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Abstract
The design of appropriate controller plays an important role in achieving the dynamically balanced gaits of the biped robot. 
The present paper deals with the tuning of gains (Kp, Kd and Ki) of the proposed PID controller using two non-traditional 
global optimization algorithms, namely Particle Swarm Optimization (PSO) and a variant of Invasive Weed Optimization 
(IWO) called Modified Chaotic Invasive Weed Optimization (MCIWO) algorithms, which is newly proposed by the authors. 
The effectiveness of the newly proposed MCIWO algorithm has been verified with the help of benchmark functions by con-
ducting the normality test, parametric and non-parametric tests. Further, the developed MCIWO algorithm is used to develop 
the optimal PID controller for the biped robot. Once the PID controllers are optimized, the performance of the controllers in 
terms of various performance measures of the biped robot are compared. Finally, the gait generated using the optimal PID 
controllers are tested on a real biped robot.

Keywords  PID controller · Flat surface · Normality · PSO and MCIWO algorithms

1  Introduction

Day-by-day, the usage of biped robots are increasing enor-
mously in real time applications due to their superior mobil-
ity than their wheeled counter-parts. Keeping this fact in 
mind many researchers are concentrating on the develop-
ment of balanced walk of the biped robot in the past few dec-
ades. To develop dynamically balanced gaits for the robot, 
suitable trajectories are to be assigned for the swing foot 
and hip joint of the biped robot. Once the trajectories are 
assigned, care should be taken while generating the gait that 
can produce the zero moment point (ZMP) with in the foot 
support polygon. The ZMP is helpful to know the dynamic 
balance margin of the biped robot. To solve these problems, 
several researchers had worked on the dynamically balanced 
gait generation of the biped robot in the last decade. Juricic 
and Vukobratovic [1] developed a semi-inverse method to 
generate the trunk motion of the biped robot on a flat surface 

for the prescribed zero moment point (ZMP) trajectory. 
Moreover, Sano and Furusho [2] obtained a stable walking 
pattern for the biped robot by using the concept of angu-
lar momentum. They developed a walking control method 
that divides the generated gait into sagittal and frontal plane 
gaits, and controlled by the concept of angular momentum 
and motion control, respectively. It was observed that the 
authors had only corrected the ankle torque with the help of 
proportional controller. Further, Pandu et al. [3] developed 
a gait generation algorithm for a 7-DOF biped robot, while 
ascending and descending the staircase after using the con-
cept of zero moment point. In that work, the authors had 
not used any controller to control the generated gait. In [4], 
Hernandez-Santos et al. proposed a new procedure to gener-
ate the gaits of 16-DOF biped robot by using proportional-
derivative (PD) control algorithm with gravity compensation 
for attaining desired trajectories for each joints. Konstantin 
and Gunter [5], achieved a stable walk for the biped robot 
without using any pre-computed trajectories. They merged 
trajectory generation and ZMP control algorithms to achieve 
the online stable walking of the biped robot.

It is important to note that the efficiency of the controller 
mainly depends on the gains of the controller. Once the con-
troller is developed, it is laborious and time-consuming task 
to tune parameters of the controller. For tuning the gains of 
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the PID controller researchers had used various tuning algo-
rithms such as, nonlinear model reference PID (NMRPID) 
controller for a seven degrees of freedom biped robot [6], 
3-link [7] and 4-link [8] robotic manipulators, respectively. 
They used manual tuning procedure to tune the gains of 
the PID controllers. Finally, they tested these controllers in 
computer simulations. It is also important to note that the 
manual tuning of the gains (that is, Kp, Kd and Ki) of the 
PID controller is a trial and error method and the solutions 
obtained are non-optimal in nature. Therefore, in the last few 
decades, researchers started using non-traditional optimiza-
tion algorithms to tune the gains of the PID controller for 
obtaining better performance. Further, researchers had used 
multi-objective genetic algorithm [9] for a 2-DOF robotic 
manipulator and fuzzy PID controller [10] for a five degrees 
of freedom robotic arm. In [11], Hassan developed a Self-
Organising Proportional Integral and Derivative (SOF-PID) 
controller to obtain the gains of the PID controller for a 
robotic arm having revolute joints. The SOF-PID controller 
had produced a faster raise time, small steady state error and 
in significant overshoot for the step input trajectory, when 
compared with the ordinary PID controller.

