar other techniques
which are compared with proposed technique, simulation
setting and results. It also contains the real-world engineer-
ing optimization problems used to evaluate and compare the
proposed method with other methods. Finally last section
contains conclusion of the paper.

2 Background

The PSO is basically a cooperative approach, in which N
number of particles flies through the n-dimensional prob-
lem search space. The particle’s position depends on its

own and its neighbor’s past best positions. The ith parti-
cle’s position is written as: ��⃗xi =

(

xi1, xi2, xi3,… , xin
)

 which
is a n dimensional vector. Similarly, velocity of each par-
ticle is also a n dimensional vector represented by a vector
is given by: ��⃗vi =

(

vi1, vi2, vi3,… , vin
)

 . At each iteration t ,
the particles of swarm adjust their position and velocity
according to following equations [12, 14]:

where ω is the inertia weight, R1id and R2id are uniform ran-
dom positive numbers in range (0,1), d = 1, 2,… , n repre-
sents dimensions, c1 is cognitive and c2 is social learning
parameter respectively, pbestid is ith particle’s best previous
position, gbestd is globally best position among all particles
of the swarm. It becomes social-only model when c1 = 0
(and c2 ≠ 0), and cognition-only model when c2 = 0 (and
c1 ≠ 0). For success of an optimization algorithm, the tun-
ing between the local and global search is important during
a run. In most of the cases, the higher value of inertia weight
enhances the ability to explore the region of search space,
and the lower value of inertia weight improves the capacity
to concentrate the search in the vicinity of the promising
region to improve the prospective solution. Therefore, for
maintaining equilibrium between exploration–exploitation
tradeoff effectively, we introduce a new inertia weight law in
this paper which is adaptive in nature. During the algorithm
process, the inertia weight is adjusted dynamically using
feedback on particle’s best positions to alternate exploration
and exploitation.

3 Proposed inertia weight strategy

The performance and the capability of the swarm based
optimization algorithm depend mainly on the explora-
tion–exploitation tradeoff. The proposed inertia weight strat-
egy i.e. CBPPSO applies the idea that in order to balance
the local and global search, particles whose position is not
improved, must move towards the particles whose position
is improved with respect global optimum. Thus movement of
each particle will depend on the adaptive inertia weight that
uses cumulative binomial probability of finding the global
optimum by particles with improved position.

For calculating inertia weight using this method, at each
iteration status of the population is determined. The indi-
cator function that denotes the improvement in position of
particle i at time t is given as [12, 22]:

(1)
vid(t + 1) = vid(t) + c

1
∗ R

1id ∗ (pbestid − xid(t))

+ c
2
∗ R

2id ∗ (gbestd − xid(t))

(2)xid(t + 1) = �*xid(t) + vid(t + 1)

(3)I(i, t) =

{

0 if fit(pbestt
i
) ≥ fit(pbestt−1

i
)

1 if fit(pbestt
i
) < fit(pbestt−1

i
)
.

307Evolutionary Intelligence (2021) 14:305–313

1 3

Further calculate the total particles with improved posi-
tion at iteration t as:

Considering each iteration as an experiment, in which
each individual particle represents a trial which can have
one of either state i.e. in a failure or success state. So the
probability of success p and failure q is 0.5 for each par-
ticle and particles are independent as the trials are inde-
pendent of each other. Population size is constant (N) in all
the iterations. Here X(i, t) which denotes the total particles
with improved position is binomial random variable [22].
The cumulative binomial probability is the probability of
getting X(i, t) or fewer particles that have improved their
position and is given by the following equation:

where X = X(i, t) . The inertia weight at time t is the function
of P(X) and represented as:

In our algorithm, the linear function used to map the
inertia weight and P(X) is given as:

The velocity of particle plays an important role as it
must not be too low so that the particles cannot jump out
of local optima regions and neither is too high so that they
could avoid the region having the global optimum. Initially
when more number of particles improves their respective
position while exploring the global optimum, the cumula-
tive binomial probability of finding the global optimum by
the particles that improve their position should be high and
later on it decreases while converging towards the global
optimum. The Fig. 1 shows above property of the proposed
adaptive inertia weight when tested on sphere function. The
inertia weight varies in range [0.4, 0.9] and is dynamic in
nature. For avoiding the premature convergence the lower
bound is set to 0.4. This strategy enhances the capability
of balancing the local and global search of the algorithm.