In addition to the above methods, Patrizio [12] developed 
an adaptive proportional derivative (PD) controller for point-
to-point path tracking of a robotic manipulator. Later on, a 
fuzzy logic-based PID controller was developed by Visioli 
[13] and in that work they compared the performance of the 
standard PID controller with many controllers, namely incre-
mental fuzzy expert PID controller (IFE), Fuzzy self-tuning 
of a single parameter (SSP), Fuzzy gain scheduling (FGS), 
Fuzzy set-point weighting (FSW) and Fuzzy PID controllers. 
In [14–26] the authors had used various non-traditional algo-
rithms, such as GA, SA, PSO, BFO, ACO, hybrid stochas-
tic fractal search and local unimodal sampling and adaptive 
fuzzy algorithms to optimize the gains of the PID controller. 
They compared the results of the non-traditional algorithms 
with the conventional PID controller tuned by Ziegler–Nich-
ols (Z–N) method, and it was observed that the evolutionary 
algorithms tuned PID controllers are found to perform bet-
ter than the Z–N tuning method in terms of overshoot and 
steady state error. Later on, Ibtissem et al. [27] proposed 
a multi-objective ACO-based tuning method to tune the 
gains of the PID controller. It was observed that the ACO 
algorithm was seen to provide better performance in terms 
of step response when compared with GA based tuning of 
the controller. Further, Navid and Mohsen [28] proposed a 
new optimization algorithm i.e. Invasive weed optimization 
(IWO) algorithm to tune the parameters of PID controller 
of the hydro-turbine generator. In [29, 30], the authors used 
IWO algorithm to tune the parameters of the antenna for get-
ting highest directivity and compared with PSO algorithm. 
They observed that the PSO algorithm was struck in the 
local minima because of its boundary conditions and the 

maximum velocity of the particle. Moreover, Abedinia et al. 
[31] utilized a modified invasive weed optimization (MIWO) 
algorithm to tune the parameters of fuzzy PID controller in 
multi-machine power system. It was observed that MIWO 
fuzzy controller worked effectively, when compared with 
other methods.

From the literature, it has been observed that some 
researchers had used ZMP based control algorithms [4–6] 
for the control of biped robots. It is important to note that 
the ZMP based PID controller is an indirect method of con-
trolling the motor, as the error signal between the obtained 
and reference ZMP trajectory is used to design the gaits for 
various links of the biped robot. In this process, the con-
troller may suggest some dynamically balanced postures 
which may not be kinematically feasible. Moreover, find-
ing the most appropriate gait for the biped robot that fulfils 
the sequence oriented criterion and repeatability conditions 
is difficult to achieve. Very few had attempted to design a 
torque-based controller for the biped robot by controlling 
either ankle or torso joint. The torque-based PID controller 
consider the error signal of each joint of the biped robot, 
and try to design the gains of the controller by minimiz-
ing the error between two consecutive gait angles of each 
joint of the biped robot. Further, researchers had also used 
recent non-traditional optimization algorithms to optimize 
the gains of the PID controller for various industrial applica-
tions. However, none of the authors had tried to implement 
the chaotic nature in IWO algorithm that helps in distribut-
ing the seeds in a wider spread and to enhance the search 
space. To improve the performance of the algorithm in the 
present research, the authors have added two new variables, 
namely cosine and chaotic variables. The cosine variable is 
used to increase the search space and the chaotic variable 
is used to push the solution directly into global optimum 
position. The convergence criterion of the newly developed 
algorithm has been tested with the help of known bench-
mark problems. Finally, the performance of the developed 
algorithm has been compared with another nature inspired 
algorithm such as PSO. Once the optimal PID controllers are 
obtained, the performances of the algorithms are compared 
in terms of ZMP and DBM of the biped robot. Further, the 
gait obtained using the optimal PID controllers is tested on 
a real biped robot and found that the robot has successfully 
executed its gaits on the flat terrain.

2 � Dynamics of the biped robot

The present research work is focused on the design of a 
suitable PID controller that can generate dynamically bal-
anced gaits for the 18-DOF biped robot (ref. to Fig. 1) on a 
flat surface. Once the gait is generated, the dynamic balance 
margin of the biped robot is verified by using the concept of 
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zero moment point (ZMP) [32]. Further, the parameters such 
as linear and angular velocity of the joints are very important 
for locomotion of the biped robot. It is important to note that 
Jacobian is used to determine the linear 

(
Jvi

)
 and angular (

J
�i

)
 velocity of the joints of the biped robot.