4 Experimental setup

4.1 Optimization test problems

To measure the performance of the introduced PSO variant,
we have used ten well-known benchmark functions [23–29].

(4)X(i, t) =

N
∑

i=1

I(i, t).

(6)P(k ≤ X,N, p) =

X
∑

k=0

(

N

k

)

pkqN−k

(7)�(t) = f (P(k ≤ X,N, p)).

(8)� = �min + (�max − �min) ∗ P(k ≤ X,N, p).

The CBPPSO has been compared with four other signifi-
cant PSO algorithm which are based on different inertia
weight methods over these benchmark functions. In Table 1
the benchmark function are listed in which D is number of
dimensions, taken as 30.

Functions f1 , f3 , f4 , f6 are bowl shaped functions. These
functions have only global minimum. These functions are
convex, continuous and unimodal in nature. Functions f2 , f5
are Valley shaped functions and mostly used to test gradient
optimization algorithms. These functions are also unimodal
in nature. Functions f7, f8, f9 are functions with multiple local
minima. The outer region of function f7 is nearly flat and it
have a large pit at centre. Functions f8 and f9 have multiple
regularly distributed local minima. These functions are highly
multimodal and the optimization algorithms are most likely
to be stuck in one of multiple local minima. All the problems
are minimization problems. Best solution and Best fitness for
the problem is expressed by x∗ and f (x∗) respectively.

4.2 Inertia weight methods used for comparison

In this paper for comparison with proposed approach, we
have carefully selected the PSO algorithms that studied
the impact of inertia weight strategy. Based on previous
comparative performance study [12, 14], the introduced
algorithm is simulated and compared with following time
varying and adaptive algorithms:

A. GPSO [4]:

� = 0.9 − 0.5

(

t

T

)

∈ [0.4, 0.5]

Fig. 1 Inertia weight adaptation in CBPPSO when applied to sphere
test function

308 Evolutionary Intelligence (2021) 14:305–313

1 3

where t is current step number and T is maximum step
number.

B. Sugeno [10]:

where s is constant and is taken as 10.
C. AIPWSO [12]:

where S(t) is total particles with improved best positions
and N is the swarm size.

D. w-PSO [13]:

where K is a constant (taken as 1000) and d(k) is adap-
tive vector of K elements.

4.3 Evaluation and comparison criteria

To the ten well-known benchmark functions listed in Table 1,
four inertia weight methods along with CBPPSO is tested and

� = 0.4 + 0.5
1 −

t

T

1 + s
(

t

T

) ∈ [0.4, 0.5]

� =

(

S(t)

N

)

∈ [0, 1]

� = 0.9 − 0.4

(

d(k)

max1≤k≤K{d(k)}

)

∈ [0.4, 0.9]

their results is compared. All the parameters are kept constant
for fair comparison of different inertia weight strategies dur-
ing the whole experiment so that we can analyze and study
the impact of inertia weight in the algorithm. The swarm size
is 20 and the dimension is 30 [12]. According to the law pre-
sented by Martinez and Gonzalo [30] i.e., c1 + c2 < 4(1 + 𝜔),
we took c1 = c2 = 2 . The inertia weight varies in range [�min,
�max] where �min = 0.4 and �max = 0.9 [4]. The maximum
number of functional evaluations (FEs) that each algorithm
is allowed to run is fixed to 200,000 for proper comparison
among all algorithms. The average results are recorded after
running each experiment 30 times.

5 Results and discussion

The best fitness average and standard deviation is recorded
in 30 independent runs are listed in Table 2 for each algo-
rithm. The outcomes are compared on the basis of the con-
vergence speed and the final accuracy [13].

• For function f1 and f6 , CBPPSO yields best solution
and it is followed by AIWPSO. The convergence curve
is almost straight line indicating that it is approaching
towards the optimal solution with constant convergence
rate.

Table 1 Optimization test problems used in experiments

Function Name Test function Search space x∗ f (x∗)

Sphere function
f1 =

D
∑

i=1

x2
i

[−100, 100] (0,…,0) 0

Rosenbrock function
f2 =

D−1
∑

i=1

[100(x2
i+1

− x2
i
) + (xi − 1)2]

[−5, 10] (1,…,1) 0

Rotated hyper-ellipsoid
function f3 =

D
∑

i=1

i
∑

j=1

x2
j

[−100, 100] (0,…,0) 0

Sum squares function
f4 =

D
∑

i=1

ix2
i

[−10, 10] (0,…,0) 0

Dixon price function
f5 = (x1 − 1)2 +

D
∑

i=2

i(2x2
i
− xi−1)

2 [−10, 10] at xi = 2
−

2i−2

2i ,
for i = 1, ...,D

0

Sum of different powers
function f6 =

D
∑

i=1

�

�

�

xi+1
i

�

�

�

[−1, 1] (0,…,0) 0

Ackley function
f7 = −20 exp

⎛

⎜

⎜

⎝

−0.2

�

1

D

D
∑

i=1

cos(x2
i
)

⎞

⎟

⎟

⎠

− exp

�

−
1

D

D
∑

i=1

cos(2�xi)

�

+ 20 + exp(1)

[−32, 32] (0,…,0) 0

Rastrigin function
f8 = 10D +

D
∑

i=1

[x2
i
− 10 cos(2�xi)]

[−5.12, 5.12] (0,…,0) 0

Griewank function
f9 =

D
∑

i=1

x2
i

4000
−

D
∏

i=1

cos
�

xi
√

i

�

+ 1
[−600, 600] (0,…,0) 0

Powell function
f
10

=
D∕4
∑

i=1

[(x
4i−3 + 10x

4i−2)
2 + 5(x

4i−1 − x
4i)

2 + (x
4i−2 − 2x

4i−1)
4 + 10(x

4i−3 − x
4i)

4]
[−4, 5] (0,…,0) 0

309Evolutionary Intelligence (2021) 14:305–313

1 3

• For function f2 and f9 , CBPPSO outperformed the other
algorithms. The convergence rate of CBPPSO is more
in comparison to other algorithms. The horizontal line
shows the inability of the algorithm to further converge
towards the optimal solution.

• For function f3 and f5 , w-PSO and CBPPSO both pro-
vided the best solutions. The CBPPSO converges slightly
faster than w-PSO towards the optimal solution. Both the
algorithm followed by AIWPSO converge must faster
towards the optimal solution than the other algorithms.

• For function f4 and f10 , best solution is provided by
AIWPSO followed by CBPPSO algorithm. The AIWPSO
and CBPPSO converge faster in direction of the best
solution than the other algorithms.

• For function f7 , GPSO, Sugeno and w-PSO yield the best
solution in comparison to the CBPPSO and AIWPSO.
However, CBPPSO converge faster towards the best solu-
tion followed by AIWPSO.

• For function f8 , w-PSO outperformed the other algo-
rithms in terms of best solution. The AIWPSO and
CBPSO converge in vicinity of the best solution at faster
rate than other algorithms.