The dynamics of the biped robot is determined with the 
help of Lagrange–Euler formulation, which is given below.

where �i,the indicates the theoretical torque required at joint 
i (N-m), q,

.

qj and 
..

qj represent the displacement, velocity 
(rad/s) and acceleration (rad/sec2) of the joint, respectively. 
Further, the expanded form of inertia term ( Mij ), Coriolis/
centrifugal forces ( Cijk ) and gravity terms ( Gi ) are given 
below.

(1)Ji =

[
Jvi
J
�i

]
=

[
Zi−1 ×

(
On − Oi−1

)

Zi−1

]

(2)

�i,the =

n∑

j=1

Mij(q)
∙∙
qj +

n∑

j=1

n∑

k=1

Cijk

∙
qj

∙
qk +Gi i, j, k = 1, 2… n

(3)Mi,j =

n∑

p=max(i,j)

Tr
[
dpjIpd

T
pi

]
i, j = 1, 2… n

(4)Ci,j,k =

n∑

p=max(i,j,k)

Tr

[
�
(
dpk

)

�qp
Ipd

T
pi

]
i, j = 1, 2… n

(5)
Gi = −

n∑

p=i

mpgdpi
p
e
rp i, j = 1, 2...............n

where Ip and ep
−
rp represents mass moment of inertia (kg-m/

s2) tensor and mass center (m) of pth link, respectively and g 
denotes acceleration due to gravity in (m/s2). While controlling 
the joint, the acceleration of the link plays a major role. There-
fore, the expression in terms of acceleration will be obtained 
by rearranging the Eq. (6), and is given below.

Now by considering the term

2.1 � Design of PID controller for the biped robote

The Proportional-Integral Derivative (PID) controllers are 
widely used to control the motors of the biped robot in various 
applications. The expression for the joint based PID control-
lerthat is used in this study is mentioned below.

where Kp , Kd and Ki represents proportional, derivative and 
integral gains of the controllers, respectively. The expanded 
form of the above equation after including the meaning of 
and 

.

e obtained from Eq. (9) is given below.
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Fig. 1   Schematic diagram 
showing the 18-DOF biped 
robot a stick diagram b real 
robot

(a)                                                                (b)
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where �i,act represent the actual torque supplied by the con-
troller to individual joints to move from an initial angular 
position 

(
�is

)
 to final angular position 

(
�if

)
 . Further, the inte-

gral terms in the above equation need to be substituted by 
its state variables, namelyẋi and its meaning is given below.

The final control equation that represents the control 
action for all joints is given below.

2.2 � Formulation as an optimization problem

The design of controller for the biped robot to achieve a 
dynamically balanced gait on the flat surface can be con-
sidered as an optimization problem as explained below. 
The controllers has to supply the torque that is required by 
the joint to move from an initial position to final position. 
Further, the torque supplied by the controller will be able 
to reduce the positioning error with certain limits on the 
range of the gain values of the controller. Moreover, the 
positional error related to the both swing leg and stance 
leg is also to be considered. Then it may be posed as an 
optimization problem as given below:

For Swing Leg
Minimize Z1: e1 =

∑6

i=1
e
�
�i

�
.

Subjected to constraints: 
Kpi,min ≤ Kpi ≤ Kpi,max

Kdi,min ≤ Kdi ≤ Kdi,max

Kii,min ≤ Kii ≤ Kii,max i = 1, 2,… 6.

For Stand Leg
Minimize Z2: e2 =

∑12

j=7
e
�
�j

�
.

Subjected to constraints: 
Kpj,min ≤ Kpj ≤ Kpj,max

Kdj,min ≤ Kdj ≤ Kdj,max

Kij,min ≤ Kij ≤ Kij,max j = 7, 8,… 12.

where e1 and e2 are 

the total error in the angular position of all the joints of  
the swing and stand leg, respectively. The e

(
�i

)
 and  

e
(
�j

)
 are the error at the individual joints of the both  

legs and rest of the terms carries their usual meaning.
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3 � Proposed optimization algorithm

In the present research, a non-traditional optimization algo-
rithm, namely MCIWO is used to tune the gains of the PID 
controller and compared with another established nature 
inspired optimization algorithm such as, PSO. The expla-
nation related to the developed approach is given below.

3.1 � Modified chaotic invasive weed optimization 
algorithm

Invasive weed optimization (IWO) is a stochastic optimi-
zation algorithm developed by Mehrabain and Lucas in 
2006 [33] and the algorithm is inspired from the colonizing 
behaviour of the weeds. In a crop field the weeds are ran-
domly dispersed and live in between them. After randomly 
placing these weeds, they take the unused resources in the 
cropping field and grows to a flowering weed plant and pro-
duce new seeds.

The number of seeds produced by each flowering weed 
depends on the fitness of each flowering weed plant. These 
seeds will develop new weeds in the field, and they have 
better adaption in the environment and take more resources 
that are unused in the field. They grow very fast and produce 
more number of seeds from each weed plant. This process 
will continue until the maximum number of weeds grow in a 
field by using the limited resources. The flow chart given in 
Fig. 2 explains the operation of MCIWO algorithm. Initially, 
the seeds that represent the N- dimensional solution space 
of the problem will be generated at random.

In the present study, the gains of the PID controller are 
considered as the solution space of the problem. Once the 
initial seeds grow into flowering plants after using the 
unused resources, the fitness of each plant will be evalu-
ated. In the present problem, the fitness in terms of average 
angular positional error of the PID controllers are considered 
as the fitness of the plant. Once the fitness is determined, the 
process of reproduction starts to determine the number of 
seeds produced by the plant. The equation that represents the 
reproduction scheme is given in Eq. (12).

where ( fmin , fmax ) and ( Smin , Smax ) denotes the minimum and 
maximum fitness of the colony and minimum and maximum 
seeds produced by the plant, respectively. Then the newly 
produced seeds are randomly distributed using normal distri-
bution with mean zero and variance 

(
�
2
)
 in the search space.

To improve the performance of the algorithm, in the pre-
sent research two terms namely chaotic variable and cosine 
variable [34–36] are added during reproduction. Here, the 

(12)S = Floor

[
Smin +

f − fmin

fmax − fmin

× Smax

]
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function of chaotic variable is to minimize the chances of 
the solution to trap in the local optimum point by increasing 
the spread of the new seed dispersion area. It is derived by 
using chebyshev map and is represented by the expression 
given below.

Moreover, the value of standard deviation ( �Gen ) that is 
used to define the position of the seed is given as follows.

where Genmax is the maximum number of generations, n is 
the modulation index i.e. integer number, �initial and �final is 
the initial and final value of the standard deviation. The term 
|cos (Gen)| not only helps in determining the global optimal 
solution, but also enhances the search space by utilizing the 

(13)Xk+1 = cos
(
kcos−1

(
Xk

))

(14)

�Gen =

(
Genmax − Gen

)

(
Genmax

)n

n

× |cos (Gen)| ×
(
�initial − �final

)
+ �final

minimum resources. It can be observed that after modifica-
tion, the algorithm explores more search space compared to 
standard IWO algorithm. Once the new seeds are obtained 
from the reproduction scheme, their fitness is also being 
evaluated and ranked along with the parent plants. It is 
important to note that the maximum number of plants should 
not exceed Pmax. Then competitive exclusion is performed to 
remove the lower ranked plants. This process will continue 
until the maximum number of iterations are reached.

4 � Results and discussions

In the present paper, an attempt is made to tune the gains of 
the PID controller with the help of a manual tuning method 
and two non-traditional optimization methods, namely PSO 
and MCIWO algorithms. The role movement of the leg (i.e 
joint 1 and 7) and the pitch movement of the swing foot (i.e 

Fig. 2   Flow chart showing the 
operation of MCIWO algorithm
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joint 6 and 12) are not considered in the present study. The 
parameters of 18-DOF biped robot considered in this study 
is given in Table 1.

4.1 � Performance tests

Once the MCIWO algorithm is developed, the performance 
tests are conducted with the help of a statistical software that 
is, SPSS on a PC operated on Windows 7 with a 2 GB RAM 
capacity. A set of ten benchmark functions (ref. to Table 2) 

Table 1   Parameters related to the humanoid robot

Link Mass (kg) Inertia (kg m2) Length (m)

Lower limb of the leg 0.1190 0.00007440 0.093
Upper limb of the leg 0.0700 0.00012600 0.093
Ankle to foot 0.2460 0.00003300 0.033
Upper arm 0.1930 0.00008569 0.060
Lower arm 0.0592 0.00012000 0.060
Trunk 0.0975 0.00017700 0.122
Pelvis 0.1940 0.00671000 0.037

Table 2   Benchmark functions used in the present work

Function Dim Range

F1(x) =
∑n

i=1
x2
i

10 [– 100, 100]
F2(x) =

∑n

i=1
��xi�� +

∏n

i=1
��xi�� 10 [10]