The outcome shows that CBPPSO yields the best accu-
racy for 6 out of 10 benchmark problems i.e., for functions
f1, f2, f3, f5, f6 and f9 . The convergence curve in the logarithmic
scale for all the algorithms is shown in Fig. 2 which illustrates
the above results. The performance of CBPPSO is comparable
in case of functions f4, f8 and f10 . The algorithms are scored
according to number of times the algorithm provides the com-
parable and best results. The scores of the w-PSO, AIWPSO,
Sugeno, GPSO, CBPPSO are 7, 7, 5, 4, and 9 respectively.
Most of the time, the best position are discovered by the
algorithms with adaptive inertia weight approach. Also these
algorithms converges faster towards the optimal solution in
comparison to the other time-varying inertia weight based
algorithms. In particular, it can be observed that the CBPPSO

converges at faster rate towards the best solution in compari-
son to the other algorithms most of the time.

The proposed approach has also been tested over a real
world engineering benchmark problem and the performance
is evaluated and compared with other existing algorithms on
standard parameters reported in literature. This is discussed
in the next section.

6 Real world engineering optimization
problem

Apart from the well known benchmark functions, the poten-
tial of CBPPSO is also investigated on three real world engi-
neering problems. The swarm size is 20, and the minimum
result of CBPPSO is recorded after 10 independent runs,
continued for 2500 iterations [15, 31]. For comparison, we
have taken results from [12, 31, 32] for problem 1, 2 and
3 respectively as reported in the literature. Best minimum
optimization result for the respective problems are indicated
in bold in Tables 3, 4 and 5.

6.1 Problem 1: Design of a pressure vessel [33]

The pressure vessel design is a constrained engineering
design problem in which the aim is to minimize the cost
of manufacturing pressure vessel. The problem is given as
follows [12]:

Minimize:

Subject to:

f (x) = 0.6224x
1
x
3
x
4
+ 1.7781x

2
x2
3
+ 3.1611x2

1
x
4

+ 19.84x2
1
x
4
+ 19.84x2

1
x
3

g1(x) = 0.0163x3 − x1 ≤ 0,

g2(x) = 0.00954x3 − x2 ≤ 0,

Table 2 The mean and the standard deviation of best fitness of five different inertia weight approach on ten benchmark problems in 200,000
function evaluations in 30 runs

Fun Best fitness mean (best fitness standard deviation)

CBPPSO GPSO Sugeno AIWPSO w-PSO

f1 7.1632e−137(3.8683e−136) 1.6615e−49(9.0212e−49) 4.9229e−82(2.6511e−81) 6.5670e−114(2.6700e−113) 1.3333e + 03(3.4574e + 03)

f2 7.7675e + 03(1.9599e + 04) 8.6408e + 04(7.0973e + 04) 6.9299e + 04(4.9348e + 04) 2.5990e + 04(2.8164e + 04) 3.2866e + 04(5.0152e + 04)

f3 5.1539e + 03(9.3962e + 03) 1.9184e + 04(2.1422e + 04) 1.6607e + 04(1.8661e + 04) 6.5856e + 03(1.1922e + 04) 5.0108e + 03(1.0280e + 04)

f4 1.8333e + 02(2.6403e + 02) 4.3000e + 02(4.8148e + 02) 5.2333e + 02(4.7827e + 02) 1.5333e + 02(2.5014e + 02) 2.8000e + 02(3.8452e + 02)

f5 3.9396e + 03(2.1222e + 04) 2.5073e + 04(5.7882e + 04) 1.2283e + 04(4.1687e + 04) 8.7618e + 03(2.7366e + 04) 4.0217e + 03(2.1622e + 04)

f6 2.3152e−257(0.0000e + 00) 8.4450e−93(3.8650e−92) 1.8767e−200(0.0000e + 00) 3.1842e−212(0.0000e + 00) 5.9589e−38(2.9703e−37)

f7 1.4091e + 00(1.2427e + 00) 4.7725e−01(2.6140e + 00) 4.7454e−01(2.5991e + 00) 1.6503e + 00(3.5923e + 00) 4.9727e−01(2.6229e + 00)

f8 8.3739e + 01(2.8673e + 01) 7.2624e + 01(2.5950e + 01) 9.2580e + 01(2.6948e + 01) 7.7748e + 01(2.3260e + 01) 5.7167e + 01(2.5854e + 01)

f9 1.6138e−02(1.8200e−02) 3.0277e + 00(1.6496e + 01) 6.0322e + 00(2.2881e + 01) 3.0270e + 00(1.6498e + 01) 9.0786e + 00(2.7591e + 01)

f10 2.5317e + 02(4.8562e + 02) 5.8473e + 02(6.2392e + 02) 7.5600e + 02(1.0069e + 03) 2.0692e + 02(4.1388e + 02) 4.1767e + 02(7.4568e + 02)