F3(x) =
∑n

i=1

�∑i

j−1
xj

�2 10 [– 100, 100]

F4(x) = max
i

{||xi||, 1 ≤ i ≤ n
}

10 [– 100, 100]

F5(x) =
∑n−1

i=1

�
100(xi+1 − x2

i
)
2
+ (xi − 1)

2
�

10 [– 30]

F6(x) =
∑n

i=1

��
xi + 0.5

��2 10 [– 100, 100]

F7(x) =
∑n

i=1
ix4

i
+ random[0, 1] 10 [− 1.28, 1.28]

F8(x) =
∑n

i=1
−xi sin

��
��xi��

�
10 [– 500, 500]

F9(x) =
∑n

i=1

�
x2
i
− 10 cos(2�xi) + 10

�
10 [– 5.12, 5.12]

F10(x) = −20 exp

�
−0.2

�
1

n

∑n

i=1
x2
i

�
− exp

�
1

n

∑n

i=1
cos(2�xi)

�
+ 20 + e

10 [– 32]

Table 3   Experimental results of MCIWO, IWO and PSO

Algorithms F1 F2 F3 F4 F5

Mean
 MCIWO 7.13E−06 1.07E−04 1.13E−06 1.86E−07 3.90607
 IWO 2.71E−05 1.28E−03 3.24E−04 1.37E−04 4.08205
 PSO 4.66E−03 3.10E−02 3.39E−02 4.63E−02 5.58514

SD
 MCIWO 2.17E−06 3.22E−05 7.95E−07 1.06E−07 2.39114
 IWO 8.11E−06 4.70E−03 9.63E−04 5.80E−05 1.80776
 PSO 1.34E−02 1.17E−01 1.47E−01 1.55E−01 1.86000

F6 F7 F8 F9 F10

Mean
 MCIWO 3.90E−08 5.13E−04 − 2336.11 9.4521 6.78E−05

 IWO 1.76E−07 6.51E−04 − 2625.66 13.4650 1.32E−04

 PSO 3.61E−02 1.81E−03 − 3143.15 51.0080 2.50E−14

SD
 MCIWO 2.30E−08 2.63E−04 310.4179 3.25039 2.19E−05

 IWO 7.11E−08 4.43E−04 287.4640 6.07029 4.80E−05

 PSO 1.75E−01 1.05E−03 268.6708 15.7227 4.28E−14



39Evolutionary Intelligence (2019) 12:33–48	

1 3

available in the literature [37], and one real life problem 
(that is, solved in the present research paper) are considered 
to validate the newly proposed algorithm.

To check the reliability, robustness and effectiveness of 
the developed algorithm (that is, MCIWO), its performances 
are compared with the help of the recently developed nature 
inspired optimization algorithms such as IWO and PSO. 
Initially, the standard performance measures [38] such as 
the mean and standard deviation (SD) of all the said algo-
rithms are determined and reported in Table 3. The average 
runs and maximum number of iterations used to obtain the 
values presented in the said table are kept equal to 30 and 
2000, respectively. The results of SD suggest that MCIWO 
has performed better than IWO and PSO algorithms for 3, 

6, 7, 8 and 9 test functions. But the PSO algorithm is seen 
to perform slightly better than other two algorithms for 1, 2, 
4, 5 and 10 benchmark problems. It has also been observed 
that the mean for all the benchmark functions is found to be 
superior for MCIWO when compared with the other two 
standard algorithms.

4.2 � Normality test

A normality test has been applied over a sample that can 
indicate the presence or absence of condition of normality 
in the observed data. In the present research paper, two types 
of normality tests such as, Kolmogorov–Smirnov (K–S) and 
Shapiro–Wilk (S–W) are used to test the normality. In this 

Table 4   Test of normality of Kolmogorov–Smirnov (K–S) and Shapiro–Wilk (S–W)

Test methods F1 F2 F3 F4 F5 F6

MCIWO K–S test (0.210) (0.071) (0.001)+ (0.073) (0.004)+ (0.200)
S–W test (0.331) (0.012)+ (0.002)+ (0.047)+ (0.035)+ (0.106)

IWO K–S test (0.200) (0.000)+ (0.000)+ (0.200) (0.002)+ (0.200)
S–W test (0.234) (0.000)+ (0.000)+ (0.026)+ (0.000)+ (0.275)

PSO K–S test (0.000)+ (0.000)+ (0.000)+ (0.000)+ (0.200) (0.000)+

S–W test (0.000)+ (0.000)+ (0.000)+ (0.000)+ (0.499) (0.000)+

F7 F8 F9 F10

MCIWO K–S test (0.094) (0.200) (0.143) (0.094)
S–W test (0.048)+ (0.218) (0.051) (0.475)

IWO K–S test (0.001)+ (0.200) (0.030)+ (0.147)
S–W test (0.000)+ (0.647) (0.005)+ (0.113)

PSO K–S test (0.141) (0.200) (0.200) (0.080)
S–W test (0.065) (0.327) (0.029)+ (0.034)+

Fig. 3   Results showing the normal distribution for function 2 using MCIWO algorithm. a Histogram, b normal Q–Q plot
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Fig. 4   Results showing the non-normal distribution for function 2 using IWO algorithm. a Histogram, b normal Q–Q plot

Table 5   p- Values for paired t-test and Wilcoxon test

Algorithms F1 F2 F3 F4 F5

T-test MCIWO-IWO 0.000 0.184 0.076 0.000 0.743
MCIWO-PSO 0.068 0.160 0.219 0.114 0.08

Wilcoxon MCIWO-IWO 0.000 0.001 0.000 0.000 0.719
MCIWO-PSO 0.000 0.009 0.000 0.000 0.012

F6 F7 F8 F9 F10

T-test MCIWO-IWO 0.000 0.164 0.003 0.007 0.000
MCIWO-PSO 0.265 0.000 0.000 0.000 0.024

Wilcoxon MCIWO-IWO 0.000 0.000 0.007 0.008 0.000
MCIWO-PSO 0.000 0.000 0.000 0.000 0.000

(a)   (b)
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study, the value of level of significance is kept fixed at 0.05. 
So, if the value of p is seen to be greater than the signifi-
cance value, then only bit is said that the condition of nor-
mality is fulfilled. Table 4 shows the results related to the 
normality tests using K–S and S–W methods.

Here, the symbol “+” indicates that the function is not 
satisfied with the normality condition. It has been observed 
that the functions 1, 6, 8, 9 and 10 in MCIWO, 1, 6, 8 and 
10 in IWO, and 5, 7 and 8 in PSO algorithms are found to 
satisfy the normality condition for both the testing methods 
(that is, K–S and S–W). It is interesting to note that the 
function 8 has satisfied the normality condition for both the 
testing methods for all the three algorithms. Moreover, the 
function 3 has not satisfied the normality condition in any 
algorithms. Further, the graphical representations of histo-
grams and normal Q–Q plots for the normal and non-normal 
distributions of few test functions are shown in Figs. 3 and 
4, respectively.

4.3 � Parametric and non‑parametric tests

In the present research work, an attempt has also been 
made to conduct both the parametric (that is, paired t-test) 
and non-parametric (that is, Wilcoxon signed ranks test) 
tests to verify the pairwise statistical significance between 
the MCIWO and the other two nature inspired optimiza-
tion algorithms such as, standard IWO and PSO. While 
conducting the tests, the significance value is chosen 0.05 
for both the paired t-test and Wilcoxon signed ranks test. 
The results related to both the tests are reported in Table 5. 
In this study, the null hypothesis H0: there is no difference 
in terms of performance between the algorithms, whereas, 
an alternative null hypothesis H1: there is difference in 
terms of performance between the said algorithms are 
considered. For more details, the interested readers are 
requested to refer [39].

It can be observed that for the functions 1, 2, 3, 4, 6, 
7, 8, 9 and 10, the value of p is found to be less than the 
significance values and its satisfies the Wilcoxon signed 
rank test. Moreover, for function 5, the p value is seen to 
be greater than the significance value and it has not satis-
fied the Wilcoxon test. When conducting the paired T-test 
for MCIWO with standard IWO, the value of p is observed 
to be lower than the significance value for the functions 
1, 4, 6, 8, 9 and 10.While, the p values corresponding to 
the paired T-test between MCIWO and PSO for functions 
7, 8, 9 and 10 are found to less than the significance value 
and they satisfy the condition. Interestingly, the value of 
p for function 10 is less than 0.05 in all the cases. Once 
the developed MCIWO algorithm is verified for its conver-
gence criterion with the help of the benchmark functions, 
this algorithm has been applied to solve a real world prob-
lem related to the tuning of the gains of the torque-based 
PID controller for a biped robot moving on a flat terrain. 
Further, the effectiveness of this algorithm in terms of 
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Table 6   Optimal tuning 
parameters