310 Evolutionary Intelligence (2021) 14:305–313

1 3

Fig. 2 The best fitness mean for 30 independent realizations as a function of iteration number for functions f
1
, f
2
, f
3
, f
5
, f
6
 and f

9

311Evolutionary Intelligence (2021) 14:305–313

1 3

The shell thickness Ts(x1), spherical head thickness Th(x2),
radius of cylindrical shell R(x3) and shell length L(x4) are
four design parameters of pressure vessel design problem
as shown in Fig. 3. Here x1 and x2 are integer multipliers of
0.0625. x3 ∈ [40, 80] and x4 ∈ [20, 60].

Table 3 summate the optimization results on pressure
vessel design problem by CBPPSO, AIWPSO [12], Sand-
gren [33], CODEQ [35], Harmony search [36], and genetic
algorithm [37]. Among the six experimented algorithms,
CBPPSO gives the best results.

6.2 Problem 2: Design of a tension/compression
spring [39]

The goal in this problem is to minimize the weight of the
tension/compression spring, subject to constraint over surge
frequency, minimum deflection, shear stress, diameter and
design variables. The problem is presented as:

Minimize:

Subject to:

g3(x) = 1296000 − �x2
3
x4 −

4

3
�x2

3
≤ 0,

g4(x) = x4 − 240 ≤ 0,

g5(x) = 1.1 − x1 ≤ 0,

g6(x) = 0.6 − x4 ≤ 0.

f (x) = (x3 + 2)x2x
2

1

g1(x) = 1 −
x3
2
x3

71785x4
1

≤ 0,

The design variables are the mean coil diameter, D(x2) ,
the number of active coils, P (x3) , and the wire diameter,
d (x1) as shown in Fig. 4. The design variables have fol-
lowing desired ranges: 0.05 ≤ x1 ≤ 2,0.25 ≤ x2 ≤ 1.3,and
2 ≤ x3 ≤ 15. Table 4 summates the best results of Belegundu
[38], Arora [39], He and Wang [32], Lobato et al. [31], and
CBPSO. The CBPPSO provide the better result in compari-
son to the other approaches.

6.3 Problem 3: Design of a welded beam [39]

The aim in this problem is to minimize the cost of welded
beam subject to the constraint over the end deflection of
the beam (δ), bending stress in the beam (σ), shear stress
(τ), buckling load in the bar (PC), and side constraints. The
problem is presented as:

Minimize:

Subject to:

g2(x) =
4x3

2
− x1x2

12566 (x2x
3

1
− x4

1
)
−

1

5108x2
1

− 1 ≤ 0,

g3(x) = 1 −
140.45x1

x3x
2

2

≤ 0,

g4(x) =
x1 + x2

1.5
− 1 ≤ 0.

f (x) = 1.10471x2
1
x2 + 0.04811x3x4(14 + x2)

g1(x) = �(x) − �max ≤ 0,

g2(x) = �(x) − �max ≤ 0,Fig. 3 The pressure vessel problem [34]

Table 3 Pressure design problem optimization results

Sandgren [33] Wu and Chow [37] Harmony search [36] CODEQ [35] AIWPSO [12] CBPPSO

x1 1.125 1.125 1.125 1.125 1.125 1.125
x2 0.625 0.625 0.625 0.625 0.625 0.625
x3 48.97 58.1978 58.2789 58.2901554401 58.2901554404 62.9866
x4 106.72 44.293 43.7549 43.6926562409 43.6926562409 20
f (x) 7980.894 7207.494 7198.433 7197.728 7197.728 6952.72