Joint Manual tuning MCIWO based tuning PSO based tuning

Kp Kd Ki Kp Kd Ki Kp Kd Ki

1 800 300 2000 797.0396 257.8901 1927.4232 899.9999 348.5141 2190.2830
2 900 300 1200 816.7962 282.9285 1148.7668 800.0018 340.4896 1299.4635
3 850 400 700 835.7582 350.000 797.1368 949.9998 350.000 799.9999
4 800 400 600 899.9998 350.000 632.4522 900.000 350.000 699.9999
5 1000 300 4000 982.2304 350.000 3917.4685 900.000 349.9999 3800.000
6 600 300 700 500.0134 326.6905 637.0493 500.0023 349.9995 600.000
7 1000 300 4000 924.6435 328.3097 3866.6624 900.0023 349.9977 3952.9889
8 800 400 3000 723.8466 417.7387 3178.1489 899.9998 413.8861 3199.8614
9 1000 200 4000 1037.1234 161.0384 3863.3030 1057.6767 150.3092 3800.0043
10 800 300 1200 803.7898 342.2657 1107.3253 700.0045 349.9965 1299.9997
11 800 300 3200 703.7346 266.5183 3252.6540 700.1688 349.9996 3400.000
12 2000 600 3000 2120.1489 613.7379 2963.5762 2060.2845 600.9993 2891.1442
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performance measures of the biped robot has been com-
pared with the help of the PSO based PID controller.

4.4 � PSO based PID controller

Initially, a parametric study has been conducted by varying 
one parameter of the algorithm at a time for determining the 
optimal parameters of the PSO algorithm. These optimal 
parameters of the PSO are responsible for the evaluation 
of optimal gains (that is, Kp, Kd and Ki) of the PID control-
ler. To conduct this study, the parameters, such as weight 
value, constants C1 and C2 and number of generations are 
kept equal to 0.9, 2, 1.5 and 30, respectively. The result of 

parametric study is shown in Fig. 5. The optimal parameters, 
such as population size and number of generations of the 
PSO algorithm obtained after the study are seen to be equal 
to 50 and 80, respectively.

4.5 � MCIWO based PID controller

Here a systematic study is also conducted to determine 
the optimal parameters of the MCIWO algorithm. For 
conducting parametric study (ref. to Fig.  6) the initial 
parameters of the algorithm i.e final value of standard 
deviation (σfinal), minimum (Smin) and maximum (Smax) 
no. of seedsand initial and maximum population size, 
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Fig. 8   Variation of error of the swing leg a joint 2, b joint 3, c joint 4 and d joint 5
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nonlinear modulation index and generations are kept equal 
to 0.00001, 0, 5, 10, 25, 2 and 30 respectively. The final 
optimal parameters obtained after the parametric study are 
given below.

Initial standard deviation (σinitial) = 4%, exponent value 
(n) = 2, maximum no. of population size (npopmax) = 10, 
maximum no. of seeds (Smax) = 3 and maximum no. of gen-
erations or iterations (MaxIt) = 90.

The final converge graph for IWO, PSO and MCIWO are 
shown in Fig. 7. It can be observed that MCIWO has shown 
better performance in convergence when compared with the 
IWO algorithm. Therefore, only MCIWO along with PSO 

are used in the further study to compare the performances 
of the controllers.

4.6 � Comparative study

The values of the gains (that is, Kp, Kd and Ki) of the PID 
controller obtained using the three methods, namely manual, 
PSO-based and MCIWO-based PID controllers are given 
in Table 6.

Once the optimal PSO and MCIWO tuned PID controllers 
are evolved, the performances of these controllers are tested 
in simulation on a biped robot walking on flat surface. The 
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Fig. 9   Variation of error of the stand leg a joint 8, b joint 9, c joint 10 and d joint 11
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total cycle is divided in to eight equal time intervals and the 
time required to reach each position is kept fixed at 5 milli-
seconds. The performance of these controllers are compared 
in terms of error in angular position and torque required at 
each joint of the biped robot. The plots showing the error 
in angular position for the joints of swing and stance leg 
of the biped robot are given in Figs. 8 and 9, respectively. 
From these graphs, it can be observed that there are spikes 
in the error of the angular position at the beginning of the 
interval, and it is brought down to study state after a cer-
tain amount of time. Moreover, both the PSO and MCIWO 
based PID controllers are found to converge the error to the 
steady state. It has also been observed that MCIWO-based 
controller is seen to converge quickly when compared with 
the PSO-based PID controller. It may be due to the enhanced 
search capability of the MCIWO algorithm when compared 
with the PSO-based algorithm.