Fig. 4 The tension/compression spring problem [34]

312 Evolutionary Intelligence (2021) 14:305–313

1 3

where,

The problem has four design variables as shown in Fig. 5,
i.e., t(x3), l(x2), h(x1), and b(x4) . The variables have follow-
ing desired ranges : x1, x4 ∈ [0.1, 2], and x2, x3 ∈ [0.1, 10].
Table 5 summarizes the best results of Deb [40], Coello [41],
He and Wang [32], Coello and Montes [42], and CBPSO.
Here also, CBPPSO provide the better result in than the other
algorithms.

g5(x) = 0.125 − x1 ≤ 0,

g6(x) = �(x) − �max ≤ 0,

g7(x) = P − PC(x) ≤ 0

�(x) =

√

(��)2 + 2�����
x2

2R
+ (���)2

�
� =

P
√

2x1x2

, ��� =
MR

J
,M = P

�

L +
x2

2

�

,

J = 2

�

√

2x1x2

�

x2
2

12
+

�

x1 + x3

2

�2
��

,

�(x) =
6PL

x4x
2

3

, �(x) =
4PL3

Ex3
3
x4
,

R =

√

x2
2

4
+

(

x1 + x3

2

)2

,

PC =

4.013E

√

x2
3
x6
4

36

L2

(

1 −
x3

2L

√

E

4G

)

,

P = 6000 lb, L = 14 in,E = 3 × 106 psi,G = 12 × 106 psi,

�max = 13,600 psi, �max = 30,000 psi, �max = 0.25 in.

7 Conclusion

The paper introduces a new adaptive inertia weight approach
(CBPPSO) which is based on the cumulative binomial prob-
ability of the total particles that have improved their posi-
tion. In this approach, to realize the particles’ current state
in the search region, the feedback is provided by this cumu-
lative binomial probability and in turn adjusts the inertia
weight value accordingly. Experimental results clearly show
that the search behavior of the particles is improved due to
introduced approach and is more effective in comparison to
the other successful variants of PSO. The comparisons and
analysis are done in terms of accuracy of the solution and
the convergence speed.

Also, we applied CBPPSO to solve three real world
engineering problems and compared result with the other
approaches. The result provided by CBPPSO is better than
outcome of other strategies. Since CBPPSO is simple and
efficient, it can be applied to solve the other problems
effectively.

Table 4 Optimization results
for tension/compression spring
design problem

Belegundu [38] Arora [39] He and Wang [32] Lobato et al. [31] CBPPSO

x1 0.050000 0.053396 0.051728 0.051744 0.0512637
x2 0.315900 0.399180 0.357644 0.357754 0.3465700
x3 14.25000 9.185400 11.244543 11.56132 11.909700
f (x) 0.012674 0.012730 0.012674 0.012789 0.0126686

Fig. 5 The welded beam problem [43]

Table 5 Welded beam design problem optimization results

Deb [40] Coello [41] Coello and
Montes
[42]

He and Wang
[32]

CBPPSO

x1 0.248900 0.208800 0.205986 0.202369 0.20573
x2 6.173000 3.420500 3.471328 3.544214 3.47049
x3 8.178900 8.997500 9.020224 9.048210 9.03662
x4 0.253300 0.210000 0.206480 0.205723 0.20573
f (x) 2.433116 1.748309 1.728226 1.728024 1.72485

313Evolutionary Intelligence (2021) 14:305–313

1 3

References

 1. Kennedy J, Eberhart RC (1995) Particle swarm optimization.
In: Proceedings of IEEE international conference on neural net-
works, Perth, vol 4, pp 1942–1948

 2. Shi Y, Eberhart R (1998) A modified particle swarm optimizer.
In: Evolutionary computation proceedings, IEEE world con-
gress on computational intelligence, The IEEE international
conference, Anchorage, pp 69–73