Further, Fig. 10 shows the variation of torques at dif-
ferent joints of swing and stand legs of the biped robot, 
respectively. From these graphs, it can be observed that 
PSO based PID controller requires more torque when com-
pared to MCIWO based PID controller. It may be due to 
the reason that in the PSO based PID controller, the error 
is more between different instances of tracking a particular 
joint. Due to the correction this error, it has consumed more 
torque when compared with MCIWO based PID controller. 
Moreover, it can also be observed that the torque required at 
the hip joint in both the swing leg (that is joints 2 and 3) and 
stand leg (that is joints 8 and 9) are seen to be more when 
compared with the other joints in both PSO and MCIWO-
based PID controllers. This may be due to the reason that the 
hip joint is carrying the remaining links of the biped robot 
while moving from one point to the next.

In addition to the comparison of torque required at vari-
ous joints of the biped robot, a study has also been con-
ducted to study the variation of ZMP of the gait obtained 
(that is, actual) after the controller action. Figure 11 shows 
the variation of theoretical and actual position of ZMP for 
the developed controllers. It can be observed that the ZMP 
trajectories (refer to enlarged view of Fig. 11) obtained by 
MCIWO-based PID controller is seen to be more close to 
the centre of the foot when compared with the trajectory 
obtained by theoretical, IWO and PSO-based PID con-
trollers. It may be due to the reason that in the case of 
controllers, they might have introduced a correction for 
the angular position of the link at the end of each interval 
that pushes the position of ZMP towards the end of the 
foot support polygon. Finally, the gait obtained is found 
to be balanced in nature, as the ZMP is lying inside the 
foot support polygon.

A comparative study has also been conducted in terms 
of average DBM in both X- and Y-directions for the devel-
oped PID controllers (ref. Fig. 12). From this figure, it 
can be observed that the MCIWO-based PID controller is 
found to generate more dynamically balanced gaits, when 
compared with the PSO-based controller. It may be due 
to the reason that the weeds that are reproduced without 
mating, and the fitter plants that produced more number 
of seeds might have led to the improvement in the conver-
gence of the algorithm in the case of MCIWO algorithm. 
Further, Fig. 13 shows the real time execution of the gaits 
generated by the MCIWO-based PID controller on flat sur-
face for swinging the left and right legs, respectively. It 
can be observed that the real-biped robot has successfully 
completed the task of while walking on flat surface.

A robustness test has been conducted (ref. to Table 7) 
to study the performance of the optimal controllers. It is 
interesting to note that the inputs of the controller (that is, 
gains Kp1, Kd1, Ki1,… Kp12, Kd12, Ki12) are varied ± 4%. 
From the result, it can be observed that the maximum 
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variation of DBM in X- and Y-direction is seen to be equal 
to 0.01 and 0.0097% in X- and y-directions.

4.7 � Comparison with others’ work

Further, a qualitative comparision has been performed 
with other approaches provides in [3, 41–46]. They con-
sidered only a 7-DOF biped robot and used analytical 
approach to generate the gaits of the robot. In the present 

approach, the authors have considered not only the gait 
generation issues of the biped robot, but also designed a 
PID controller to execute the generated gait in a smooth 
manner. Moreover, in [4–6, 47–51], few researchers had 
developed a ZMP-based PID controllers, which is an indi-
rect way of controlling the motors mounted on the joints of 
the robot, whereas in the present study, a torque based PID 
controller, which directly deal with the error in angular 
displacements of the motors.
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5 � Conclusions

In this paper, an attempt is made to design and develop 
an optimal torque based PID controller for the 18-DOF 
biped robot while walking on flat surface. The developed 
MCIWO algorithm is verified with the help of benchmark 
problems and found to fulfil the convergence criterion. 
Further, the MCIWO algorithm is used to optimize the 
gains of the torque-based PID controlled, and the per-
formance of the algorithm is compared with PSO-based 
algorithm. The simulation results show that both the con-
trollers are able to generate dynamically balanced gaits 
for the biped robot. It is observed that MCIWO is seen 
to converge quickly and required less torque when com-
pared with the PSO-based controller. The better perfor-
mance of MCIWO algorithm may be due to its enhanced 
search space in the error domain and less chance to reach 
local optimum solution, when compared with the PSO 
algorithm. Finally, the algorithms are tested in computer 
simulations as well as on real 18-DOF biped robot in our 
laboratory.
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