 3. Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic
systems with particle swarms. In: Evolutionary computation.
Proceedings of the IEEE congress, Seoul, vol 1, pp 94–100

 4. Shi Y, Eberhart RC (1999) Empirical study of particle swarm
optimization. In: Proceedings of the IEEE congress, CEC 99,
Washington, DC, vol 3, pp 1945–1950

 5. Al-Hassan W, Fayek MB, Shaheen SI (2006) Psosa: an opti-
mized particle swarm technique for solving the urban planning
problem. In: International conference on computer engineering
and systems, pp 401–405

 6. Malik RF, Rahman TA, Hashim SZM, Ngah R (2007) New par-
ticle swarm optimizer with sigmoid increasing inertia weight.
Int J Comput Sci Secur 1(2):35–44

 7. Chen G, Huang X, Jia J, Min Z (2006) Natural exponential inertia
weight strategy in particle swarm optimization. In: 6th world con-
gress on intelligent control and automation, vol 1, pp 3672–3675

 8. Gao YL, An XH, Liu JM (2008) A particle swarm optimization
algorithm with logarithm decreasing inertia weight and chaos
mutation. In: Computational intelligence and security, IEEE
international conference, vol 1, pp 61–65

 9. Nikabadi A, Ebadzadeh M (2008) Particle swarm optimization
algorithms with adaptive inertia weight: a survey of the state of
the art and a novel method. IEEE J Evol Comput

 10. Lei K, Qiu Y, He Y (2006) A new adaptive well-chosen inertia
weight strategy to automatically harmonize global and local
search ability in particle swarm optimization. In: 1st IEEE inter-
national symposium on systems and control in aerospace and
astronautics, Harbin, pp 977–980

 11. Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive parti-
cle swarm optimization. IEEE Trans Syst Man Cybern Part B
Cybern 39(6):1362–1381

 12. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel
particle swarm optimization algorithm with adaptive inertia
weight. Appl Soft Comput 11(4):3658–3670

 13. Kessentini S, Barchiesi D (2015) Particle swarm optimization with
adaptive inertia weight. Int J Mach Learn Comput 5(5):368–373

 14. Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham
A (2011) Inertia weight strategies in particle swarm optimization.
In: Nature and biologically inspired computing (NaBIC), third
world congress, pp 633–640

 15. Jordehi AR, Jasni J (2015) Particle swarm optimization for discrete
optimization problems: a review. Artif Intell Rev 43(2):243–258

 16. Wang D, Tan D, Liu L (2018) Particle swarm optimization algo-
rithm: an overview. Soft Comput 22(2):387–408

 17. Ghamisi P, Benediktsson JA (2015) Feature selection based on
hybridization of genetic algorithm and particle swarm optimiza-
tion. IEEE Geosci Remote Sens Lett 12(2):309–313

 18. Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015)
Prediction of uniaxial compressive strength of rock samples
using hybrid particle swarm optimization-based artificial neural
networks. Measurement 60:50–63

 19. Gao Y, Du W, Yan G (2015) Selectively-informed particle swarm
optimization. Sci Rep 5:9295

 20. Satapathy SC, Chittineni S, Krishna SM, Murthy JVR, Reddy PP
(2012) Kalman particle swarm optimized polynomials for data
classification. Appl Math Model 36(1):115–126

 21. Tian D, Shi Z (2018) MPSO: modified particle swarm optimiza-
tion and its applications. Swarm Evol Comput 41:49–68

 22. Agrawal A et al (2018) Particle swarm optimization with proba-
bilistic inertia weight. In: Harmony search and nature inspired
optimization algorithms, ICHSA 2018, pp 239–248

 23. Surjanovic S, Bingham D (2013) Virtual library of simulation
experiments: test functions and datasets [online]. http://www.sfu.
ca/~ssurj ano/. Accessed Dec 2017

 24. Molga M, Smutnicki C (2005) Test functions for optimization
needs. http://www.zsd.ict.pwr.wroc.pl/files /docs/funct ions.pdf.
Accessed Dec 2017

 25. Global optimization test problems. http://www-optim
a.amp.i.kyoto -u.ac.jp/membe r/stude nt/hedar /Hedar _files /TestG
O.htm. Accessed Dec 2017

 26. Dixon LCW, Szego GP (1978) The global optimization problem:
an introduction. Towards Glob Optim 2:1–15

 27. Back T (1996) Evolutionary algorithms in theory and practice:
evolution strategies, evolutionary programming, genetic algo-
rithms. Oxford University Press, New York

 28. Laguna M, Marti R (2002) Experimental testing of advanced scat-
ter search designs for global optimization of multimodal functions.
http://www.uv.es/rmart i/paper /docs/globa l1.pdf. Accessed Dec 2017

 29. Global optimization test functions index. http://infin ity77 .net/
globa l_optim izati on/test_funct ions.html#test-funct ions-index .
Accessed Dec 2017

 30. Martínez JF, Gonzalo EG (2009) The PSO family: deduction, sto-
chastic analysis and comparison. Swarm Intell 3(4):245–273

 31. Lobato FS, Steffen Jr V (2014) Fish swarm optimization algorithm
applied to engineering system design. Latin Am J Solids Struct
11(1):143–156

 32. He Q, Wang L (2007) An effective co-evolutionary particle swarm
optimization for constrained engineering design problems. Eng
Appl Artif Intell 20(1):89–99

 33. Sandgren E (1990) Nonlinear integer and discrete programming
in mechanical design optimization. J Mech Des 112(2):223–229

 34. Dong M, Wang N, Cheng X, Jiang C (2014) Composite differen-
tial evolution with modified oracle penalty method for constrained
optimization problems. Math Probl Eng 2014:617905

 35. Omran MG (2010) CODEQ: an effective metaheuristic for con-
tinuous global optimization. Int J Metaheuristics 1(2):108–131

 36. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for
continuous engineering optimization: harmony search theory and
practice. Comput Methods Appl Mech Eng 194(36):3902–3933

 37. Wu SJ, Chow PT (1995) Genetic algorithms for nonlinear mixed
discrete-integer optimization problems via meta-genetic parameter
optimization. Eng Optim 24(2):137–159

 38. Belegundu AD (1982) A study of mathematical programming
methods for structural optimization. Dept. of Civil Environ. Eng.,
Iowa Univ

 39. Arora JS (1989) Introduction to optimum design. McGraw-Hill,
New York

 40. Deb K (1991) Optimal design of a welded beam via genetic algo-
rithms. AIAA J 29(11):2013–2015

 41. Coello CAC (2000) Use of a self-adaptive penalty approach for
engineering optimization problems. Comput Ind 41(2):113–127

 42. Coello CAC, Montes EM (2002) Constraint-handling in genetic
algorithms through the use of dominance-based tournament selec-
tion. Adv Eng Inform 16(3):193–203

 43. Zheng H, Zhou Y (2013) A cooperative coevolutionary cuckoo
search algorithm for optimization problem. J Appl Math
2013:912056

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.sfu.ca/~ssurjano/
http://www.sfu.ca/~ssurjano/
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www.uv.es/rmarti/paper/docs/global1.pdf
http://infinity77.net/global_optimization/test_functions.html#test-functions-index
http://infinity77.net/global_optimization/test_functions.html#test-functions-index

	Particle swarm optimization with adaptive inertia weight based on cumulative binomial probability
	Abstract
	1 Introduction
	2 Background
	3 Proposed inertia weight strategy
	4 Experimental setup
	4.1 Optimization test problems
	4.2 Inertia weight methods used for comparison
	4.3 Evaluation and comparison criteria

	5 Results and discussion
	6 Real world engineering optimization problem
	6.1 Problem 1: Design of a pressure vessel [33]
	6.2 Problem 2: Design of a tensioncompression spring [39]
	6.3 Problem 3: Design of a welded beam [39]

	7 Conclusion
	References

